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Abstract The 1D radial camera maps all points on a plane, containing the principal

axis, onto the radial line which is the intersection of that plane and the image plane. It is

a sufficiently general model to express both central and non-central cameras, since the

only assumption it makes is of known center of distortion. In this paper, we study the

multi-focal tensors arising out of 1D radial cameras. There exist no two-view constraints

(like the fundamental matrix) for 1D radial cameras. However, the 3-view and 4-view

cases are interesting. For the 4-view case we have the radial quadrifocal tensor, which

has 15 d.o.f and 2 internal constraints. For the 3-view case, we have the radial trifocal

tensor, which has 7 d.o.f and no internal constraints. Under the assumption of a

purely rotating central camera, this can be used to do a non-parametric estimation

of the radial distortion of a 1D camera. Even in the case of a non-rotating camera it can

be used to do parametric estimation, assuming a planar scene. Finally we examine the

mixed trifocal tensor, which models the case of two 1D radial cameras and one standard

pin-hole camera. Of the above radial multifocal tensors, only the radial trifocal tensor is

useful practically, since it doesn’t require any knowledge of the scene and is extremely

robust. We demonstrate results based on real-images for this.

For the quadrifocal tensor, too, we present a way to do a metric reconstruc-

tion of the scene and to undistort the image (given a sufficiently dense set of point-

correspondences). We also show results on synthetic images. However, it must be noted

that currently the quadrifocal and mixed trifocal tensors are useful only from a theo-

retical stand-point.
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1 Introduction

Omnidirectional cameras have found increasing use in medical imaging [35], surveillance

and robot navigation [3]. Wider field-of-view is obtained using fish-eye lenses or by using

the camera in combination with a mirror. There has been previous work [1] which tries

to identify the conditions under which the resulting camera would be a central camera.

The work described in this paper is useful for both central omnidirectional cameras

and perspective cameras (with severe radial distortion). Hence here we briefly note

work done in camera calibration in both the fields.

Calibration techniques, which assume a generalized model for the camera, have been

discussed in literature [13,39,33,32,14,29,8,7]. However these require knowledge about

the scene and/or camera motion. Further there have been approaches [15] that think

of the cameras as a bunch of photocells, and try to find the angualr separation of these

photocells, based on the (dis)similarity of the signals (received by each of the cells).

There has been other prior work that tries to solve the problem only for a particular

type of camera. For example, there have been approaches tailored to calibrating fish-eye

lenses [37,40,6,2,24]. Some of these additionally require knowledge of the scene [51].

Geyer and Danalidis [11] came up with approaches for parabolic catadioptric systems.

An angular-error minimizatio approach, based on a similar camera-model, was used

in [25]. Pajdla et. al. [28] introduced a stratified approach that reconstructs the scene

and estimates the camera parameters in the spirit of Structure-from-Motion.

There have been approaches that try to estimate radial distortion based on knowl-

edge of the scene [49,12,50]. Recently there has been work [18,26,22,21] that tries

to estimate radial distortion and center of distortion using a planar calibration grid.

Some of these [18] have been extended to do auto-calibration, but the methods are

too sensitive to noise. Tardif et. al., in [41], introduced two plane-based approaches. A

plumb-line type one and another based on the assumption that one can generate dense

correspondences across two views. Both approaches assume a known distortion center,

though a minimization-based method is given to estimate it.

Many methods have been proposed that try to exploit the following property of

the pin-hole model: Straight lines in the scene must project onto straight lines in

the image [4,40]. Kang [23] used snakes to represent distortion curves. Devernay and

Faugeras [6] proposed an approach in which the system does edge-detection, followed

by polygonal approximation, to group edgels which could possibly have come from an

edge segment. The system then tries to minimize the distortion error by optimizing

over the distortion parameters. This is done iteratively till the relative change in error

is below a threshold.

Requiring knowledge of the scene is a serious limitation, for the first catgeory

of methods, because it makes them unsuitable for situations where the camera lens

geometry might change (variable zoom etc.). For the second category of methods,

one requires straight-lines in the scene. Further, differentiating straight-lines which are

curved, due to distortion, and real-world curves is a non-trivial task.

The third category of methods does so by using point correspondences across mul-

tiple views. Stein [38] proposed a method based on epipolar and trifocal constraints.
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The objective here is to minimize the reprojection error over distortion parameters.

Fitzgibbon [10] proposed a technique, for estimating small distortions, that does a si-

multaneous estimation of the fundamental matrix and a single distortion parameter

by formulating a QEP [46]. Micusik and Pajdla [28] extended this method to cameras

that produce large distortions. All these approaches assume a specific (parametric)

model for radial distortion. In fact, a lot of the analysis goes into investigating the

interaction of the assumed model with the multi-view constraints. Recently, Tardif et.

al. [42] have come up with an approach that does non-parametric radial calibration

using two images of a planar scene. This is achieved by formulating the problem as a

convex optimization, by introducing an approximation.

One of the central motivations of the radial 1D camera is to achieve a method

based on point correspondences that does reconstruction of the scene without having

to make any assumption about the kind of radial distortion (other than the sufficiently

general one of radial symmetry). Thus both the methods, based on the radial trifocal

and quadrifocal tensor, follow the 2-step process. One, to estimate the scene structure

independent of unknown distortion. Two, to use the reconstructed scene as a calibration

object to estimate a non-parametric model of radial distortion.

We have tabulated the results, discussed in this paper, in Table 1 on page num-

ber 28. The reader is encouraged to use it, as a reference, as we study the radial 1D

camera and the different multi-focal constraints. We would also like to note that the

work presented in this paper was previously introduced in [43], [44] and [45].

2 Radial 1D Camera

Suppose that the center of radial distortion is known. In the absence of any information,

the image center is a good approximation for the center of distortion. However, if we

have more information (for example, if the rim of the mirror/fish-eye is visible), we

can use that information too. The image can then be transformed such that the center

of radial distortion is the origin. Consider a point in the world X that projects onto

xd = (xd, yd, 1)T in the distorted (input) image. Further let C be the camera center.

Because of large unknown and possibly varying distortion, the point X does not lie on

the ray passing through C and xd (see Figure 1(a)).

However, consider the line passing through the center of radial distortion and xd in

the image (lrad = xd×crad). The undistorted image point (one that would have been

obtained if the camera had followed a pin-hole projection model) xu, would lie on this

line. This is because though the distance of an image point from the center of radial

distortion is not preserved by radial distortion, the direction (which is what the radial

line lrad encodes) is. If instead of back-projecting a ray, we back-project the line lrad
using the camera center, it would contain the ray passing through C and xu, and thus

would contain X. Thus, by representing the distorted image as a 1D image of radial

lines passing through the center of radial distortion, we can factor out the unknown

deviation from the pinhole model (which is along the radial line), but preserve the

known direction of radial line. The insight of separating the unknown deviation but

preserving the known direction, has been used earlier by Tsai [49] in the context of

camera calibration using a grid. Tsai referred to this as the radial alignment constraint.

The radial 1D camera can be thought of as projecting the pencil of planes containing

the optical axis onto the pencil of lines passing through the crad (Figure 1(b)). A radial

line can be represented as l = (y, x)T if crad has been mapped to the origin. Note that a
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(a) (b)

Fig. 1: Radial 1D Camera

radial 1D camera can be obtained for most single effective viewpoint cameras (standard

pin-hole cameras, low radial distortion cameras, fish-eye lenses, catadioptric cameras

[1]). In fact we can deal with non-central cameras also. The only requirement is that

all points that lie in one plane, of the pencil around the optical axis, project onto the

same radial line (passing through crad). For catadioptric systems, this corresponds to

the requirement that all the normals on the mirror have to be contained within radial

planes. This constraint is automatically satisfied for mirror shapes that are symmetric

around the optical axis.

Definition: The radial 1D camera represents the mapping of a point in P3 onto a

radial line in the image. Since it is a P3 → P1, it can be represented by a 2× 4 matrix

and has 7 degrees of freedom.

The projection of a 3D point X on a radial line l using radial camera P is then

given by:

λl = PX (1)

with λ a non-zero scale factor. Note that the image of a point U on the optical axis

does not have a proper image in P1 as we obtain PU = (0, 0)T . Since l (= [l1 l2]T )

and P (= [p1 p2]T ) are equal up to scale, we get:

(l2p1 − l1p2)TX = 0 (2)

Comparing this with the equation of a point X lying on a plane Π, i.e. ΠTX = 0,

we get that the plane back-projected by the radial line is

Π = (l2p1 − l1p2) (3)
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Fig. 2: The Quadrifocal Constraint

3 Radial Quadrifocal Tensors

Let us examine the possible multi-view constraints using these 1D radial cameras in

general configuration. Note that we only have back-projected planes and no back-

projected rays (as the distance information from the crad is unknown, only the radial

line is preserved as a set). Three planes in 3D-space in general position intersect at a

point and hence 3 views give us no constraints. However, four planes intersecting at

a common point yields a non-trivial constraint (Figure 2). Thus we have multi-view

constraints among four 1D radial cameras.

Consider a point X in P3 that projects onto the radial lines, l, l′, l′′, l′′′. Then the

radial projection equations (Eq. 1), can be collected in the following matrix equation:


P l 0 0 0

P′ 0 l′ 0 0

P′′ 0 0 l′′ 0

P′′′ 0 0 0 l′′′


︸ ︷︷ ︸

M8×8


X

−λ
−λ′
−λ′′
−λ′′′

 = 0 (4)

Since we know that a solution exists, the right null-space of M should have non-zero

dimension, which implies that the determinant of the matrix has to be zero.

Following the approach of [47], expansion of the determinant yields the quadrilinear

constraint for 1D radial cameras:

Qijkllil
′
j l
′′
kl′′′l = 0 (5)

Qijkl is the 2 × 2 × 2 × 2 homogenous quadrifocal tensor (introduced in [43]) of four

1D cameras. We use the Einstein summation convention in which indices repeated in

covariant and contravariant positions denote implicit summations.

A general 2 × 2 × 2 × 2 tensor (up to scale) has 15 degrees of freedom. However,

to describe four uncalibrated 1D radial cameras, up to a projectivity, we need only

(4 × (2 × 4 − 1) − (4 × 4 − 1) = 13) degrees of freedom. Thus the radial quadrifocal

tensor has exactly 2 internal constraints. Compare this to (80−29) internal constraints
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for the quadrifocal tensor of 4 perspective views 1. The radial quadrifocal tensor can

thus be linearly estimated given 15 corresponding quadruplets. Given more than 15

corresponding quadruplets, a linear least squares solution can be obtained.

Lemma : There exist no higher-order tensors for 1D cameras.

Proof : Each camera projection matrix is 2× 4. Thus if there are n (> 4) cameras,

M (similar to Eq. (4)) will be of dimensions 2n× (4+n).Following a similar argument,

since the right null-space is of non-zero dimension, the column rank of M is < (4 +n).

Hence any (4+n)×(4+n) sub-matrix (say, Ms) has determinant zero. Note that all the

columns of M are selected in Ms but only (4 +n) rows are selected. If we omit picking

a row from the projection matrix of the ith camera, then (i+ 4)th column (whose only

non-zero elements are li1 and li2) , of Ms is all zero. Thus the determinant is trivially

zero and doesn’t give us a constraint.

To get a non-trivial constraint we need to select at least one row from each cam-

era, and choose 4 specific cameras, to select the 2nd row from. Let these cameras be

(p, q, r, s). Expansion of this (4 + n) × (4 + n) matrix, gives us a constraint which is

of the form, l1w1 . . . l1wnD2 where D = (lp1lq1lr1ls1det(
[
PTp2 PTq2 PTr2 PTs2

]T
) + . . .)

Note that D is nothing but the quadrifocal constraint (Eq. (5)) of the 4 selected views

(p, q, r, s).

3.1 Nature of the Internal Constraints

We will now give a geometric interpretation of the two internal constraints of the radial

quadrifocal tensor. It depends on the following observation: Given four lines (the optical

axes of the 4 cameras), in general configuration, in 3D space, there exists two lines that

intersect all of them [17]. We will call these special lines, that intersect all four optical

axes, quadrifocal lines.

Let us denote one quadrifocal line as L. Further, let it project onto l, l′, l′′, l′′′ in

the four images. The planes back-projected from the radial lines l, l′, l′′ will contain L.

So irrespective of which plane is chosen, among the pencil back-projected by the 4th

camera (Figure 1(b)), we will have a point of intersection for the four planes (since

a line and a plane always intersect in 3D space). This means that the quadrifocal

constraint (Eq. (5)) is satisfied for all l′′′. This means that,

(Qijk1lil
′
j l
′′
k)l′′′1 + (Qijk1lil

′
j l
′′
k)l′′′2 = 0 (6)

Since the above is satisfied for all values of l′′′1 and l′′′2 , it implies that the respective

coefficients should be zero.

Qijk1lil
′
j l
′′
k = 0

Qijk2lil
′
j l
′′
k = 0

(7)

Since the above argument will be true even if we choose any of the other cameras

instead of the 4th camera (for example, we can back-project l′, l′′, l′′′, which would

allow us to choose any arbitrary line, in the 1st image, as l), we have the following 8

equations:

Q1jkll′j l
′′
kl′′′l = 0 (8a)

1 In fact, for perspective cameras, the radial quadrifocal tensor corresponds to the upper
2× 2× 2× 2 part of the full quadrifocal tensor.

2 w1 . . . wn are the rows selected from all the cameras other than (p, q, r, s)
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Q2jkll′j l
′′
kl′′′l = 0 (8b)

Qi1kllil
′′
kl′′′l = 0 (8c)

Qi2kllil
′′
kl′′′l = 0 (8d)

Qij1llil
′
j l
′′′
l = 0 (8e)

Qij2llil
′
j l
′′′
l = 0 (8f)

Qijk1lil
′
j l
′′
k = 0 (8g)

Qijk2lil
′
j l
′′
k = 0 (8h)

Notice that filling in Eq. (8a,8c,8e,8g) in the quadrifocal constraint (Eq. (5)), yields

the other four equations (Eq. (8b,8d,8f,8h)). Hence the above 8 equations yield only 5

independent constraints, Eq. (8a,8c,8e,8g) as well as the quadrifocal constraint (Eq. (5))

itself.

Let us denote the tuple of 4 lines as r =
[
l2×1, l

′
2×1, l

′′
2×1, l

′′′
2×1
]
3 and equations

Eq. (8a,8c,8e,8g) as f1(Q, r) = 0, f2(Q, r) = 0, f3(Q, r) = 0, f4(Q, r) = 0. Finally, let

us denote by f5(Q, r) = 0, the quadrifocal constraint (Eq. (5)).

Thus we have the following condition: If Q is a valid radial quadrifocal tensor, then

the set of equations:

f1...5(Q, r) = 0 (9)

has at least two solutions (in general configuration).

Assume that Q is a valid radial quadrifocal tensor. If r′ is a solution of Eq. (9)

we can solve for r′ from f1...4(Q, r) = 0 in terms of fi and Q. Since there are two

solutions, we have r1, r2 such that ri = gi(Q), i = 1, 2. Note that we are not solving

fi to compute gi. We are just claiming the existence of such gis. If we substitute each

solution ri in f5(Q, r) = 0, we will get two equations in Q. Thus, if Q is a valid radial

quadrifocal tensor, then,

f5(Q, g1(Q)) = 0

f5(Q, g2(Q)) = 0
(10)

This proves that we have the two internal constraints sitting within the set of 5

equations. In other words, the two internal constraints that a valid radial quadrifocal

tensor has to satisfy corresponds to the need for two quadrifocal lines to exist. This is

very comparable to the rank-2 constraint of the fundamental matrix which implies the

existence of both epipoles.

3 Even though these are vectors, they are projective entities and hence l2×1 ∼ λ [u v] has
only 1 variable. Thus r has 4 variables and not 8.
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3.2 3D Reconstruction

3.2.1 Projective Reconstruction

We now consider the problem of 3D reconstruction of points whose correspondences

have been specified across the input images. Given a radial quadrifocal tensor, we

can easily compute the four uncalibrated camera matrices [19]. For every valid radial

quadrifocal tensor, two non-equivalent projective reconstructions are obtained. As we

can not disambiguate between them at this stage we will carry them through to the

metric reconstruction stage and potentially the radial calibration where in general

only a single solution will yield consistent results. Once the projection matrices have

been recovered, points in 3D can be reconstructed by back-projecting planes. This

corresponds to computing the right nullspace of the following matrix:

R8×8 =


P l 0 0 0

P′ 0 l′ 0 0

P′′ 0 0 l′′ 0

P′′′ 0 0 0 l′′′

 (11)

Since only three planes are required to define a point uniquely in 3D space, we can

in fact reconstruct all points seen in at least three views.

3.2.2 Metric Reconstruction

The dual absolute quadric, Ω∗∞ encodes both the absolute conic and the plane at

infinity. To upgrade our reconstruction to metric, we need to estimate this degener-

ate quadric in the projective frame in which the cameras and the points have been

determined [48,30]. Ω∗∞ projects into the radial 1D image as,

K̃K̃T = ω̃∗ = PΩ∗∞PT (12)

with K̃ =

[
fx s

0 fy

]
the upper 2×2 part of the calibration matrix. Using the assumptions

of (i) known principal point (and it being at the origin) (ii) zero skew (s = 0) (iii) known

aspect ratio (fy = afx), we obtain 8 linear constraints on Ω∗∞, from the 4 views. Since

Ω∗∞ is a 4× 4 homogenous symmetric matrix it has 9 d.o.f (10 up to scale). Using the

additional rank-3 constraint we obtain a fourth-degree equation ( detΩ∗∞ = 0) and thus

obtain up to 4 solutions. Only positive semi-definite solutions for the absolute quadric

have to be considered. If more than one solution persists, we can generate multiple

alternative metric reconstructions and disambiguate them later by verifying the radial

symmetry in the next section. If Ω∗∞ is decomposed as Ω∗∞ = HIHT , then H−1 is the

point homography that takes the projective frame to the metric frame [20].

3.3 Radial calibration

Once a metric reconstruction has been obtained using the 1D radial property of the

camera, it can be used to calibrate the remaining unknowns of the projection. In this

section we will present a non-parametric approach to calibrate central and non-central

radially symmetric cameras. This process can be done independently for each image
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and it is thus possible to calibrate four different cameras -or a camera with different

settings- using a single quadrifocal tensor.

For each cameras, all reconstructed feature points can be represented in a cylindrical

coordinate system relative to the optical axis of the camera, i.e. (ρ, φ, z). The origin

along the z-axis can in a first phase be chosen arbitrarily. Because we assume radial

symmetry, the φ coordinate is irrelevant for us. The goal of our calibration procedure

is to obtain an expression for rays, r, in the ρz-plane as a function of the radius r, i.e.

r(r) : a1(r)ρ + a2(r)z + a3(r) = 0. This can be done by fitting lines to all the points

that have (almost) the same r value.

4 Radial Trifocal Tensor

Fig. 3: The Trifocal Constraint

Suppose that three optical axes, A,A′ and A′′ intersect at some point C. Also,

suppose that a 3D point X projects onto the lines l, l′and l′′ in the three views (Fig-

ure 3) . Consider the plane, Π containing C and the line l (corresponding to the

back-projection of the radial line l). Similarly, one has the planes Π
′

and Π
′′

. Note

that for every 3D point, X, the corresponding planes back-projected from the 3 views

intersect in the line passing through C and X. Three planes in 3D space intersecting

in a line is a non-trivial constraint. This non-trivial constraint between the three 1D

radial views is encoded by the radial trifocal tensor (introduced in [44]). We can now

formulate this constraint mathematically.

Without loss of generality we can assume that the three optical axes intersect in

the origin (0, 0, 0, 1)T . Since PC = (0, 0)T , the 1D radial cameras whose optical axes

contain the origin must have the following form P = [P̃|0]. Let X̃T correspond to the

first three coefficients of X. In this case, the first 6 rows of Eq. (4) can be rewritten as:

 P̃ l 0 0

P̃′ 0 l′ 0

P̃′′ 0 0 l′′




X̃

−λ
−λ′
−λ′′

 = 0 (13)
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The non-zero dimension of the right null-space implies that the 6 × 6 measurement

matrix must have a zero determinant.

Expansion of the determinant produces the unique trilinear constraint for 1D views

yields

Tijklil
′
j l
′′
k = 0 (14)

Tijk is the 2 × 2 × 2 homogeneous radial trifocal tensor of the three 1D radial

cameras. The expression for the coefficients of the trifocal tensor is

Tijk = det
[
P̃Ti P̃′Tj P̃′′Tk

]
(15)

The radial trifocal tensor is a minimal parameterization of the three P2 → P1 mapping

cameras as the d.o.f can be shown to match, 2×2×2−1 = 7 = 3×(2×3−1)−(3×3−1)

(with the LHS being the d.o.f of T and the RHS being the d.o.f of the three uncalibrated

views up to a projectivity) and has no internal constraints.

The radial trifocal tensor can be linearly estimated given seven corresponding

triplets (where every triplet gives a linear constraint on the parameters of the ra-

dial trifocal tensor using Eq. (14)) Given more than seven correspondences, we can

obtain the linear least squares solution.

It is interesting to verify the relation between the radial trifocal constraint and

the radial quadrifocal constraint. When three optical axes intersect, adding a fourth

view doesn’t yield any additional constraint and the quadrifocal constraint becomes

degenerate. Since in P3 a line and a plane always intersect, we no longer need the

precise plane Π
′′′

, back-projected from l′′′. Instead we could choose any of the planes

among the pencil back-projected by the fourth camera. Let us examine the radial

quadrifocal constraint, Eq. (5), in this scenario:

(Qijk1lil
′
j l
′′
k)l′′′1 + (Qijk2lil

′
j l
′′
k)l′′′2 = 0 (16)

Choosing an arbitrary back-projected plane from the fourth camera corresponds to

arbitrary values for l
′′′

1 and l
′′′

2 . Since Eq. (16) is valid for arbitrary values of l
′′′

1 and

l
′′′

2 , it implies that the coefficients are zero. Further, the above condition is valid for

any 3D point X. Comparing this to the trifocal constraint, we see that in this case the

quadrifocal tensor must be related to the trifocal tensor as follows

Qijkl = (λ1T
ijk, λ2T

ijk) (17)

and can only be determined up to one degree of freedom, i.e. λ1
λ2

.

The trifocal tensor for 1D cameras and its properties were first studied by Quan and

Kanade [31] in the context of structure and motion using line correspondences under

affine cameras. They showed that by neglecting the position of the lines and considering

only their direction, this problem was equivalent to the structure and motion problem

for points in one lower dimension. Faugeras et. al. [9] studied the 1D trifocal tensor in

the context of planar motion recovery and self-calibration.
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4.1 Reconstruction

4.1.1 Projective Reconstruction of Π∞

Let us now consider the problem of reconstructing directions from C. Directions cor-

respond to points on Π∞. Given the radial trifocal tensor, T, we can estimate the

three uncalibrated camera matrices, P̃, P̃′ and P̃′′ [44]. These projection matrices can

be thought of projecting points on Π∞ to radial lines in the corresponding views.

Suppose a point on Π∞, X (or direction X in 3D space) projects onto the radial

lines l, l′ and l′′. The point then satisfies Eq. (13). Thus it can be computed as the

right null-space of

R6×6 =

 P̃ l 0 0

P̃′ 0 l′ 0

P̃′′ 0 0 l′′

 (18)

Note that for reconstruction is possible even if the point is visible in only two views.

In this case, R reduces to the following 4× 5 matrix, which always has a solution:[
P̃ l 0

P̃′ 0 l′

]
(19)

4.1.2 Metric Reconstruction

Let p̃1, p̃2 be the two rows of the projection matrix, P̃2×3. Similarly let p̃′1, p̃
′
2 be the

rows of P̃′ and p̃′′1 , p̃
′′
2 be the rows of P̃′′. Let ω∗∞ be dual of the absolute conic in the

projective frame in which we have reconstructed the points on Π∞ (directions). It is

a 3 × 3 homogenous symmetric matrix and hence has 5 degrees of freedom (6 up to

scale). To upgrade the projective reconstruction to metric it is sufficient to estimate

ω∗∞ [20].

We have the assumptions of (i) known principal point (and it being at the origin)

(ii) zero skew and (iii) constant (but possibly unknown) aspect ratio. Note that this is

equivalent to assuming rectangular pixels. It can be shown the assumption of zero skew

in the three views gives us the following set of equations linear in the parameters of

ω∗∞ :

p̃1ω
∗
∞p̃T2 = 0

p̃′1ω
∗
∞p̃′T2 = 0

p̃′′1ω
∗
∞p̃′′T2 = 0

(20)

Further, the assumption of constant aspect ratio gives us the following equations:

p̃1ω
∗
∞p̃T1

p̃2ω
∗∞p̃T2

=
p̃′1ω

∗
∞p̃′T1

p̃′2ω
∗∞p̃′T2

=
p̃′′1ω

∗
∞p̃′′T1

p̃′′2ω
∗∞p̃′′T2

= A (21)

If the aspect ratio is known (A is known in Eq. (21)), we have 3 more equations, linear

in the parameters of ω∗∞. If the aspect ratio is unknown, then we have two equations,

quadratic in the parameters of ω∗∞. Using the linear equations in Eq. (20), we can

reduce the equations in Eq. (21) to two quadratic equations in two variables. And

these can be solved analytically.
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4.2 Non-Parametric Radial Calibration

Once a metric reconstruction of Π∞ has been obtained using the 1D radial property

of the camera, it can be used to calibrate the remaining unknowns of the projection. In

this section we present a non-parametric approach to calibrate purely rotating central

radially symmetric cameras. The objective thus is to compute a function that maps

the radius in the distorted image (r) to an angle with the optical axis (θ): f : r → θ

Note that the procedure described here can be done independently for each image

and it is thus possible to calibrate three different cameras using a single trifocal tensor.

Xc

c

[1 0]

[0 1]

O

X

O’

c’
m’

e

m

Fig. 4: Shows two radial cameras with optical axes O and O′ and centers of distortion

c, c′ respectively. X is reconstructed as the point on Π∞ that projects onto radial lines

m and m′ (dotted lines) in the images. Xc is reconstructed as the point that projects

onto [1 0] and [0 1] (indicated by bold lines) in the first radial image. If we have a

metric reconstruction of Π∞, we can compute the angle e

Since we have upgraded the reconstruction to metric, we can compute the angle

between rays corresponding to X and Xc (defined in figure above) as [20]:

cos(θ) =
XTXc√

XTX
√

XT
c Xc

(22)

For each camera, the rays corresponding to reconstructed feature points can be

represented in a coordinate system relative to the optical axis of the camera, i.e. (θ, φ).

Because we assume radial symmetry, the φ coordinate is irrelevant for us. Thus for each

camera and each reconstructed point visible in it, we will get a point on the function

f . We can use the map we get, i.e. (r, θ) to then do undistortion (by fitting a function,

use as samples in a lookup table etc:.).

5 Radial Trifocal Tensor for Cameras in General Position

In some situations it might not be possible to ensure a rotating camera Hence in this

section we give an approach that allows reconstruction even when the camera-center

doesn’t remain stationary across the three views. However, we will need to make two

allowances here:
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• All the scene-points should come from a planar scene. This is not really

difficult to achieve because we can image a building facade, checkerboard images

etc:. Further, the trifocal tensor equation will not be satisfied for scene-points in

non-planar position and hence can form the basis of a robust sieve.

• We will have to use a parametric model of distortion in the last stage of estimation.

Note that this isn’t too stringent a constraint because the the reconstruction still

is independent of the model of distortion.

It should be noted, here, that for the rotating camera case (discussed in the previous

section), all scene points being on a real-world plane is not a degenerate case for

reconstruction.

Consider a point X, on the real-world plane Π that projects onto the radial lines

l, l′, l′′ in the three cameras. Then each projection matrix is a P2 → P1 mapping

and we get equations of the form Equation (13). Since the right null space exists,

the determinant of 6 × 6 matrix is 0 which implies Equation (14). Evaluation of the

projection matrices from the trifocal tensor and reconstruction follow similar lines.

In this case, however instead of Π∞ we have Π which is real-world plane from which

the scene-points come. Let us denote the undistorted first image as I1u and the distorted

(which is what we have) image as I1d . We consider the formation of the distorted image

to be a two-step procedure. A homography, denoted by H, that does Π→ I1u. Followed

by distortion for which we will assume a parametric model.

5.1 Estimating the homography from Π to the undistorted images

Consider the projection matrix of the first radial camera, PT3×2 =
[
p>1 p>2

]
, where p1

and p2 are the rows of 2× 3 matrix, P.

l =

[
l1
l2

]
=

[
p1

p2

]
X (23)

Suppose X projects onto xu in the first image (I1u, conforming to the pin-hole

model). Also, suppose that X projects onto the line l = [l1 l2]T , in the first distorted

image(I1d). Then, xu is of the form λ

[
−l2
l1

]
(since the center of distortion is (0, 0)T ,

and deviation is only along the radial line).

The homography H from Π to I1u, would map X to xu. From the observation made

above, we can estimate the first two rows of H as

H =

−p2

p1

h3

 (24)

where h3 = (h31, h32, h33)T is unknown.

Let

Su = {

xiuyiu
1

 | i = 1 . . . n}

be the set of coordinates of the feature points in the undistorted image, I1u.
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Then by estimating the homography, H, up to three unknown parameters, as we

have done above, we are able to express the set, Su, as

Su(h31, h32, h33) = {

 −p2 ·Xi

p1 ·Xi

[h31 h32 h33] ·Xi

 | i = 1 . . . n} (25)

The undistorted coordinates (xu) of all the feature points, together, are thus now

known up to only three parameters (of h3) in total.

5.2 Computing the distortion parameters

We will now estimate the distortion parameters of the division model 4. We will assume

that the transformation from I1d to I1u, follows the division model [10] i.e, induced by

the distortion parameters,is

xu =
xd

(1 +K1rd2 +K2rd4 +K3rd6 + . . . )
(26)

The transformation from Π to I1u, induced by H, is

ρ

[
xu
1

]
=

−p2X

p1X

h3X

 (27)

with ρ an unknown scale factor. Since the two points are the same, the vectors repre-

senting them should be parallel. Thus their cross-product should be equal to zero [20].−p2X

p1X

h3X

×
 xd

yd
(1 +K1rd

2 + . . . )

 = 0 (28)

Thus every point gives us two equations,[
xd(h3X) + p2X(K1r

2
d + . . . )

yd(h3X)− p1X(K1r
2
d + . . . )

]
=

[
(−p2X)

(p1X)

]
(29)

which can be rewritten as,

[
xdX (p2X)[r2d r4d . . . ]

ydX (−p1X)[r2d r4d . . . ]

]
h>3
K1

K2

...

 =

[
(−p2X)

(p1X)

]
(30)

These two equations are dependent, but it is best to use them both to avoid degenerate

cases and deal with orientation ambiguities.

4 Note that everything up to this stage was independent of any assumption on the form of
the radial distortion. Therefore, we could also use a different distortion model. Depending on
the type/parameters of distortion, we may or may not be able to estimate the last row of the
homography and the distortion parameters linearly. However, the relations that we will derive
are valid irrespective of the model used.
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Given more than 3 + n feature points (where n is the number of distortion param-

eters), we can solve the system of equations we would get, in a least-squares sense.

Using the above set of equations directly, we minimize an algebraic error. A better

solution would be to minimize the geometric error in the distorted image, I1d (since

that is the input image). For that we need to divide each of the equations given in

Eq (30), by 1
h3X

. This would then minimize the sum (over all the feature points) of

the following squared-error.

||

[
xd − −p2X

h3X
(1 +K1r

2
d + . . . )

yd − p1X
h3X

(1 +K1r
2
d + . . . )

]
||2 (31)

which is distance, in I1d , from (xd, yd)T to
[
−p2X
h3X

p1X
h3X

]T
(1 + K1r

2
d + . . . ) i.e, the

pixel corresponding to the feature point in I1u, warped by the distortion parameters

((1 +K1r
2
d + . . . )). However, we don’t have 1

h3X
, since h3 is unknown, but by scaling

with
||(xd,yd)

T ||
||(−p2X,p1X)T || we can at least normalize for the arbitrary scale of X. We scale

both of the equations, generated by each feature point, before stacking them in the

matrix to obtain the least-squares solution.

This system of equations could be refined iteratively using the previous approx-

imation of h3 to normalize the equations or alternatively a non-linear minimization

of Eq. (31) could be used to refine our linear solution. The results described in the

experimental section are obtained using the linear method only.

6 Radial Tensor for Heterogeneous Cameras

The next natural question to ask is: how does the radial 1D camera model interact with

the more standard pin-hole camera model. This is particularly useful when we consider

today’s camera networks which contain cameras of different types, some of which will

need the pin-hole model and others the radial 1D model. In particular we will examine

the multi-view relationship among two 1D cameras and one pin-hole camera.

Consider the point X that projects onto the point x3×1 in the pin-hole camera and

the radial lines l′2×1 and l′′ in the radial cameras. Then it projects by the following set

of equations,
λx = P3×4X
λ′l′ = P′2×4X
λ′′l′′ = P′′2×4X

(32)

These equations can be rewritten in matrix format as,P3×4 x 0 0

P′2×4 0 l′ 0

P′′2×4 0 0 l′′




X

−λ
−λ′
−λ′′

 = 0 (33)

Since we know that a solution exists, the right null-space of the 7× 7 measurement

matrix should have non-zero dimension, which implies that

det

P3×4 x 0 0

P′2×4 0 l′ 0

P′′2×4 0 0 l′′

 = 0 (34)
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Following the approach of [47], expansion of the determinant produces the unique

trilinear constraint for the pin-hole view and the two 1D views,

Tjk
i xil′j l

′′
k = 0 (35)

Tjk
i is the 3 × 2 × 2 mixed trifocal tensor (introduced in [45]) for the pin-hole

camera and two 1D radial cameras. Elements of T can be written as 4 × 4 minors of

the joint projection matrix

[
PT P

′T
P
′′T
]T

where two rows (of the minor) come from

the pin-hole projection matrix, P, and a row each is contributed by P′ and P′′.

One useful way of understanding the mixed trifocal tensor is by considering the

intersection of the ray back-projected from the pin-hole camera and the planes back-

projected from the two radial cameras, in 3D space. The back-projected ray intersects

the plane back-projected from the first radial camera at a point, say X. This constrains

the radial line in the second radial camera to be such that the plane back-projected

from it contains X. The mixed trifocal tensor captures this incidence relationship.

A general 3×2×2 tensor has 12−1 = 11 degrees of freedom up to scale. Subtracting

from these the degrees of freedom required to describe one pin-hole camera and two

radial cameras up to a 3D projectivity, (3× 4− 1) + 2× (2× 4− 1)− (4× 4− 1) = 10,

we observe that the mixed trifocal tensor has only one internal constraint.

6.1 Nature of the Internal Constraint

Fig. 5: O1 and O2 are the two optical axes. C is the center of the pin-hole camera. Π1

is the plane defined by C and O1. Planes Πi project onto mi in the pin-hole image.

X (lying on Π1) projects onto x in the pin-hole image and l′ in the first radial image.

The intersection of Π1 (the plane back-projected from l′) and the ray back-projected

from x is the ray itself. Any plane back-projected from the second radial camera will

intersect this ray.
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We will now characterise the internal constraint of the mixed trifocal tensor. Con-

sider Figure 2. Let C be the camera center of the pin-hole camera and O1 and O2 be

the optical axes of the two radial cameras. Let us denote the plane defined by C and

Oi by Πi.

Consider a point X, lying in Π1, that projects onto x in the pin-hole image and l′

in the first radial image. Note that the plane back-projected from the first radial image

is Π1. Further, the ray back-projected from the pin-hole image lies in Π1. Thus the

intersection of these two is the ray itself. Since in 3D space a ray and a plane always

intersect, we can choose any arbitrary plane from the pencil back-projected by the

second radial camera. This is equivalent to selecting an arbitrary l′′ =
[
l′′1 , l
′′
2

]
. This

implies that their coefficients in Eq. (35) are zero.

Tj1
i xil′j = 0 Tj2

i xil′j = 0 (36)

Eq. (36) can be interpreted to imply that there exists l′ =
[
l′1, l
′
2

]
such that[

T11
i xi T21

i xi

T12
i xi T22

i xi

]
︸ ︷︷ ︸

M

[
l′1
l′2

]
=

[
0

0

]
(37)

Since the right null-space of the M is of non-zero dimension, it implies that det(M) =

0. Thus,

T11
p xpT22

q xq −T12
p xpT21

q xq = 0 (38)

Note that the above equation is a conic in x of the form xTWx = 0 where the (i, j)th

entry of W is of the form

Wij =
T11
i ∗T22

j + T11
j ∗T22

i −T12
i ∗T21

j −T12
j ∗T21

i

2
(39)

Thus for a point x lying on W there exists a radial line, l′ in the first radial image

such that for any arbitrary l′′, Eq. (35) is satisfied (or there exists a radial line in

the second image such that for any arbitrary radial line in the first image, Eq. (35)

is satisfied). Note that the above condition holds only for points x which come from

either line m1, which is the image of plane Π1 or m2 which is the image of the plane

Π2. This implies that W is a degenerate conic (pair of lines). Thus

det(W) = 0 (40)

Eq. (40) is the degree-six internal constraint on the entries of Tjk
i .

6.2 Computation of the Mixed Trifocal Tensor

The mixed trifocal tensor can be linearly estimated given at least 11 corresponding

triplets of features, with each triplet giving a linear constraint on the parameters of the

tensor using Eq. (35). However this method would not impose the internal constraint

we have discussed above. We will now describe a technique by which the degree-six

internal constraint discussed above can be imposed.
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Given 10 corresponding triplets of features, we obtain a 10×12 measurement matrix

and thus a two-dimensional right null-space. The trifocal tensor, T can then expressed

as

T = S + λR (41)

where λ needs to be determined.

Given two 3× 2× 2 tensors U and V, define an operator Y(U,V), which gives as

output a 3× 3 matrix, as following:

Yij =
U11
i ∗V22

j + V11
j ∗U22

i −U12
i ∗V21

j −V12
j ∗U21

i

2
(42)

The degree-six internal constraint expressed by Eq. (40) can be rewritten in the

above terms (using Eq. (39) ) as:

det(Y(T,T)) = 0 (43)

Using Eq. (41), we can reduce Eq. (43) as following:

det(Y(T,T)) = 0
det(Y(S + λR,S + λR)) = 0
det(Y(S,S)︸ ︷︷ ︸

D1

+λ(Y(S,R) + Y(R,S)︸ ︷︷ ︸
D2

) + λ2 Y(R,R)︸ ︷︷ ︸
D3︸ ︷︷ ︸

D

) = 0
(44)

Note that in Eq. (44), D1,D2 and D3 are known. Further, since the value of λ

would be such that the determinant of D is zero, there will exist z such that:

(D1 + λD2 + λ2D3)z = 0 (45)

Computing the tuple (λ, z), such that Eq. (45) is satisfied, is the standard Quadratic

Eigenvalue Problem (QEP) [46] and can be efficiently solved. For example, in MAT-

LAB, one can use the polyeig function.

Since the size of the minimal hypothesis is 10 and the kernel can be efficiently

implemented (S and R are estimated linearly and Eq. (45) can be solved efficiently),

we can use a robust sieve, like RANSAC, to estimate the mixed trifocal tensor.

7 Experiments

7.1 Radial Quadrifocal Tensor

7.1.1 Using Synthetic Data

We will now describe simulations that we carried out to test the validity and robustness

of reconstruction using the quadrifocal tensor. The following 4 cameras were chosen: a

pin-hole camera looking at a spherical mirror, a pin-hole camera looking at a hyperbolic

mirror (satisfying the single effective view-point condition [1]), a perspective camera

and a fish-eye camera. Only the points which were imaged in all the 4 views were

considered (a total of 2300 points were imaged, see Figure 7). To every point in every

image, Gaussian noise with σ = 1 pixel (in an image of 2000x2000 pixels) was added.

The final 4 images are shown in Figure 6. The 4 cameras were modeled to have zero

skew and unit aspect ratio.
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In Figure 8 the results of the metric reconstruction are shown. Only the difference

vectors, between the ground truth and the reconstruction obtained, are plotted. The

ratio of the RMS reconstruction error and the standard deviation of the ground truth

point set is less than 1 percent. This ratio grew to around 3-5 percent when noise of

σ = 2 pixel was introduced.

In the second phase, we perform radial calibration. For each camera, the first phase

would have given us a precise optical axis in metric space. We select an arbitrary point

on the optical axis and compute (ρ, z) pairs for each reconstructed point . In this 2D

coordinate system, all points which project onto the same radial circle, in the input

image, should lie on the same line. Given a sufficiently dense set of points, we can

estimate these incoming rays (see Figure 6). Note that all the incoming rays for the

three central cameras (views 2,3 and 4) pass through a point on the optical axis, as

expected. This happens without enforcing any explicit constraint. For a non-central

camera (view 1), the envelope of rays corresponds to the caustic of a spherical mirror

as expected.

Fig. 6: (L to R) Spherical mirror, Hyperbolic mirror, Pin-Hole Camera, Fish-eye Lens.

Top:Images obtained by the four cameras Bottom: (ρ, z) plots for reconstructed features

and estimated incoming rays. Notice the caustic of the spherical-mirror camera (extreme

left)

7.2 Radial Trifocal Tensor

7.2.1 Non-parametric Radial Calibration

In our first experiment, a triplet of images obtained using a rotating fish-eye camera

was fed as input to the system. The images were acquired using a Nikon 8mm FC-E8

fish-eye converter mounted on a Nikon Coolpix 8400 camera. An online implementation

of Lowe’s feature matcher [27] was used to obtain triplets of corresponding points in the

three images. Note that despite the severe non-perspective distortion, most automatic

feature matching techniques work well because the views were obtained using a purely

rotating camera.
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Fig. 7: The scene that is imaged by the 4 cameras. Plus (+) signs mark the points

imaged in all cameras and dot (.) mark points which werent.

Fig. 8: These line segments connect the ground-truth points to the metric reconstruction

obtained. Compare the length of the segments to the extent of the scene to get an idea

of the error in reconstruction.

The image resolution was 1024x768 pixels. Approximately 560 triplets were re-

turned by the feature matcher. Next, RANSAC based on the radial trifocal tensor

identified about 220 inliers (the threshold was set to 3 pixels). The input images, with

the triplets of corresponding points (those that were identified as inliers after RANSAC)

marked are shown in Figure 9. A projective reconstruction was obtained and upgraded

to metric based on the assumptions of zero skew and known aspect ratio of unity. For

every 3D point that has correspondences across at least two images, we obtain the

angle of the ray, passing through that point and the camera center, and the optical

axis of the corresponding view. This gives us a point on the angle vs. distorted radius

curve. Figure 10 shows the plots for the three views. We see that the angle of a ray

with the optical axis is related to the distorted radius almost linearly. This is expected

as a fish-eye camera roughly follows the equidistant model.

Note that at no point during the whole procedure did we make any assumptions

about the type/amount of radial distortion. Further, an automatic feature matcher

has been able to give us features that span the whole range of distorted radii. Finally,

note that no additional constraint (smoothness etc) was enforced across the three views.

Finally in Figure 11 we show a cubemap of the undistorted left view. Note that straight

lines in the world are indeed mapped to straight lines in the image. The unwarping

was carried out by computing the distorted radius for a given undistorted radius using
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Fig. 9: The triplet of images input to the system with features that were automatically

matched overlaid. Top: Fish-eye images Bottom: Catadioptric images

Fig. 10: Plot for fish-eye camera. Radius in Distorted Image (r) vs Angle with Optical-

Axis of ray passing through a pixel at that radius (θ, in degrees)

a simple line interpolation on the plot in Figure 10. More complex models could also

be used .

In our second experiment, three images obtained from a purely rotating single

viewpoint catadioptric camera were used. The image resolution was 1280x960 pixels.

Lowe’s feature matcher [27] produced approximately 220 matching triplets across the

three views. An in the previous experiment, RANSAC based on the radial trifocal

tensor produced around 130 inlier triplets. Figure 9 (lower row) shows the input images
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with the inlier triplets marked. We compute a projective reconstruction and upgrade

it to metric based on assumptions of zero skew and unit aspect ratio. Note that since

our method handles all types of radial distortion uniformly, the complete procedure in

this experiment in exactly the same as in the previous experiment. Figure 12 shows

the plots of the Angle with Optical Axis vs. Distorted Radius for each of the views.

Finally, Figure 13 shows a cubemap of the undistorted left view. One can refine the

estimates produced by our method using techniques like bundle adjustment. In the

first experiment, it reduced the RMS reprojection error from 1.13 pixels to 0.43 pixels.

Fig. 11: Cubemap of undistorted left image (unwarping done using a simple line inter-

polation between θ and r, the distorted radius)

Fig. 12: Plot for catadioptric camera. Radius in Distorted Image (r) vs Angle with

Optical-Axis of ray passing through a pixel at that radius (θ, in degrees). Instead of a

single curve, we have a band, probably because of the non-central nature of the camera.
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Fig. 13: Cubemap of undistorted left image (unwarping done using a simple line inter-

polation between angle and r, the distorted radius)

7.2.2 Radial Calibration from Camera in General Position

In this experiment, 3 images of a courtyard, acquired by a Sigma 8mm-f4-EX fish-eye

lens with view angle 180o mounted on a Canon EOS-1Ds digital camera were used.

The image resolution was 2560x2560 pixels. Since the 3 views weren’t obtained with

a purely rotating camera, we input 44 corresponding triplets, that lie on a real-world

plane (see Figure 14). We observed that the average clicking error was 1-3 pixels. As

in the previous experiment, RANSAC, based on the radial trifocal tensor, was used,

resulting in 30 inlier triplets. A second RANSAC based on reprojection error, was

used to estimate the distortion parameters. Figure 15 plots the distortion curves when

different number of parameters (4− 8) were used in the distortion model. A distortion

model with 5 parameters was used to compute a undistorted image, for one of the

views, using a cubemap projection (see Figure 16). Note that we are able to accurately

undistort, not only regions in the center of the image, but also the periphery of the

image. Since the images were acquired using a full 180o fish-eye lens, it shows that the

model is robust for wide-angle lenses with very high degree of distortion. In this case,

the RMS reprojection error was around 2-3 pixels.

7.3 Comparison with Previous work

Among our approaches we selected the approach developed in Section 5 (i.e., using

the radial trifocal tensor to calibrate a camera in general position). And we selected

the OCamCalib toolbox (Omnidirectional Camera Calibration Toolbox [34,36]) as the

reference implementation. We used average reprojection error (in the distorted input

images), as a measure of the accuracy of the approach. Both the methods use the fact

that all the grid-points lie on a plane. However, the toolbox has more input information

(the metric coordinates of the grid-points) than us (we just use the fact that the grid-

points in the three images are corresponding, but do not know the coordinates of the

points on the plane). The results reported here are by using the direct linear technique

for estimation (results will improve further on doing bundle adjustment). Also, the

toolbox recommends the use of a routine that iteratively tries to find the best center-
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Fig. 14: Three images, taken with different camera centers, input to the system (match-

ing points input to the system are marked). Images courtesy Tomas Pajdla.

Fig. 15: Distortion Curves 1 +K1r
2
d + · · ·+Knr

2n
d when different number parameters

(n = 4−8, marked next to corresponding curve) are used. Note that most of the curves

are well-behaved even at r = Rmax.

of-distortion. The results discussed here, for the toolbox, are after having done that

step.

Three images of a checkerboard taken from a fish-eye camera were used in the first

experiment (these involved relative motion of the camera with respect to the world-

plane, in this case the checkerboard). 25 points across 3 views were manually extracted.

These were fed to the toolbox and 4 coefficients (as directed by the toolbox tutorial)

were used for parameterizing the distortion polynomial. The toolbox gave an average

error of 0.25 pixels. In our approach we used the division-model of radial distortion

with 3 parameters. This gave us an average reprojection error of 0.45 pixels.



25

Fig. 16: Cubemap of undistorted left image (warping done using 5 distortion parame-

ters)

In our second experiment, we selected three images of the checkboard taken with

a Ladybug2 camera. Once again 25 correspondences across 3 views were used. With

the same parameters as the first experiment, the toolbox gave an average reprojection

error of 0.24 pixels. With our approach we got a reprojection error of 0.7 pixels.

Using the average reprojection-error as a cost function, we developed a gradient-

descent approach to estimate the center-of-distortion. It used widely spaced positions

as initial guesses to the optimization. Preliminary results have been encouraging, which

we will pursue in the future.

8 Conclusion

The 1D radial camera maps 3D points on radial lines. This allows us to derive multilin-

ear constraint between three and four views recorded with central or non-central om-

nidirectional cameras. One of the main contributions of this work has been to come up

with an approach for reconstruction, while still making only very minimal assumptions

about the kind of distotion. This allows us to use this reconstruction as an accurate

calibration object to estimate the distortion in a second step.

Given 15 or more correspondences across four views taken with a moving camera (or

multiple cameras), the radial quadrifocal tensor allows us to compute the corresponding

1D radial cameras and a metric reconstruction of 3D points. The reconstruction is

then used to estimate a non-parametric camera model for different cameras, including

a non-central cameras. Although the approach has been demonstrated to work well on

synthetic data, the required number of point correspondences makes it hard to develop

a robust automatic approach for real images.
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For a purely rotating camera a simpler constraint (radial trifocal tensor) is obtained

requiring 7 point correspondences across 3 views. As with perspective cameras [16,

5], pure rotation turns out to be particularly well suited for self-calibration of central

omnidirectional cameras. In particular, we present an automatic approach that recovers

the accurate non-parametric distortion curve relating image radius to angle of incoming

rays. Finally we introduce an approach that does not need the assumption of pure

rotation, but does parametric distortion estimation.

In the future, we plan to study various mixed camera tensors (for example, with

two pin-hole and a single 1D camera). This will be very useful as heterogeneous camera

networks become more and more commonplace.
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Table 1: Summary of Results

Radial Tensor Results

Quadrifocal • Camera Type: Both central and non-central
• Practical: No. Too sensitive to noise. More for theoretical

interest.
• Reconstruction: Metrica

• Radial Distortion Calibration: Non-parametric but
requires very dense correspondences.

• Comments: Has 13 d.o.f. The nature of two constraints
explained geometrically.

Trifocal • Comments: Has 7 d.o.f. And no internal constraints.
Hence easy to estimate.

• Rotating Camera Triplet

◦ Camera Type: Required to be central for radial cal-
ibration to work.

◦ Practical: Yes. Very robust to noise and easy to es-
timate.

◦ Reconstruction: Metric. Reconstruct Π∞ (plane of
all directions). And use that a calibration device.

◦ Radial Distortion Calibration: Non-parametric.
Using Π∞ compute the angle between a reconstructed
ray and the optical axis.

• Cameras in general position but scene is a plane
◦ Camera Type: Central only.
◦ Practical: Yes. Very robust to noise and easy to es-

timate.
◦ Reconstruction: Projective reconstruction of scene-

plane.
◦ Radial Distortion Calibration: Only paramet-

ric. Simultaneous estimation of distortion parame-
ters and last row of homography, H : scene-plane →
undistorted-image.

Trifocal Tensor for
Heterogeneous

Camerasb

• Camera Type: Non-central handled too.
• Practical: Haven’t completely explored sensitivity to

noise.
• Reconstruction: Projective.
• Radial Distortion Calibration: Not discussed.
• Comments: Has 10 d.o.f and 1 internal constraint. This

constraint is derived geometrically.

a based on zero skew, known principal point and aspect ratio.
b Lists results as discussed in this paper. For example, radial distortion calibration might

still be feasible on further investigation.


