
INTERACTIVE VIDEO SEGMENTATION SUPPORTED BY MULTIPLE
MODALITIES, WITH AN APPLICATION TO DEPTH MAPS

Jeroen van Baar1, Paul Beardsley1

1Disney Research Zürich
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ABSTRACT

In this paper we propose an interactive method for the segmen-
tation of objects in video. We aim to exploit multiple modalities
to reduce the dependency on color discrimination alone. Given
an initial segmentation for the first and last frame of a video se-
quence, we aim to propagate the segmentation to the intermediate
frames of the sequence. Video frames are first segmented into
superpixels. The segmentation propagation is then regarded as
a superpixels labeling problem. The problem is formulated as
an energy minimization problem which can be solved efficiently.
Higher-order energy terms are included to represent temporal con-
straints. Our proposed method is interactive, to ensure correct
propagation and relabel incorrectly labeled superpixels. As a fi-
nal step the initial segmentation boundaries are refined to obtain
accurate object boundaries. We then exploit these object bound-
aries in an application for computing depth maps.

Index Terms — Image segmentation, Video signal process-
ing, Optimization, User-generated content

1. INTRODUCTION

Segmentation is a fundamental operation in image and video pro-
cessing. Different post-processing applications utilize segmented
foreground objects for example for compositing or tracking. In
this paper we focus on segmentation of objects in video sequences.
Segmentation can be regarded as a labeling problem: given a set of
labels representing the foreground objects and background, which
label is assigned to each pixel? This labeling is determined from
the color similarities between pixels, both within a video frame
as well as between video frames. Although many methods have
been proposed in the literature, segmentation remains a challeng-
ing problem for many scenes.

To reduce the dependency on color discrimination alone, we
have proposed a system to capture additional modalities besides
color images. These modalities include Time-of-Flight (ToF) depth
and far infrared (thermal) images. Figure 1 shows our prototype
system. In this paper we propose a flexible interactive segmenta-
tion method which exploits the multiple modalities. Given an ini-
tial start and end segmentation, our proposed method propagates
the segmentations across the intermediate video frames. We for-
mulate the problem as a labeling problem of smaller segments, or
superpixels, across the video sequence. Superpixels are matched
to superpixels in adjacent images, without requiring the compu-
tation of optical flow, or camera motion. We will show that the

labeling problem can be solved efficiently, while exploiting tem-
poral coherence. Initial boundaries of the segmented objects are
then further refined to obtain accurate object boundaries.

Object boundaries are usually strongly correlated with depth
discontinuities in the scene. We can thus exploit these accurate
boundaries in computing depth maps. An advantage of accurate
object boundaries for a video sequence is temporal consistency
for the depth discontinuities. Results of this application will be
presented in Section 4.

Figure 1. The high quality reference camera is at center (obscured by
a beam splitter). The four satellite cameras are arranged approximately
along a horizontal line with the reference camera (two on either side). The
depth camera is at the top. The beam splitter passes visible light to the
reference camera and reflects thermal radiation to the thermal camera at
the bottom.

2. RELATED WORK

Video segmentation is a well-studied research area. It is beyond
the scope of this paper to provide an exhaustive list of related
work. Interactive segmentation methods [1, 2, 3, 4, 5] require the
user to provide initial scribbles to indicate fore- and background.
Local color models are learned from the initial indication, and pix-
els are assigned a label according to these models. These methods
are limited to segmentation of single foreground objects only. Our
approach is also interactive: the user provides an initial segmen-
tation for the first and last frame of the sequence, and supervises
the propagation to ensure correct labeling. However we define
the segmentation as a labeling problem over a video sequence,
and segment multiple foreground objects with accurate segment
boundaries.

Automatic methods [6, 7, 8, 9, 10] can obtain temporally con-
sistent segmentations, however the segmentation boundaries are
inaccurate. The methods proposed by [8, 9] formulate video seg-
mentation as an energy minimization problem. For these methods,



Propagation Algorithm
- Given a video sequence I = {I1, · · · , In}.
- Perform superpixel segmentation on frames of I.
- Known segmentations for I1, In.
- For each intermediate frame Ii:

- For each superpixel Sk
i :

- Determine label from I1, In.
- Determine matches Sk

i−1 and Sk
i+1.

- Define matched sequences S = {Sk
2 , · · · , Sk

n−1}.
- Formulate as energy minimization problem.

Table 1. Outline of the algorithm for propagating known segmentations.

occlusions result into separate segmentations. We also define the
problem as an energy minimization problem to propagate the in-
termediate frames of the video sequence. However, by segmenting
each video frame into a set of superpixels and exploiting known
segmentations for the first and last frame of a video sequence, we
can handle occluding foreground objects.

Segmentation and stereo are correlated and this is exploited to
simultaneously compute segmentation and depth maps [11, 12].
These methods operate on stereo image pairs, and the resulting
segmentation is used to handle stereo occlusions, as opposed to
object occlusions. Background segmentation is exploited in [13]
for improving depth maps. In contrast, we propose an interactive
approach to accurately segment multiple (possibly occluding) ob-
jects in a video sequence. These accurate boundaries may then be
exploited as explicit constraints when computing depth maps.

3. VIDEO SEGMENTATION USING MULTIPLE
MODALITIES

The outline of our algorithm is given in Table 1. For a video se-
quence I consisting of n frames Ii, we first perform superpixel
segmentation [14] on each Ii. In the superpixel segmentation,
we exploit both color and the thermal signal to obtain superpixel
boundaries. Next, known segmentations for frames I1 and In are
provided. With known segmentations for both I1 and In we are
able to handle occlusions between foreground objects. In our work
the known segmentations are obtained by interactive merging of
superpixels. The goal is now to propagate these known segmenta-
tions over the intermediate frames in the video sequence. We will
discuss this in more detail below.

3.1. Segmentation Propagation as Energy Minimization

We formulate the problem of propagating known segmentations
for I1 and In as an energy minimization:

E = φ(xi) + φ(xi, xj) + φ(x). (1)

Here φ(x) represents a unary term, φ(xi, xj) represents a binary
term between neighboring superpixels xi and xj , and finally φ(x)
represents a so-called higher-order clique term [15]. Each super-
pixel is assigned a label, with the set of labels L defined by the
different segments.

The unary term φ(x) represents the likelihood of a superpixel
taking a particular label. It is defined by the smallest matching
cost between a superpixel Si in Ii, and matching superpixels in
I1 and In. The matching cost for Si is computed for each label.

The matching cost between superpixels is the Euclidean distance
between feature vectors defined as:

f = (Ȳ , C̄b, C̄r, T̄ h,HY , HCb, HCr, HTh)T . (2)

Here Y,Cb, Cr represents the superpixels’ color, Th represents
the thermal signal, and the H-terms are histograms. The his-
tograms are determined for the superpixel S and its set of neigh-
boring superpixels SN . We take the neighborhood into account
since a local neighborhood around a superpixel only changes near
object boundaries, but otherwise remains constant. This greatly
improves matching robustness. The cost of matching any two su-
perpixels Si and Sj then becomes:

MCi→j = ‖(4Y,4Cb,4Cr,4Th, χ2dist(H))T ‖. (3)

Note that we do not enforce uniqueness: superpixels in I1 or In
can be matched to multiple superpixels in Ii.

Candidate superpixels are determined by defining a search ra-
dius r around the centroid location of Si in I1, In. All superpixels
within radius r are then considered as candidates. Since we do
not require flow or camera motion, this matching approach can
handle non-rigid motions and moving cameras, at the expense of
increased computational complexity. The radius r depends on the
motion in the scene. Large motions will require a correspondingly
larger search radius.

The binary term φ(xi, xj) in 1 aims to enforce a first-order
smoothness prior between neighboring superpixels in a frame, un-
der the assumption that similar color (and thermal signal) super-
pixels should likely have the same label. Using Graph Cuts [16]
we could solve 1 taking only unary and binary terms into ac-
count. This would result in a per-frame segmentation, without any
temporal consistency between corresponding superpixels across
frames.

Using the higher-order term, or clique potential, φ(x) we aim
to impose a temporal smoothness constraint on the superpixel la-
beling. Clique potentials penalize the assignment of different la-
bels to some collection of variables, i.e. a clique. Kohli et al. [15]
define a robust extension to allow some members of the clique to
take a different label. The robust clique potential is defined as:

φ(x) = min{min
k∈L

(
N · γmax − γk

Q
+ γk

)
, γmax}. (4)

Here γk is a per-label penalty, γmax is the maximum penalty for
the clique, and N = |cx| − nk(x), that is the number of variables
in the clique which take a different label than lk. Q is a truncation
parameter reflecting how many variables are expected to have a
different label.

Cliques are defined by formulating sequences of matching
superpixel correspondences over the video sequence. Using the
matching approach described above, a superpixel Si in Ii is matched
Si to a superpixel in Ii−1 resulting in Si−1 (and vice versa).
The match sequence is then formulated as S = {S2, · · · , Sn−1},
given matching superpixels S2, S3, · · · , Sn−1 for frames [2, n].
For each sequence Sj we store two sequences of matching costs:
CS

j stores the matching cost of superpixels between adjacent frames,
and CLj stores the matching cost of superpixels with the labels
(from the first and last image in the sequence). We can then
determine the mean µk(C

Lk
j ) for each Lk in L, and γkbest =

mink(µk). The remaining γk are assigned γmax, which is de-
termined as: γmax = γkbest + ε. The cost increase ε in turn is



determined from the standard deviation of CS
j . This ensures that

some variables in the clique may be assigned a different label with
only moderate cost increase. Given CLj we can determine the ex-
pected number of variables with a different label, denotedNe. The
truncation parameter is then set toQ = min

(
|x|
2
, Ne

)
. However,

in the case when µ
(
CLk

j

)
have similar value, we set Q = |x|

2
.

In our case, some superpixels in a match sequence should be
allowed to have a different label. Either because the matching
was incorrect or because of an occlusion occurrence. A sequence
Sk may also be split into Sl

k,S
r
k if a cost ci in Ck

S is above
some threshold. This typically occurs for occlusions and wrong
matches. Each subsequence is then treated individually.

In the case where the propagation on a sequence fails, we
could perform the propagation iteratively. After the initial seg-
mentation propagation is performed, the video sequence is broken
into smaller sequences. The initial propagated segmentation may
then serve as a starting point. The user would then complete these
initial segmentations and the propagation is applied to the smaller
sequences.

3.2. Interactive Segmentation Correction

Superpixels may have an incorrect label after propagation. It is
therefore necessary for the user to correct these incorrect segmen-
tation labels. Rather than requiring to re-label individual pixels,
in our case the interactive correction step can be more easily per-
formed on the superpixels directly.

3.3. Segmentation Boundary Refinement

The segmentation boundaries after propagation and interactive cor-
rection are not yet accurate, and may include pixels from other
foreground objects or the background. We employ a boundary
refinement step based on the method of Bai et al. [2]. We simi-
larly define local overlapping classifier windows along the bound-
aries of each segmented foreground object. We extend the method
from [2] by considering multiple segmentations within each win-
dow (representing the different foreground objects). For each seg-
mentation we compute a Gaussian Mixture Model (GMM) within
the window. In our case we also include the thermal signal when
computing the GMM. Each GMM represents the likelihood of the
pixels belonging to a particular segmentation. We then refine the
pixels near the initial boundary using Graph Cuts. We repeat this
process for two to three iterations.

3.4. Exploiting Multiple Modalities

We exploit the thermal signal in the superpixel segmentation and
in the matching of superpixels. This is especially helpful for scenes
with human actors, since the thermal signal helps to separate the
actors from their background, and could also help to separate ac-
tors from each other. The thermal signal is also exploited in the
boundary refinement as explained in Section 3.3. We can also
exploit the depth we obtain from the ToF camera, although the
ToF depth is not reliable enough to perform accurate matching
between superpixels. Instead we use the ToF depth to merge su-
perpixels if their depths are within some threshold. The advantage
of this merging is that we greatly reduce the number of individual
superpixels to process.

frame 8 frame 17 frame 28

Figure 2. Result of our propagation method for frames 8, 17, and 28 of
the flower garden dataset. The video sequence consists of 40 frames. The
first and last image of the sequence have been segmented into three layers:
tree, flowers, background. The results shown here are prior to interactive
correction by the user, and shows the performance of our method on a
standard dataset.

4. RESULTS

Figure 2 shows the result of our propagation method for frames
8, 17, and 28 of the standard flower garden video sequence. We
used 40 frames in this example, and a three level segmentation
was provided for the first and last frame of this video sequence.
The propagated segmentations are prior to any interactive correc-
tion by the user, and prior to boundary refinement. Although some
of the superpixels have been mislabeled, these results demonstrate
that we can achieve good segmentation propagation for an arbi-
trary video sequence.

Figure 3 shows the result of a challenging case where one per-
son occludes another as they walk past. This dataset was acquired
with our prototype rig of Figure 1. Figure 3 shows the results
just before the occlusion (top row), during the occlusion (mid-
dle row), and just after the occlusion occurred (bottom row). The
segmentation propagation results are before interactive correction
and boundary refinement. By exploiting the thermal signal, and
defining clique potentials, the propagation can keep track of both
people even though one person is nearly entirely occluded by the
other. In particular, frames near the occlusion occurrence require
interactive correction of the labels for a small number of superpix-
els, however this is crucial for accurate results.

The top row of Figure 4 shows the result of boundary refine-
ment for the segmentation in the top-right of Figure 3. By exploit-
ing the thermal signal (see Figure 4 inset), the refinement can also
produce a good boundary in the region where the hair overlaps,
and there is no color discrimination.

4.1. Application: Depth Maps

The bottom row of Figure 4 shows the result of a depth map com-
puted from the multi-modal sensor information. The propagated
and refined segmentation boundaries are used as constraints. We
formulate the fusion of the ToF depth and the satellite cameras
(Figure 1) using an energy function. A more detailed discussion
is beyond the scope of this paper. We minimize the energy formu-
lation using Belief Propagation. The segment boundaries produce
accurate depth discontinuities for this challenging case.

5. CONCLUSION

We have described an interactive video segmentation approach
based on the propagation of known segmentations for the first and



Figure 3. Segmentation propagation for occluding objects. Left The in-
put images. Right Segmentation propagation results prior to interactive
correction and boundary refinement. Our method is able to propagate the
segmentation through an occlusion.

Figure 4. Top row The refined boundaries are superimposed on the input
image. The inset shows a crop of the thermal image. In combination with
the thermal signal, boundary refinement can produce good results. Bot-
tom row Depth map corresponding to the image above, with the refined
boundaries taken as constraints.

last frame, to the intermediate frames of a video sequence. The
straightforward matching of superpixels across the video sequence
could easily handle moving cameras and non-rigidly moving ob-
jects. The foreground objects within a sequence must be present
in the first and last frame. However, foreground objects may then
disappear and re-appear for the intermediate frames, which for
example is the case in occlusions. Exploiting multiple modalities
helps to make the matching of superpixels between frames of a se-
quence more robust. A user interactively corrects the propagated
labeling. Finally, a refinement step produces accurate boundaries
which can be used during the computation of depth maps.
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