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Abstract. This paper presents a novel robust and efficient framework
to analyze large repetitive structures in urban scenes. A particular con-
tribution of the proposed approach is that it finds the salient boundaries
of the repeating elements even when the repetition exists along only
one direction. A perspective image is rectified based on vanishing points
computed jointly from edges and repeated features detected in the orig-
inal image by maximizing its overall symmetry. Then a feature-based
method is used to extract hypotheses of repetition and symmetry from
the rectified image, and initial repetition regions are obtained from the
supporting features of each repetition interval. To maximize the local
symmetry of each element, their boundaries along the repetition direc-
tion are determined from the repetition of local symmetry axes. For any
image patch, we define its repetition quality for each repetition interval
conditionally with a suppression of integer multiples of repetition inter-
vals. We determine the boundary along the non-repeating direction by
finding strong decreases of the repetition quality. Experiments demon-
strate the robustness and repeatability of our repetition detection.

1 Introduction

Repetition and symmetry are frequently used in the design of urban architecture.
In fact, buildings often consist of a hierarchy of repetitions and symmetries
(e.g. Fig. 1). Particularly, most of the basic repeating elements on facades (such
as doors and windows) are symmetric by themselves, repetition and symmetry
coexist and interplay at different scales. This paper introduces a new method to
detect repeating elements with salient boundaries in facade images.

The symmetry and repetition patterns together with the appearance of the
repeating/symmetric elements provide a strong characterization of the scene.
Given that, particularly for urban scenes, the symmetries and repetitions of a
scene describe its high-level structure, they can be used for wide baseline match-
ing. One area where this representation would be useful is in the reconstruction
from urban photo collections as in [1]. The reliable boundaries of the detected
repeating elements and the symmetric structure can be used as compact image
features for effective recognition. Since such structures encode significantly more
scene semantics than, for example, SIFT features [2], the matching is signifi-
cantly less ambiguous. The known scene symmetries and repetitions allow us to
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Fig. 1. Example of our detected repetitive structures. Note that the vertical boundaries
are selected automatically to distinguish between the interesting elements and high
frequency repetition of the roof.

automatically extract the facade grammars [3-5] as well as the semantic pars-
ing of the images. Additionally, the known structure of the facades allows to
regenerate facades based on their grammar or to compensate for occlusions by
replacing occluded parts through their symmetric or repetitive equivalent.

Reliably detecting repetitions and extracting their boundaries is a challenging
problem. Even though the images of planar facades can be rectified to a frontal
view by using its vanishing points, the appearance of repeating elements may
still significantly change, due to reflections and occlusions. In addition, the per-
spective change for non-planar structures on the facade plane severely distorts
the local symmetries.

A particularly challenging scenario that draws our attention is where the
large repetitive structures repeat only along the horizontal direction (e.g. Fig. 1).
Homogeneous regions, edges along vanishing directions, and high-frequency rep-
etitions cause additional ambiguities in choosing meaningful boundaries for the
repeating elements. To reliably detect such the boundaries, we distinguish be-
tween regions that belong to different repetition groups (with different repetition
intervals).

The remainder of the paper is organized as follows. Section 2 briefly discusses
the related work. Section 3 discusses the few of our observations on repetition in
urban scenes. Section 4 gives our vanishing point detection and sparse repetition
analysis. Sections 5 introduces our repetition quality functions. Section 6 pro-
poses our dense repetition detection algorithm with salient boundary detection.
Experiments are discussed in Section 7 and conclusions are given in Section 8.

2 Related Work

Repetitions are usually hypothesized from the matching of local image features,
and repetitions are often detected as a set of sparse repeated features by growing
or tracking from the small sets of initial features towards their immediate spatial
neighbors [6-11]. Dense detection of repetition requires the determination of
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the boundaries of repeating elements. Liu et. al [12] determine the boundary
of repeating elements by maximizing the local symmetries. A limitation of their
method is the requirement of a 2D repetition grid, which is not always available in
urban environments. Beyond maximizing local symmetries we separate different
repetition groups by evaluating the local repetition quality conditionally for
different repetition intervals.

Additional assumptions about the shape of the repeating elements are some-
times used to define the boundaries of repeating elements. Korah et. al [13]
assume the repeating elements to be rectangular and extract them based on the
edge segments in the rectified images. Their assumptions is often not completely
valid in urban scenes because curved structures are very common. Our method
uses a less restrictive assumptions only requiring the repeating elements to be
approximately symmetric.

The general symmetry includes translational symmetry (we refer to as rep-
etition), reflective symmetry and rotational symmetry. Many researchers have
proposed frameworks that can solve both translational symmetry and reflective
symmetry(e.g. [14], [9]). Our method also handles both in a joint fashion. We
use the coexistence of repetition and symmetry to define the boundaries for our
detected repetition regions along the repeating direction.

Perhaps most closely related to this paper is the work of Miiller et. al [15].
They also aim to recover the architectural grammar describing the structure
of the facade. The results are impressive, but require significantly stronger as-
sumptions than for our approach. Besides rectification as in our approach, this
approach requires a tight rectangular boundary delineating the facade (which
seems to be a manual step as no automated solution is provided). It is further
assumed that within this region vertical repetitions occur over the whole width
and horizontal repetitions over the whole height. This is more restrictive than
the bottom up approach we propose in this paper, which only requires local sup-
port. As [15] only demonstrates their approach in the presence of both horizontal
and vertical repetitions this seems to be required. Our approach works in the
presence of horizontal repetition (or symmetry) alone. Finally, in [15] boundaries
between elements are chosen based on edge support and distance heuristics and
can yield undesired results. An important contribution of our work is to propose
a principled approach to determine those boundaries based on the symmetry
assumption and on direct image support. Beyond the scope of our paper, [15]
refines the subdivision of facade elements and enables manual depth adjustments
to yield detailed 3D facade reconstructions, which is ideally suited for rendering.

3 Observations and Assumptions

Urban scenes are often designed with many repetitive structures, this section
lists some observations that guided the design of our detection algorithm.

1. Dominant repetition(s) are mostly along the vanishing point direction(s)
with equal 3D spacing. This gives us the opportunity to refine the vanishing
point(s) based on repetition;
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2. While many existing approaches require 2D repetition, many buildings lack
vertical repetitions and symmetries. Our approach is specifically developed
to handle this case.

3. Repeating architectural elements typically also exhibit reflective symmetry
around vertical axes. Symmetry axes occur at twice the frequency of the
repetition, in the middle and in between repeated elements. We use this to
localize the vertical boundary between repeating elements (up to a two-fold
ambiguity). Only in very few cases have we observed buildings where this
principle is not satisfied. Note that the rectangular structure assumption
used for example by [13,15] is a special case of this assumption.

4 Sparse Repetition and Symmetry Detection

In this paper, we denote the extraction of repetition and symmetry from key-
points as sparse detection. This section first introduces our improved vanishing
point detection, and then discusses our sparse detection in the rectified images.

4.1 Vanishing Point Refinement by Maximizing Overall Symmetry

Accurate vanishing point (VP) detection is important in our framework because
we assume the repetitions along vanishing directions. Inaccuracy in VP locations
will disturb the finding of the optimal repetition interval and symmetry axes
since the pairwise distances between the matched features change gradually. In
our approach we use the cascaded Hough transform [16] to compute the vertical
and one or more horizontal vanishing points from edge pixels as initialization.

We propose a VP refinement by maximizing the overall symmetry in the
entire image using both edges and features. Given a pair of horizontal and ver-
tical vanishing points, V Py and V Py, a homography T' = T(V Py, V Py) can
be determined to rectify the image. We define the transformation to preserve
the original resolution as much as possible to avoid too much shrinking and ex-
panding. By matching SIFT [2] features extracted in the original image along
both vanishing directions and keeping the closest matches (closest in the image),
three sets of feature pairs can be extracted. We use Ry for horizontal repetition,
Rg for horizontal symmetry, Ry for vertical repetition.

Consider a set of point pairs R € {Ry, Ry, Rs} in the original image and a
transformation T', we use XT(R) to denote the distribution of their horizontal
distances after rectification, Y7 (R) for the distribution of their rectified vertical
distances and CT(R) for the distribution of the horizontal coordinates of their
rectified midpoints. Typically in urban scenes, there exist only a few strong sym-
metry axes and repetitions intervals. Correspondingly, we expect to see only a
few strong peaks in the histogram of X7 (Ry), YT (Ry) and CT(Rg) minimizing
the entropies of those histograms. This paper optimizes the rectification by min-
imizing the summed entropy, so that the vanishing directions are better aligned
with repetition directions and symmetry axes.
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We use H to denote the entropy function. It can be proven that H(XT (R))
and H(YT(Ry)) are invariant to any affine transformations, and H(C”(Rg))

be
ambiguity can be resolved by using the point distances in the direction per-
pendicular to the repetition or the symmetry, Y7 (Ry), X7 (Ry) and YT (Rg),
ab
01

- . . a0
is invariant to transformation in the form of < > However, such an affine

because they are only invariant to transformations in the form of given a

finite resolution of histogram.

Considering a distance distribution D(z) € {YT(Ry), X" (Rv),YT(Rs)}
that is expected to be close to zero, we use the entropy of D(x) + D(—z) in our
minimization to reduce both drift from zero mean and large variance. We denote
such entropy function by H. In our case, this can apply to YT (Ry), YT (Rs),
and X7 (Ry ). Optionally, the edge information can be incorporated. The set of
edge segments G and Gy corresponding to the two vanishing points, Y7 (Gx)
and XT(Gy) are equivalent to case of repetition.

By assuming the different distributions are independent of each other and
ignoring their joint distributions, we define an energy function for the repetition
and symmetry of an image as

Q(VPy,VPy) = HX"(Ry)) + HYT(Ry)) + H(CT(Rs)) + HY T (Rp))
+H(YT(Rs)) + HXT(Ry))+ HYT(Gr)) + HXT(Gy))

and the vanishing points V Py, V Py are then recovered at the minimum

(VPy,VPy)= argmin Q(VPg,VPy) 1)
VPy,VPy

It can be seen that our method still optimizes both vanishing points when
vertical repetition Ry is missing because the horizontal symmetry constraints
the vertical vanishing points. Liu [17] has pointed out the potential of using
symmetry in rectification, which were used by [7] to rectify facade images of 2D
repetition grids. Our method extends more general cases.

In this paper, individual entropies are weighted by the number of points to
avoid biases from small point sets, and gradient descent is used to solve Eq 1.
Our experiments show the VP refinement significantly reduces the drift of the
estimated repetition interval when the initial detection is not accurate enough.

4.2 Repetition Intervals and Symmetry Axes

With the detected VPs, the original images are rectified to be fronto-parallel,
and afterwards upright SIFT features are extracted (similar to the concept of
U-SURF [18]). The single fixed orientation for all features is a natural choice
given that the rotation is compensated through the rectification. Hence, our
feature matching does not suffer under descriptor changes from the erroneous
orientation detections. The upright SIFT features are then matched along the
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Fig. 2. An example of detected repeating features and symmetry axes. Only the fea-
ture pairs for the strongest repetition interval are displayed. It can be seen that the
symmetry axes are repeating at half the interval of the window repetition.

horizontal and vertical direction. Note that the feature matching for reflective
symmetry detection uses the mirrored matching [8].

By matching features along the horizontal direction and vertical direction,
histograms of possible horizontal repetition intervals, vertical repetition inter-
vals, and symmetries can be obtained from the features pairs. Local maxima are
extracted from histograms to get a set of repetition intervals {I} and symmetry
axes {A}. In this paper, we do not try to recover vertical symmetries since they
typically do not show up in urban scenes. We also skip any repetition intervals
that are smaller than 30 pixels to focus on only large repetitive structures.

For each repetition interval and symmetry axis, the bounding box of their
feature matches gives rough regions for the repetition and symmetry. Unfortu-
nately these regions are often inaccurate due to noise in their appearance and
the ambiguity caused by small repetitive structures. To find the correct region,
a dense measurement should be used.

Consistent with our assumption #3, the local symmetries and the symmetries
between neighbouring repeating elements repeat with an interval of half of the
structure size. See Fig. 2 for an example. Selecting the horizontal boundaries
at the position of those symmetry axes maximizes the local symmetry of the
repeating elements.

5 Evaluation of Repetition Quality

In order to define salient boundaries for repeating elements, we need to densely
evaluate how well each location fits the repetition interval under consideration.
While it is important to have some invariance to lighting changes and other
small variations, non-repeating elements have to be identified. In addition, it is
also important to suppress spurious support that could come from homogeneous
regions and repetitions at higher frequencies (for example, the roof eaves in
Fig. 2 has a repetition interval of % of the window distances). We first use
image patches to evaluate the similarity between any two locations. In order
to be invariant to scale changes and different rectification, the patch size Wy is
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selected proportionally to the repetition interval I. Through our experiments we
I

have determined that W; = 7 consistently provides good results.

To provide robustness to small variations and lighting, patch similarity is
evaluated by comparing SIFT descriptors, which is effeciently computed on
GPU [19]. Given a repetition interval I and a location z, we use Dg(x,I) to
denote the distance between the normalized SIFT descriptor at = and = + I.
Similarly, the matching distance wrt. a symmetry axis A is denoted as Dg(z, A).

It can be verified that if an element is repeated many times, then if I is a
valid repetition interval 27,31, ... will also be valid. Therefore, we are interested
in the smallest valid repetition interval and want to suppress its multiples. It
is therefore important to verify that for a repetition interval I, the repetition
intervals {57 %, ...} are not valid repetition intervals. In fact, this would only have
to be verified for % with p prime numbers. In practice, verifying for the first few
prime numbers is sufficient (we go up to 7). Notice that this automatically also
covers the issue of homogeneous regions as those would verify repetition for any
interval. Inspired by the widely used ratio test in SIFT matching, we choose a
set of translations 77 = {0, :i:é, :I:é, ...}, compute the set of matching distances

for them V = {D(z,I +t)|t € Ty}, and define the following quality function

V(Q) +o

f(il?,]) = min(am,

1) (2)

where V/3)is the second smallest distance in V. a is a parameter used for trun-
cating the quality so that the quality function evaluates to 1 when D(z,I) is
significantly smaller than V{(y) (we use o = 0.7 as typical for the SIFT ratio
test [2]). Adding a small number o reduces noise when all distances are very
small, which can be seen as a variance in the SIFT distance distribution (we use
o =0.1). It can be seen that f(z,I) > a only when I is a local minimum. Note
that the definition works for both single patch or a patch set.

In feature matching, a small ratio between the smallest distance and the
second often corresponds to a high probability of being a correct match [2], and
such a ratio test filters out both ambiguous matches and poor matches. Similarly,
a high f(z,I) indicates the opposite This strategy gives penalty to both noise
and ambiguous high frequency regions (e.g. Fig. 3).

As the evaluation of single patches is very noisy, we define similarity and
quality measures to evaluate repetition for image regions. The distance between
two patch sets is defined as its the median distance: Dr(X,I) = median{
Dg(z,I)lx € X}. As quality function, we use a pre-learned threshold! T' to
select a inlier patch set X;{z|z € X, Dr(z,I) < T} of an image region X, and
use the inlier set to evaluate the repetition quality as F(X,I) = f(Xr,I). Our
experiments show that this quality function is very robust to outliers even for
low inlier ratios. In order to avoid unreliable evaluation from noise, we set the
quality measure to 0 when inlier ratio is less than 20%.

1T = 0.64 learned from the distributions in labeled images is used in this paper.
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Fig. 3. Our similarity and quality measurement. The colored-patches in the left image
gives the distance map (The visualization uses 1— d? to map distance [0, v/2] to [0, 1]).
The colored patches in the right image gives the quality map and the curve gives the
quality for each row. The distance map shows good matching for the grass, roof eaves
and the horizontal edges, but our quality function is able to penalize them. The black
lines in the right image gives the places where the vertical boundary are detected.

To correctly handle the first and last element of a repetition sequence, we
define the bidirectional distance and quality

DY(X,I) = min(D(X, ), D(X,—1I))
X T) = max(f(X, 1), f(X, 1))

The distance map and quality map refer to D' and f unless specified otherwise.
Similar with F(X, I), only inliers X;” = {x|z € X, D*(x,I) < T} are considered
while evaluating fT for a patch set instead of a single patch.

6 Dense Detection

Our dense detection uses the detected sparse repetition and symmetry to obtain
their initial regions, and refines them by dense matching and propagation.

6.1 Region Initialization and Propagation

It is a natural choice to select the horizontal boundaries of the repeating ele-
ments according the detected repeating symmetry axes (e.g. Fig. 2) since such
boundaries generate elements with maximal local symmetry. As illustrated in
Fig. 4, the initial horizontal extent of repetition region is defined by a group of
symmetry axes that have horizontal distances of % or I with each other. The
initial vertical range is chosen to cover the matched feature pairs whose line
segments intersect with the symmetry axes.

Detecting repeating elements is more complicated than detecting symmetry
because the larger repetition count requires propagation and verification in order
to get the full correct regions. Due to perspective change and noise, not all
symmetry axes can be perfectly detected from initial feature matching. The
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Algorithm 1 The Repetition Detection Algorithm

1: Detect vanishing points and rectify image.

2: Find sparse repetitions {I} and symmetry axes {A} (Section 4)
3: for each un-processed repetition interval I do

4:  Find sets of repeating symmetry axes {A;}

5:  while {A;} is not empty do

6: Find a consecutive set of axes with gap é or I

7 Initialize region from the symmetry axes (Section 6.1)

8 Propagate the region by matching at interval I

9: Find region boundaries and sub-regions. (Section 6.2)
10: Search and analyze vertical repetition.

11: Find further decompositions of regions. (Section 6.3)
12: Save detected repeating elements

13: Remove covered symmetry axes from {A;}

14:  end while

15:  Mark repetitions that can be modeled as processed
16: end for

Fig. 4. Our region initialization from symmetry and propagation by dense matching.

initialization in the previous step is likely to miss some parts of the repeating
region. To extend the repeating region horizontally, we take steps of +1I or j:%
to match a rectangular region of width I at the desired location. If the inlier
ratio for both the left and right é are high enough, the region is extended by the
step size. Given the large window sizes, it is actually not necessary to match all
the pixels. Typically, a sparse grid of locations can be used instead like Fig. 4.

6.2 Boundary Detection

Without using vertical repetition, we select the vertical boundaries based on the
quality evaluation of scanlines. Basically, we exclude regions that lack salient
repetitions at interval I by simply setting boundaries where the quality of rows
F*(X,I) drops from 1 to «a (e.g. roof eaves and grass in Fig. 3). With the
determined vertical boundaries, multiple repeating elements can be defined after
filtering out the rows without salient repetition between them.

After the horizontal repetition analysis, sparse vertical repetition analysis is
applied in the detected region, and the boundaries for the vertical repetition are
then detected from vertical repetition quality map in a similar way. The initial
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region is then decomposed to sub-regions that have both horizontal and vertical
repetition, and sub-regions that have only horizontal repetition.

6.3 Decomposition

As shown in Fig. 5, the possible mistakes of initializing from symmetry axes
is the over-grouping of different repeating elements that have the same repeti-
tion interval. In this case, the matching distances between neighboring elements
will change over the entire horizontal range, it particularly gets large matching
distances at the places where the repetition elements change. We define a con-
tinuation score function to evaluate how the repetition continues over a range
of 4 times the repetition interval. Similarly for the quality function, we define a
continuation score from X to X + I based on the ratio of distances

min(D(X; — I,1),D(X{ +I,I)) +o
D(X{, ) +o

Cont(X,I) =

The ratio threshold « used in repetition quality functions is basically a closeness
threshold. For regions where we have good continuation of repetition, the con-
tinuation score should be in (o, 1/a). At places where the repetition changes to
something else, there will be much smaller continuation score. We particularly
look for local minima along horizontal direction that satisfy

Cont(X,I) < min(Cont(X —I,I),Cont(X + I1,1),)

Such local minima give the possible locations that separate different repetition
elements, and connecting such points vertically defines the edges between dif-
ferent repetition elements. To be robust to noise, we use regions of size IxI to
evaluate the continuation score. Fig. 5 gives an example of the continuation score
and the resulting decomposition.

7 Experiments

This section presents our qualitative results and quantitative results. We run our
experiments with the same setting for all results included in this paper.

7.1 Qualitative Results

Fig. 6 shows several of our detection results. It can be seen that our detection
algorithm robustly finds salient boundaries for both horizontal direction and
vertical direction. The boundary detection is robust to occlusions, illumination
changes, perspective changes, and existence of homogeneous regions and high-
frequency repetition regions. As shown in example 2, 3, 4, 9, 13, 18 of Fig. 6 our
algorithm detects vertical boundaries based on our quality function and correctly
generates multiple repetition regions vertically.
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Fig. 5. Example of decomposition. The color stripes in the left image shows the con-
tinuation score, and the black vertical lines give the detected element boundary edges.
The right image shows the final decomposition as 4 different repetition groups.

Fig. 6. Detection shown in the original images. Best viewed in color with 4x zoom.

Although our algorithm initializes the regions from symmetry axes, we do not
enforce strong symmetry constraint on the detected elements. This allows the
repetition detection under very large viewpoint changes, where the symmetry is
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Table 1. Our detection performance on the ZuBuD dataset

Category ‘ # ‘ Percentage
No detection due to VP detection failure 25 4%

No detection due to other algorithmic limitations 34 5%

Partial Detection; Missing major repetitions 88 [12%

Full detection of all major repetitions; Some boundaries errors|67 [9%

Full detection of all major repetitions; Good boundaries 509|70%

very weak (e.g. 4, 9, 14, 16 in Fig. 6). In such cases, the repeating elements are
detected with imperfect symmetries, and the horizontal boundaries may not be
optimal. The experiments also show several of our limitations. In Fig. 6.3, the
repetition from the left tower to the right tower is missing because the repetition
interval is much larger than the tower width. Our current proportional patch size
will not work, unless the ratio is allowed to vary. Fig. 6.8 does not detect the pure
vertical repetition on the right side because our implementation currently only
looks for vertical repetitions for horizontally repeating elements. We do have
small errors in boundary detection like in Fig. 6.4 where too much is occluded
for correct boundary detection. Fig. 6.17 has detected a wrong repetition due to
inaccuracy of the second vanishing point pair.

7.2 Quantitative Evaluation

We use the ZuBuD database [20] to evaluate out detection. ZuBuD contains
1005 images of 201 buildings in Ziirich taken from different viewpoints and il-
luminations conditions. We first manually filtered out 282 images that do not
have clear repetitions that satisfy our assumptions (Due to occlusions, curved
surface, etc). Fig. 6.17-19 are 4 examples from ZuBuD. Table 7.2 is the statistics
of our detection on the 723 remaining images. It can be seen that our algorithm
has high successes rate for both VP detection and repetition detection.
Furthermore, we run an image retrieval experiment to evaluate the repeata-
bility of our detection. We select the 140 buildings that have clear repetitions
on at least 4 images. Our algorithm detects 10096 features in total (eacch ele-
ment is counted as one; average 14 per images). Similar to the SIFT descriptor,
for each repeating element, we compute a 4x4 and a 8x8 gradient orientation
histogram grid aligned with repeated elements to get a 128D resp. 512D feature
descriptor. Paticularly, uniform weighting is used instead of Gaussian weighting
to give equal importance to each cell. The distance of a feature to an image is
defined as its smallest distance to all the features in that image. Given a single
feature, images can be retrieved by selecting the closest ones. In this experiment,
a feature-image retrieval is considered correct if the image is one of the other 4
images of the same building. For comparison, we select the 10/100 SIFT features
that have the largest scales in each image to run the same experiment. Fig. 7
shows the retrieval precisions for the first 4 nearest neighbors, where our detec-
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Fig. 7. Evaluation by single-feature image retrieval. REP refers to our repeating el-
ements. 8x8 and 4x4 refers to the grid size for feature descriptor. R3 refers to the
elements that repeat at least 3 times. R2D refers to the features that belong some
2D repetition grids. It can be seen that our repetition-based features achive better re-
peatability compared with standard image features. Additionally, features in R2D and
R3 have better precision because they are easier to detect.

tion of repeating elements demonstrates relatively high repeatability. It is worth
pointing out that many of the retrieval failures are due to the similar structures
(especially windows) on different buildings.

8 Conclusion and Future Work

We proposed a novel method to detect repeating elements on architectural fa-
cades with accurate boundary selection for the repetition detection. We also
propose a quality function to conditionally evaluate how image patches fit a rep-
etition interval, which leads to accurate vertical boundary detection. Our method
is very efficient by evaluating repetition and symmetry with adaptiveness to the
scale of repetitions. Typical images require only 2-4 seconds to complete the
full analysis with the help of GPU. We evaluate our detection on large datasets
and demonstrate the robustness and repeatability of our algorithm. Our method
works particularly well for low-count and purely horizontal repetitions which has
not been addressed by most previous work.

In future work, we hope to use the proposed repetition and symmetry detec-
tion scheme to automatically extract architectural grammars from images. We
also hope to be able to recover missing 3D information by finding gradual changes
of repetition and symmetry at different depths and generate true ortho-photos
of facades from oblique views. Due to perspective changes, repeating elements
at different depth that have a same 3D repetition interval will show different 2D
repetition intervals in a rectified image ( e.g. 9 and 14 in Fig. 6). Building further
on the preliminary experiment presented in the evaluation, an interesting area
of future work is to use the repetition/symmetry regions as invariant feature
extractor and develop specific appearance and repetition descriptors.
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