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Abstract

We investigate the problem of learning the structure of an

articulated object, i.e. its kinematic chain, from feature tra-

jectories under affine projections. We demonstrate this pos-

sibility by proposing an algorithm which first segments the

trajectories by local sampling and spectral clustering, then

builds the kinematic chain as a minimum spanning tree of

a graph constructed from the segmented motion subspaces.

We test our method in challenging data sets and demon-

strate the ability to automatically build the kinematic chain

of an articulated object from feature trajectories. The algo-

rithm also works when there are multiple articulated objects

in the scene. Furthermore, we take into account non-rigid

articulated parts that exist in human motions. We believe

this advance will have impact on articulated object track-

ing and dynamical structure from motion.

1. Introduction

Recently, analysis and reconstruction of dynami-

cal scenes has attracted more and more attention.

Structure from motion of independently moving ob-

jects under affine projection were the first to at-

tract efforts[2][9][14][23][18][26]. Secondly, non-rigid

structure from motion has been studied thoroughly in

[4][19][22][15][3]. The trajectory matrix can be written

as a projection matrix combined with a linear combina-

tion of a number of key shapes. Last but not the least, ar-

ticulated structure from motion, as another important par-

adigm in dynamical scenes, have also received a lot of

attention[13][11][25][16][24][17].

Besides structure from motion problem, previous works

on articulated objects are focusing on other problems like

tracking or pose estimation[6][5][10][7]. However, to

our knowledge, automatically building the kinematic chain

from feature trajectories of an articulated object has never

Figure 1. The kinematic chain is automatically computed from fea-

ture tracks.

been attempted. The kinematic chain is usually supplied as

a prior. We believe the ability to automatically get this in-

formation from feature trajectories will impact future work

on articulated objects and motions.

We demonstrate the possibility of building the kinematic

chain of an articulated object from feature trajectories by

proposing an algorithm which first segments the trajecto-

ries by local sampling and spectral clustering, then builds

the kinematic chain from a graph constructed from the seg-

mented motion subspaces. We test our method in challeng-

ing datasets and demonstrate the ability to automatically

build the kinematic chain of an articulated object from fea-

ture trajectories. The algorithm also works when there are

more than one objects in the scene or when some articulated

parts are non-rigid.

In the following sections, we discuss motion subspaces

in Section 2, which is a prior to understand our algorithm;

we describe our algorithm in Section 3; we demonstrate the

algorithm in Section 4 and draw conclusion and discuss fu-

ture work in Section 5.

2. Motion Subspaces

In order to explain our algorithm, we need to introduce

the concept of motion subspace, which is the subspace that

contains the trajectories of a certain type of object undergo-

ing a certain type of motion. Our paper focuses on articu-

lated objects. But we will start from single rigid objects and
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multiple independently moving objects.

2.1. Rigid motion subspace for single and multiple
independently moving objects

We discuss the motion subspace of a single rigid object

and independently moving objects in the following in order

for a better understanding of articulated motion subspaces

in the next section.

• The trajectories of a rigid object forms a linear sub-

space of dimensions no more than 4 [8].

M2F×p = [R2F×3|T2F×1]

[

S3×P

11×P

]

(1)

F is the number of frames and P , the number of

feature trajectories. The subspace spanned by the

columns of M is called a rigid motion subspace.

• For multiple independent rigid motions, the trajectory

matrix can be written as the following given that the

trajectories are properly grouped. Ri, Ti and Si rep-

resents the rotation, translation and shape of the ith
object [14]. For a total of N objects we have the fol-

lowing.

W = (R1|T1|...|RN |TN )













S1

1
...

SN

1













(2)

Each object has its own rotation and translation while

the shape matrix consists of columns belonging to or-

thogonal shape subspaces. Thus the motion subspace

of each object is independent and of dimension no

more than 4.

2.2. Articulated objects with rigid parts

It has recently been shown that for articulated objects

with rigid parts, the motion subspaces are not indepen-

dent [16][24]).

• If the link is a joint, we can make it the origin of the

world coordinate. Then [R1|T1] and [R2|T2] of two

linked parts have T1 = T2 under that coordinate sys-

tem. So the trajectory matrices of M1 and M2 lie in

different linear subspaces of dimension no more than

4 but have a one-dimensional intersection.

• If the link is an axis, we can make it an axis of the

world coordinate, e.g the z axis. Then [R1|T1] and

[R2|T2] have T1 = T2 and the last column of R1 and

R2 being the same. So M1 and M2 lie in different lin-

ear subspaces but have a two-dimensional intersection.

To sum up, the trajectories of an articulated object with rigid

parts lie in a mixture of linear subspaces, each of which is

of dimension no more than 4 and some of which are inter-

secting in 1 or 2 dimensions depending on whether the two

parts are linked by an axis or a joint. The intersecting prop-

erty of these motion subspaces is what our algorithm relies

on to build the kinematic chain.

2.3. Extension to non­rigid parts

In this section, we extend our discussion to articulated

objects with non-rigid parts. A case in point is the human

motion whose facial motion is non-rigid and whose head

and body motions combined can be considered as articu-

lated. We will discuss non-rigid motion subspace first; then

we will focus on a typical non-rigid case and build some

theorems; lastly, we discuss how this typical case can fit

into the articulated motion subspace discussed above.

The trajectories of a non-rigid object can be approxi-

mated by different linear combinations of a number of, e.g.

K , key shapes [4][22]. For the f th frame, the image coor-

dinates of the features are mf .

mf
2×P = [Rf

2×3|T
f
2×1]

[
∑K

i=1 cf
i Si

3×P

11×P

]

(3)

Putting all frames together, we have the trajectory matrix

written as the following, which forms a linear subspace of

dimensions no more than 3K + 1.

M =





c1
1R

1
2×3|...|c

1
KR1

2×3|T
1
2×1

...
cF
1 RF

2×3|...|c
F
KRF

2×3|T
F
2×1













S1
3×P

...
SK

3×P

11×P









(4)

where ci
j (1 ≤ i ≤ F, 1 ≤ j ≤ K).

Let us consider a typical case: the non-rigid shape

has rigid components. This includes human facial motion

which deforms on top of rigid head motion. More formally,

we are considering such a case that a non-rigid shape can

be represented by linear combinations of a number of key

shapes S1,...,SK that satisfy S1
i = ... = SK

i as long as its

ith component is rigid.

We can prove then the following theorems.

Theorem 1. If a non-rigid shape can be represented by lin-

ear combinations of S1,...,SK that satisfy S1
i = ... = SK

i

for any rigid component i, the sum of the linear coefficients

of any frame f is 1, i.e.
∑K

i=1 cf
i = 1.

Proof. Let Si be a rigid component of the non-rigid shape.

For any frame f , its 2D coordinates are:

Mf
i = [cf

1Rf |...|cf
KRf |T f ]









Si

...
Si

1









(5)



Because Si is rigid, Mf
i can also be written as the follow-

ing.

Mf
i = [Rf |T f ]

[

Si

1

]

(6)

By comparing Equation 5 and 6, we have
∑K

i=1 cf
i = 1.

Theorem 2. If a non-rigid shape can be represented by lin-

ear combinations of S1,...,SK that satisfy S1
i = ... = SK

i

for any rigid component i, the rigid motion subspace formed

by the rigid components is embedded in the non-rigid mo-

tion subspace.

Proof. From Theorem 1, we know
∑K

i=1 cf
i = 1 for any

frame f . Let SI be the set of all rigid components. We have

the following.





c1
1R

1|...|c1
KR1|T 1

...
cF
1 RF |...|cF

KRF |T F


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







SI

...
SI

1









=





R1|T 1

...
RF |T F





[

SI

1

]

(7)

Notice the left are trajectories in the non-rigid motion sub-

space; the right are trajectories in the rigid motion subspace

formed by all rigid components. So the rigid motion sub-

space formed by those components must be embedded in

the non-rigid motion subspace.

Now we can deal with articulated objects with non-rigid

parts that satisfy the above specification. The result is sim-

ilar to the rigid case because essentially it is the embed-

ded rigid motion subspace that interacts with its linked part.

This result remains valid if both linked parts are non-rigid1.

• If the link is a joint, two subspaces have in general a

one-dimensional intersection.

• If the link is an axis, two subspaces have in general a

two-dimensional intersection.

Notice that for either case, we do not need to extract the

embedded rigid motion subspace out of the non-rigid one

in order to find the intersection. We intersect the motion

subspaces directly.

3. Automatic Kinematic Chain Building From

Feature Trajectories

In this section, we describe the algorithm of building the

kinematic chain from feature trajectories of an articulated

object under affine projection. It consists of two stages:

at the first stage, trajectories are segmented according to

1For cases where the non-rigid deformations between the articulated

parts are dependent, it might be possible that higher dimensional intersec-

tions are obtained.

the articulated parts and the motion subspaces are formed

after rejecting outliers; at the second stage, the proximi-

ties between these motion subspaces is computed to build a

proximity graph, then a minimum spanning tree algorithm

is performed on the graph to retrieve the kinematic chain

information of the articulated object.

3.1. Motion Segmentation

The trajectories of an articulated object are from dif-

ferent rigid or non-rigid parts which form different motion

subspaces that may intersect one or the other. The motion

segmentation stage is to segment them accordingly. Notice

that these motion subspaces are not independent from each

other and there are dependencies between those of linked

parts. Thus motion segmentation algorithms for indepen-

dent motions[14][23][18] are not appropriate in this situa-

tion. Though [26] may be capable to segment dependent

motions theoretically, in practice the sampling size required

is too big to satisfy when the number of motion subspace

increases. For more details, please refer to [1].

We use the algorithm proposed in [1] which can segment

rigid or non-rigid motion subspaces when they are either

independent or dependent. The algorithm is described in

the following.

• Trajectory Data Transformation

Transform each trajectory of dimension 2F (F is

the number of frames) onto a RK unit sphere

(rank(W2F×P ) = K , W2F×P is the trajectory

matrix). This can be done by SVD, W2F×P =
U2F×KDK×KV T

P×K , and normalizing each row of V .

Each unit vector vi(i = 1...P ) becomes the new rep-

resentation of the corresponding trajectory.

• Local Subspace Estimation

Without knowing the underlying subspace each vi be-

longs to, we estimate it from itself and its n − 1
closest neighbors, i.e. computing the subspace of

[vi, vi1, ..., vin]K×(n) using SVD. n is normally cho-

sen to be larger than the dimension of the underlying

subspace.

• Spectral Clustering

An affinity matrix can be built from the distance be-

tween every pair of the locally estimated subspaces for

each vi. Then we can perform spectral clustering and

segment the trajectories. The distance between two

equidimensional subspaces is typically represented by

the sine of their largest principle angle[12] (see Sec-

tion 3.2 for the definition of principle angles). In our

case, we define the affinity as below.

affinity(α, β) = e−
P

i=1,...,M
sin2(θi)

where θ1,...,θM are the principal angles between two

locally estimated subspaces α and β.



After segmenting the trajectories, we perform outlier re-

jection within each segment. This can be done using a

RANSAC approach [21] that robustly fit the data into a sub-

space and reject outliers. The motion subspaces are formed

by the remaining trajectories in each group.

3.2. Kinematic Chain Building

Given the motion subspaces, either rigid or non-rigid,

their dependency on each other are measurable by their min-

imum principle angles between every pair of them. The

principal angles [12] between two subspaces are defined re-

cursively as a series of angles 0 ≤ θ1 ≤,...,≤ θM ≤ π/2
(M is the minimum dimension of both subspaces):

cos(θm) = maxu∈S1,v∈S2uT v = uT
mvm

where

‖u‖ = ‖v‖ = 1

uT ui = 0 i = 1, ..., m− 1

vT vi = 0 i = 1, ..., m− 1

For two linked parts, either rigid or non-rigid, either for

a joint link or an axis link, their motion subspaces are in-

tersecting on at least one dimensional subspace (see Sec-

tion 2), thus have at least one zero principle angle. In prac-

tice, the value will not be exact zero so a threshold is re-

quired. For parts that are not linked, the motion subspaces

do not have this property and have a larger minimum princi-

ple angle. Depending on how independent the motion sub-

spaces are, the minimum principle angles may vary.

Based on the above analysis, we will describe our kine-

matic chain building algorithm in the following.

• Build the proximity graph

We use a graph to represent the proximity between

every pair of motion subspaces.

G = (V, E)

where V = {v1, ..., vS} (vi is the ith motion subspace;

S is the number of motion subspaces) and E(vi, vj) =
θij (θij is the minimum principle angle between sub-

space i and j).

• Find the minimum spanning tree(s)

Based on the proximity graph we find a minimum

spanning tree using Algorithm 1. The spanning tree

corresponds to the kinematic chain that we compute.

With a small modification, our algorithm can handle

multiple articulated objects in the scene and find mul-

tiple kinematic chains (see Algorithm 2). The key is

that whenever the smallest edge connecting T to G-T

is over some threshold, we stop spanning the current

tree and start building another spanning tree using the

same procedure.

Algorithm 1 Finding single minimum spanning tree

let T be the graph of the smallest edge of G
while T has fewer than S − 1 edges do

find the smallest edge in G connecting T to G − T
add it to T

end while

Algorithm 2 Finding multiple minimum spanning trees

let P = G
while P has more than one edge < threshold do

let T be the minimum edge of P
while the smallest edge connecting T to P − T <
threshold do

add it to T
end while

save T as a kinematic chain

let P = P − T
end while

4. Experiments

We test our algorithm in two kind of data sets, synthetic

and real.

4.1. Synthetic tests

The first synthetic test demonstrates our method in a

highly challenging case in which the kinematic chain is au-

tomatically built from a human model of 10 parts including

the head, the body, two upper arms, two lower arms, two

thighs and two legs. Each part has 20 trajectories. And the

trajectories are perturbed by 15% noise. The segmentation

result is shown in Figure 2 with bigger black dots showing

the 10 misclassified points. Notice that the misclassification

happens mostly around the joints and axes. After outlier re-

jection within each segment, the remaining 171 features are

shown in Figure 2.

The minimum principle angles (the proximity graph) be-

tween 10 motion subspaces are shown in Table 1. The bold

font indicates the edges of the minimum spanning tree of

the graph. The kinematic chain are built from that. The

recovered kinematic chain is correct.

We show the second minimum principal angles between

parts in Table 2 to see how the second dimension intersec-

tion between motions may be detected. The bold font shows

the angles that are much lower than the average, which indi-

cates a second dimensional subspace intersection between

motions and thus indicates that there is an axis link (See

Section 2.2. The data shown in the table matches our syn-

thetic model in which the upper arms are connected with

the lower arms with axis links and so are the thighs with the

legs.

In summary, in order to detect links for kinematic chain
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Figure 2. (top left) The segmentation of trajectories over 10 artic-

ulated parts of a synthetic human model. The sticks are shown

for illustration purpose. (top right) Trajectories after rejecting out-

liers. (bottom left and right) The kinematic chain (black lines)

built from trajectories.

Table 1. Proximity graph and its minimum spanning tree – Syn-

thetic human model

×10−4 ruarm rleg lleg llarm head rlarm rthigh lthigh luarm

body 1643 1519 1524 254 221 303 340 397 1672

ruarm 3106 3037 7719 3735 238 2606 2922 8276

rleg 2080 2344 3117 2935 261 1609 2906

lleg 3040 3546 2813 1499 291 3075

llarm 2805 6661 2302 2519 236

head 2612 3067 3252 3593

rlarm 2382 2623 7237

rthigh 1454 2774

lthigh 2700

building, inspecting the minimum principal angle is enough.

The second minimum principal angle can be used for further

determining the type of the link.

The second synthetic test will demonstrate our algorithm

applied to multiple articulated objects. We generate two

synthetic human models in a scene. The motion segmenta-

tion and the outlier rejection steps proceed as described be-

fore. At the kinematic chain building step, we use a thresh-

old of 0.1000 for determining whether the algorithm should

stop adding new links to the current chain.

The kinematic chains built from the trajectories are

shown in Figure 3.

The minimum principal angles (proximity graph) be-

tween the motions of the same synthetic human model is

similar to Table 4. The minimum principal angles between

the motions of the two different synthetic human models is

shown in Table 3. Obviously, the magnitude of these an-

Table 2. The second minimum principal angles between parts of

the synthetic human model

×10−4 ruarm rleg lleg llarm head rlarm rthigh lthigh luarm

body 8279 3298 3687 6768 4263 6149 3123 3348 8826

ruarm 8634 7899 8583 8504 1521 8570 7766 9446

rleg 5131 7887 5219 7622 1275 4807 9156

lleg 8644 5084 6879 4956 1102 9742

llarm 7912 8402 7267 8582 1515

head 7633 4748 4815 9378

rlarm 7579 6745 9440

rthigh 4639 8719

lthigh 9437
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Figure 3. (left and right)Two kinematic chains (black lines) built

from trajectories of a two-person scene.

Table 3. The minimum principal angles between motions of two

synthetic human models

×10−4 body ruarm rleg lleg llarm head rlarm rthigh lthigh luarm

body 1605 2144 2163 2111 2123 2014 2084 2051 2060 2050

ruarm 2741 5965 3589 3931 6247 4901 5918 3253 3624 6280

rleg 2205 2396 2627 2304 2266 2222 2283 2356 2209 2201

lleg 2854 3077 2874 2851 2957 2858 2995 2824 2862 2919

llarm 2360 4282 4034 4030 4824 3882 4303 3149 3374 4624

head 1646 4844 4160 4558 4861 4636 4833 3208 3683 4823

rlarm 1981 5948 3316 3730 6224 4825 5901 2866 3315 6273

rthigh 2010 2153 2248 2080 2098 2000 2089 2047 2022 2023

lthigh 1995 2174 2238 2074 2092 1976 2109 2027 1976 2020

luram 1658 4324 4060 3740 4860 3726 4344 2845 2983 4642

gles is far above that of the ones between motions of linked

parts. The point to be made here is that, though our algo-

rithm needs a threshold value for building multiple kine-

matic chains, this threshold value is not very sensitive.

4.2. Real tests

The first real example is an articulated puppet with 6

rigid parts: the head, the upper body, the hip, 2 arms and

2 legs. A KLT tracker tracks a total of 114 features over

564 frames. The segmentation result is shown in Figure 4.

After outlier rejection within each segment, the remaining



Table 4. Proximity graph and its minimum spanning tree – Puppet

larm lleg hip rarm body

rleg 0.0111 0.0007 0.0002 0.0126 0.0006

larm 0.0110 0.0060 0.0250 0.0008

lleg 0.0002 0.0170 0.0006

hip 0.0175 0.0005

rarm 0.0003

Table 5. Proximity graph and its minimum spanning tree – Person

luarm ruarm body rlarm llarm

head 0.0015 0.0033 0.0011 0.0035 0.0065

luarm 0.0036 0.0008 0.0058 0.0009

ruarm 0.0008 0.0003 0.0145

body 0.0018 0.0033

rlarm 0.0103

97 features are shown in Figure 4.

The minimum principle angles (the proximity graph) be-

tween 6 motion subspaces are shown in Table 4. The bold

font indicates the edges of the minimum spanning tree of

the graph. The kinematic chain are built from that and the

links are recovered by intersecting linked subspaces[16][24]

based on the kinematic chain (Figure 4). The recovered

kinematic chain is correct. However, one can notice that the

hip-body link is only marginally preferred to the lleg-body

link. The reason for this is that the motion of the puppets

leg is mostly restricted to a plane orthogonal to the image so

that it is hard to differentiate between the legs and the hips.

The second real example is an upper body motion of a

person with 6 parts: the head, the upper body, 2 upper arms

and 2 lower arms. The head has some non-rigid facial mo-

tion. A KLT tracker tracks the total of 268 features over

40 frames. The segmentation result is shown in the top left

of Figure 5. After outlier rejection within each segment,

the remaining 97 features are shown in the top right of Fig-

ure 5. The minimum principle angles (the proximity graph)

between 6 motion subspaces are shown in Table 5. The bold

font indicates the edges of the minimum spanning tree. The

kinematic chain are built from the 6 motion subspaces and

the links are recovered by intersecting subspaces[16][24]

based on the kinematic chain, shown in the bottom of Fig-

ure 5.

The non-rigid part is the head which has a joint link with

the upper body. The link can be recovered simply by finding

the 1-dimensional intersection between both motion sub-

spaces as discussed in Section 2.3.

5. Conclusion and Future Work

We propose an algorithm that builds a kinematic chain

from feature trajectories of an articulated object under affine

Figure 4. (top left) The segmentation of trajectories over 6 articu-

lated parts of a puppet. (top right) Trajectories after rejecting out-

liers. (bottom) The kinematic chain built from trajectories and the

links (white dots) recovered by intersecting the linked subspaces

based on the kinematic chain.

projections. The algorithm can be extended to handle

scenes of multiple articulated objects and articulated non-

rigid parts. It first segments trajectories according to the

articulated parts; then it rejects outliers; in the end, it builds



Figure 5. (top left) The segmentation of trajectories over 6 artic-

ulated parts of an upper-body human motion. (top right) Trajec-

tories after rejecting outliers. (bottom) The kinematic chain built

from trajectories and the links (white dots) recovered by intersect-

ing the linked subspaces based on the kinematic chain.

a kinematic chain from a minimum spanning tree of a prox-

imity graph that is constructed from the minimum princi-

ple angles between the motion subspaces of the articulated

parts.

We plan to handle occlusions and missing trajectories in

the near future which will make our algorithm more practi-

cal. Ultimately, we aim to recover articulated human motion

with non-rigid parts.

By learning the structure of an articulated object, con-

straints can be automatically imposed on the motions of the

object on the fly which may extend the existing tracking or

shape from motion applications of articulated objects.
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