
Articulated Motion Segmentation Using RANSAC With Priors

Abstract

Articulated motions are partially dependent. Most of the ex-
isting segmentation methods, e.g. Costeira and Kanade[2],
can not be applied to articulated motions.

We propose a novel algorithm for articulated motion seg-
mentation called RANSAC with priors. It does not require
prior knowledge of the number of articulated parts. It is
both robust and efficient. Its robustness comes from its
RANSAC nature. Its efficiency is due to the priors, which
are derived from the spectral affinities between every pair
of trajectories.

We test our algorithm with synthetic and real data. In
some highly challenging case, where other motion segmen-
tation algorithms may fail, our algorithm still achieves ro-
bust results.

Though our algorithm is inspired by articulated motions,
it also applies to independent motions which can be re-
garded as a special case and treated uniformly.

1. Introduction
Motion segmentation has been an essential issue in feature-
based dynamic scene reconstruction. The problem can be
described as the following: given trajectories, group those
belonging to the same motion.

Lots of work has been done for independent motion
segmentation[5][6][2][7][8][10] while little attention has
been paid to articulated motion segmentation even though
articulated motions involves one of the most interesting mo-
tions, human motions. With a proper segmentation, articu-
lated motions can be recovered with the same ease as in-
dependent motions(Yan and Pollefeys[16], Tresadern and
Reid[17]).

A naive thought may be to apply independent motion
segmentation algorithms to the articulated case. However,
the motions of two linked parts are partially dependent. The
shape subspace of one part is not orthogonal to that of its
linked part(s). Segmentation algorithms assuming indepen-
dent motions generally can not be applied to articulated mo-
tions.

We propose a novel algorithm for articulated motion seg-
mentation called RANSAC with priors. It does not require
prior knowledge of the number of articulated parts. It is ro-
bust and efficient. Its robustness comes from its RANSAC
nature. Its efficiency is due to the priors, which are derived

from the spectral affinities between every pair of trajecto-
ries.

We test our algorithm with synthetic and real data. In
some highly challenging case, where other motion segmen-
tation algorithms may fail, our algorithm still achieves ro-
bust results.

Though our algorithm is inspired by articulated motions,
it also applies to independent motions which can be re-
garded as a special case and treated uniformly.

1.1. Previous Work
Lots of work has been done for motion segmentation
based on the factorization method proposed by Tomasi and
Kanade[12]. We will discuss the most prominent ones at
this section and point out why they are not suitable for ar-
ticulated motion segmentation.

Boult and Brown[5] recursively segment tracks into
linearly independent motion subspaces. For articulated
motions, the motion subspaces are dependent(Yan and
Pollefeys[16]), which makes the criteria for segmentation
invalid.

Costeira and Kanade[2] proposed a very different ap-
proach. It constructs a shape interaction matrix whose zero
and nonzero entries provide strong hints for feature group-
ing. Later work of Weiss[10] compared several segmenta-
tion algorithms that use eigenvectors of affinity matrices for
grouping and drew a unifying view of all these methods in-
cluding the one in Costeira and Kanade[2] which turns out
to have a root in spectral clustering.

However, articulated motions are not independent. The
shape subspaces are not orthogonal to each other, which
breaks the assumption of these approaches and makes the
shape interaction matrix or the affinity matrix not sparse.

Another different motion segmentation approach is from
Vidal[13][14][15] which propose an algebraic framework
called GPCA for subspace clustering. It has been ap-
plied successfully to simple articulated motions(Yan and
Pollefeys[16]).

But GPCA needs a sample size that grows exponentially
with the number of subspaces. So as the number of artic-
ulated parts increases, the exponentially increasing number
of trajectories required by GPCA proves to be the Archilles’
heel.

Zelnik-Manor and Irani[9] briefly discusses the segmen-
tation of partially dependent motions. They construct an

1

marc
Accepted for the ICCV Workshop on Dynamical Vision 2005

marc
        Jingyu Yan and Marc Pollefeys
University of North Carolina at Chapel Hill



affinity matrix similar to those discussed in Weiss[10] and
use an approach similar to Kanatani[8] to separate the data.

Essentially Zelnik-Manor and Irani[9] follows the seg-
mentation approaches for independent motions and demon-
strates that it may work for partially dependent motions as
well. However, when the dependency between motions gets
higher and the number of motions increases, it will face the
same difficulties as those segmentation approaches for in-
dependent motions: the criteria for segmentation becomes
ambiguous.

Our approach differs from the above work in that it
adopts a RANSAC approach, which is known for its robust-
ness, and uses a constructed affinity matrix to provide priors
for random sampling. The major advantages are: it does not
require prior knowledge of the number of motions; it is ef-
ficient and robust; and it provides a unified framework for
motion segmentation for not only partially dependent mo-
tions but also independent motions. Like previous work,
our approach assumes orthographic or weak camera projec-
tion.

The following sections are arranged in such a way: Sec-
tion 2 describes articulated motion subspaces and the shape
interactions of two linked parts; Section 3 describes how
to derive the prior of how likely two trajectories belong to
the same motion and discuss our segmentation approach,
RANSAC with priors; Section 4 demonstrates RANSAC
with priors using two experiments; Section 5 draws a con-
clusion and discusses future work.

2. Articulated Shape Subspaces and
The Shape Interaction

We will discuss in detail the shape subspaces of articulated
motions with comparison to those of independent motions.
Then we will discuss how the shape subspaces interact for
articulated motions.

2.1. Articulated Shape Subspaces vs. Indepen-
dent Shape Subspaces

The articulated motion subspace is a set of intersecting rigid
motion subspaces(Yan and Pollefeys[16]). They are not or-
thogonal to each other as independent motions are. We will
show that by the following canonical factorization forms of
both independent motions and articulated motions.

• Independent motions

W = (R1|T1|R2|T2|...|RN |TN )
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(1)
Each motion has its own rotation and translation while
the shape matrix consists of columns belonging to or-
thogonal shape subspaces.

• Articulated motions

There are two cases for articulated motions.

i. Two parts connected by a joint

W = [R1 R2 T ]
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Both motions share a translationT which is the motion
of the joint, while two shape subspaces have a one-
dimensional intersection.

ii. Two parts connected by an axis

W = [r1 r2 r3 r′2 r′3 T ]
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whereR1 = [r1 r2 r3] andR2 = [r1 r′2 r′3]

Both motions share a translationT and a rotation axis.
Two shape subspaces have a two-dimensional intersec-
tion.

2.2. Shape Interaction of Articulated Mo-
tions

Each trajectory has a corresponding column vector in the
shape matrix which is the right most matrix in Equation (1),
(2) and (3).

For independent motions(Equation (1)), column vectors
of different shape subspaces have zero inner products while
column vectors of the same subspace generally do not. The
shape interaction matrix(Costeira and Kanade[2]) consists
of these inner products of every pair of trajectories, so it
can be used to group features of the same motion.

For articulated motions(Equation (2) and (3)), though the
shape subspaces are not orthogonal, column vectors of the
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same shape subspace generally have larger inner products
then those from different shape subspaces in magnitude. We
will show that in the following. The first shape subspace in
Equation (2) can be represented by a base(e1, e2, e3, e7)
whereei = [0, ..., 1, ...0]T with i indicating the position
of 1. Similarly, the second shape subspace can be repre-
sented by a base(e4, e5, e6, e7). It is easy to see that the
inner product of column vectors from different shape sub-
spaces has only one coefficient not canceled out while that
of column vectors from the same shape subspace has four.
This observation implies that the magnitude of the former
is generally smaller than that of the later. A similar analysis
applies to Equation (3).

So the inner products of column vectors may tell us how
likely two trajectories are of the same motion. This key ob-
servation is what RANSAC with priors builds upon. And
in the following section we will describe how to estimate
the priors with regard to how likely every pair of trajecto-
ries belong to the same motion and then our segmentation
approach, RANSAC with priors.
3. RANSAC with Priors
In this section, we will first describe how to build the pri-
ors which are to guide the RANSAC. Then we will discuss
RANSAC with priors.

3.1. The Prior Matrix
Though the magnitude of the entries in the shape interac-
tion matrix(Costeria and Kanade[2]) may be used directly
for estimating how likely two trajectories are of the same
motion. There is a better way.

The shape interaction matrix is actually an affinity ma-
trix( Weiss[10]). We adopt spectral clustering approaches
to analyze the affinity matrix without carrying out the clus-
tering part. Instead, we build an affinity matrix from the
normalized spectral representations of each trajectory and
use it to estimate the priors of how likely every pair of tra-
jectories are of the same motion.

The procedure is described as followed.

• Build an affinity matrixM from the trajectory matrix
W : M = WT W .

• NormalizeM into N = D−1/2MD−1/2 whereDii =∑
j Mij

• Form a matrixXp×k whose columns are thek domi-
nant egenvectors ofN .

• Normalize each row vector ofXp×k. This new matrix
is Yp×k. Each rowyi of Y is the normalized spectral
representation of trajectoryi in Rk.

• Unlike spectral clustering which will clusteryi into
different groups at this step, we compute the affinity

between each pair ofyi andyj and use it to build the
prior matrixP .

Pij =
2√
π

∫ yiy
T
j

0

e−t2dt (4)

Pij represents the probability of trajectoryi belonging
to the same motion as trajectoryj.

A few discussions:

• The choice of the number of eigenvectorsk. Ideally,
k should be the rank ofN . In practice, due to noise,
the rank ofN can only be estimated. We may use a
model selection algorithm inspired by a similar one in
Vidal[15] to detect the rank.

rn = arg minr
λ2

r+1∑r
k=1 λ2

k

+ κ r

with λi theith singular value of the matrix andκ a pa-
rameter. If the sum of allλ2

i is below a certain thresh-
old, the estimated rank is zero.

Notice that due to outliers the estimated rank may be
larger than the rank of the motion subspace. However,
the spectral affinity turns out to be not very sensitive to
a largerk.

• Any reasonable distribution function may substitute
for Equation (4). The point is to use the spectral affin-
ity to build priors with regard to how likely two trajec-
tories belong to the same motion.

3.2. RANSAC with Priors
Pij represents the probability of trajectory(or data)i be-
longing to the same motion(or model) as trajectory(or data)
j.

We outline our segmentation approach, RANSAC with
priors, as followed.

• form a sample set ofk data based on the priorsPij :

1. Randomly choose the first datas1 based on a prob-
ability distribution formed by the sums of each row of
the prior matrix. The larger the row sum is, the more
likely the corresponding data is in the same motion as
more data and with higher probabilities.

2. Randomly choose the 2nd to thekth data,s2,...,sk,
based on a probability distribution formed by the priors
related to datas1.

• instantiate a model from this sample set.

• Determine the set of dataSi that are within a threshold
t of the model.
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• Repeat thisN times. The largest consensus set is se-
lected and the model is re-estimated using all the points
in that consensus set. If the largest consensus set has a
size less than some thresholdT , terminate.

• remove the data setSi from the original data and repeat
the above to find a new consensus set and its model
until either the data is exhausted or no more models
can be found from the remaining data.

A few discussions:

• The model that we use is the factorization
model(Tomasi and Kanade[12]) which states that
the trajectories of a full rigid motion generally span a
rank-4 subspace. Sok is 4 in our experiments.

• Model selection can be naturally combined with
RANSAC with priors to deal with degenerate shape
and motion. This will be discussed in Section 5.

4. Experiments
We test RANSAC with priors in two experiments.

The first experiment consists of a truck sequence with a
moving shovel. Connected by an axis, the motion depen-
dency is as high as it can get for articulated motions. To
demonstrate the robustness of our approach, besides those
erroneous trajectories due to tracking, outliers are added
by adding random noise(the maximum error is 5 pixels) to
some existing trajectories. The prior matrix is shown in Fig-
ure 1. The actual rank of the articulated motion subspace is
6 while the detected rank is13 because of outliers and noise.
For illustration purpose, the trajectories have been grouped
into the truck body, the shovel and random outliers. No-
tice the priors for random outliers have very small values
which makes them unlikely to be selected into a sample set.
And the erroneous trajectories are rejected when RANSAC
with priors tries to find a largest possible consensus set. 50
sampling times are tried each time to find a largest possible
consensus set from the current data. RANSAC with priors
finds 2 motions and terminates when the largest possible
consensus set that it can find has a size6 which is less than
the thresholdT = 8. Those6 trajectories are some of the
erroneous trajectories on the shovel and on the body. The
remaining data consist of erroneous trajectories and the out-
liers that we add.

The second experiment is from a sequence of synthetic
data of 4 linked parts. Each parts has 10 features to rep-
resent its 3D shape. Small random noise are added to the
trajectories. And4 outliers are added by adding larger ran-
dom noise(maximum error is 5 pixels) to some trajectories.

This experiment is challenging. First, each part has a
small number of trajectories which provides too few data

Figure 1:The prior matrix of the truck sequence with added
outliers.

for GPCA(Vidal[13]) to work; secondly, RANSAC WITH-
OUT priors will require a large number of times of sampling
before it may obtain a valid sample set,i.e. a sample set con-
sisting of trajectories from the same part. For example, only
1
4× 1

4× 1
4× 1

4 = 1
256 may be valid sample sets in this exper-

iment. In practice, without knowing the number of motions
beforehand, it is impossible to set a fixed threshold for the
number of sampling times.

However, RANSAC with priors generally gets one valid
sample set out of every three in this experiment. And this
rate does not depend on the total number of motions. It de-
pends on the number of dependent motions. Parts that are
further away generally have much less dependency which
make the corresponding priors very small, thus their tra-
jectories are unlikely to be chosen into a sample set. 50
sampling times are tried each time to find a largest possible
consensus set from the current data in this experiment. The
prior matrix of4 linked parts is shown in Figure 3). The ac-
tually rank of the articulated motion subspace is13 but the
detected rank is17 due to outliers. RANSAC with priors
finds4 motions within the trajectories and the segmentation
is shown in Figure 4) with reference lines representing each
part of the object for better illustration. The remaining data
are4 random outliers after RANSAC with priors can not
find any consensus set of size more thanT = 8. The result
matches the ground truth.

At last, we put RANSAC with priors into the test of a
more complex scenario. Using our approach, independent
motions are only a special case and can be treated in the
same fashion. The prior matrix for two independently mov-
ing articulated objects from a real sequence is shown in Fig-
ure 5). Each of these two articulated objects has two parts.
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Figure 2: (left) RANSAC with priors finds the first consen-
sus set indicated by blue dots. The orange and light blue
dots are the remaining data. The light blue dots are added
outliers. The orange dots on the truck body are erroneous
trajectories. (right) The blue dots indicate the second con-
sensus set found by RANSAC with priors. The orange and
light blue dots are the remaining data. The light blue dots
are the added outliers. The orange dots are erroneous tra-
jectories.

Notice the priors between every pair of trajectories from dif-
ferent objects are very small. RANSAC with priors is able
to segment4 motions from these trajectories.

5. Conclusions and Future Work
We describe and demonstrate a motion segmentation algo-
rithm called RANSAC with priors. It can segment articu-
lated motions as well as independent motions. It does not
require prior knowledge of how many motions there are. It
is both efficient and robust. The priors are derived from the
spectral affinity between every pair of trajectories.

Future work will involve combining model selection to
deal with degenerate shape and motion. After having a sam-
ple set, we can estimate the model from several models.
Furthermore, with priors, we may even consider forming a
larger size of a sample set. This will not increase the compu-
tation too much as compared to common RANSAC WITH-
OUT priors because with the help of the priors the sample
set has a far better chance consisting of data belonging to
the same model.

We also plan to apply RANSAC with priors to highly
challenging cases of complex articulated motions like hu-
man motions and complex scenes consisting of partially de-
pendent and independent motions.
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