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Abstract

We present two extensions to the Space Carving frame-
work. The first is a progressive scheme to better reconstruct
surfaces lacking sufficient textures. The second is a novel
photo-consistency measure that is valid for both specular
and diffuse surfaces, under unknown lighting conditions.

1 Introduction

There has been a considerable amount of work on volu-
metric scene reconstruction from multiple views [22, 8, 9, 4,
1, 15, 3]. Most of this work can be considered variations of
the Space Carving framework by Kutulakos and Seitz [14].
Under this framework, an initial bounding volume is di-
vided into a regular 3D voxel grid, then inconsistent voxels
are removed until the remaining voxels are photo-consistent
with a set of input images. That is, rendered images of the
resulting voxels from each input viewpoint should repro-
duce the actual image as closely as possible [22].

Because of the flexibility of the volumetric representa-
tion and the elegant treatment of visibility, space carving
approaches have been used to achieve strong results on a va-
riety of both natural and artificial scenes. However such ap-
proaches typically run into difficulty when applied to scenes
with textureless or specular surfaces. For one of our driving
applications—reconstruction of real surgical procedures for
training, such surfaces are the norm rather than the excep-
tion. See Figure 1.

At the heart of the space carving algorithm is the photo-
consistency test to determine whether or not a voxel should
be removed. Most methods make this decision based solely
on the input image color samples corresponding to visible
voxels. In textureless regions, false positives resulting from
ambiguities in front of the true surface typically result in
extraneous voxels that “fatten” the reconstruction. This ef-
fect is particularly pronounced when the model is viewed
from an oblique angle, far away from any of the input view-
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Figure 1. Top left: our one meter-cubed cam-
era rig with eight cameras looking down at a
human patient model. Top right: two cam-
era images. Bottom: two views of the recon-
structed voxel model. The white bounding
box shows the initial volume. Each voxel is
rendered as a simple point with color. No in-
terpolation is performed to fill holes.

points. Additional constraints are often applied in an at-
tempt to resolve the ambiguity. For example a typical ap-
proach in stereo vision is to increase the support of the re-
construction kernel. However the accompanying smooth-
ing effect undermines a unique feature of these voxel based
methods: the ability to reconstruct highly complex shapes.
Instead we want to apply additional constraints only when
there is ambiguity. To this end, we present a progressive
space carving scheme. Starting from a few reliable voxels
we incrementally add voxels using photo consistency mea-
sures, progressively updated visibility information, unique-
ness constraints, and smoothness constraints.

In addition, most existing space carving methods assume
a scene with Lambertian surfaces. This limitation prevents
the application of these powerful methods to scenes with
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specular highlights. Based on the observation that the re-
flected colors for most real-world surfaces are co-linear in
the RGB color space [11], we have developed a novel photo-
consistency measure that is valid for both specular and Lam-
bertian surfaces. This new measure does not require light
calibration or surface normal estimation, thus can be incor-
porated into any existing space carving method to facilitate
the reconstruction of highly specular surfaces.

We have implemented our extensions and tested the
framework on a number of data sets. We are encouraged
by the results. We are able to reconstruct textureless and
highly specular surfaces, such as those shown in Figure 1.

2 Previous Work

The problem of multi-view reconstruction has received
significant attention during the last few years. In particular,
many voxel-based photo-consistency methods have been
proposed. Dyer [10] and Slabaugh et.al. [25] each provide
comprehensive reviews of recent efforts in this area.

As mentioned in the introduction, there is considerable
previous work related to space carving methods [22, 23, 8,
14, 15]. Typically voxels are traversed in a visibility com-
patible order, where only previously committed voxels are
allowed to occlude a current voxel. Consider dividing the
volume with a plane that separates the cameras from the
scene, and then sweeping that plane from near to far (away
from the cameras). Any voxel within the plane cannot oc-
clude another. Thus when a voxel v is visited, its visibility
in every input image has been uniquely determined. We can
then use a photo-consistency measure to decide if v should
be carved away or retained. A popular choice is to threshold
the variance of the color samples, collected from v’s projec-
tions in all the visible camera images. Assuming a Lamber-
tian scene, a large variance implies an “inconsistent”” voxel.
While these methods are very efficient, they are typically
sensitive to whatever global threshold was chosen for the
photo-consistency evaluation. In practice, as a result of ran-
dom noise and quantization effects, a single threshold rarely
achieves optimal results for a complex scene.

To overcome this problem, some researchers have for-
mulated the voxel reconstruction problem as an energy min-
imization problem. For example, Slabaugh et al. introduced
an iterative post-processing approach [24]. They add or re-
move surface voxels until the sum of squared differences
between each camera image and corresponding model im-
age (rendered from the camera’s viewpoint) is minimized.
More recently, Kolmogorov and Zabih introduced a graph-
cut approach to optimize the volume reconstruction di-
rectly [13]. In order to make the optimization tractable they
approximate the visibility test.

Several probabilistic space carving methods have been
introduced [9, 4, 1, 3]. Instead of making “hard” deci-
sions about voxel existence, these approaches compute a
per-voxel probability based on appropriate likelihoods. In
theory such formulations should consider all possible vis-
ibility configurations for a voxel. To avoid the combina-

torial search, the visibility tests are typically approximated
based on heuristics [9, 1, 4] or solved in a stochastic man-
ner through hundreds of iterations [3]. We believe that an
accurate treatment of visibility is crucial for a multi-view
reconstruction. Our approach progressively reconstructs a
voxel model, typically in a few iterations, with visibility
computed deterministically and exactly at each iteration.

Although the use of more sophisticated lighting mod-
els was envisioned in the original space carving work [14],
almost all existing methods use a photo-consistency mea-
sure based on a diffuse (Lambertian) surface assumption.
Two notable exceptions are the Surfel (surface element)
sampling algorithm by Carceroni and Kutulakos [6] and
the color caching algorithm by Chhabra [7]. The former
differs substantially from traditional voxel-based methods.
The scene is divided into a very coarse voxel grid, with
each voxel represented as a parametric surface referred to
as a surfel. Under calibrated lighting, additional proper-
ties such as surface normal and reflectance parameters can
be estimated. Only results from scenes with point light
sources were demonstrated. In practice, light calibration
is not always possible, especially for area light sources. In
the color caching algorithm, Chhabra tries to characterize
the reflected light from specular surfaces in the color space.
While this analysis is very similar to our thinking, it is re-
stricted to the case where the reflected light passes through
the origin of the color cube. This simplification is only valid
in some very limited cases, such as monochromatic surfaces
under white light. Based on an analysis of the surface color
response under the Phong lighting model [19] we arrived
at a general photo-consistency measure, that when condi-
tioned on some typical surface-light interactions can serve
as a maximum likelihood indicator.

There is also some work in stereo vision literature to re-
cover a disparity map in the presence of specular reflec-
tions [2, 12, 16, 17]. These methods typically try to first
detect specular reflections and then reject them as outliers
or occluders. A notable exception is the work from Magda
et al. [18], in which they propose techniques to recover
shapes with arbitrary surface reflectance properties under
controlled lighting. Our method treats specular reflections
as “inliers” and accounts for them inherently, without the
need to control lighting.

3 Progressive Space Carving

Kutulakos and Seitz showed that even without additional
constraints, the space carving framework will provide the
tightest reconstruction using color information alone [14].
They called the recovered shape the photo hull. The idea
of using color information alone has its pros and cons. On
the one hand, in regions with rich textures, arbitrarily com-
plex shapes can be recovered. On the other hand, the lack
of additional constraints (regularization terms) makes space
carving more susceptible to image noise and quantization
problems. In addition, the fattening effect in regions that
lack color variations sometimes can be disconcerting. In



an attempt to preserve the positive and remove the negative
characteristics, we employ an iterative approach to progres-
sively refine the shape estimates. The basic idea is to de-
fer decisions about ambiguous voxels until there is enough
supporting evidence. The refinement includes new photo-
consistency measures under an updated visibility configu-
ration and local smoothness constraints.

Algorithm 1 Pseudo code for a progressive space carving
Scheme.
Clear visibility mask M; for every image I;
for every voxel v {
label[v] = UNKNOWN;
weight[v] = 1.0;

}

while (true) {
for every UNKNOWN voxel v {

s = @& ; // s is the visible pixel set

for every image I {

{p;} = v’s projection in I

if (pz visible) s=sU Di
if (||s|| < 2) labell[v] = INVISIBLE
else {

score[v]=photo_consistency (s)
*weight [v];

n = select_consistent_voxels();
// no more voxels can be selected, stop
if (n == 0) break;

update weight;
update visibility masks;

Referring to Algorithm 1 we outline our progressive
space carving approach. Each voxel can have one of four
labels, UNKNOWN, EMPTY, SURFACE, INVISIBLE. In the
beginning, every voxel is labelled UNKNOWN, has a unit
weight, and is visible in every input image. At each iter-
ation, we compute the likelihood for each UNKNOWN voxel
as the product of its weight and its photo-consistency score.
If a voxel can not been seen from at least two views, it
is immediately labeled as INVISIBLE. (Note that we can
traverse the voxels in any order since the visibility config-
uration is fixed during an iteration.) When this calculation
is complete for all voxels, we find the most unambiguous
voxels, changing their labels to EMPTY or SURFACE. The
selected voxels are then used to update the visibility config-
uration and the weights of the other UNKNOWN voxels based
on a smoothness constraint. This process is repeated until
there are no more UNKNOWN voxels that can be selected.

In the following sub-sections we explain the two central
components of our framework: the “best voxel” selection
process and the smoothness constraint. Before proceeding
we want to point out that the smoothness constraint is op-
tional. Without it the iterative method can be thought of as a
space “peeling” algorithm. After the first iteration, any sur-
face voxels visible in all cameras are selected and removed,

exposing more surface voxels that are partially occluded.
These voxels will be selected in the next iteration, exposing
voxels more deeply occluded, etc. After a limited number
of iterations, the reconstructed shape will converge to the
photo hull. In configurations where a plane-sweep visibility
order exists [22], the maximum number of iterations equals
the number of voxel planes in the sweep direction.

3.1 Finding the most consistent voxels

Rather than using a simple threshold to decide if a voxel
is consistent or ambiguous, we look at the profile of a set
of related voxels. A pixel p in an image defines a line of
sight /; [ will intersect a set of candidate voxels, denoted
as {v;)} where 7 is the index to each voxel along the line
of sight. Assuming an opaque scene, at least one voxel in
{U;} will be the surface voxel reflecting the light that im-
aged in p, thus it will have the best photo-consistency score
if the visibility is solved correctly. Considering the photo-
consistency curve of {v;}}, if there is a single local max-
imum, i.e., its consistency value is better than its left and
right neighbors (assuming a higher photo-consistency score
means better consistency), then the corresponding voxel v
is considered consistent and labeled as SURFACE. In addi-
tion, any voxel in {v}} and in front of v will be labeled as
EMPTY, i.e. carved away. If no SURFACE voxel can be
found, all voxels in {v;,} are ambiguous and their occupan-
cies are left to be resolved in later iterations. This scheme
does not need a threshold, since we only look for the “best”
for each pixel in the input images. It also guarantees the
uniqueness constraint, i.e., one pixel only corresponds to
one surface voxel.

After the likelihood values for all voxels have been up-
dated, we project the resulting voxel grid onto every input
image. (This step can be accelerated using the graphics
hardware.) We then find the best voxel for each pixel in ev-
ery input image. A voxel is labelled SURFACE if and only
if it is the best voxel in all views visible. Once a SURFACE
voxel is declared, it will be projected into visible views to
mask the corresponding pixels—these pixels (in v’s foot-
print) will not participate in future photo-consistency com-
putation, nor will new best voxels be selected for them,
i.e., every pixel can only have one corresponding SURFACE
voxel. Once a voxel is labeled as SURFACE, it will not be
removed in subsequent carving.

3.2 Applying a smoothness constraint

One needs to be careful defining smoothness under a
multi-view reconstruction framework. First we note that
smoothness is a view-dependent property. Think about a
thin sheet of paper: when viewed from the front, the pa-
per is smooth everywhere; when viewed from a 90 de-
gree angle the sheet barely exists. In any case, we be-
lieve it makes sense to use smoothness constraints that favor
frontal-parallel surfaces, since cameras are more likely to



see such surfaces compared to ones at oblique angles. Un-
der a multi-view setting, a different surface assumption can
be derived for each input view, but the assumptions need
to be consolidated. In this work, we apply a smoothness
constraint with respect to every input view and the result-
ing assumptions are combined in the voxel space, assuming
each one is equally likely and valid.

While there are many possible smoothness constraints,
we choose to use the disparity gradient principle because
of its relevance to the human vision system, its simplicity,
and its successful use in stereo algorithms. Before we get
into the details of our formulation, we first present a brief
overview of the disparity gradient principle.

Disparity Gradient Principle Disparity is defined be-
tween a pair of rectified stereo images. Given a pixel (u,t)
in the first image and its corresponding pixel (u’,t’) in the
second image, disparity is defined as d = u’ — u. Disparity
is inversely proportional to the distance of the 3D point to
the cameras. A disparity of zero implies that the 3D point is
at infinity.

For two 3D points the disparity gradient can be defined as

(1

DG:‘ Ad ‘

Au — Ad/2

where Au = us — u; and Ad = dy — d;. Experiments in
psychophysics have provided evidence that human percep-
tion imposes the constraint that the disparity gradient DG
is limited to an upper bound. In [5] the limit DG < 1 was
reported. The theoretical limit for opaque surfaces is 2, to
ensure that the surfaces are visible to both eyes [20]. Also
reported in [20], is that under normal viewing conditions
most surfaces are observed with a disparity gradient well
below the theoretical value of 2.

Applying the Disparity Gradient Principle Manipulat-
ing Equation 1 we can arrive at

Au - DG

Ad||< ————
I ad < S paT

2

This equation tells us that if one pixel’s disparity (depth)
is known and DG is limited, then the disparity range of
a neighboring pixel is also limited. The closer these two
pixels are, the smaller the disparity variation can be. This
is why the disparity gradient principle has been used as
a smoothness constraint in several stereo matching algo-
rithms [5, 20, 28, 27]. However it has not been applied in a
volumetric representation. One problem is that the disparity
gradient is defined between a pair of images, so it is not di-
rectly applicable in a volumetric setting. Here we introduce
a way to relate the disparity gradient to a 3D voxel grid. For
each input image, we can assume that there is an imaginary
image, taken from a parallel viewpoint some distance away,
as shown in Figure 2. This distance should be related to the
average distance between neighboring cameras. Assuming
a pixel my corresponding to the voxel v1, the allowable dis-
parity range for 1o given a limit on DG can be obtained
from Eq. (2). Then we can back-project the disparity range

onto the voxels {v}} that intersect the line of sight from 773,
(the slant-fill voxels in Figure 2). A voxel that is both in the
disparity range and in {v} is more likely to be the voxel
reflecting light to ms. In other word, because vy is known
to be a surface voxel, the disparity gradient principle tells us
that neighboring voxels are also likely to be surface voxels.

=

N /\

Imaginary
Image Plane Cn

Figure 2. Applying the disparity gradient prin-
ciple in a volumetric setting. An imaginary
image is introduced to define the disparity
range. The back-projection of the disparity
range limits the voxel search ranges. The
gray curve illustrates the weight for voxels.

In practice, there is no need to compute the imaginary
image since the location of the iso-disparity planes can be
computed directly using d = fb/Z with f the focal length,
b the virtual baseline and Z the depth (more precisely the
Z-coordinate in a camera centered coordinate frame). We
want to favor voxels that have the same depth as vj, as
well as allow small possibility that voxels may fall beyond
the disparity range at occlusion boundaries. So we use a
weighting function similar to a normal distribution. Let a
voxel v2’s projection in image C be miq; 14 is the closest
pixel to ms with a known depth. The disparity difference
can be obtained by projecting vs and v into the imaginary
image C{, or more directly as Ad = bf(1/Zy — 1/Z1).
The weight for v is then given by

1 —(Ad/Au)?
Wy, = , 3
:= o ep(—— ) 3)
where 0 = % and Au = ||y — Mmal|. If we know

or choose to assume some value for o, it will be possible to
formulate the weighting process using Bayes’ rule similar
to [28]. If the voxel v is visible in multiple images (as it
should be), then the weights from different images can be
summed to arrive at a final weight.

4 A New Photo-consistency Measure

Studies in photometry have shown that the reflected
light (radiance) from many real-world surfaces can be ap-



proximated as the sum of diffuse and specular compo-
nents [11, 19]. This can be modeled as

I = diffuse(I,,Oq4, N, L) + specular(I,, R, V)  (4)

where I, is the intensity of a light source, Oy is the object
color (albedo), IV is the normal vector, L is the lighting vec-
tor, R is the reflection vector, and V' is the viewing vector.

Now let us examine the change of intensities for a given
surface point under different viewing directions. Without
lose of generality, we assume that the scene and lighting are
both static when images are taken, i.e., N and L are con-
stant. Under this condition, from Equation 4, we can see
that the diffuse term remains a constant from any view di-
rection. If the specular effect can be ignored, the color sam-
ples from input images will cluster into a point in the color
space. That is the basis for the original photo-consistency
check proposed by Seitz and Dyer [23]. To check if a voxel
exists or not, we simply need to compute the variance of the
color samples. We call this the variance measure. A large
variance indicates they are not likely to be from the same
surface point, and thus that voxel should be carved away.

On the other hand, if the specular highlights cannot be
ignored, then for a broad class of surfaces such as plastic
and glass, the reflected light is only modulated by the in-
cident light. For these surfaces the color values observed
from different viewpoints are co-linear in the color space.
They form a half-line originating from the diffuse term and
extending toward the color of the light I,,. Note that the di-
rection of the line is independent of the object color. The
basis of our photo-consistency measure is to detect such a
“signature” in the color space. If the surface is diffuse, its
signature will be a point; if the surface is specular, its signa-
ture will be a line. Because we do not have a priori knowl-
edge about whether a voxel represents a specular point or a
diffuse point, we want to design a measure that is valid for
both cases, while simultaneously providing as much disam-
biguating power as possible.

Maximum Likelihood Estimation We assume that a
color sample can be classified in one of three ways: a dif-
fuse color ¢4 , an “onset” color ¢,, or a saturated color
cs. Each case has a different a priori likelihood, denoted
Py, P,, andPs respectively. We also assume that the color
samples from the images are corrupted by zero-mean gaus-
sian noise with a variance of o'2. For simplicity and robust-
ness, we assume the color of the light is known. (It can be
measured by imaging a white object.)

Given an “object” color C, the likelihood of observing a
particular color sample C; is

N(Cy|C, 0?) Py,

N(dis(Cj, line(C))[0,02)P,, |
N(C;|Cs, 02) Py

p(C5|C) = max

&)
where N denotes a normal distribution, C is the saturation
color, usually A[], 1, 1] for normalized RGB images, and

dis(Cj,line(C')) is a function to compute the distance be-
tween C; and a ray defined by C and the color of the light.

(Note that we interchange C' and I because we are dealing
with color images.)

Thus the maximum likelihood estimation for an “object”
color C'is

maa:(H p(C;1C)). (6)

The photo consistency “cost” is the residual after maximum
likelihood estimation. The estimated C' is assigned as the
diffuse color of the voxel. We call this measure the MLE
photo-consistency measure.

Note that in Equation 5, we assume that the distribution
along the line is uniform. This is an approximation derived
from the Phong lighting model [19]. If we ignore ambient
light and the atmospheric attenuation factor (i.e., no fog),
the Phong lighting model becomes

I'=1I,[kaOa(NL) + ks(RV)"] (7

where kg is the diffuse coefficient, k is the specular coeffi-
cient, and n is the object’s shininess.

Let the angle between the reflection vector R and the
viewing vector V be ©. It is reasonable to model © as a
random variable with uniform distribution in its valid range,
meaning that a surface point is likely to be viewed from any
direction in the hemisphere. Thus the probability density
function of © is

1/m, —7m/2<6<7w/2

fo(f) = { 0, otherwise. ®)

Now we need to find the density function of the random
variable I. This will tell us how the color samples are dis-
tributed along the line. The final result is in Equation 9
(details of the derivation can be found in [26]).

2 k™ n 1 T ; T
N I SR T RS AR AR
fr(i) = a1-kz ke ?
0, otherwise,
R o €))
where I = I,kqOq(NL) and k = Itz_kl In Figure 3, we

plot several density curves of I under different shininess
(n) settings. In our formulation of our MLE measure, we
basically divide the density function into three blocks: cg4
corresponds to the left part; c, corresponds to the middle
transition part, which is relatively flat; and ¢, corresponds
to highlights towards the end of X axis. Note that due to
the limited dynamic range of a camera, the saturated class
is likely to include more of the middle flat part.

Simplified linearity test The maximum likelihood esti-
mation presented above needs to know the a priori likeli-
hoods of the three color sample classes. In case the a priori
likelihood is unknown or inaccurate, we can use a simpli-
fied approach by assuming all samples belong to the onset
class, i.e., P; =0, P, = 1, P, = 0. In addition, we assume
that less than half of the pixel samples are in specular high-
lights. Thus we can use the median of the color samples
is the object color C and simply compute the sum of dis-
tances to the ray defined by C' and the color of the light as
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Figure 3. Probability Density Functions under
different shininess (n) settings. The X axis is
the normalized intensity value (k), while the Y
axis is probability density with Ik, = 1.

the photo-consistency measure. Note that this simplification
will fail in smoothly shaded diffuse surfaces with uniform
colors. In this case, everywhere is consistent, similar to the
result of applying a simple variance test to textureless re-
gions. In practice, we find it still works well on scenes with
moderate textures. We call this measure the LMF (Line-
Model-Fitting) photo-consistency measure. Similarly, if we
set Py = 1,P, = 0,P; = 0, i.e., only diffuse colors are
possible, then the MLE measure reduces to the standard
variance measure.

Multiple Stationary Lights The above analysis is valid
for multiple fixed lights as long as they have the same color.
This is true even if their intensities are different or there
are area light sources. If the light colors are different, then
there will be multiple lines in the color space, one for each
unique light source. In this case, it would be interesting to
investigate if a multiple-line fitting and clustering method
would be practical.

Moving Lights and Cameras It is also interesting to
consider data captured on a turntable. Typically in this case
both the lights and the camera are moving together. If the
lights have the same color, the image color samples will
form a plane instead of a line in the color space. At the
same time, if the surface is primarily diffuse, then the color
samples will form a half-line starting from the origin and
extending toward I,,k;4O,4. Thus it is possible to reconstruct
diffuse scenes under moving lights and moving cameras.
We provide some preliminary results using this finding.

S Implementation and Results

We have implemented our progressive space carving
scheme. We also constructed a capture rig we call the cam-
era cube (Figure 1). It consists of eight digital video cam-
eras with VGA resolution (640 x 480). All cameras are
fully calibrated and synchronized. We are able to capture
and store VGA videos at 15 frames/second. Lens distor-
tions are removed after capture. At this point our imple-
mentation only computes the smoothness constraint for a
single view. This simplification is justified given our cam-
era arrangement where all 8 cameras look down at the scene
from above. In the results shown here, we computed the
smoothness constraint from the vertical direction, looking
down; similarly, surface voxels were extracted from a top-

down vertical sweep. We further define a robust measure to
reject potential outliers: if in the color cube space the av-
erage distance/pixel to the color ray is over a threshold, we
reject that voxel. We used a very generous number—100
levels (assuming 8 bit/channel), and this number was fixed
throughout all experiments. Experiments have shown that
VDPC is not sensitive to this threshold.
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Figure 4. Left: Reflected colors from a sur-
face point forms a line; due to limit dynamic
range, it becomes three connected line seg-
ments in the RGB cube space . Right: Sam-
ple density distribution with object color [0.3,
0.5, 0.1], o5, = 10/255, and a priori probability
[0.4,0.4,0.2]

We use Powell’s method [21] to optimize the function in
Equation 6, assuming the color of light is white (which it
is). Note that due to the limited dynamic range provided by
the cameras, the half-line defined by C has three segments
in general (left in Figure 4). One channel will first saturate,
then the second, and finally the last channel. In Figure 4,
we show a sample probability density distribution on the
right. Similarly, we compute the distance to the three line
segments in the LMF measure.

There are two places where we exploit the computer
graphics hardware to accelerate computation. The first
place is the visibility update. We render each surface voxel
as a cube for every input image, thus we can get the exact
footprint to update the visibility mask. The second place is
the computation of the smoothness weight. For each voxel,
we need to project it to each input view and find the closest
pixel that has a corresponding surface voxel. We use Delau-
nay triangulation to create a 2D mesh of marked pixels in
each view, and render the color-coded mesh. The rendered
image serves as a look-up table to find the closest pixel in
O(1) time. We found orders of magnitude speedup after
this optimization.



Experiments We captured and reconstructed a variety
of real-world scenes. Unless otherwise indicated, all were
reconstructed at a resolution of 256 x 256 x 128. We first
captured a teapot with rich textures (Figure 5) and tested our
photo-consistency measure without applying the smooth-
ness constraint. See Figure 6. Since we know nothing about
the surface materials or the scene lighting, except that the
color of lights is white, we tried different settings of the
a priori likelihood (denoted as ]3) for the MLE measure.
With a 0.1 granularity, there are about 50 different combi-
nations. The most visually pleasing result is shown in Fig-
ure 6(a), where P = [0.5,0,0.5]. We also show the result
with P = [1.0,0,0] in Figure 6(b), which is equivalent to
using the standard variance measure. Figure 6(c) shows the
result with P = [0, 1.0, 0], which is very similar to the re-
sult from the LMF measure. Comparing to the best one, it
has more stray voxels when viewed from the side.

Figure 5. Three of the eight images captured
simultaneously by our camera cube (see top
left in Figure 1). They are cropped to show
more details. The teapot roughly took a 300 x
300 area in every image.

Our second data set consists of a teapot and a book with
substantial textureless regions (Figure 7). We used the LMF
measure and applied the smoothness constraint through a
few iterations, shown in Figure 8. We stopped at the fourth
iteration when newly selected SURFACE voxels were less
than 2% of the total SURFACE voxels. We compare it with
the result using the variance measure in Figure 9.

In Figure 10, we show a high resolution reconstruction of
a hand. It is computed using the variance consistency mea-
sure through four iterations. Note the textureless regions
are nicely reconstructed. We further captured a dynamic
sequence in which a surgeon was explaining a medical pro-
cedure. The torso model was constructed using the LMF
measure, while the hand and other moving parts were con-
structed using the variance measure. They are composited
together and shown in Figure 11.

Our last data set, courtesy of the Mitsubishi Electric Re-
search Lab, is a teapot captured on a turntable. The light
was not static with respect to the teapot. We did not know
this when we first tried our method. In Figure 12, we show
the results using the LMF and the variance measure. On the
top of the teapot where highlights exist, neither method pro-
duces meaningful results. However on the side of the teapot
where there are virtually no highlights, the LMF measure
performs much better than the variance measure, since un-
der moving lights the reflected lights of a diffuse point form
a line (not a point) in the RGB color space.

ii = |

(b) P = (1.0,0,0) (same as
the variance measure)

(@ P = (0.5,0,0.5), vi-
sually best from 50 combina-
tions of P

(c) P = (0,1.0, 0)(similar to the LMF measure)

Figure 6. Reconstruction results from data in
Figure 5. We used the MLE measure under
different a priori assumptions, no smooth-
ness weight was applied.

Figure 7. Three of eight images (teapot and
book).

6 Conclusions

We present two major extensions to the Space Carv-
ing framework. The first is a progressive scheme to bet-
ter reconstruct surfaces lacking sufficient textures. The sec-
ond is a novel photo-consistency measure that is valid for
both specular and diffuse (Lambertian) surfaces, without
the need of light calibration. We applied our method suc-



Figure 8. Reconstruction results using data in
Figure 7. From left to right, we show the pro-
gressively refined results after iteration one
to three. We used the LMF consistency mea-
sure and set the disparity gradient limit to 0.8.

Figure 11. A dynamic sequence captured by
the camera cube. A surgeon was explaining
a medical procedure. The moving part was
reconstructed and rendered with the static
model shown in Figure 1.
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Figure 9. Comparison of different consis-
tency measures. Left column (top and side
views): LMF measure; right column: vari- Figure 12. Experiment with moving lights.
ance measure. Both results were obtained af- Left: LMF measure; right: variance measure.

ter four iterations. All other parameters were

kept the same. explore the possibility of estimating more parameters per

voxel, such as surface normals and surface materials, so as

cessfully to a variety of real-world scenes. to make “re-lighting” possible.
Looking to the future, we plan to further investigate the
photo-consistency under more complicated lighting condi- References
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