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Abstract

This paper presents a novel system to estimate body pose
configuration from a single depth map. It combines both
pose detection and pose refinement. The input depth map
is matched with a set of pre-captured motion exemplars to
generate a body configuration estimation, as well as seman-
tic labeling of the input point cloud. The initial estima-
tion is then refined by directly fitting the body configura-
tion with the observation (e.g., the input depth). In addition
to the new system architecture, our other contributions in-
clude modifying a point cloud smoothing technique to deal
with very noisy input depth maps, a point cloud alignment
and pose search algorithm that is view-independent and ef-
ficient. Experiments on a public dataset show that our ap-
proach achieves significantly higher accuracy than previous
state-of-art methods.

1. Introduction
Human motion modeling has many applications in dig-

ital entertainment, health care, and surveillance. While
marker-based motion capture (mocap) and analysis systems
have received commercial success; the need for markers, the
technical expertise required for using the system, and the
high hardware cost limit its adoption in many practical ap-
plications. Therefore markerless mocap has been an active
research topic in computer vision for the last two decades.

Markerless mocap research has always focused on using
one or more regular video cameras (e.g., [14]). In this paper
we present a novel approach that uses only the depth infor-
mation to reconstruct articulated body configurations. The
motivation for our approach is two-fold. First, depth mea-
surement avoids the ambiguity caused by perspective pro-
jection in 2D images; and is invariant to lighting conditions,
therefore background objects can be easily segmented. Sec-
ondly, low-cost active depth sensors are becoming more
and more available. These sensors, based on the principle
of time-of-flight(ToF) [10] or active lighting [13], provide
more stable depth maps than passive approaches. Neverthe-
less, using depth for motion capture is not as simple as it

Figure 1. Examples of estimation results using pose tracking al-
gorithms in [20]((a) and (c)) and our method ((b) and (d)), from
depth images captured by Kinect.

appears at first blush. First, a depth sensor only generates
a point cloud with noise and outliers; semantic information
about which part corresponds to which joint must be ex-
tracted. Secondly, there exists large occlusion: at least 50%
of the body is not observable in any single view.

We use a pre-captured motion database to constrain the
possible body configuration space. The motion database
contains both body surface models and corresponding
skeleton body configurations. When an input depth map
is matched with a body surface model, it obtains not only
the semantic labeling from the surface model, but also the
underlying body configuration. We then further optimize
the body configuration using a non-rigid point registration
process. It serves two purposes: first to account for the dif-
ference between the sample surface model; and second to
fill in the missing regions that are occluded in the input. In
this two-stage process, we avoid the typical problem of a
huge motion database associated with directly mapping in-
put data to body configuration, while we also provide good
initial estimation so that optimization-based refinement is
unlikely to be trapped in local minima. This is the most
novel aspect of our system.

An important technical contribution of this paper is a
new view-independent matching algorithm between a 3D
full-body surface mesh and a depth map. A new challenge
in any single-view setup is that the input is view-dependent
and incomplete. Matching the depth map directly with a
complete surface mesh, with non-rigid deformation, can
lead to inaccurate or even wrong initial body configuration
estimation and eventually reduce the final accuracy. Toward
this end, we apply PCA to both the input depth map and
the motion database; first aligning them in the three prin-



cipal axes, then searching in a reduced space to both ac-
celerate the computation and remove ambiguity caused by
small variations in postures. Our method can effectively
handle body-size variations across subjects, benefiting from
the matching approach and the non-rigid point registration.
In addition, we extend a point denoising scheme to signifi-
cantly reduce the noise and outliers in the input depth map
– a problem that is detrimental in practice.

Using active depth sensors for mocap has been a new
topic in the last few years. In particular Microsoft has an-
nounced its Kinect camera [13, 21] that can capture body
movement for computer-human interaction. Qualitative
evaluations using kinect are conducted on our method as
well as the algorithms in [20], and will be discussed in Sec-
tion 7; while some examples are shown in Figure 1. In ad-
dition, we validate our approach using a publicly available
dataset and achieve an average accuracy of 38mm, which
is significant compared to previous state of the art (100mm
in [9]). Quantitative comparisons between our method and
[21] on the this dataset are also discussed in Section 7. With
further research and development in this direction, we be-
lieve that low-cost motion capture and analysis software can
have enormous impact beyond computer gaming, such as
socially important problems in health care for which quan-
tifiable accuracy is the key.

2. Related Work
Human motion capture has been a highly active research

area in computer vision and graphics, due in part to its many
applications. Such applications span fields as diverse as se-
curity surveillance, medical diagnostics, games, movies and
sports. Traditional marker-based motion capture systems
provide a feasible solution, however such systems carry the
burden of specially designed equipment or suits, which is
inconvenient for many practical applications. Therefore,
non-invasive marker-less approaches are the main focus of
research in recent years. It is beyond the scope of this pa-
per to provide a comprehensive review. Interested readers
are referred to an excellent recent survey by Moeslund et
al. [14].

While the prevailing methods in marker-less mocap re-
quire a surrounding camera array, solutions using a single
video camera have been explored [6, 22]. “However, they
are not always robust, in part because image data is inher-
ently noisy and in part because it is inherently ambiguous”
[15, 19]. We believe the use of depth information can sig-
nificantly reduce the ambiguity and make one-camera solu-
tions practical. In this regard, our approach is mostly related
to methods that use stereovision for motion capture [19, 2].
However these methods use relatively simple motion mod-
els and do not provide a quantitative study of their accuracy.
Compared to stereovision (in particularly passive ones), an
active depth sensor can provide more accurate and robust

depth estimation.
Related to motion capture, SCAPE [1] and its extensions

(e.g., [4, 3]) generate high quality human shape models with
pose information. It uses a data-driven approach to find a
low-dimensional parametric human shape and pose descrip-
tion, so the fitting of image data to 3D model can be simpli-
fied. In particular, it has been extended to estimate joint cen-
ters [16, 7] by using the semantic information in the training
model. The main difficulty with SCAPE is that it needs a
high-quality initialization shape (either from marker-based
motion capture or visual hull from a surrounding camera ar-
ray) and its quality depends on the training data. We demon-
strate in this paper that our approach is still effective when
using a sparse set of motion exemplars.

There are several new papers focusing on the problem
of single camera motion capture. Fossati et al. [8] com-
bine detection and tracking techniques to recover 3D mo-
tion using a single moving camera. They demonstrate the
effectiveness of their approach with two types of motion,
namely golf swings and walking. However, no body size
variation is considered. Wei and Chai [24] combine mo-
tion capture with physically-based simulation to obtain high
quality results from a single video sequence. Nonetheless,
this technique requires manual labeling of key frames, while
we seek a fully automatic approach. The work by Ganap-
athi et al. [9] is most closely related to our approach. They
also use a single depth of camera (based on the principle of
time-of-flight) to estimate full-body motion. A probabilis-
tic method is used with a human body model as template in
their work. While their algorithm can achieve real-time per-
formance, the accuracy, reported as around 100mm, leaves
something to be desired. Besides, their method does not
handle body-size variations across subjects. We trade off
real-time performance for high accuracy, achieving an aver-
age of 38mm using the data set provided in [9].

Just recently, Microsoft released the Kinect Sensor [13].
Performance evaluation of the underlying pose tracking al-
gorithm was reported in [21]. PrimeSense (which provided
the reference hardware design for the Kinect Sensor) has
released an SDK that preforms pose tracking with Kinect
input [20]. Different from these methods is our emphasis
on accuracy, rather than real-time operation.

3. Overview

Figure 2. Two views of our mesh model and its underlying skeleton
In our method, a motion database is utilized, which is

generated by driving a generic human mesh model with
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Figure 3. The outline of our processing pipeline. The leftmost image is a typical depth map, we define distance thresholds to cut the subject
out. It goes through a number of processing stages, generating the estimated skeleton embedded in the input point cloud.

movements captured from an eight-camera optical motion
capture system [23] operating at 120Hz. Around 19300
poses are recorded, including walking, running, bending,
etc. The human model includes both a surface mesh and
an embedded skeleton that contains 19 joints, as shown in
Figure 2. The mesh model is animated with linear blend-
ing technique according to the recorded motions [18]. We
denote a deformed mesh under a certain pose asMl. Four
synthesized depth images, denoted as {Pi

l }4i=1, are also ren-
dered from four different perspectives. These depth im-
ages will be used for view-independent shape matching ex-
plained in Section 5.1.

The input to our approach is one or more depth im-
ages {Xj}Nj=1, or equivalently point clouds, from a single
depth sensor (we will use these two terms interchangeably
in this paper). Our goal is to estimate the configuration
Υ̂j given a depth image Xj based on our motion database
{Ml,P1

l ,P2
l ,P3

l ,P4
l ,Υl}.

Figure 3 shows the outline of our processing pipeline.
Given a point cloud, we first remove irrelevant objects based
on distance information, for which we use two fixed dis-
tance thresholds representing the interested distance range
throughout our test. A modified surface reconstruction al-
gorithm is applied to remove noise. Then the cleaned point
cloud is transformed into a canonical coordinate frame in
order to remove viewpoint dependency, and a similar pose
is identified in our motion database. Then a refined pose
configuration is estimated through non-rigid registration be-
tween the input and the rendered depth map for the corre-
sponding pose. We rely on database exemplars and a shape
completion method to deal with large occlusions, i.e., miss-
ing body parts. Finally a failure detection and recovery
mechanism is adopted to handle occasional failures from
previous steps, using the temporal information.

4. Point Cloud Segmentation and Denoising

The input depth map first needs to be processed to re-
move background and noise. Given the depth information,
background objects can be easily removed by defining a
bounding box or through background subtraction. However,
the noise level in the depth map from typical ToF sensor
is quite significant as shown in Figure 4(a). This is most
likely due to the long range (for full body capture) between

(a) (b) (c) (d)

Figure 4. Comparison of original LOP and our modified LOP ap-
plied on a point cloud from depth sensor. from left to right (a) the
input; (b) LOP with support radius of 0.2m; (c) LOP with support
radius of 0.1m; (d) with our modified LOP.

the subject and the camera. Since our subsequent process-
ing requires finding point correspondences between the in-
put point cloud and database exemplar, we need to over-
come this obstacle of noisy input. Here we modify a sur-
face reconstruction algorithm–Locally Optimal Projection
(LOP) [12] for denoising.

LOP is a parameterization-free operator that, given a tar-
get point-set P = {pi}i∈I , projects an arbitrary point-set
X = {xj}j∈J onto the data P , to reconstruct the under-
lying geometry structure in the data P . The criteria is to
minimize the sum of weighted distances between the pro-
jected point-set and P , meanwhile preventing points in the
projected point-set being too close to each other.

Applying LOP directly to our point cloud is problem-
atic though. The amount of smoothness is controlled by a
radius value h, which determines how big a neighborhood
a projected point can contribute to the objective distance
function. As shown in Figure 4, if h is too large, it leads to
obvious shrinkage of the point cloud; if h is too small, there
is little effect of denoising.

We thereby seek a solution that offers both smoothness
and the preservation of geometric structure. With a closer
look into applying this method to the depth map, we realize
that shrinkage could be avoided by projecting only z coor-
dinates of the point-set, which contains the most important
depth information; while x and y can then be calculated
through re-projection.

Therefore, given a point-set P = {pi}i∈I , where pi =
[xi, yi, zi] ∈ R3 are the 3D coordinates, following the orig-
inal derivation in [12], our modified LOP algorithm is ini-
tialized as follows:

z
(1)
i =

∑
s∈I zsθ(‖ps − pi‖)∑
s∈I θ(‖ps − pi‖)

(1)

x
(1)
i = z

(1)
i · xi/zi, y(1)i = z

(1)
i · yi/zi (2)



Figure 5. Comparison of point cloud smoothing using bilateral fil-
tering and our modified LOP algorithm. From left to right: input;
after Bilateral Filtering; after our modified LOP.

where θ(·) is a fast decreasing function controlled by h,
θ(r) = e−16r

2/h2

. Then for each iteration k = 1, 2, . . . K,
the point is updated as

z
(k+1)
i =

∑
s∈I α

i
szs∑

s∈I α
i
s

+ µ

∑
s∈I\{i} ‖p

(k)
i − p(k)s ‖βi

s∑
s∈I\{i} β

i
s

(3)

x
(k+1)
i = z

(k+1)
i · xi/zi, y(k+1)

i = z
(k+1)
i · yi/zi (4)

with

αi
s =

θ(‖p(k)s − pi‖)
‖p(k)s − pi‖

, βi
s =

θ(‖p(k)s − p(k)i ‖)
‖p(k)s − p(k)i ‖

∣∣∣∂η
∂r

(‖p(k)s −p
(k)
i ‖)

∣∣∣
(5)

where η(r) = 1/3r3 and µ ∈ [0, 1/2) is a repulsion param-
eter that leverages between smoothness and surface geome-
try accuracy. In practice we found that setting h = 0.5 and
µ = 0.35 usually obtains the best results within K = 5
iterations. After applying LOP, we also remove isolated
outliers since these points do not have effective support-
ing neighborhood and remain unchanged after projection.
These points are identified by thresholding distance to their
nearest point. The effectiveness of our denoising scheme is
shown in Figure 5, in which we also compare it with bilat-
eral filtering (BF) on the depth map. BF generates unde-
sirable points connecting disjoint parts, probably due to the
low-resolution of the depth map and too many stray points
on occlusion boundaries.

5. Model Based Motion Estimation
After the depth map has been segmented and cleaned,

our next step is to search for a similar pose in the motion
database. Directly measuring similarity between the com-
plete mesh model and a depth map is difficult, since a depth
map is incomplete (at least 50% of a subject’s information
is missing) and there is no prior knowledge about from what
viewpoint a depth map is captured.

Our solution to this search problem involves two steps.
First we generate several synthesized depth maps from rep-
resentative viewing directions, and align the input point
cloud to these representative views, in this way removing
the viewpoint dependency of the input point cloud. Then
we apply dimension reduction techniques to find the most
similar depth map (and body configuration) efficiently.

5.1. Point Cloud Alignment

We address this viewpoint dependency problem with the
observation that principal axes of a point cloud provide ro-

Figure 6. Visualization of the three principal axes (color-coded)
of different point clouds. They are quite stable across different
viewpoints. Two different poses are shown. (The right-most one
is rendered from back-view with the entire right leg occluded.)

bust characteristics of a pose, through which a transforma-
tion can be constructed and applied on the point cloud to
rectify it to a canonical view.

More specifically, given a point cloud X of dimension
N × 3, the principal axes are the eigenvectors of the 3 × 3
covariance matrix that represents the three major directions
the point cloud spans. As we can see in Figure 6, they gener-
ally provide sufficient match across different view points for
our purpose; while our neighbor search and non-rigid reg-
istration approach described in the following sections can
deal with remaining small misalignment. Therefore we can
define a local coordinate frame based on the mean value
of the point cloud and the three principle axes. Note that
we do not know the positive direction of the principal axes,
therefore we pick the largest principle axis and define its
positive (“up”) direction as the up-direction of the cam-
era coordinate–assuming the camera is usually not up-side-
down. Using the point cloud’s mean value as the origin,
we define four canonical coordinate frames by alternating
the positive directions of the remaining two axes. For each
canonical coordinate frame, we define a virtual depth cam-
era that is away from the origin and looking into the depth
direction. Each mesh modelMl is transformed into its own
canonical coordinate frames and four synthesize depth maps
are rendered, denoted as {P i

l }4i=1.
For an input point cloud X , we also compute such a

transformation T but with the difference that we just pick
a random positive direction for the remaining two axes.
The transformed point cloud X c = T (X ) is in a view-
independent canonical coordinate frame.

5.2. Nearest-Neighbor Search in Low-Dimensional
Subspace

In X c the viewpoint dependency is mostly removed. We
can now search the synthesized depth maps to find the most
similar pose. One could search in 3D space by compar-
ing the point distances in 3D, we instead search in the PCA
space of the image space and look for a P i

l that is closest
to X c in the PCA space. More specifically, all synthesized
depth maps {Pi

l } are vectorized and stacked into a matrix
from which a PCA subspace and corresponding coefficient
vectors {λil} are learned.
X c is re-synthesized as a standard depth image in the

canonical view and vectorized to calculate PCA coefficients



(a) (b) (c)

Figure 7. Nonrigid registration between a test point cloud (blue)
and one of our database exemplars (red) using CPD. (a) and (b)
show different views of these two point clouds after global align-
ment; (c) is registration result. Notice both body shape and pose
differences.

in this subspace. Finally, a most similar pose is identified
by finding P i

l closest to X c in the PCA space, i.e. finding
< l, i > that satisfies

< l, i >= arg min
1≤l≤Nc,1≤i≤4

{‖λil − γ‖} (6)

Up to now we have obtained a point cloud Pi
l and its

corresponding surface model Ml that are in similar pose
as X c. Since Ml has a known joint configuration, an ini-
tial estimation of the joint configuration of X c is obtained.
Note everything is now defined in a canonical coordinate
frame, we need to apply the inverse transform T−1 toMl

and joint configurations so that they are in the input coordi-
nate frame. Such transformation facilitates the refinement
process discussed in the next section. For the sake of sim-
plicity in notation, we assume Ml,Pi

l are defined in the
input coordinate frame from this point on.

6. Pose Refinement
Although a similar pose has been identified from our mo-

tion database for the input point cloud, naively outputting
that pose as the final result yields poor results due to per-
sonal shape variations and small pose differences. We fur-
ther refine the pose through non-rigid registration between
X and Ml. Such a registration should maintain consis-
tent movement of nearby points, so that the geometry of
body shape is preserved. We adopt the Coherent Drift Point
(CPD) algorithm [17] to establish point correspondences
between Pi

l and X . The global alignment discussed above
ensures correct initializations. Since Pi

l is rendered from
Ml, the point correspondences betweenMl and X are also
established. Note that we cannot use CPD to register Ml

and X directly since its formulation assumes roughly one-
to-one point correspondence that is not valid given the in-
completeness of X .

One example of the registration results is shown in Fig-
ure 7. (Note that this example is artificially chosen for il-
lustration purpose, i.e. this database exemplar is not the
identified neighbor pose for this input.) Joint positions can
be extracted from the deformed point cloud, but only for
the visible part. We would like to provide a reasonable es-
timate for the occluded part as well. We therefore perform
a shape completion, by deforming the complete mesh Ml

(a) (b) (c) (d)

Figure 8. Two examples showing our approximation of the geom-
etry using the mesh completion method for input point clouds with
missing body parts.(a) and (c) are input depth maps.(Here we use
depth map to better illustrate the pose). In (b) and (d), blue points
are input point clouds and green points are our estimated mesh
models.

to fit to the input X . Here we apply the method in [11]
that maintains point correspondences between X and Ml,
and at the same time preserves geometry structure of Ml

through Laplacian coordinates. This is formulated as solv-
ing the following least-squares system:
M̂l = arg min

M
{‖LM−LMl‖22+w

∑
k∈I

‖ml,k − xk‖22}(7)

Here L is the cotangent Laplacian matrix; I is set of indices
of the points inMl that have correspondences withX ;ml,k

and xk are the corresponding points. The first term of Equa-
tion 7 aims to preserve the geometric properties ofMl after
deformation, while the second term enforces point corre-
spondences obtained from CPD registration. w is a user
defined weighting term, we typically set it to 1.

We use two examples in Figure 8 to show the results of
this shape completion method and illustrate how missing
body parts in the partial observations are naturally handled.

With the deformed mesh model M̂l in hand, we can pro-
ceed to estimate the desired joint positions. We assume a
joint center can be determined by a set of mesh vertices
around it. A set of control vertices {qki |qki ∈ Ml; i ∈
{1, 2, · · · , n}} are pre-defined for each joint Jk. Then a
transformation Tk is computed between this vertex set and
its counterpart {q̂ki } in deformed mesh M̂l using ICP [5],
such that

q̂ki ≈ Tk(qki ), i ∈ {1, 2, · · · , n} (8)
Finally the joint location is computed as Ĵk = TkJk.

Since we have a complete mesh, all joint locations can be
calculated and they are the final body configuration output
for this frame. If the input is a sequence, we can also further
apply low-pass filtering to the joint locations to smooth out
the trajectory–something commonly done as a postprocess-
ing step for mocap.
Failure Detection and Recovery: Though our approach
performs well in most cases, a few failure cases still exist.
Such a case generally happens when there is no similar pose
in our database for which reasonable point correspondence
can be estimated using CPD. In order to handle such cases,
a failure detection and recovery mechanism is embedded
in our pipeline. It is observed that in case of failure, in
general either the length of adjacent joints undergoes large
sudden changes or the configuration of joint angles violates



practical limits. Therefore, by checking for the occurrence
of either one, a failure case can be identified. In terms of
recovery, since no assumption is made about motion model,
we rely on temporal consistency. When a failure is detected,
a non-rigid registration is performed betweenX t−1 andX t,
which are inputs of frame t − 1 and t respectively. After
that a similar shape completion procedure is preformed to
compute a complete mesh M̂t

l from that in previous frame
M̂t−1

l and the registered point cloud X t−1. Subsequently
joint locations can be estimated accordingly.

Since we rely on database exemplars to separately esti-
mate motions for each frame and temporal registration is
only required when failure is detected, our approach does
not suffer from drift error as in typical temporal tracking
methods for long video sequences. Moreover we do not re-
quire piece-wise rigid assumption on the model, instead we
directly deform the entire model for estimation.

7. Experiments and Results

Our system is implemented in Matlab and evaluated
mainly based on the public dataset provided by Stanford [9].
This dataset consists of 28 sequences of motions, of which
about half contain 100 frames and the others have 400
frames, all recorded at 25fps with a depth camera of res-
olution 176 × 144. The motions range from simple move-
ments such as lifting a hand to a very challenging tennis
swing with severe occlusion and simultaneous movements
of several body parts. Locations of 3D markers attached
to the subject’s body measured using a commercial active
marker motion capture system are provided as ground truth.
In order to compare with this ground truth, we choose a set
of patches on our mesh model to approximate the position
of markers according to their markers setup, as was done
in [9]. Then estimation error is measured as

ē =
1

Nf

Nf∑
k=1

1

Nm

Nm∑
i=1

‖mi − m̂i‖ (9)

where Nf and Nm are number of frames and markers re-
spectively. mi is measured ground truth of marker location
and m̂i is our estimation. Throughout our evaluation we
use the single motion database described in the beginning of
Section 3. Figure 9 shows our estimation error for all 28 test
sequences, compared with the best result reported in [9],
which combines Hill Climbing(HC) search and Evidence
Propagation(EP). As we can see, our method achieves sub-
stantially higher accuracy, with a total mean error around
38mm, compared to their 100mm. It should be empha-
sized that we use a generic human model to generate our
own database, no sequence from the test data is in our mo-
tion database; and we always use the entire database (e.g.,
the nearest neighbor search is global, instead of sequence
specific).
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Figure 9. The mean estimation error of our approach on Stanford’s
public test dataset that consists of 28 sequences of motions, com-
pared with the results reported in [9] (HC+EP)

Next we will show the effectiveness of various compo-
nents of our pipeline. We pick two representative sequences
from the Stanford dataset: sequence 21 is of moderate com-
plexity that includes mainly hand and feet movement and
sequence 27 is the most challenging tennis swing motion.
The Effectiveness of Denoising: The point cloud denois-
ing procedure is important for our method to correctly esti-
mate poses, due to the way it is designed. Simply applying
this approach to an original point cloud with background
objects removed gives unsatisfactory results as shown in
Figure 10. The importance of our smoothing module arises
from two reasons: in the presence of severe noise, neighbor
search is erroneous and CPD is strongly perturbed.
The Effectiveness of Pose Refinement: Here we show
both the effectiveness of our neighbor search approach and
the necessity of pose refinement. In Figure 10 we see that
directly representing the pose of an input point cloud by
that of the identified neighbor sample results in higher esti-
mation error. On the other hand, the error for sequence 21
is still acceptable, meaning that similar poses are in gen-
eral correctly localized. Meanwhile, the reason we have
larger errors for sequence 27 is that the pose of the neighbor
exemplar cannot properly approximate the input, since our
database might not contain such substantially similar poses.
In general, pose refinement is required for accurate estima-
tion.
Viewpoint Independency: The test sequences in Stan-
ford’s dataset were basically captured from the frontal view,
and re-rendering from those partial point clouds with differ-
ent viewpoints would result in even more incomplete data.
To verify the issue of view independency, we test on three
synthetic sequences rendered with our mesh model walk-
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Figure 10. Comparison of estimation errors of three methods:
using our entire pipeline, without smoothing and directly using
neighbor pose without refinement. The results demonstrate the
necessity of such processing components.



(1) Frontal View (2) View Angle of 30 Degree (3)Upper Right View

Figure 11. Viewpoint independency test. First row: examples of
synthetic inputs (see text for explanation). Second row shows
quantitative evaluations.

ing. Shown in the first row of Figure 11, the first sequence
is captured from then normal frontal view; the second one
with a roll angle of 30 degrees; and the last case with the
camera looking from the upper right direction, tilting down.
The quantitative results are shown in the second row of Fig-
ure 11. It can been seen easily what the detrimental effect
of view-dependent input can be, if not handled.
Failure Detection: In this experiment we use the input
from frame 301 to frame 400 of sequence 27 as an exam-
ple. Among these test frames, for around 35 frames the sub-
ject remains in a relative static pose for which our database
does not have a similar one. The difference is shown in
Figure 12. Under this situation, our failure detection and
recovery mechanism takes effect and re-estimates poses for
input through temporal information. The comparison of re-
sults with and without such detection and recovery is shown
in Figure 13. As we can see, failure poses were effectively
recovered. However, notice that for a majority of the test
sequence in this dataset, our regular pipeline can generate
good results.
Database Dependency: In this test, we aim at quantita-
tively determining the relationship between our estimation
result and the number of database samples. Originally our
database contains around 19000 samples with the sampling
rate of 120fps. We sub-sample it with different ratios up
to 100, which corresponds to a minimum sampling rate of

Figure 12. An example of
our failure case (left), for
which the most similar pose
in our database (right) ex-
hibits a very large difference
in pose.
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Figure 13. Estimation errors, with and without failure detection
and recovery.
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Figure 14. Estimation errors of our approach with a set of motion
samples which is sub-sampled from our original database, with
different ratios.

1fps, and show the corresponding estimation errors in Fig-
ure 14. For sequence 21, only a small set of samples are
sufficient. On the other hand, for the complicated move-
ments in sequence 27, denser samples are required. Overall
our method is quite insensitive to sampling rate.
Qualitative Evaluation using Kinect We have performed
a qualitative comparison using the pose tracking algorithm
in [20]. The primary reason that we didn’t compare quanti-
tatively is the lack of ground-truth data. The markers used in
a typical optical motion capture systems (which are consid-
ered as golden standard) interferes with the Kinect Sensor.
Nevertheless even just visual inspection can clearly demon-
strate the improved accuracy in our method. The deficien-
cies visually identified in [20] include (1) joint positions are
not consistent with input depth maps when the subject is
moving; (2) joint centers are unrealistically located on the
surface, especially for the arms; and (3) catastrophic failure
in simple motion (such as a crouch). A visual side-by-side
comparison is presented in the supplementary video.
Quantitative Comparison with [21]: For the purpose of
quantitative comparison between our method and the un-
derlying algorithm of Kinect [21], mean average precision
(mAP) [21] is calculated based on the public dataset [9].
As reported in their paper, the mAP is around 0.9 with the
true positive distance threshold set to 0.1m. Under the same
condition, our method achieves higher mAP, which is 0.95.
In addition, they reported the effect of threshold on true
positives in mAP using synthetic data. We also carried out
similar experiments, however based on the real dataset [9],
which is much noisier. The comparisons shown in table 1
further demonstrate our higher accuracy (the numbers be-
low for [21] are estimated from their Fig. 4):
Body-size Invariance: Our method is capable of handling
large body-size variations across subjects. Notice that the
subject in the test above (≈ 1.7m) is different from both
the subject in the public dataset and our template model.
In order to further demonstrate this capability, we perform
tests on a higher subject (≈ 1.9m) and a child (≈ 1.2m).
The results are shown in our supplemental video.

In summary, our pipeline performs well based on the

Threshold (m) 0.02 0.03 0.05 0.07 0.1 0.15 0.20
mAP: [21] 0.02 0.06 0.30 0.53 0.73 0.82 0.85
mAP: Ours 0.36 0.57 0.79 0.89 0.95 0.98 0.99
Table 1. Comparison of mAP with [21] on public dataset [9]



tests in the public dataset. Some of the results would
be shown in supplemental video by embedding our es-
timated skeleton with the input point clouds [25]. As
a tradeoff for the high accuracy, the computational time is
currently non-real time, mainly due to the non-rigid reg-
istration process. With our implementation in Matlab, the
running time for each frame is between 60s and 150s, de-
pending on the number of 3D points and pose differences.

8. Conclusion
In this paper we present an effective pipeline that

achieves highly accurate and robust pose estimation from
a single depth image. The key insight is to combine data-
driven pose detection with pose refinement. By using a prior
database, we not only reduce the possible joint configura-
tion space, but also provide an effective way to fill in the
unobservable parts. Our pose refinement scheme can ac-
commodate both pose difference and body-size difference.
In addition we carefully design our pose detection algorithm
to be view-independent. All these together dramatically re-
duce the size of the motion database – we only need motion
samples synthesized from one generic human model. Quan-
titative evaluation shows that we achieve more than two
times better accuracy than previous state-of-the-art (38mm
vs. 100mm).

Looking into the future we would like to spend more
time accelerating the computation. We believe some of the
operations can be effectively accelerated through GPU. We
also plan to invest on non-optic mocap systems for more
quantitative comparison with Kinect. There are more chal-
lenging mocap cases such as the interferences from loose
clothes, multiple interacting persons, etc. With all these im-
provements, a single-camera mocap solution will find its
application in many new frontiers.
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