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Abstract. Globally optimal formulations of geometric computer vision
problems comprise an exciting topic in multiple view geometry. These
approaches are unaffected by the quality of a provided initial solution,
can directly identify outliers in the given data, and provide a better the-
oretical understanding of geometric vision problems. The disadvantage
of these methods are the substantial computational costs, which limit
the tractable problem size significantly, and the tendency of reducing
a particular geometric problem to one of the standard programs well-
understood in convex optimization. We select a view on these geometric
vision tasks inspired by recent progress made on other low-level vision
problems using very simple (and easy to parallelize) methods. Our view
also enables the utilization of geometrically more meaningful cost func-
tions, which cannot be represented by one of the standard optimization
problems. We also demonstrate in the numerical experiments, that our
proposed method scales better with respect to the problem size than
standard optimization codes.

1 Introduction

Globally optimal methods in multiple view geometry and 3D computer vision
are appealing tools to estimate geometric entities from visual input. So far most
research in this field has been focused on the formulation of geometric vision
problems in terms of a standardized optimization taxonomy, e.g. as linear or
higher order cone programs. With very few exceptions, generic optimization
codes are utilized for the respective numerical experiments. The emphasis on
global optimal formulations lies on L∞-based objective functions, i.e. minimizing
the maximum over a set of convex or quasi-convex functions with respect to the
unknowns. The initially intriguing L∞-based objective can be easily converted
into a simple cost function combined with a large number of (convex) constraints,
which subsequently enables tractable solvers to be applied. The decision of uti-
lizing an L∞-based objective function has two important consequences: first,
it induces particular (and often unrealistic) assumptions on the noise charac-
teristic of the observed measurements; and second, the typically encountered
quasi-convex nature of the optimization problem implies, that the solution pro-
cedure only indirectly provides the unknown variables of interest (through a
sequence of feasibility problems). Hence, more robust and efficient alternative
formulations of important tasks in multiple view geometry are desired.
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Further, formulating geometric vision task in terms of general optimization
problems has the advantage of having a well-understood theory and mature
software implementations available, but such an approach also limits the range
of multi-view problems and objective functions to those standard optimization
problems. In this work we propose a more direct view on a class of geomet-
ric vision problems not taking the route through one of the standard convex
programs. Our view on these problems is inspired by recent advances on con-
vex formulations or relaxations of low-level vision problems. Our contribution
is two-fold: we demonstrate the applicability of optimization methods primarily
utilized in signal and image processing for geometric vision problems, and we
extend recent convex models for multi-view reconstruction by a new cost func-
tion better approximating the squared reprojection error while still preserving
the convexity of the problem.

2 Related Work

2.1 Global Optimization in Multiple View Geometry

Global optimization in multiple view geometry has gained a lot of interest in the
recent years. In particular, L∞-based (or min-max) formulations are popular
(i) due to the well-understood relation with fractional programming leading to
linear or second order cone programs, and (ii) due to the good accuracy provided
by the solution for geometric applications if no outliers are present.

The first exposition of L∞ minimization for geometric computer vision prob-
lems is given in [1], where the authors propose the L∞ cost function for multi-
view reconstruction tasks. The relation between quasi-convex functions and L∞
optimization for multi-view geometry was independently discovered in [2] and [3].
Quasi-convex functions (i.e. functions with convex sublevel sets) can be effec-
tively minimized by a bisection search for the opimal value, thus solving a se-
quence of convex feasibility problems. Additional convex constraints can be also
provided. These approaches present structure and motion recovery given known
camera rotations as the prototypical application.

Sim and Hartley [4] discuss an L∞ view on the problem of estimating camera
centers (again under the assumption of known rotations) given the directions of
the baseline between cameras. The 3D scene structure is not explicitly modeled
as unknown parameter subject to minimization, therefore the problem size is
substantially reduced. Placing camera centers given a set of relative directions
is similar to the graph embedding problem for motion recovery [5, 6]. In [4] the
degeneracy of embedding formulations for linear camera motions is addressed
by utilizing the trifocal tensor to incorporate the relative scales of baselines.
Removing the 3D structure from the problem formulation reduces the size of
the optimization problem substantially, but also leads to minimization of quite
abstract cost functions (e.g. the angular deviation between given and estimated
baseline directions) instead of image-related quantities like the reprojection error.

The high computational costs of L∞ optimization has lead to investigations
to reduce the respective run-time. [7] describes an interior point algorithm ex-
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ploiting the same sparsity pattern in the underlying problem as it is also found
in sparse bundle adjustment methods. The observation that the objective value
of a min-max problem is only dependent on a (potentially small) subset of error
terms can be utilized to formulate faster methods for L∞ optimization [8]. In
this approach only a subset of data points is considered for optimization (thus
making the problem smaller), but the residuals are evaluated for all data points.
If all residuals are less or equal to the objective value, then the procedure can
be stopped; otherwise additional data points with large residuals are added in
further minimization steps.

L∞ optimization has the potential disadvantage of being susceptible to out-
liers in the input data. It can be shown that some of the inputs attaining the
maximum error in min-max optimization are guaranteed to be outliers under
suitable assumptions, hence these outliers can be iteratively detected and re-
moved by L∞ optimization [9]. Alternatively, L∞ (min-max) objective functions
can be replaced by L1 (min-sum) cost functions, leading directly to formulations
much less affected by outliers in the data. Straightfoward L1-based optimization
of geometric vision problems similar to many of the L∞ approaches outlined
above usually leads to sum-of-fractions type of optimization problems, which
are extremely difficult to solve. The recent approaches described in [10, 11] (and
reviewed in more detail in Sec. 3) aim on directly minimizing the number (i.e.
L0-norm) of outliers for a particular inlier criterion represented by suitable (ei-
ther linear or second order cone) constraints. If all data points are inliers (i.e. the
residuals are less than a given threshold), the objectve value is 0. Convexifica-
tion of the L0 norm yields an L1-like objective function and thereby to respective
linear or second order cone programs.

We present our method for practical convex optimization in multi-view geom-
etry on the problem of structure and motion recovery given the global camera
rotations. This raises the question of how these rotations can be determined.
Global rotations can be efficiently computed from pair-wise relative orientations
between images by utilizing the consistency relation between relative and abso-
lute camera rotations, Rj = RijRi. [12] and [13] present different methods to
obtain consistent global rotations. For full structure and motion computation,
[13] employs the L∞ framework of [2], but uses only a small subset of scene
points in order to accelerate the minimization procedure and to guarantee an
outlier-free set of data points.

2.2 Non-smooth Convex Optimization and Proximal Methods

Even a convex optimization problem can be difficult to solve efficiently, especially
if the objective is a non-smooth function. A class of methods successfully applied
in signal and image processing are based on proximal calculus: for a convex
function f and γ > 0 the mapping

proxγf (x̄) = arg min
x

{
f(x) +

1
2γ
‖x− x̄‖22

}
(1)
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is called the proximity operator. It generalizes the notion of projection opera-
tors (for which f is the hard indicator function for a convex set S). In Eq. 1 the
objective itself is called the Moreau envelope of function f of index γ. Some-
times proxγf is difficult to compute directly, but the proximity operator for the
conjugate function, proxγf∗ , can be determined efficiently. In these cases we can
utilize Moreau’s decomposition,

x = proxγf (x) + γ proxf∗/γ(x/γ) (2)

We refer to [14] for a recent, compact exposition of proximal calculus and its
importance in image processing applications.

Proximal methods, in particular the forward-backward algorithm [14] and
Douglas-Rachford splitting [15, 16], allow the efficient minimization of struc-
tured, convex problems of the form minx f1(x) + f2(x). In brief, the Douglas-
Rachford splitting iterates

x̂(n) = proxγf2(x(n))

x(n+1) = x(n) + proxγf1(2x̂(n) − x(n))− x̂(n), (3)

and x̂(n) is known to converge to the solution of minx f1(x) + f2(x). See also
e.g. [17] for the connections between Douglas-Rachford, augmented Lagrangian
and split Bregman methods. In Section 4.3 we apply the Douglas-Rachford split-
ting on a problem with f2 being the indicator function of a hyper-plane (i.e.
proxγf2 amounts to project the argument into a linear subspace), and f1 further
decomposing into many independent objectives.

3 Convex L1 Reconstruction With Known Rotations

In this section we review robust structure and motion computation with known
camera rotations based on convex optimization. Since all the camera centers
and 3D points are mutually dependent in the objective function, we choose
this application in order to demonstrate our method on a larger scale problem.
Other classical problems addressed by global optimization in multi-view geom-
etry are optimal point triangulation and camera resectioning, which involve a
much smaller number of unknowns. In the following we assume that global cam-
era rotations are given (e.g. a set of pairwise relative rotations can be upgraded
to consistent global ones via eigenvalue decomposition [13]). Let i denote the
index of the cameras and j be the index of 3D points, respectively. The set
of global rotations Ri for each camera is assumed to be known. Further, let
uij = (u1

ij , u
2
ij , 1)T be the projection of the (unknown) 3D point Xj into image

i, i.e. uij ∝ RiXj + Ti, where Ti and Xj are the translation vectors and 3D
point positions yet to be determined. We assume that the image coordinates uij
are normalized, i.e. premultiplied by the inverse camera intrinsics. With known
rotations, the relationship between 3D structure, camera poses and image mea-
surements are essentially linear (up to the unknown depth). The full projection
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function

ûij =
RiXj + Ti

(RiXj + Ti)3

is nonlinear, but e.g. the squared reprojection error is quasi-convex and amenable
for L∞ optimization (e.g. [2]). We focus on the L1 setting where a minimizer
of the sum of some deviation is sought. The intention is to increase robustness
in presence of gross outliers by utilizing an L1 objective function. [10, 11] use a
quasi L∞ model by assigning zero cost, whenever the projection of a 3D point Xj

lies within a neighborhood of a user-specified radius σ (where the neighborhood
is induced either by the Euclidean norm [11] or by the maximum norm [10].
Consequently, no cost is attributed in the objective function, if Xj lies within a
(generalized) cone induced by the camera center Ci = −RTi Ti and the observed
image point uij (see Figure 1).

�
�
�
�

Ci

Xij

ωij

uij

Fig. 1. The cone induced by the camera center Ci and the observed image point uij .
Points Xij residing within the shaded cone are considered as inliers and have no cost
in the objective function, whereas outliers are penalized.

Denoting Xij = (X1
ij , X

2
ij , X

3
ij)

T = RiXj + Ti, the condition of Xj being in
the respective cone with radius σ reads as

‖uij −X1,2
ij /X

3
ij‖p ≤ σ

or equivalently,

‖uijX3
ij −X

1,2
ij ‖p ≤ σX

3
ij , (4)

where we also employ the cheirality constraint of Xj being in front of the camera
i, i.e. X3

ij ≥ 0. The underlying norm can be the L1 norm (p = 1), the Euclidean
one (p = 2), or the maximum norm (p =∞). Observe that the constraint Eq. 4
corresponds to a second order cone (p = 2) and the intersection of affine linear
half-spaces, respectively.

If Ti’s and Xj ’s can be determined such that Eq. 4 is fulfilled for all i and j,
then all reprojection errors are less or equal to σ (either using L2 or L∞ distances
in the image). If this is not the case, one can measure the infeasibility sij of the
projected 3D point [11],

‖uijX3
ij −X

1,2
ij ‖p ≤ σX

3
ij + sij ,
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(a) g1(x, y) (b) g2(x, y) for y = 5 (c) H(x, y)

Fig. 2. Surface plots for the two pan functions g1 (a) and g2 (for a fixed value of y,
(b)), and the bivariate Huber cost function (c).

or the necessary offset vectors in object space to move Xij onto the cone, ωij ∈
R2 [10],

‖uijX3
ij −X

1,2
ij + ωij‖p ≤ σX3

ij .

Since nonzero values of sij or ωij correspond to outlier measurements in the
image, it is reasonable to search for sparse solutions in terms of sij and ωij ,
respectively, i.e. to minimize the L0 norm of sij (or ωij). Convexification of the
L0 norm yields the following L1 objective function and constraints (using the
offset vector formulation):

min
Ti,Xj ,ωij

∑
ij

‖ωij‖1 s.t.

∥∥uijX3
ij −X

1,2
ij + ωij

∥∥
p
≤ σX3

ij ∀ij (5)

Xij = RiXj + Ti.

If p =∞ (and also for p = 1) this is a linear program, and for p = 2 one obtains a
second order cone program, which can be solved by suitable convex optimization
codes.

In order to avoid the degenerate solution Ti = 0 and Xj = 0 for all cameras
and 3D points in the optimization problem Eq. 5 and to avoid a 4-parameter
family of solutions (arbitrary global translation and scale), one has to enforce
suitable cheirality constraints (e.g. X3

ij ≥ 1 [10]) or fix the reference frame [11].
Utilizing the cheirality constraint implicitly selects the smallest feasible recon-
struction with respect to its scale, since the objective function in Eq. 5 is reduced
by decreasing the global scale.

4 Our Approach

Generic optimization of Eq. 5 using a linear or second order cone programming
toolbox turns out to be not efficient in practice. One reason for the inefficiency
is the introduction of auxiliary variables, either sij or ωij . Another difficulty for
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generic optimization codes is the large number of non-local constraints. Hence,
we propose to directly optimize a non-differentiable objective function without
the need for additional unknowns.

4.1 The Cost Functions

In order to reformulate Eq. 5 in more general terms, we define and analyze several
convex functions, which are used in Sec. 4.2 to derive suitable proximal-point
problems forming the basis of the numerical scheme.

Notations We introduce the indicator function ıS(x) returning 0 if x ∈ S
and ∞ otherwise. In particular, ıR+

0
and ıR−0

denote the indicator functions for
non-negative (respectively non-positive) real numbers. For a convex, lower semi-
continuous function f , let f∗ be its conjugate function, f∗(z) = maxx zx− f(x).

The “Pan” Functions We define the pan function gd : Rd × R+
0 → R+

0 as

gd(x, y) = max {0, ‖x‖2 − y} . (6)

For a particular value of y ≥ 0 the shape of gd(·, y) is a truncated L1 cost function
resembling the cross-section of a pan-like shape (see also Fig. 2(a) and (b)). It
can be also viewed as two-sided variant of a hinge loss function. This function is
convex, but not differentiable at ‖x‖2 = y.

As a first step to derive the conjugate function of gd, we observe that

gd(x, y) = max
‖z‖2≤1

{zTx− ‖z‖2y}. (7)

Omitting the subscript in ‖·‖2 = ‖·‖, if ‖x‖ ≤ y we have zTx−‖z‖y ≤ ‖z‖ ‖x‖−
‖z‖y = ‖z‖(‖x‖ − y) (by the Cauchy-Schwarz inequality), but the second factor
is non-positive by assumption, hence maximizing over z in the unit disc yields
z = 0 with objective value 0. ‖x‖ > y: observe that ‖z‖y is independent of the
direction of z and zTx is maximal if z ‖ x, i.e. z = kx for some k ∈ [0, ‖x‖−1]
(since ‖z‖ ≤ 1). Overall, zTx − ‖z‖y = k‖x‖2 − k‖x‖y = k‖x‖(‖x‖ − y), hence
k = ‖x‖−1 (i.e. z = x/‖x‖) maximizes that expression with value ‖x‖ − y.
Overall, both definitions Eqs. 6 and 7 are again equivalent.

Finally, we can convert Eq. 7 into a bilinear form by introducing the addi-
tional variable v,

gd(x, y) = max
‖z‖≤1,v≤−‖z‖

{zTx+ vy}. (8)

Note that gd(x, y) is ∞ for y < 0, since v is not bounded from below. For given
x ∈ Rd and y > 0 the maximization always gives v = −‖z‖, since the objective
can be increased whenever v < −‖z‖. Thus, the definitions in Eqs. 7 and 8
are equal, and Eq. 8 allows us to directly read off the corresponding conjugate
function g∗d(z, v) = ıCd

(z, v) with Cd ≡ {(z, v) : ‖z‖ ≤ 1, ‖z‖ ≤ −v}. Thus, we
can reduce the computation of proxγgd

essentially to the projection into the set
Cd in view of Moreau’s decomposition Eq. 2. Projecting into Cd can be done in
closed form and distiction of cases.
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The Bivariate Huber Cost Function Instead of having a combined L∞/L1

cost function as described in the previous section, one can also consider penaliz-
ing a squared residual for inliers as defined by the respective 3D cone, and an L1

penalizier for outliers. Define the bivariate Huber cost function H : R×R+
0 → R+

0

by

H(x, y) =

{
x2

2y |x| ≤ y
|x| − y/2 |x| ≥ y

(9)

for y ≥ 0 (see also Fig. 2(a)). We denote this function as bivariate Huber cost
since it also takes the inlier threshold (here y) as additional parameter. Unlike
the squared reprojection error, which is only a quasi-convex function, H(x, y) is
convex in R × R+

0 . The conjugate function of the univariate Huber cost (i.e. as
a function only of x) is readily derived as

H∗(z; y) =
y

2
z2 + ı[−1,1](z). (10)

Note that partial conjugation with respect to x is not sufficient for our pur-
pose, since y

2z
2 is not a bilinear expression in the primal and dual variables. We

combine H∗(z; y) with ıR+
0

(y) corresponding to the constraint y ≥ 0, and obtain

H(x, y) = H(x; y) + ıR+
0

(y) = max
z∈[−1,1]

(
zx− y

2
z2
)

+ max
v≤0

vy

= max
z∈[−1,1]

v′≤−z2/2

zx+ v′y,

where we substituted v′ = v− z2/2 and used the fact ıR+
0

(y) = maxv≤0 vy. Note
that the last line allows us to immediately identify the conjugate function of H
with respect to both arguments as

H∗(z, v) = ı[−1,1](z) + ıR−0
(v + z2/2). (11)

The feasible region for (z, v) is the region K below the parabola −z2/2 inter-
sected by [−1, 1] × R. Finding the closest point in K requires to determine the
nearest point on a parabola segment, which leads to solving a 3rd order poly-
nomial. Luckily, this cubic polynomial is in depressed form (i.e. of the form
x3 + px+ q = 0) and is known to have only one real root. Hence, projecting an
arbitrary pair (z, v) into the set K is tractable although not extremely cheap
(due to the necessary computation of cubic roots).

The cost functions and the respective conjugates introduced in this section
allow the efficient application of proximal methods to the multi-view reconstruc-
tion problem as discussed in the following.

4.2 Application to Multi-View Reconstruction

Our formulation of the multi-view reconstruction approach with known camera
rotations follows very closely the model Eq. 5. In our experiments we observed
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that solely fixing the gauge freedom by setting two translation vectors can still
result in quasi-degenerate solutions. The utilized L1 penalizer on the offset vari-
ables measures deviations in object space (in contrast to image space) and there-
fore induces a strong prior towards solutions collapsing many of the scene points
and camera centers into a single point. Further, strictly enforcing the cheirality
constraint for all 3D points is very restrictive and does not cope well with outlier
correspondences ultimately triangulated behind one of the cameras. Therefore,
we slightly modify the convex formulation of Eq. 5 into

min
Ti,Xj ,ωij ,ρij

∑
ij

‖ωij‖1 +
∑
ij

[ρij ]+ s.t. (12)

∥∥u1,2
ij X

3
ij −X

1,2
ij + ω1,2

ij

∥∥ ≤ σ(X3
ij + ρij)

X3
ij + ρij ≥ 1 Xij = RiXj + Ti,

where [·]+ ≡ max{0, ·}. Hence, we look for sparse correction values ωij and ρij
such that all corrected 3D points lie inside the cone induced by the measured im-
age projection uij (first inequality constraint) and fulfill the cheirality constraint
(second inequality constraint). By observing the following equivalence,

gd(x, y) = min
s∈Rd:‖x+s‖2≤y

‖s‖2,

we can use the pan function introduced in Sec. 4.1 to eliminate the auxiliary
variables ωij , and obtain the equivalent problem (illustrated first for d = 1, i.e.
the anisotropic variant of the inlier cone):

min
Ti,Xj ,ρij

∑
ij

2∑
l=1

g1
(
ulijX̄

3
ij −X l

ij , σX̄
3
ij

)
+
∑
ij

ı[1,∞)(X̄3
ij) +

∑
ij

[ρij ]+, (13)

with Xij = RiXj + Ti and X̄3
ij = X3

ij + ρij . The choice d = 2 leads to a similar
(now isotropic) problem using g2 instead of g1:

min
Ti,Xj ,ρij

∑
ij

g2
(
u1,2
ij X̄

3
ij −X

1,2
ij , σX̄

3
ij

)
+
∑
ij

ı[1.∞)(X̄3
ij) +

∑
ij

[ρij ]+. (14)

Both problems are convex minimization tasks with non-differentiable objective
functions. Observe that the arguments of gd and ı are linear in the unknowns
Ti, Xj and ωij .

Finally, instead of having just zero cost for inliers (as in the two objectives
above), squared deviations from the observed image points over the distance can
be penalized by utilizing the bivariate Huber function,

min
Ti,Xj ,ρij

∑
ij

2∑
l=1

H
(
ulijX̄

3
ij −X l

ij , σX̄
3
ij

)
+
∑
ij

ı[1,∞)(X̄3
ij) +

∑
ij

[ρij ]+. (15)

This formulation essentially approximates the squared reprojection error (i.e.
squared numerator and denominator) by a convex quadratic-over-linear function
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for inlier points. Consequently, the 3D points in the corresponding solution tend
to stay closer to the observed image measurements. More importantly, inlier
3D points are attracted by a unique minimum and the numerical procedure
converges faster in practice.

At the first glance nothing is gained by such reformulation other than moving
the (linear or second order cone) constraints into the objective (Eqs. 13 and 14),
and allowing for a refined cost for inlier points (Eq. 15). But the problems are
very structured: the objective function is a sum of many convex functions only
taking very few arguments, therefore depending only on a small subset of the
unknowns. Hence, a variant of Douglas-Rachford splitting can be applied as
decribed in the following section.

4.3 Numerical Scheme

The objective functions in the previous section can be more generally written as

min
X

∑
k

hk(LkX ), (16)

where X denotes all unknowns Ti, Xj and ρij , the hk are convex functions and Lk
are matrices of appropriate dimensions. Similar to dual decomposition methods
we can introduce local unknowns xk for each hk and explicitly enforce global
consistency (see also [18]),

min
X ,Yk

∑
k

hk(Yk)︸ ︷︷ ︸
≡f1

+
∑
k

ı{LkX = Yk}︸ ︷︷ ︸
≡f2

. (17)

Application of Douglas-Rachford splitting amounts to solving proxγf1 and proxγf2
(recall Eq. 3). The first proximity operator, proxγf1 decouples into independent
problems proxγhk

, in particular (referring to Eq. 15, with analogous expressions
for Eqs. 13 and 14) the term hk(LiX ) is one of

hk(LiX ) =


H
(
ulijX̄

3
ij −X l

ij , σX̄
3
ij

)
l ∈ {1, 2}

ı[1,∞)(X̄3
ij)

[ρij ]+

For hk equal to gd or H we can utilize the derivations from Section 4.1 in order to
determine proxγgd

or proxγH efficiently. If hk = ı[1,∞)(·), the proximity operator
can be easily derived as clamping operation into the feasible domain [1,∞), and
for hk = [·]+ the respective proximity operator is given by

proxγ[·]+(x̄) = max(0, x̄− γ).

proxγf2(X , (Yk)k) corresponds to finding the closest point (X̂ , (Ŷk)k) satisfying
the linear constraints LkX̂ = Ŷk for all k, therefore proxγf2 is a projection op-
eration into a linear subspace. Following [19] a particular instance of a Douglas-
Rachford approach called simultaneous-direction method of multipliers (SDMM)



Practical Methods For Convex Multi-View Reconstruction 11

can be stated: choose γ > 0 and arbitrary initial values y(0)
k and z(0)

k , and iterate
for n = 0, 1, . . .:

x(n) =

(∑
k

LTk Lk

)−1∑
k

LTk

(
y
(n)
k − z(n)

k

)
y
(n+1)
k = proxγhk

(
Lkx

(n) + z
(n)
k

)
∀k (18)

z
(n+1)
k = z

(n)
k + Lkx

(n) − y(n+1)
k ∀k.

x(n) converges to a solution of Eq. 16. Note that the Lk are very sparse matri-
ces, and the inverse of

∑
LTk Lk can be efficiently found using sparse Cholesky

factorization. Note that a projection into a linear subspace is always uniquely
defined, hence

∑
LTk Lk must have full rank.

Since the method is iterative, a suitable stopping criterion is required. We
selected the following one: the current 3D structure and the one obtained after
a significant number of iterations (our choice is 1000) are normalized in their
sizes, and the maximum change in the respective 3D point positions is used
as stopping criterion. If no 3D point was moved more than ε, then the update
iterations terminate. We use ε = 10−8 in our implementation. Further, we set
γ = 0.1 in all experiments.

5 Numerical Results

Most work in convex and quasi-convex optimization in multiple view geometry
uses the “Dinosaur” data-set1 consisting of camera poses and tracked 2D points.
We use the rotations known from the given projection matrices, and determine
the 3D structure and camera centers using the convex formulations described
in Sec. 4.2. We obtain numerical and timing results for several optimization
codes: (i) we utilize an easy-to-use simplex-based linear program solver2 to op-
timize the problem Eq. 5 (denoted as “Simplex” in the evaluation Table 1); (ii)
we also experiment with an interior point algorithm for semi-definite programs
(DSDP [20], which has also a direct interface to specify LP cones, indicated by
DSDP in Table 1)); and finally we implemented the update equations Eq. 18 for
the described cost functions to minimize the respective energy. Table 1 summa-
rizes the obtained timing and accuracy results, where we set the inlier radius σ
to one pixel. Of particular interest in the evaluation is the dependence of the run-
time on the data-set size: generally, the iterative proximal methods scale better
with the data-set size. Both generic LP solvers were not able to complete the
full data-set (due to numerical instabilities for the Simplex method and excessive
memory consumption of the semi-definite code DSDP).

These performance numbers need to be compared with the close to two hours
reported in [11] for the full data-set. Note that [10] does not indicate the respec-
tive run-time performance. The Huber function based model Eq 15 is strictly
1 available from http://www.robots.ox.ac.uk/˜vgg/data/data-mview.html
2 http://lpsolve.sourceforge.net/
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(a) “Dinosaur” (b) “Church” (c) “Building”

Fig. 3. Reconstruction result for the “Dinosaur” data set (36 images, ≈ 5.000 3D
points), “Church” data set (58 views, ≈ 12.500 3D points), and “Building” (128 images,
≈ 27.000 3D points) using the energy function Eq 15. No bundle adjustment is applied.

convex for inlier points (and therefore has a unique minimizer), which could be
the explanation for reaching the stopping criterion faster than the other energy
models Eqs. 13 and 14.

Since the Huber cost model Eq. 15 penalizes deviations from the ray induced
by the image measurements, the final reprojection error of the 3D points are
consistently smaller than for the combined L∞/L1 cost models. The last column
in Table 1 depicts the number of reported outlier measurements outside the re-
spective σ radius in the image. This value is stated to show the equivalence of the
iterative method for Eq. 13 with the linear programming formulation. Further,
it shows that the smaller reprojection error in the Huber cost model is compen-
sated by a larger number of reported outliers (which is a result of the energy
model and not induced by the implementation). We also applied the proposed
method on real-world data sets consisting of 58 and 128 views, respectively (see
Fig. 3(b) and (c)). Consistent rotations are estimated via relative poses from
SIFT feature matches. The iterative Huber approach (for σ = 2 pixels) requires
12.5 and 40 minutes to satisfy the convergence test, and about 30% is spent in
approximate column reordering for the sparse Cholesky factorization. The mean
reprojection errors for inliers are 1.08 and 0.53 pixels, respectively. Figure 4 de-
picts the convergence rate of the objective value for the Dinosaur data set with
respect to the number of iterations. Since the objective function is rather flat
near the global minimum, small changes in the objective value do not necessarily
imply small updates in the variables, and the termination criterion is achieved
much later.

6 Conclusion

In this work we present a different view on convex problems arising in mutiple-
view geometry, and propose a non-standard optimization method for these prob-
lems. By looking at classical optimization tasks in geometric vision from a general
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# views # 3D points Method Run-time L∞ inlier error L2 inlier error # of outliers

8 843 Simplex 9.5s 0.913 1.17 33/2465
DSDP 2m27s 0.430 0.480 33/2465
Anisotr. 11.4s 0.622 0.712 33/2465
Isotropic 4s 0.466 0.511 32/2465
Huber cost 5.4s 0.223 0.235 48/2465

16 1915 Simplex 1m43s 0.892 1.10 165/5905
DSDP 24m37s 0.389 0.434 165/5905
Anisotr. 26.1s 0.705 0.800 165/5905
Isotropic 13.5s 0.668 0.721 165/5905
Huber cost 13.7s 0.256 0.271 207/5905

24 3205 Simplex 19m26s 0.895 1.10 294/10416
DSDP 103m36s 0.369 0.411 294/10416
Anisotr. 1m44s 0.895 0.756 294/10416
Isotropic 1m33s 0.784 0.838 311/10416
Huber cost 1m16s 0.262 0.278 371/10416

36 4983 Anisotr. 1m51s 0.650 0.734 383/16432
Isotropic 45s 0.483 0.533 421/16432
Huber cost 46s 0.269 0.286 539/16432

Table 1. Accuracy and run-time results for the “Dinosaur” sequence for increasing
data-set sizes. Results are shown for Simplex and interior-point based (DSDP) solvers
optimizing the model Eq. 5, and proposed iterative methods for all energy models.

convex optimization perspective we can formulate interesting new geometric cost
functions and also provide practical minimization procedures.

Future work needs to explore other applications in geometric computer vision
potentially taking advantage of the proposed formulation and the associated nu-
merical method, e.g. for quasi-convex problems. Finally, GPU-based implemen-
tations of the numerical methods are expected to result in significant reductions
of the run-time for the proposed methods.

Acknowledgements: We would like to thank Manfred Klopschitz and Alexan-
der Schwing for their valuable support and feedback.
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