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Fig. 1: Part of an urban reconstruction computed via Structure-from-Motion and dense 

reconstruction obtained solely from images. The gray pyramids visualize camera 
location an orientation for captured photographs. 

Abstract 

This paper presents an overview over existing techniques in the field of computer vision for 
building digital 3D models and for augmenting them with additional photographs. In terms 
of 3D modelling we illustrate a fully automatic approach for the alignment of scans without 
the need for any artificial markers or manual interaction. In addition we show how to create 
entire models solely from images (cf. Fig. 1) up to the scale of whole cities. For the task of 
image location wrt. an existing model, we differentiate between urban, man-made 
environments and landscapes. We describe approaches for both cases and demonstrate how 
novel photographs can augment the 3D model in order to create a richer representation of 
an environment. 

We keep explanations at a higher level such that researchers from different fields are 
provided with a good overview; however, we reference numerous related works for the 
interested reader. 
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1 Introduction 

Creating 3D models of urban areas and landscapes is an important step in documenting 
environments as the resulting 3D models can be used to analyze the scene and plan changes 
accordingly. In addition, such digital 3D models can be used to detect changes in a scene by 
comparing photos of the current state with an existing 3D model (TANEJA et al. 2013). 

Laser scanners are the state-of-the-art technique to obtain highly detailed 3D models of an 
environment. However, scanning a scene from the ground level is usually very time-
consuming, especially if the environment is not easily accessible by vehicles. In addition, 
registering individual scans to each other to obtain a single model usually requires manual 
work; either by carefully placing scan-targets in the scene or by providing point 
correspondences between scans during post-processing. Consequently it is expensive to 
capture models of larger scale. In order to create large-scale 3D models, it is therefore 
common to build upon airborne LIDAR systems (where the GPS sensor of the plane is 
utilized to register the scans) or to reconstruct the scene by means of images captured from 
airplanes. While these approaches easily collect data on a very large scale, they usually 
cannot capture the fine details that are visible only from the ground, e.g. details of a statue 
on a market place. In contrast, even fine structures can easily be captured in photos taken at 
ground level with standard consumer cameras. The missing details can thus be added by 
augmenting existing 3D models with registered images. If photos alone are not sufficient, it 
is possible to reconstruct a 3D model of the scene from the images taken at ground level - 
which nowadays can even be done on mobile phones (TANSKANEN et al. 2013; KOLEV et al. 
2014) - and adding the model to the reconstruction obtained from the scanner data.  

In this paper we survey different techniques that can be used to build and augment 3D 
models using image data. In Sec. 2, we present an approach that is able to fully 
automatically align scans even when they were taken from very different viewpoints with 
only limited overlap, as is the case for terrestrial scanners or when registering models 
obtained from the air and ground level. Since taking multiple terrestrial scans is 
cumbersome and time-consuming, we illustrate in Sec. 3 how to obtain a 3D model of a 
scene solely from images through Structure-from-Motion techniques. Sec. 4 then 
concentrates on augmenting existing 3D models with images. In Sec. 4.1, we consider the 
problem of registering photos taken at ground level against a model also obtained from 
ground level data, e.g. against models reconstructed via Structure-from-Motion. This 
problem is usually encountered when trying to localize images in urban environments and 
we emphasize this use case. Sec. 4.2 then details how to localize images with respect to 
aerial data through the example of localizing photos taken in mountainous terrain relative to 
a digital elevation model obtained from LIDAR data. 

2 Utilizing Images for Automatic 3D Scan Alignment 

When surveying construction sites, historical buildings or industrial facilities laser scanning 
is the state-of-the-art technique to obtain accurate three-dimensional models. To obtain a 
full 3D model, several 2.5D scans have to be aligned (cf. Fig. 3). Usually a scanner is 
positioned at different places in order to minimize scan shadows and to obtain a model as 
complete as possible. Since scanning is a time-consuming and therefore expensive task the 
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number of scans is usually kept as small as possible, leading to a wide baseline setting 
between the scan positions. Not only scanning, but also the registration of individual scans 
takes a lot of time - either afterwards by manually aligning models, or on site by carefully 
positioning targets (artificial markers) in the scene, which are spotted and automatically 
detected from several scan positions. If one desires to rescan the facility at another point in 
time and align current data with an older model, exploiting artificial markers for 
registration is impossible. As a result there is a need for automatic registration methods 
which do not rely on any artificial landmarks or prediction on the relative motion, but can 
generate accurate registration results by exploiting the scan data itself. 

Local alignment methods such as ICP (BESL et al. 1992) require a good initialization and 
are not applicable to wide baseline scenarios or when the relative rotation is unknown. GPS 
and magnetic compass can simplify the registration problem, but they fail under bridges, 
inside buildings, urban canyons, or close to metallic or electric installations. Modern laser 
scanners come with inbuilt or attachable cameras and deliver distance plus color 
information and we aim at exploiting this data jointly for fully automatic registration. We 
build upon image features rather than 3D geometry features, because they are plenty, well 
localized and much more discriminative. However, they suffer from viewpoint distortions 
and request for normalization, i.e. straight forward feature extraction and matching fails in 
most cases. 

In our novel approach (ZEISL et al. 2013) we propose to become independent of the original 
sensor viewpoint (position and orientation of the camera) by exploiting characteristic 
geometric properties of the scene, namely salient directions, which are repeatable among 
different scans. Examples include peaks in the distribution of the surface normals, 
vanishing points, symmetry, gravity or other directions that can be reliably obtained from 
the sensor or the scene. Each salient direction is then exploited to render an orthographic 
view (cf. Fig. 2), and by this way removing the perspective effects that had been introduced 
by the particular scanner position. Importantly, for corresponding salient directions between 
scans the generated images are identical (for jointly seen Lambertian scene parts) up to a 
2D similarity transformation. Thus, standard feature detection and description approaches 
can be employed and features are computed in a viewpoint normalized image 
representation. Compared to earlier approaches proposed for consumer depth cameras 
(ZEISL et al. 2012) or stereo systems (WU et al. 2008; CAO et al. 2011) our approach does 
not pose any requirements on the presence of particular geometric shapes. Moreover, we do 
not rely on features only on particular fitted models (planes, cylinders, cones), but match 

Fig. 2: (Left:) Images taken from 2 different scanner positions, which naturally exhibit a 
wide baseline. Feature matching and thus registration from these images fails in 
most cases. (Middle, right:) Generated salient direction rectified renderings 
which are subsequently used for our automatic registration. 
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the whole visible scene, this way significantly increasing the surface area where features 
can be extracted. This is an important aspect if the visible overlap between scans is small. 
Contrary to previous work where depth discontinuities can not be handled, our rectification 
approach generates images that consistently capture objects and features across different 
levels of depth. Such features at geometry boundaries and folds are among the most 
discriminative, as known e.g. from stereo. 

We evaluated our approach on three different datasets with different scene characteristics 
which are typical for laser scanning scenarios (such as historic sites or urban areas). For 
evaluation, we analyzed both the repeatability of salient directions and the registration 
performance itself. The former is essential for successful registration, since we need to 
detect at least one common salient direction from both viewpoints - which becomes more 
difficult with less overlap between regions. The latter is evaluated in terms of correct 
features matches and compared to planar rectification as in (WU et al. 2008; CAO et al. 
2011). 

 
Fig. 4: Registration result for scans within the city of Zurich. Images belonging to the 

different scan positions are visualized on top. Evaluation is equivalent to Tab. 1. 

Fig. 3: 
Cut through a 3D model obtained by our 
alignment algorithm from 5 individual scans. 
We achieve entirely automatic registration 
from largely different viewpoints by 
exploiting depth and image data jointly. 
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Table 1: Registration evaluation for 2 datasets (Castel and Church). (Upper right 
parts:) Relation between correct and tentative matches for our approach and 
planar rectification (WU et al. 2008). (Lower left parts:) Repeatability scores 
for salient directions (i.e. found vs. present salient directions in the overlap 
regions). 

 
Our method generates more tentative and correct matches than existing methods, which 
enables us to register scan-pairs in cases in which these other approaches fail. As expected, 
this is particularly the case for scenes with numerous non-planar surfaces, where our 
approach is crucial for successful registration, as planar rectification requires textured 
planes -- which are often very small or non-existent. Finally, Fig. 3 and Fig. 4 illustrate the 
global registration results we obtain. Previously estimated relative poses connect pairs of 
scans with successful registration and by this form a graph over several scans. A solution 
for the absolute pose of each scans is obtained via extraction of a minimum spanning tree. 
A following refinement step doesn’t improve the results noticeably, highlighting that 
estimated relative poses are already very precise. 

3 Creating 3D Models from Images 

Automatically registering multiple scans to form a consistent 3D model is an important step 
in obtaining large-scale 3D models. However, purely laser-based acquisition is often a 
cumbersome task due to long scan times and the tedious process of moving the scanner 
through the scene. In contrast, taking images from multiple scene positions is significantly 
easier, since consumer cameras are cheap and easy to handle and most modern smart-
phones are already equipped with decent cameras. In addition, there is a vast source of 
imagery available on photo-sharing websites such as Flickr or Panoramio. Thus, we would 
like to use only sets of images for building a 3D model. The task is typically split into two 
consecutive steps: First, sparse reconstruction - commonly referred to as Structure-from-
Motion (SfM) and second, dense reconstruction. We will briefly discuss these approaches 
in the following. 

If one observes an object of interest with a camera from different viewpoints, a particular 
3D point on the object will be projected to different (pixel-)locations in the images due to 
the camera movement. SfM tries to reverses this process: Given corresponding points over 
different images, the aim is to estimate their common 3D position and the original camera 
poses (position and orientation in space). Thus, the problem decomposes into (i) 
correspondence estimation between salient points in images, and (ii) 3D structure recovery 
from those estimated, tentative correspondences. For the first part, local interest point 
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detectors -- such as Harris corners (HARRIS & STEPHENS 1988), SIFT (LOWE et al. 2004) or 
SURF (BAY et al. 2008) feature points -- are utilized to identify a set of discriminative 
features, where each is characterized by its local image neighborhood aggregated in a fixed 
size descriptor. Correspondence estimation then compares individual descriptors between 
different images and records the best matches. The second stage builds upon the sets of 
tentative matches between images, which typically also contain false matches. Between two 
images their epipolar geometry (HARTLEY & ZISSERMAN 2003) is estimated within a 
RANSAC framework to account for the present noise in the data. It describes the relative 
pose between two cameras and an initial estimate of the sparse 3D structure can be obtained 
via triangulating the matching points. For a collection of images, the sparse 3D structure 
and the camera poses are estimated jointly. This is achieved by first generating initial 
structure and pose hypothesis from image pairs1. It is followed by a global refinement step 
know as bundle-adjustment (TRIGGS et al. 2000) which minimizes the re-projection error 
between the projections of estimated 3D points and detected features points among all 
images. 

Once the sparse 3D structure and 
camera poses are estimated, dense 
reconstruction aims at generating a 
dense, watertight model. For 
example, this can be achieved by first 
computing depth maps with a stereo 
correspondences algorithm (SCHAR-
STEIN & SZELISKI 2002) from 
neighboring images and then fusing 
them in a common volumetric 
representation encoding an 

                                                           
1  More stable solutions can be obtained from images triplets via evaluation of the tri-focal tensor 

(HARTELY & ZISSERMAN 2003) 

Fig. 6: 3D Reconstruction running in real-
time on a consumer smart-phone. 

Fig. 5: (Left:) Sample input images obtained from Flicker; (2nd left:) Local sparse SfM 
reconstruction. (Right:) Dense, textured 3D model seen from 2 different views 
(FRAHM et al. 2010). 
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occupancy function for the 3D model. Note, that there exist various alternative approaches 
with different 3D shape representations such as voxels, level-sets, or polygon meshes and 
also numerous measures for evaluating the visual compatibility of a reconstruction with a 
set of images. The interested reader is referred to (SEITZ et al. 2006). 

Building 3D models from real-world objects or scenes by means of these methods has been 
a very active and long-standing research topic in computer vision. Over the past decade 
tremendous progress has been made and led to impressive results. In (POLLEFEYS et al. 
2004) we build visual, textured models from a sequence of uncalibrated images acquired 
with a hand-held camera. The system was shown to be able to reconstruct architectural sites 
with a relative accuracy of 1/500. In (POLLEFEYS et al. 2008) we aim for 3D reconstruction 
from video of urban scenes. Due to the large amount of captured data the system employs 
commodity graphics hardware to achieve real-time processing. Our depth map-based fusion 
approach is able to achieve a median error of only 3cm for 3D models of normal buildings.  
Since the volume-based representations used for dense reconstruction are very memory 
demanding and thus not applicable to larger scenes, we introduce a height-map based 
representation which is ideally suited to model building facades. Especially for touristic 
sites and other places of general interest, vast amounts of images can be found on the 
Internet, e.g., an image search on Google for the keyword “Rome” returns around 3 million 
photos. AGARWAL et al. (2009) and FRAHM et al. (2010) leverage this huge amount of 
image data in order to build large-scale 3D models (cf. Fig 5). The challenge hereby is to 
design matching and reconstruction algorithms such that they maximize computational 
parallelism and scale efficiently with the amount of available data. While the computations 
in (ARGARWAL et al. 2009) require a cluster infrastructure for computation, FRAHM et al. 
(2010) achieve the task of reconstructing Rome within 24 hours on a single workstation. 
With the increasing computational capabilities of current mobile phones, they are not only 
valuable devices for casually capturing images, but can nowadays also be used for directly 
building small models on the phone itself in real-time (TANSKANEN et al. 2013; KOVEL et 
al. 2014). As seen in Fig. 6 this enables an instantaneous feedback about the current model 
quality that can be used to guide the user to capture additional images where needed. 

4 Geo-Localization of Images 

Ideally, we would like to use both scan data and photos to obtain a single coherent 3D 
model, i.e., we would like to be able to register images against a 3D model. This can either 
serve the task of augmenting a 3D model with images (SNAVELY et al. 2006) or to leverage 
Structure-from-Motion techniques to grow the model. In this section, we will thus discuss 
how to localize a novel image with respect to a 3D model by computing the position and 
orientation, i.e., the camera pose, from which it was taken. We thereby distinguish between 
localization in urban and mountainous environments due to the different challenges 
associated with each type of scene. Notice that image localization also enables many other 
interesting applications. For example, one can register contemporary and historic 
photographs against the model to document changes over time in an environment 
(SCHINDLER et al. 2007). 

Urban environments are an important use case for many interesting applications for image-
based localization such as pedestrian navigation or touristic information. Since such scenes 
are often dominated by planar surfaces, localization approaches typically use local image 
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features. Since the camera pose can be determined from three or more 2D-3D 
correspondences (HARALICK et al. 1994; LEE et al. 2013), the problem of estimating the 
pose becomes the problem of computing matches between 2D features in the query image 
and 3D points, which is solved by comparing local feature descriptors. Sec. 4.1 discusses 
multiple approaches to establish such 2D-3D matches. 

In contrast to urban environments, localization in natural scenes is substantially more 
challenging due to drastic changes in vegetation between seasons, and the significant 
differences in scene appearance under different lighting and weather conditions, e.g., snow 
in winter. Consequently, approaches based on the type of features typically used for urban 
environments become impractical as local image features are not able to handle these strong 
appearance changes. In addition, the dense ground-level data commonly used is limited to 
cities and major roads. For mountains or countrysides only aerial image footage exists, 
which is much harder to relate with terrestrial imagery due to strong viewpoint changes. In 
Sec. 4.2, we therefore present an approach that is able to handle the challenging problem of 
localization in mountainous scenes. 

4.1 Localization in Urban Environments 

In the following, we assume that our scene is represented as a Structure-from-Motion 
model. This implies that each 3D point in the model was reconstructed from local features 
observed in at least two images, allowing us to associate the corresponding image 
descriptors with the 3D point. Notice that we can obtain a similar representation from laser 
data: If we are given both images and laser scans as in Sec. 2, then we can directly compute 
the 3D location for each extracted image feature. If only a (colored) point cloud is 
available, the method proposed by SIBBING et al. (2013) can be used to render synthetic 
images in which local features similar to those found in real photos can be extracted. As a 
result, we would again obtain a point cloud in which each point is associated with one or 
more descriptors. 

Since each 3D point corresponds to at least one image feature, the 2D-3D correspondences 
required for camera pose estimation can be established by extracting local features in the 
query image and finding the nearest neighboring 3D point descriptors. The resulting 
pipeline is illustrated in Fig. 7. A simple strategy to implement the descriptor matching is to 
store all point descriptors in a tree and use tree-search to accelerate the matching of 2D 
features against the points. While it has been shown that this strategy is very effective in 

Fig. 7: The standard image-based localization pipeline:  2D-3D correspondences, 
established via descriptor matching, are used to estimate the camera pose, i.e. 
position and orientation, from which an image was taken relative to the 3D 
model. 
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terms of the number of images that can be localized (SATTLER et al. 2011; LI et al. 2012), it 
is also rather slow as the high dimensionality of the descriptors results in search times of 
multiple seconds per image (SATTLER et al. 2011). Thus, LI et al. (2010) propose a more 
efficient approach based on prioritized 3D-to-2D matching: Given an initial set of 3D 
points likely to be visible in a random query image, they try to find the corresponding 
nearest neighboring feature descriptors in the given query image. If a match is found, they 
increase the priorities of all other points that are visible together with the matching point. 
The next point they match against the image is then picked according to these priorities. 
The information about which points in the model are co-visible is thereby obtained from the 
Structure-from-Motion process. If two points are observed together in one of the database 
images used for the reconstruction, they are considered to be co-visible, a definition which 
approximates the true co-visibility relation. CHOUDHARY & NARAYANAN (2012) propose a 
probabilistic version of this approach, where the next point is selected based on the 
probability of being co-visible with all matching points found so far. 

While being significantly slower, both approaches are not as effective as the tree-based 
search approach. Recently, we have proposed a localization framework that is both efficient 
and effective (SATTLER et al. 2011; SATTLER et al. 2012a). It is based on a prioritized 2D-
to-3D matching step. In a first step, we identify for each image feature a set of 3D points 
with similar local appearance without actually comparing their descriptors (SATTLER et al. 
2011). Features for which only a few points with similar appearance can be found are more 
unique and thus more informative than features with many similar points. Thus, we first try 
to find correspondences for these features by matching each of them against the set of 
similar points determined in the first step. While on average being one order of magnitude 
faster than the tree-based approaches, the drawback of this method is that we lose potential 
matches as we need to quantize the descriptor space in order to identify sets of similar 
points efficiently. In order to recover these lost matches, we exploit co-visibility 
information (SATTLER et al. 2012a): Assuming that we have found a correct match, we can 

Fig. 8: Two examples for the localization results obtained with our approach (SATTLER 
et al. 2012a). Our method successfully handles structures not in the model, such 
as the Ferris wheel, strong occlusions, and changes in illumination. The 3D 
model is projected into the images to demonstrate the quality of the estimated 
poses. The pose relative to the model is shown in the small inlays, where the 
lines connect the matching 3D points with the computed center of the camera. 
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assume that 3D points close to the matching point are very likely to be visible in the query 
image. Thus, we try to match them against the image to obtain additional correspondences, 
enabling us to recover matches previously lost due to quantization. At the same time, we 
also show how to use co-visibility information to filter out wrong matches before 
attempting pose estimation, which can considerably accelerate this part of the pipeline. Our 
approach is the most efficient localization approach published so far, enabling us to find 
correspondences and the pose for a query image in around 260ms on average when 
matching against a model containing millions of 3D points. At the same time, we are at 
least as effective as standard tree-based approaches. Table 2 shows the localization 
accuracy of our method compared to other approaches on a standard benchmark dataset. As 
can be seen, we achieve a higher localization accuracy than these other methods and are 
also significantly better than GPS. Fig. 8 shows the quality of the estimated poses visually 
by projecting the point cloud into the query images through the pose computed by our 
algorithm2. 

Table 2 The localization accuracy obtained on the Dubrovnik dataset (Li et al. 2010). 

Method % Localized 
Images 

25% Quantile 
[m] 

50% Quantile 
[m] 

75%Quantile 
[m] 

Li et al. (2010) 94.1 7.5 9.3 13.4 
CHOUDHARY & 
NARAYANAN (2012) 98.5 0.88 3.1 11.83 

Sattler et al. (2012a) 99.5 0.4 1.4 5.3 
 

Recently, LI et al. (2012) proposed a slightly modified version of tree-based search that is 
slightly more efficient than our approach. However, this effectiveness comes at the price of 
significantly longer run-times. 

The main drawback of the localization approaches discussed above is that they need to keep 
all the point descriptors in memory, which becomes prohibitively expensive for very large 
models. An alternative to these approaches are methods that first try to identify and retrieve 
database images (used to reconstruct the model) taken from a similar viewpoint as the 
query image (IRSCHARA et al. 2009). The advantage of such methods is that they do not 
need the full descriptors for retrieval but can work on a fixed-size set of quantized 
descriptors, significantly reducing the memory requirements. While classical retrieval-
based approaches (IRSCHARA et al. 2009) have been shown to be less effective (SATTLER et 
al. 2011), we were recently able to identify the algorithmic reasons for this behavior 
(SATTLER et al. 2012b). We proposed a slight modification that makes retrieval-based 
approaches as effective as methods based on directly matching descriptors without 
sacrificing their scalability. In addition, we have shown that we can exploit the fact that 
most surfaces in urban environments are planar to further improve the retrieval 
performance. We can rectify these planar regions and obtain more powerful descriptors that 
are more stable over a larger range of viewpoints, enabling us to localize more images 
taken under challenging conditions (BAATZ et al. 2010; CHEN et al. 2011). At the same 

                                                           
2  Source code available: http://www.graphics.rwth-aachen.de/software/image-localization 
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time, we can also simplify the pose estimation problem by exploiting the fact that the 3D 
points lie on planar surfaces (BAATZ et al. 2011).  

4.2 Localization in Mountainous Environments 

Given a digital elevation model (DEM) of a country, or ultimately the world, we would like 
to tell where a given image was taken. In previous work WOO et al. (2007) and STEIN et al. 
(1995) matched mountain peaks to a set of nearby mountains. We propose in (BAATZ et al. 
2011) to aggregate shape information across the whole skyline (not only the peaks) and 
search for a similar configuration of basic shapes in a large scale database that is organized 
to allow for query images of largely different fields of view. Our method first segments the 
skyline (either automatic or guided by an operator, for challenging images containing 
reflections and occlusions) and uses it to retrieve the most similar geo-localized skyline 
from a database.  

The location recognition problem in its general form is six-dimensional, with three position 
and three orientation parameters, which have to be estimated. We make the assumption that 
the images are taken not too far from the ground and use the fact that people rarely twist the 
camera relative to the horizon (BROWN et al. 2007) (i.e. small roll). In (BAATZ et al. 2012) 
we propose a method to solve that problem using the outlines of mountains against the 
skyline (denoted as visible horizon). 

For the visual database we seek a representation that is robust with respect to tilt of the 
camera which means that we are effectively left with estimating the 2D position on our 

Fig. 9: (Left:) Digital elevation model (DEM) of Switzerland. Every 100m a synthetic 
view (middle) is rendered and converted to a cube map (right). 

Fig. 10: The input query image (left) with the corresponding “pseudo depth map” (2nd 
left) obtained from image de-hazing. The “pseudo depth map” is then used 
together with gradient features to segment the image in ground and sky (2nd 
right).  The best matching skyline stored in the database is overlaid onto the 
query image (right) 
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DEM (latitude and longitude) and the viewing direction of the camera. The visible horizon 
of the DEM is extracted offline at regular grid positions (360 degree at each position), Fig. 
9, and represented by a collection of vector-quantized local contourlets (contour words, 
similar in spirit to visual words obtained from quantized image patch descriptors (SIVIC et 
al. 2003)). In contrast to visual word based approaches, a viewing angle relative to the north 
direction is stored with each contourlet. 

At query time, a sky segmentation technique is applied that copes with the often present 
haze. Subsequently the extracted contour is robustly described by a set of local contourlets 
plus their relative angular distance with respect to the optical axis of the camera, Fig. 10. 
Then, we use an inverted file system for the contour words to find the most promising 
location and simultaneously vote for the viewing direction, which is an integrated 
geometric verification, already during the bag-of-words search. 

Fig. 11: (Left:) Each block of 4 images shows the input image, depth from de-hazing, the 
segmentation mask and the best matching contour overlaid (red) onto the original 
query image. The bottom row shows the 10 best matches retrieved from the 
database. (Right) more results showing the query image and the overlaid 
matching skyline. 

Fig. 12: (Left:) Retrieval performance before and after geometric verification (GV). 
(Right:) Fraction of queries having a given distance to the ground truth position. 
About 89% of the images were correctly localized within an error distance of 
1km to the ground truth. 
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We validate the proposed approach using a public digital elevation model of Switzerland 
(obtained from Swiss Topo3) that covers more than 40 000km2 and a set of more than 200 
query images from different sources with ground truth position. Also, we demonstrate that 
the horizon is highly informative and can be used effectively for localization. On the 200+ 
query images 49% were segmented fully automatically while the others required some 
human interaction. Of all the query images 89% were correctly localized within a distance 
of 1km to the ground truth, Fig. 11 and Fig. 12. Querying the database containing 3M 
panoramic contours takes in average 10 sec per query. 

5 Conclusion 

In this work we have given an overview over different methods in computer vision which 
leverage images to build and augment digital 3D models. We believe that modeling from 
images represents an interesting alternative to state-of-the-art laser scanning techniques in 
situations where scanning is cumbersome or simply too expensive due to the scale of the 
scene. Since not only scanning but also the alignment of scans so far needs manual 
interaction, we have presented a fully automatic approach for scan alignment. Additionally, 
the discussed image localization methods can be utilized to complement present 3D models 
of urban areas or landscapes with additional image data in order to obtain a richer model. 

In the future we will continue our work in 3D modeling from images and aim at jointly 
exploiting scan and image data to obtain even more accurate and detailed models. In terms 
of localization we would for example like to target the problem of spatially organizing 
contemporary and historic image collections. 
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