
Multi-Resolution Real-Time Stereo on Commodity Graphics Hardware

Ruigang Yang and Marc Pollefeys∗

Department of Computer Science, University of North Carolina at Chapel Hill

1 Introduction

We demonstrate a stereo algorithm that is implemented using only
the OpenGL APIs [Yang and Pollefeys 2003]. It allows a standard
Graphic Processor Unit (GPU), which can be found in every com-
modity PC with an accelerated graphics card, to perform many tens
of millions of disparity evaluations per second and frees up the main
processor for other tasks including high-level interpretation of the
stereo results.

At the heart of our method is a multi-resolution approach to
achieve good results close to depth discontinuities as well as on low
texture areas. We combine the sum-of-square-differences (SSD)
dissimilarity measures for windows of different sizes. This is, in
fact, equivalent to using a large weighted correlation kernel with a
pyramid shape. By utilizing the mipmap functionality on the graph-
ics hardware, we can compute this dissimilarity measure very effi-
ciently.

Our implementation extends the work of [Yang et al. 2002].
When running on an NVIDIA GeForce4 graphics card, it can
achieves 50-70M disparity evaluations per second including all the
overhead to download images and read-back the disparity map,
which is equivalent to the fastest commercial CPU implementations
available. An important advantage of our approach is that rectifica-
tion is not necessary so that correspondences can also be obtained
for images that contain the epipoles. Another advantage is that this
approach can easily be extended to multi-baseline stereo.

2 Multi-Resolution Stereo on Commodity
Graphics Card

Due to the lack of space, we briefly outline our method here. In-
terested readers are encourage to consult the full paper that is in-
cluded in the proceedings of CVPR 2003 [Yang and Pollefeys 2003].

Figure 1: A illustration of our plane-sweep approach. the red dot
represents the reference view. Spaces are discretized into a number
of parallel planes.

∗E-mail:{ryang, marc}@cs.unc.edu. This work was supported in part by
the NSF grant ISS-0237533, and by a generous 2002-2003 Link Foundation
fellowship.

Figure 2: Shape of kernel for 6-level SSD.

To efficiently compute dense correspondence maps between
two images using graphics hardware we use a plane-sweep ap-
proach [Collins 1996]. Given a plane in space, it is possible to
project both images onto it using projective texture mapping. If the
plane is located at the same depth as the recorded scene, pixels from
both images should be consistent. This can be verified by evaluat-
ing the square difference (SD) between the pixel intensities. This
image difference operation can be carried out using the program-
able pixel shader available in today’s graphics card. To estimate a
dense set of correspondences, a plane hypothesis is set up for every
possible disparity (depth) value. Input images are warped on every
plane through texture mapping, and a matching cost (SD) is com-
puted for every pixel. Then we can simply select the best match
along the line of sight of every pixel in one of the two images.

In the two-view stereo case, it is necessary to use larger support
region to aggregate the SD scores to provide a more robust estimate.
GPUs have build in box-filters (in hardware) to efficiently generate
all the mipmap levels needed for texturing. Therefore, it is very
efficient to sum values over 2n × 2n windows. When a mipmap
is built, we effectively obtain a sum of squared difference (SSD)
images with a power-of-two support size at each level.

We use a multi-resolution approach to sum up SSD images at
different levels. This can easily be done by using multiple texturing
units. This approach, in fact, corresponds to using a large window,
but with larger weights for pixels closer to the center. An example
of a kernel is shown in Figure 2. The peaked region in the middle
allows good localization while the broad support region improve
robustness.

3 Results

Figure 3: Calculated disparity maps from the Tsukuba set.

We have tested our implementation on a variety of image pairs.
In Figure 3 and 4, we show our results from a few data sets that
have been widely used in the computer vision literature, they are
computed with 4-level SSD.



Figure 4: Calculated disparity maps from another stereo pair.

Output Search Times Img. Update Read Disp. Calc.

Size Range (ms) (Hz) (ms) (ms) (M/sec)
20 71.4 14 (VGA) 58.9

5122 50 182 5.50 5.8 × 2 6.0 65.6
100 366 2.73 68.3
20 20.0 50 (QVGA) 53.1

2562 50 49.9 20 1.6 × 2 1.5 60.0
100 99.0 10.1 63.2

Table 1: Performance on an NVIDIA GeForce4 card when sum-
ming four (4) mipmap levels. The two input images are 640× 480.

We also measured the performance on an NVIDIA GeForce4
card. As in Table 1 and Figure 5, we can see that our method
exhibits real-time performance—50-70 million disparity calcula-
tions/second, as well as very good linearity with respect to the im-
age size.

We also implemented a real-time system that captures and pro-
cesses live data online. Our current prototype performs a few ad-
ditional steps in software, such as radial distortion correction and
segmentation.1 As a proof of concept, these yet-to-be-optimized
parts are not fully pipelined with the reconstruction. These over-
heads slow down the overall reconstruction rate to 6-8 frames per
second at 256× 256 resolution with 100 depth planes. In Figure 6,
we show some disparity maps from our real-time system.

References
COLLINS, R. 1996. A Space-Sweep Approach to True Multi-Image Match-

ing. In Proceedings of Conference on Computer Vision and Pattern
Recognition, 358–363.

YANG, R., AND POLLEFEYS, M. 2003. Multi-Resolution Real-Time
Stereo on Commodity Graphics Hardware. In CVPR 2003.

YANG, R., WELCH, G., AND BISOP, G. 2002. Real-Time Consensus-
Based Scene Reconstruction Using Commodity Graphics Hardware. In
Proceedings of Pacific Graphics 2002, 225–234.

1The cameras are facing a white wall with little texture. So we segment
the images to fill the background with different colors.

71.4

182

366

20.2

49.9

99

0

50

100

150

200

250

300

350

400

20 50

Disparity Search Range

E
la

p
s

e
d

 T
im

e
 (

in
 m

s
)

512 x 512 Output 256 x 256 Ouput

Update VGA Img. Update QVGA Img.

100

20 Hz

10 Hz

5 Hz

2.5 Hz

3.3 Hz

Figure 5: Performance on a NVIDIA GeForce4 Card. The data are
from Table 1.

Figure 6: More results from our real-time online stereo system. The
first column shows the input images; The second column shows the
disparity map.


