
A hierarchical stereo algorithm using dynamic programming

G. Van Meerbergen, M. Vergauwen, M. Pollefeys, L. Van Gool

Abstract

In this paper, a new hierarchical stereo algorithm is pre-
sented. The algorithm matches individual pixels in cor-
responding scanlines by minimizing a cost function. Sev-
eral cost functions are compared. The algorithm achieves a
tremendous gain in speed and memory requirements by im-
plementing it hierarchically. The images are downsampled
an optimal number of times and the disparity map of a lower
level is used as ’offset’ disparity map at a higher level. An
important contribution consists of the complexity analysis
of the algorithm. It is shown that this complexity is inde-
pendent of the disparityrange. This result is also used to
determine the optimal number of downsample levels. This
speed gain results in the ability to use more complex (com-
pute intensive) cost functions that deliver high quality dis-
parity maps. Another advantage of this algorithm is that
cost functions can be chosen independent of the optimisa-
tion algorithm. Finally, the algorithm was carefully imple-
mented so that a minimal amount of memory is used. It has
proven its efficiency on large images with a high disparity
range as well as its quality. Examples are be given in this
paper.

1. Introduction
The goal of this work is to compute fast accurate disparity
maps, even for big images with large disparity ranges. It
is assumed that these images are rectified first. The impor-
tance of the disparity maps for good 3D reconstruction is
well known. The results of research on this topic include a
wide variety of algorithms [1]. Most of these algorithms are
minimizing a cost function. The cost has 2 aspects: A first
component decides how well a pixel of the left image cor-
responds to a pixel at the right image, i.e. the dissimilarity
between 2 pixels. A second, respectively third component
rely on the continuity in the horizontal, respectively vertical
dimension of the disparity map. The latter is only dominant
if no strong image data are available.

The dimension of the optimization problem is one way
to classify these algorithms. The cost function decides how
well a pixel of the left image corresponds to a pixel at the
right image (zero dimensional cost function) [12]. More ro-
bust is to optimize the sum of all costs of all matches in
one scanline (one dimensional). The best is to optimize
the sum of all costs over the whole image (two dimen-

sional) [8]. This algorithm, like many other algorithms [5]
[7], has chosen the second method, because it seems the best
tradeoff between robustness and computational complexity.
However, we’ll take into account information of the other
scanlines by propagating information between them.

Our stereo algorithm has a number of specific proper-
ties. The algorithm is based on the hierarchical solution
of the correspondence problem. Using this approach, we’ll
show that the complexity decreases from ������Æ�������
to ������, where W and H represent respectively the
width and height of the pictures. Note that the com-
plexity becomes independent of the disparity search range
Æ�����. The algorithm offers a significant advantage over
other algorithms, especially when this search range is large.
[12] [8]

Another advantage of this hierarchical approach is that
the memory usage can be greatly reduced. The accelera-
tion discussed in the first topic does not lead to an explo-
sion of memory usage. As will be explained in following
paragraphs, rather the contrary is true. Considering todays
arithmetic calculation power and memory bottleneck, this
is very important in implementing the algorithm. Even for
large images (1500x1500), it uses only a 100kbyte, so that
it fits easily into Pentium memory caches.

This algorithm is a candidate for real time implementa-
tion, as it offers a good tradeoff between speed and quality.
Because of the gain in speed, it was possible to use more
complex and computation intensive cost functions. Sec-
ondly, because of decoupling between algorithm and cost
function, several cost functions could be tested.

The paper is structured as follows. First a formal prob-
lem definition is given. In section three, a tree search al-
gorithm that has been used as a starting point for this work
is given. In the next section, an efficient hierarchical im-
plementation is developed, followed by its complexity anal-
ysis in section five. In section six, a comparison is made
with known solutions from litterature. Finally, results and
conclusions are presented.

2. Problem Definition

In this section, we first introduce some important definitions
that are used troughout this paper. Then, we discuss the cost
function and go more in detail about one of its components,
the dissimilarity function. We end up with a formal problem

1

definition.

Match sequence The correspondence problem, that we
are trying to solve, searches for matches between left and
right image. A match is noted � � ���������, ��� is
the index of the pixel in the left image and ��� is the pixel
index in the right image. The disparity Æ of a match must lie
between 2 predefined constants, as postulated by constraint
C1:

�� � Æ�	� � Æ � ��� �	 � Æ��� (1)

We define Æ����� � Æ��� � Æ�	� � �.
An ordered set of matches ��	� that obeys constraints

C2..C4, is called a match sequence MS.

�� � �	
��
 ��
����	
��
 ��
��

where � � �
 �
 � � �
�	 � �	��
�� � �	
�� � � ��	��
��
 �	
�� � �
where � � ���� � �
�
 � ��
�� � � ���
�� � �

(2)
It is important to have a closer look at these constraints.

The first constraint C2 expresses that no pixel can ever be-
long to 2 matches in the same match sequence and an orden-
ing constraint is imposed. Constraint C3 imposes that the
match sequence may not contain gaps. If there is a match
M, then either the next pixel in the left, or the next pixel in
the right scanline must be matched to the match following
M. We say that the match sequence is complete if also the
last pixel of left and/or right scanline appears in the (last)
match. In Figure 1, an example is given to clarify these
definitions. The match sequence used in the example is:

�� � ���� ��� �	� ��� �
� ��� ��� 	�� ���
�� �� ��� ��� ��
��� ��� ���� ��� ��	� ���� ��
� ���� ���� ���� (3)

Instead of coding a match sequence as given in the ex-
ample above, one can as well just code the disparities in
what we call a Æ� ��������. The disparity map consists of

Figure 1: Graphical representation of a match sequence
with a left and a right occlusion. The left scanline is on
top. The corresponding disparities are also indicated.

nothing else than all Æ����������. The Æ��������� that
corresponds with the example above is1:

�� � ������� ������ �� �� �� �� �� �� �� �� �� �� 	� 	� 	� 	�
(4)

Cost function Once we defined a match sequence, a cost
can be associated to it. As said in the introduction, the cost
function consists of 3 components (The intensity of the im-
ages is represented by I.):

� ���� �

����
����

�� ���� �	� ������ �

����
����

�� ������ �
����
����

�� ������ �

����
����

�
� � ���������

������ � ��� ����
�

(5)

� For each unoccluded pixel, a cost that equals the dis-
similarity between 2 pixels is taken into account. This
dissimilarity function is discussed in detail further on.

� If the pixel is occluded, a cost equal to � is counted.
In contrast to other algorithms in the literature [4],
larger occlusions are more severely penalized. Left oc-
clusions are taken into account in the first summation,
while right occlusions are in the second summation.

� The last term looks at the vertical dimension in the
image. If this Æ � �������� differs a lot from the
scanline above, its penalty will be higher. This term
is also scaled by an intensity gradient factor ��� that
decreases this penalty if there is a large vertical inten-
sity gradient near the pixel under consideration. The
intensity gradients ������

��
are easily calculated using

the Sobel operator. The actual function used is:

��� ���� � ���
�
�� ��

����� ����

�
where �� ���� � � !�"����

(6)

The parameter � is scaled such that a sobel output of
70 gives ��� � �. Outputs above 1 are clipped.

Dissimilarity Function The dissimilarity function indi-
cates how well (the neighbourhood of) the pixel at position
xL matches with pixel xR. It is the most important term
in the cost function. Three dissimilarity functions are dis-
cussed.

1The underlined disparities are interpolated. This is necessary for the
hierarchical implementation.

2

1. The easiest dissimilarity function is to take the abso-
lute value of difference in intensities.

� ���� �	� �� � ����� � ��	� � (7)

The advantages are its simplicity and speed. Its prac-
tical use is very limited because it is not robust. To
make it more robust, this value can be calculated over
a window. It is named Sum of Absolute Differences
(SAD). The Sum of the Square Differences can also be
calculated (SSD).

2. A second alternative is a more complex dissimilarity
function that implements a cross correlation between
the neighbourhoods of the pixels under consideration
[10]. It is implemented according to following for-
mula:

� ���� �	� �

���
	����

���
�����

�	�		�

���� ���
	����

���
�����

��
	�

���
	����

���
�����

	�
	�

where �	� � ����# � �� ��� ��� ����

		� � ����# � �� �	� ��� ����

��� �

���
	����

���
�����

���# � �� ��� ��

���!�� �� ���!# � ��

��� �

���
	����

���
�����

���# � �� ��� ��

���!�� �� ���!# � ��
(8)

This is the most robust dissimilarity function discussed
in this paper. Because of the normalization in the de-
nominator, it can deal with zone differences between
left and right images, such as global intensity varia-
tions. The biggest disadvantage is its computational
cost. Attemps to minimize the number of operations,
result in an explosion of memory usage. With nowa-
day’s computers, we should definitely avoid this.

3. The last dissimilarity function presented here is the one
described by Birchfield [6]. This dissimilarity func-
tion is insensitive to image sampling. The latter phe-
nomenon can significantly change the intensity value
of a pixel where the intensity function is changing
rapidly. Most stereo algorithms [7] [13] just work at
pixel resolution, so it is important to use a dissimilar-
ity function that eliminates errors due to sampling. It
is illustrated in Figure 2.

Figure 2: Birchfield’s dissimilarity measure: ���	� �
��� � �����, thus �� equals 0.

First we calculate ��� and ��� :

��� � �

�
�����	� � ����	 � ���

��� � ����	�

��� � �

�
�����	� � ����	 � ��� (9)

These are the linearly interpolated intensities halfway
between xR and its neighbours. Let ���	� �
���

�
��� � ��� � ���

�
and ����� � ���

�
��� � ��� � ���

�
,

then define

�� � ���
�
�� ��� � ������ ���	� � ���

�
�� � ���

�
�� ��� � ������ ���	� � ���

�
����� �	� � ������� ��� (10)

Actually, Birchfield’s dissimilarity measure �� is
looking for the minimum distance between � �� and
the linearly interpolated intensity curve in an interval
�� �

� �
�
� � around xR. Indeed, there are 3 possibilities for

������ � ���:

(a) ���	� � ��� � �����: this is the case in Fig-
ure 2. ��� � ����� � � and ���	� � ��� � �,
thus �� equals 0.

(b) ��� � �����: �� will be positive, and the dis-
similarity equals the distance between the maxi-
mum and ���

(c) ��� � ���	�: analoguous as 2.

This dissimilarity measure performs very well, and
will be used indeed in our algorithm, unless extra ro-
bustness is needed. It needs only 3 additions per pixel
in an efficient implementation. Further details can be
found in Birchfield’s paper. [6]

Problem Definition Now, all the material is ready for
a formal problem definition: Find between all match se-
quences that obey constraints C1..C4, the sequence with the
lowest cost, according to the cost function defined above.
The cost of a scanline can be calculated incrementally, i.e.

3

Figure 3: Stereo tree with the successors of match (0,0) and
match (1,0).

one can reuse the result if one adds a match to the match
sequence. In the next section, it is shown how this sequence
is found, making use of dynamic programming.

3. Tree search algorithm
In this section, we describe a first solution, using a tree rep-
resentation in which the best path is found making use of
dynamic programming [2]. The matrix structure that is used
to solve this optimization problem is also covered in this
section.

Stereo Tree To describe the stereo tree, we define the
nodes and edges. Each node is just a valid match, obey-
ing constraint C1. An edge is defined by the constraints of
a match sequence: between every 2 nodes that comply with
constraints C2 and C3 exists an edge. It is not difficult to see
that a kind of network is build between all possible matches
that include the first pixel (beginnodes) and all matches that
have the last pixel of a scanline (endnode).

The construction of the tree is best explained with an ex-
ample (The 2 scanlines used are the same as in the introduc-
tion). Figure 3 shows such a tree, with the matches as nodes
in the shaded bullets. The beginnodes are found in the up-
per row and the left column. Also shown are the successors
of match (0,0) and match (1,0). Also remark that the nodes
(xL, xR) are placed in a special configuration, namely the
matrix with horizontal xL and vertical xR axis. This way, a
kind of bandmatrix from upper left to down right corner is
formed. This is subject of the next paragraph.

Matrix The implementation uses 4 matrices. First it is ex-
plained using indices xL, xR, as in Figure 3. Afterwards, it
will be explained how a transformation of xL, xR is applied
yielding Figure 4.

� Every node has its own matchcost, calculated by the
dissimilarity function. Because this function can be

Figure 4: The 4 compressed matrices ���, �Æ , $ and �.
The filling has just started.

quite expensive from computational point of view, it is
calculated before and stored in matrix $.

� Every node has one and only one predecessor, by the
definition of the tree structure. This predecessor can be
unambiguously characterized by its (xL, xR) numbers.
That’s why we need 2 other matrices ��� and ���

that store xL, respectively xR of each node.

� Because each node has only one predecessor, this node
also characterizes the path from one of the beginnodes
to that node. The path cost of that path is stored in a
4th matrix �, thus ����� �	�=�(MS).

The matrices are filled top-down, the endnode with the
lowest cost (�) is selected and trivial backtracking is per-
formed to find the best path.

To be more memory efficient, only the diagonal band of
the matrices is stored. In fact, this comes down to a trans-
formation by which the xR axis is transfomed into the Æ

axis. This way, implementation is far more efficient and the
Æ� �������� can directly been read out from the � matrix.
The 4 compressed matrices are shown in Figure 4, when the
filling has just started. Note the special pattern by which the
succesors of node (0,0) can be found.

4. Hierarchical implementation
The complexity of this algorithm is ������Æ�������, as
will be shown in next section. In this section, we de-
velop an hierarchical implementation of the above algo-
rithm, which will be shown to have a complexity indepen-
dent of Æ�����. We first need to introduce the concept of an
offset Æ � ��������.

Offset stereo tree An offset stereo tree is a normal stereo
tree, but the number of allowed nodes is limited by an extra
constraint:

4

Figure 5: Overview of the hierarchical stereo calculation.

�� � Æ��	� � Æ� � Æ���� where Æ� � Æ ���	 (11)

This means that the nodes that are allowed must have
a disparity in the interval �Æ��	� � ��	� Æ���� � ��	�,
around a given offset disparity. This offset disparity se-
quence ��	 is given. How it is be calculated is subject
of next paragraph.

Hierarchical calculation of the disparity map As al-
ready suggested in the introduction, this offset disparity se-
quence is the result of the disparity calculation at a higher
(downsampled) level. We assume in this paper that down-
sampling is always done by a factor 2 in 2 dimensions. An
example is given in Figure 5, where the same scanlines are
used again. Both of them are downsampled by which the
disparity search range halves. Then, our algorithm is exe-
cuted with an initial offset disparity map, which is chosen
all-zero. 2 The result (in our example, all ones, but this is
coincidence) is upsampled afterwards and multiplied by 2.
This Æ � �������� is then used as an offset Æ � ��������

in our next run at the original level in a Æ � %��&� [-1,1].
From next section, it will be clear that executing the algo-
rithm twice with a small Æ����� is cheaper than one ’big’
search in the full Æ�����.

Next, the memory requirements for the 4 matrices can be
reduced further by using the relative Æ� axis instead of the
absolute disparity Æ. The algorithm is programmed in such
way that the offset ��	 sequence is read from the disparity
map, used to calculate an updated (refined) map using our
4 matrices and rewritten in the same disparity map, after
being interpolated. The 4 matrices are shown in Figure 6.

One question remains unanswered: What’s the largest
refinement that’s allowed, i.e. what’s the choice of Æ��	�,

2If a raw disparity map is available, it can be used here as offset dispar-
ity map.

Figure 6: The 4 reduced matrices used in the hierarchical
stereo calculation.

Æ����? As already suggested in [9], this depends on the
disparity estimation error in each level. Experiments have
shown that this error is below 1.5 pixel. In the previous
upsampled level, this error corresponds to 3 pixels. That’s
why we choose the constants Æ��	� � �	 and Æ���� � 	.
Disparity errors up to 3 pixels will be corrected in a lower
level. As a consequence Æ������ � .

5. Complexity Analysis
Reduction of complexity As already discussed in
Birchield’s thesis [4], the complexity � of the non-
hierarchical algorithm is proportional to the square of the
disparity search range. L represents the number of times
downsampling is applied. (L = 0 represents the non-
hierarchical algorithm.)

��� � �� � �
�
��Æ������

�
(12)

Downsampling once �� � �� reduces the complexity
to3:

��� � �� � �
�
��Æ������� �

�
�

�
� Æ

����
�����

�
where Æ

���
������ �

Æ������Æ������
� � �

(13)

The complexity�, function of L, reaches a unique global
minimum for � � ���. This optimal number of levels is
only a function of the initial disparity search range Æ �����.
The complexity at this optimal level is

�
�
� � ���

�
� �

�
��

�
���
��

�Æ����� � ��
�

		
(14)

So, if Æ����� is large enough, we claim that the com-
plexity is independent of the disparity search range. This is
illustrated in Figure 7 which shows a logarithmic plot of the
complexity� versus L. The tests are performed on large im-
ages: 1404x1092. The figure compares the calculated com-
plexity with experimentally measured runtimes for 4 values

3It suffices to serach in a Æ��������� that is
Æ������

�
smaller than

Æ�����
�

.
This disparity range will be corrected (and enlarged) while upsampling and
refining the disparity map.

5

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

4.5

5

5.5

lo
g 10

(C
om

pl
ex

ity
 Θ

)

Level L

Complexity Θ vs. Level L

Experimental runtimes.
Theoretical complexity θ(L).
Optimal level Θopt

Figure 7: Logarithmic plot of the complexity � versus L.

of the disparity range Æ����� � ��� ��� ����

	. As we
can see, the theoretical curves (solid without bullets) de-
crease exponentially towards an almost constant complex-
ity, where they reach a unique minimum. Practical results
(dashed with bullets) show the same tendency. All these
minima for a varying Æ����� parameter, as described by
Equation 14, are connected by the solid line, that reaches
asymptotically ���������.

We end this section with a practical implementation for
calculating the optimal level of downsampling. The real
formula, a result of the analytical optimization problem, is

Ł�� � ����

��
Æ������ � �

� �	

��
�
�

�
�
�

	
(15)

A good approximation of this curve, illustrated in Fig-
ure 8, is given by:

Ł��
 ����

�Æ����� � � � Æ�������

� �Æ������ � ��

�
(16)

This is nothing else than the result of the solution of
Æ
���
����� � Æ������. So we keep on downsampling as long

as Æ����� is greater than Æ������ � .

6. Comparison
It is instructive to compare our stereo algorithm with other
stereo algoritmhs. First, it is compared with the algorithm
of Koch [12] and Falkenhagen [10]. They developed an
algorithm that searches for correspondences by matching
blocks (for instance NCC). Local boundary conditions are
taken into account, but no global cost function is minimized.
Interpolation of disparities is non-existent that way. To in-
crease the robustness of the local optimisation problem, and

Figure 8: Interpretation of the optimal level of downsam-
pling: approximation of the theoretic curve.

to reduce the corona effect, one estimates the disparity in a
large region (large robust block comparison), after which
these disparities are refined with smaller blocks. Although
this kind of hierarchy is comparablewith the one used in our
algorithm, it arises from a fundamental different reason, i.e.
a lack of robustness of the local optimisation problem. It
is important to see that the acceleration of our algorithm,
under certain conditions proven by Birchfield [?], has no
effect on the outcome! The complexity of the algorithm de-
scribed in [10] is ������Æ�������.

Secondly, our algorithm is compared with Birchfield’s
algorithm [4]. A modified version is implemented in In-
tels OpenCV. The core of this algorithm is very similar to
our algorithm, but there is a major difference in how the
acceleration is performed. Birchfield’s fast algorithm (com-
plexity������Æ����� ����Æ�������) developed a method to
prune bad nodes in the search tree. The disadvantage is that
the exact minimum (best path) is not longer guaranteed, and
to achieve an acceptable minimum (path), extra constraints
are put on the cost function. It can no longer be choosen
arbitrarily, and Birchfield had to postpone several takes to
a postprocessing step. For instance, in Birchfield’s algo-
rithm, propagation of disparities between scanlines, inten-
sity gradient information, processing occlusions happens in
the postprocessing. To make all this happen, a lot of post-
processing parameters are used without rules to tune them.

Finally, a comparison is made with the algorithm of S.
Roy and I. Cox [8]. A complete 2D optimisationproblem
is solved, making use of mincut-maxflow problem. The al-
gorithm offers very high quality disparity maps. The disad-
vantage is its complexity ������Æ������� �����Æ�������.

6

7. Results
A first testcase includes a set of images of the ’Arenbergkas-
teel’. These two images (792x635) can be found at the top
of Figure 9. It is a good example to show the accuracy of
the disparitymap. There are lots of depth discontinuities and
lots of details. The hierarchical algorithm achieves sharp
edges (roof, crenels, ...) and a good overall quality. The
total runtime is 16 seconds. 4

Figure 9: Images from the ’Arenbergkasteel’ Original left
and right image are shown at the top. The disparity map is
presented at the bottom.

The second example is provided by ESA (European
Space Agency). Figure 10 shows images of Mars’ sur-
face. This are large images (1404x1092) with large dispar-
ity ranges (500 and more). This was the actual reason to
search for a new algorithm which resulted in the hierarchi-
cal algorithm, since most existing algorithms failed. This is
a good example to illustrate the memory needs and speed of
our algorithm. The images were downsampled 4 times, and
the total processing time did not exceed 70 seconds. The
amount of memory used was 202 kbyte. Because of imper-
fections of the cameras, yielding an intensity profile in the
images, the more expensive NCC dissimilarity function is
used.

The next image is provided by the University of Tsukuba

4The tests were performed on an intel PentiumIII workstation 700MHz

Figure 10: Mars images. Original left and right image are
shown at the top. The disparity map is presented in the mid-
dle. At the bottom, a stone at Mars’ surface and the corre-
sponding part of the disparity map is shown.

as a dataset for testing accuracy. The depth map ground
truth is also given in Figure 11. A lot of details, includ-
ing the camera in the background, are visible in the dispari-
tymap. The images (384x288) are not downsampled during
the execution, that took 4 seconds of processing time.

The last image is provided by the Microsoft Research,
again as a dataset for testing accuracy. The depth map
ground truth is also given in Figure 12. The black spots

7

Figure 11: Tsukuba dataset for testing accuracy. Original
left and right image are shown at the top. The disparity map
is presented in the middle. The ground truth can be found
at the bottom.

in the disparitymap represent occlusions. In previous im-
ages, they were interpolated. Because of the large occlu-
sion present in the image, this is not done here. The im-
ages (284x216) are downsampled only once during execu-
tion that took only 2 seconds of processing time.

Figure 12: Slanted dataset for testing accuracy. Original left
and right image are shown at the top. The disparity map is
presented in the middle. The ground truth can be found at
the bottom.

8. Conclusion

The algorithm presented in this paper is based on the hi-
erachical solution of the stereo correspondence problem,
using subsampling. The complexity is ������, which
is independent of the disparityrange and lower than other
classical stereo algorithms which have a complexity of
������Æ�������. A careful implementation yields mini-
mum memory usage, so that the computation fits in the

8

cache of most modern processors. The disparity maps show
a high quality, thanks to a new and more complex cost func-
tion. This cost function is completely decoupled from the
optimisation problem, so it is easy to switch cost functions
to make a tradeoff between quality and execution time.

References

[1] U. Dhond and J. Aggarwal, Structure from Stereo -
A Review, IEEE Trans. Syst., Man and Cybern. 19,
1489-1510, 1989.

[2] Y. Ohta and T. Kanade, Stereo by Intra- and Inter-
scanline Search Using Dynamic Programming, IEEE
Trans. on Pattern Analysis and Machine Intelligence
7(2), 139-154, 1985.

[3] M. Okutomi and T. Kanade, A Locally Adaptive Win-
dow for Signal Processing, International Journal of
Computer Vision, 7, 143-162, 1992.

[4] Stan Birchfield, Depth and Motion Discontinuities,
PhD thesis, Dept. of Electrical Engineering, Stanford
University, jun 1999.

[5] Stan Birchfield and Carlo Tomasi, Depth and Motion
Discontinuities, International Journal of Computer Vi-
sion, Vol. 35, No. 3, pg 269-293, dec 1999.

[6] Stan Birchfield and Carlo Tomasi, A Pixel Dissimi-
larity Measure that is Insensitive to Image Sampling,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 20, No. 4, pg 401-406, apr 1998.

[7] Cox, I., Hingorani, S., Rao, S., 1996, A Maximum
Likelihood Stereo Algorithm, Computer Vision and
Image Understanding, Vol. 63, No. 3.

[8] S. Roy, I. Cox, 1998, A Maximum-Flow Formula-
tion of the N-camera Stereo Correspondence Problem,
Proceedings of the international Conference on Com-
puter Vision, Bombay, India, 1998

[9] Falkenhagen, L., 1997, Hierarchical Block-Based
Disparity Estimation Considering Neighbourhood
Constraints. Proceedings International Workshop on
SNHC and 3D Imaging, Rhodes, Greece, pp.115-122.

[10] L. Falkenhagen, 1997, Depth Estimation from Stereo-
scopic Image Pairs assuming Piecwise continuous sur-
faces in: Paker, Y. and Wilbur, S. (Ed.), Image Pro-
cessing for Broadcast and Video Production, ISBN
3-540-19947-0, pp. 115-127, Springer Great Britain,
1994.

[11] R. Hartley, R. Gupta, and T. Chang. “Stereo from un-
calibrated cameras”. Proc. Conference Computer Vi-
sion and Pattern Recognition, pp. 761-764, 1992.

[12] Koch, R., 1996, Automatische Oberflachenmodel-
lierung starrer dreidimensionaler Objekte aus stere-
oskopischen Rundum-Ansichten, PhD thesis, Uni-
versity of Hannover, Germany, also published as
Fortschritte-Berichte VDI, Reihe 10, Nr.499, VDI
Verlag, 1997.

[13] S.S. Intille and A.F. Bobick. Disparity-Space Images
and Large Occlusion Stereo. Proc. Third European
Conference Computer Vision, pp. 179-186, 1994.

9

