MPI-ML: A High-Performance Sparse Communication Layer for Machine Learning

Cedric Renggli
ETH Zurich
Dan Alistarh
IST Austria
Torsten Hoefler
ETH Zurich

Communication in Machine Learning Workloads

Data-parallel Machine Learning
- **Data shared among multiple compute nodes**
- **Set of parameters (model) is consistent across machines**
- **Communication and Synchronization are often bottlenecks**

Example:

- **Challenge:** Reduce communication and synchronization overheads
- **Idea:** Exploit robustness to asynchrony and quantization noise

MPI-ML: An Overview

- **Main Idea**
 - Efficient support for sparse communication
 - MPI-like operation semantics on top of sparse streams
 - Allow non-blocking operations and quantized communication

- **Efficient Sparse Collectives: the Static Case**
 - **Setting:** In this case, the size of the resulting data remains below the threshold d, where this sparse representation is still efficient.
 - **Case 1:** Latency-Dominated
 - Use recursive doubling in the 4th round, nodes that are distance 2^d apart exchange all data.
 - Runtime: $\alpha g P + \frac{d}{2} + \beta P$
 - **Case 2:** Bandwidth-Dominated
 - Split the dimension into P partitions, and then perform a sparse AllGather:
 - Runtime: $\alpha g P + \frac{d}{2} + \beta P$

- **Efficient Sparse Collectives: General Solution**
 - **The Dynamic Case**
 - The result becomes dense during addition
 - We use the solution from the Bandwidth-dominated case
 - Communicate data in sparse format, then broadcasts dense
 - **Quantized Communication**
 - We implement QSGD quantization [Alistarh et al.]
 - Allows sent values to be rounded to arbitrary precision
 - Provable convergence, and provides additional compression
 - **Non-blocking collectives**
 - Threads can proceed even if the collective has not completed
 - Allows us to overlap communication and computation

Performance

Target Architectures:
- **Supercomputing:** CSCS Piz Daint (3rd worldwide, 1st in Europe)
- **Cloud computing:** Amazon EC2 and research cluster

Target Applications:
- **Large-scale distributed optimization** (SGD and SCF for regression)
- **Training large neural networks** (CNNs and RNNs)

Many settings have naturally-sparse communication!
- **Linear regression via Stochastic Gradient Descent:**
 - **Stochastic gradient:**
 - $\hat{w} (x) = a_i (a^T x_i - b_i)$
 - If samples a_i are sparse, the update is sparse!
 - Occurs in many real-world datasets.
- **Top-k SGD [Dryden et al., Aji & Heafield]**
 - **Idea:** Only communicate some top percentage of the gradient
 - **Save the rest locally**
 - **Accuracy on CIFAR-10:**

Figure 4: Data density vs. reduction time for various algorithms, dimensions $S = 1000$ and $P = 5$ nodes.

Figure 5: MNIST convergence for various algorithms.

Table 1: Speedup (SSAR) using MPI-ML. The bar represents average time in minutes for a full dataset pass, and its communication part of bracket. Speedup ratios show MPI-ML above and with communication timing in brackets.

Table 2: System performance using MPI-ML. The bar represents average time in minutes for a full dataset pass, and its communication part of bracket. Speedup ratios show MPI-ML above and with communication timing in brackets.