
Asymmetric Unification: A New Unification
Paradigm for Cryptographic Protocol Analysis?

Serdar Erbatur1, Santiago Escobar2, Deepak Kapur3, Zhiqiang Liu4,
Christopher Lynch4, Catherine Meadows5, José Meseguer6, Paliath

Narendran1, Sonia Santiago2, and Ralf Sasse7

1 University at Albany-SUNY, Albany, NY, USA
se@cs.albany.edu, dran@cs.albany.edu

2 DSIC-ELP, Universitat Politècnica de València, Spain
sescobar@dsic.upv.es,ssantiago@dsic.upv.es

3 University of New Mexico, Albuquerque, NM, USA
kapur@cs.unm.edu

4 Clarkson University, Potsdam, NY, USA
liuzh@clarkson.edu, clynch@clarkson.edu

5 Naval Research Laboratory, Washington DC, USA
meadows@itd.nrl.navy.mil

6 University of Illinois at Urbana-Champaign, USA
meseguer@illinois.edu

7 Institute of Information Security, ETH Zurich, Switzerland
ralf.sasse@inf.ethz.ch

Abstract. We present a new paradigm for unification arising out of a
technique commonly used in cryptographic protocol analysis tools that
employ unification modulo equational theories. This paradigm relies on:
(i) a decomposition of an equational theory into (R,E) where R is con-
fluent, terminating, and coherent modulo E, and (ii) on reducing unifi-
cation problems to a set of problems s =? t under the constraint that
t remains R/E-irreducible. We call this unification method asymmetric
unification because of the asymmetric irreducibility constraint. We first
present the generic asymmetric unification, and then outline an approach
for converting conventional unification algorithms to asymmetric ones,
demonstrating it for exclusive-or with uninterpreted function symbols.
We demonstrate how asymmetric unification can improve the perfor-
mance of cryptographic protocol analysis tools by running the algorithm
on a set of benchmark problems. We also give results on the complexity
and decidability of asymmetric unification.

1 Introduction

The symbolic analysis of cryptographic protocols has been one of the most suc-
cessful applications of model-checking to security. In such an analysis, messages

? Portions of this paper appeared in a 6-page abstract of the same title [7] in the
informal proceedings of UNIF’11.

2 S. Erbatur et al.

are symbolic terms constructed out of function symbols and variables. Message
terms often satisfy some equational properties: e.g. that decryption with a key
cancels out encryption with the same key or that a symbol satisfies exclusive-or
properties. Also, the network is assumed to be under the control of a hostile
intruder who can read and modify all traffic, perform any operation available to
a legitimate principal, and may be in league with a set of corrupted principals,
and thus have access to their keys.

Protocol execution paths are usually computed by unifying messages re-
ceived with messages sent. Since equational properties are usually involved, the
unification must be modulo the equational theory describing those properties.
The following strategy to achieve unification in protocol analysis, which we call
variant-based unification, is used in one form or another by many cryptographic
protocol analysis tools, including ProVerif [3], OFMC [2], Maude-NPA [6] and
Tamarin [14] (see [6] for a detailed comparison). The equational theory is de-
composed into (R,E), where R is a set of sort-decreasing rewrite rules that are
confluent, terminating, and coherent modulo E. Given two terms m1 and m2 to
be unified, complete sets of irreducible variants of m1 and m2 with respect to
(R,E) are computed,8 and each irreducible variant of m1 is E-unified with each
irreducible variant of m2. Any unifier that results in either side of the equation
being reducible using R modulo E is discarded as redundant. If the complete set
of irreducible variants is guaranteed to be finite (that is, (R,E) has the finite
variant property [4]), this gives a finitary unification procedure [8].

Example 1. Let us consider the following equational theory (Σ,E,R) for the
exclusive-or theory, where R consists of the following equations oriented into
rules,9 and E contains the associativity and commutativity (AC) axioms for ⊕:

X ⊕ 0 = X X ⊕X = 0 X ⊕X ⊕ Y = Y

For term t = M ⊕M , (0, id) is the only variant. For term s = X ⊕ Y , the set of
its most general variants is

{ (X ⊕ Y, id),
(Z, {X 7→ 0, Y 7→ Z}), (Z, {X 7→ Z, Y 7→ 0}),
(Z, {X 7→ Z ⊕ U, Y 7→ U}), (Z, {X 7→ U, Y 7→ Z ⊕ U}),
(0, {X 7→ U, Y 7→ U}), (Z1 ⊕ Z2, {X 7→ U ⊕ Z1, Y 7→ U ⊕ Z2})}

since any possible variant of s is an instance of one of the terms according to the
substitution. For term u = X ⊕ n(A, r), the set of its most general variants is

{(X ⊕ n(A, r), id), (Z, {X 7→ n(A, r)⊕ Z}), (0, {X 7→ n(A, r)})}.

8 A set V of R/E-irreducible variants is a complete set of variants of term t with
respect to (R,E) iff for any substitution θ there is a (u, ρ) ∈ V such that the R/E-
canonical form tθ↓R/E of tθ satisfies: tθ↓R/E=E uρ (more in Section 2).

9 Note that the first two equations are not AC-coherent, but adding the third equation
(with variable Y) is sufficient to recover that property (see [17, 5]).

Asymmetric Unification 3

Now, given the unification problem Y ⊕ n(B, r′) = X ⊕ n(A, r) arising in [6]
for a simple protocol, the set of irreducible variants for each side is similar to
the variants shown above for term u and the pairwise AC-unification of them
gives the following substitutions as solutions to the unification problem:

{X 7→ n(B, r′)⊕ Z, Y 7→ n(A, r)⊕ Z}
{X 7→ n(A, r)⊕ Y ⊕ n(B, r′)} {Y 7→ n(B, r′)⊕X ⊕ n(A, r)}
{X 7→ n(A, r), Y 7→ n(B, r′)} {X 7→ n(A, r)⊕ Z, Y 7→ n(B, r′)⊕ Z}

However, there is only one most general unifier for the exclusive-or theory, {X 7→
n(A, r)⊕ Y ⊕ n(B, r′)}.

The use of variant-based unification is motivated by two key features. First,
it is theory-generic and can be applied to many of the theories and combina-
tions of theories that arise in cryptographic protocol analysis. Second, it makes
possible many state space reduction techniques common in cryptographic pro-
tocol analysis tools that require messages to be in irreducible form. This is the
case, for example, when states in which certain subterm patterns appear are dis-
carded. For example, Maude-NPA discards as unreachable any state in which the
intruder learns a term containing a nonce before that nonce is generated. Con-
sider a case, discussed in [6] in which the term learned is of the form n(A, r)⊕X,
where ⊕ satisfies the equational theory of exclusive-or and n(A, r) is a nonce.
If X is instantiated to n(A, r) later in the search, the term reduces to 0, but
variable X may appear in other positions so that the nonce could not have
been generated, making this instantiation impossible; this is represented in our
approach as an irreducibility constraint.

Such a strategy, although it has clear advantages, introduces performance
costs due to the fact that the attempt to unify each pair of generated irreducible
variants can lead to inefficiency, both because of the time it takes to generate all
irreducible variants of both terms and because the size of the most general set
of unifiers may be larger than optimal, as shown in Example 1. The latter also
causes the state space to be larger than expected, since each produced unifier
generally results in the creation of a new state. However, it may be possible to
relax the irreducibility conditions on messages. For example, Maude-NPA only
requires received messages to be in irreducible form. This led to the formula-
tion in [6] of the concept of contextual symbolic reachability analysis in which
irreducible variants, together with associated irreducibility constraints, are com-
puted on only some of the terms appearing in a state. In [6] this was proved sound
and complete with respect to state reachability analysis achieved via equational
unification.

However, contextual symbolic reachability analysis opens up a new prob-
lem: how best to unify two terms, one of which must satisfy an irreducibility
constraint. Indeed, the only instance of an asymmetric unification algorithm we
could find was a modified variant-based unification, called asymmetric variant-
based unification, which is similar to variant-based unification described above
except that no variant is computed for the side with an irreducibility constraint.

4 S. Erbatur et al.

Example 2. Following Example 1, for the asymmetric unification problem
Y ⊕ n(B, r′) = X ⊕ n(A, r) where X ⊕ n(A, r) is irreducible, the solutions com-
puted by asymmetric variant-based unification are:

{X 7→ n(B, r′)⊕ Z, Y 7→ n(A, r)⊕ Z} {Y 7→ n(B, r′)⊕X ⊕ n(A, r)}

However, there is only one most general asymmetric unifier for the exclusive-or
theory: {Y 7→ n(B, r′)⊕X ⊕ n(A, r)}.

This problem, which we call asymmetric unification has, to the best of our knowl-
edge, not been investigated before. Thus we ask the question: Is it possible to find
asymmetric unification algorithms that can be used in cryptographic protocol
analysis and are more efficient than asymmetric variant-based unification?

With this question in mind, we study asymmetric unification as a problem
in its own right. After some preliminaries necessary to understanding the paper
in Section 2, Section 3 gives a formal definition of asymmetric unification and
shows its relation to variant-based unification. Section 4 outlines a general pro-
cedure for converting a symmetric algorithm to an asymmetric one, and applies
it to exclusive-or with uninterpreted function symbols. In Section 5 we study
the complexity and decidability of asymmetric unification, and show there are
theories for which symmetric unification is decidable and asymmetric unification
is undecidable. Section 6 gives some experimental results on an implementation
of this algorithm for asymmetric exclusive-or in Maude-NPA, comparing its per-
formance with the asymmetric variant-based unification, and provides evidence
that variant-based unification is far from optimally efficient but theory-generic.
Section 7 concludes the paper and discusses future work.

2 Preliminaries

We follow the classical notation and terminology from [16] for term rewriting,
and from [13] for rewriting logic and order-sorted notions. We assume an order-
sorted signature Σ = (S,≤, Σ) with poset of sorts (S,≤). We also assume an
S-sorted family X = {Xs}s∈S of disjoint variable sets with each Xs countably
infinite. TΣ(X)s is the set of terms of sort s, and TΣ,s is the set of ground
terms of sort s. We write TΣ(X) and TΣ for the corresponding order-sorted
term algebras. For a term t, Var(t) denotes the set of variables in t. A substitu-
tion σ ∈ Subst(Σ,X) is a sorted mapping from a finite subset of X to TΣ(X).
Substitutions are written as σ = {X1 7→ t1, . . . , Xn 7→ tn} where the domain
of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by terms
t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions are
homomorphically extended to TΣ(X). The application of a substitution σ to
a term t is denoted by tσ. A Σ-equation is an unoriented pair t = t′, where
t, t′ ∈ TΣ(X)s for some sort s ∈ S. An equational theory (Σ,E) is a pair with
Σ an order-sorted signature and E a set of Σ-equations. The E-subsumption
preorder t wE t′ (meaning that t is more general than t′ modulo E) holds be-
tween terms t, t′ ∈ TΣ(X) iff there is a substitution σ such that tσ =E t′; such

Asymmetric Unification 5

a substitution σ is called an E-match from t′ to t. For substitutions σ, ρ and a
set of variables V we define σ =E ρ (over V) if xσ =E xρ for all x ∈ V ; and
σ wE ρ (over V) if there is a substitution η such that (ση)|V =E ρ|V . We say σ
is equivalent to ρ if σ vE ρ and ρ vE σ. An E-unifier for a Σ-equation t = t′

is a substitution σ such that tσ =E t′σ. For Var(t) ∪Var(t′) ⊆W , a set of sub-
stitutions CSUW

E (t = t′) is said to be a complete set of unifiers for the equality
t = t′ modulo E away from W iff: (i) each σ ∈ CSUW

E (t = t′) is an E-unifier of
t = t′; (ii) for any E-unifier ρ of t = t′ there is a σ ∈ CSUW

E (t = t′) such that
σ|W wE ρ|W (i.e., there is a substitution η such that (ση)|W =E ρ|W); and (iii)
for all σ ∈ CSUW

E (t = t′), Dom(σ) ⊆ (Var(t) ∪Var(t′)) and Ran(σ) ∩W = ∅.
A rewrite rule is an oriented pair l → r, where l 6∈ X and l, r ∈ TΣ(X)s

for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R
a set of rewrite rules. The rewriting relation on TΣ(X), written t →R t′ or
t →p,R t′ holds between t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R and
a substitution σ, such that t|p = lσ, and t′ = t[rσ]p. The relation →R/E on
TΣ(X) is =E ;→R; =E . A relation →R,E on TΣ(X) is defined as: t →p,R,E t′

(or just t →R,E t′) iff there is a non-variable position p ∈ PosΣ(t), a rule
l → r in R, and a substitution σ such that t|p =E lσ and t′ = t[rσ]p. The
transitive (resp. transitive and reflexive) closure of→R,E is denoted→+

R,E (resp.
→∗R,E). A term t is called →R,E-irreducible (or just R,E-irreducible) if there
is no term t′ such that t →R,E t′. For →R,E confluent and terminating, the
irreducible version of a term t is denoted by t↓R,E . In order to guarantee the
approximation of→R/E-reducibility by→R,E-reducibility, we require that R is a
set of sort-decreasing rewrite rules that are confluent, terminating, and coherent
modulo E (see [9, 17, 5]). We call (Σ,E,R) a decomposition of an order-sorted
equational theory (Σ,G) if G = R]E and R and E satisfy these four conditions.
Given a decomposition (Σ,E,R) of an equational theory, (t′, θ) is an R,E-
variant [8] (or just a variant) of term t iff tθ↓R,E =E t′ and θ↓R,E =E θ. A
decomposition (Σ,E,R) has the finite variant property [8] (also called a finite
variant decomposition) iff for each Σ-term t, a complete set of its most general
variants is finite.

3 Asymmetric Unification

We give a formal definition of asymmetric unification.

Definition 1 (Asymmetric Unification). Given a decomposition (Σ,E,R)
of an equational theory (Σ,E ∪ R), a substitution σ is an asymmetric R,E-
unifier of a set P of asymmetric equations {t1 =↓ t′1, . . . , tn =↓ t′n} iff for each
asymmetric equation ti =↓ t′i in P , σ is an (E ∪R)-unifier of the equation ti = t′i
and (t′i↓R,E)σ is in R,E-normal form. A set of substitutions Ω is a complete set
of asymmetric R,E-unifiers of P iff: (i) every member of Ω is an asymmetric
R,E-unifier of P , and (ii) for every asymmetric R,E-unifier θ of P there exists
a σ ∈ Ω such that σ wE θ (over V ar(P)).

6 S. Erbatur et al.

In the following, we always assume that in every asymmetric equation t=↓ t′,
t′ is in normal form; otherwise, we can always normalize t′.

Example 3. Consider the asymmetric unification problem Y ⊕ n(B, r′) =↓X ⊕
n(A, r) arising in [6] for a simple protocol demonstrating the usefulness of the
contextual symbolic reachability analysis framework. Then, there is a most gen-
eral ⊕-unifier X 7→ Y ⊕ n(B, r′) ⊕ n(A, r). However, this is not an asymmetric
unifier; but an equivalent ⊕-unifier is Y 7→ X ⊕ n(B, r′)⊕ n(A, r), which is the
singleton most general asymmetric unifier.

For any (E∪R)-unifier θ of P and substitution τ , θτ is also an (E∪R)-unifier
of P . But this is not necessarily the case for asymmetric R,E-unifiers.

Example 4. Consider Example 3 and the most general exclusive-or asymmetric
unifier Y 7→ X ⊕n(B, r′)⊕n(A, r). If we apply the substitution X 7→ n(A, r) to
the above unifier, the resulting substitution is no longer an asymmetric unifier
of the original asymmetric unification problem.

The question now arises of how to produce such asymmetric algorithms that
improve upon the generic variant-based algorithm described above. We discuss
one such approach in the next section.

4 An Asymmetric Unification Algorithm for the Theory
of Exclusive OR with Uninterpreted Function Symbols

There are two metrics to be considered when optimizing asymmetric unification
algorithms for cryptographic protocol analysis. One of course is speed of execu-
tion. The other is the size of the most general set of unifiers. Each such unifier
results in the production of a new state, so minimizing the size of this set helps
to keep the size of the state space down.

One way of minimizing both execution time and mgu size is to convert a
symmetric algorithm that has already been optimized for these features. In that
case, we need to keep unifiers produced by the original algorithm whenever possi-
ble. We outline a general approach and illustrate it for exclusive-or of Example 1
together with uninterpreted function symbols, chosen because it is the simplest
theory appearing in cryptographic protocol analysis that combines both cancel-
lation rules and a non-trivial theory E in the decomposition (Σ,E,R).

Given a decomposition (Σ,E,R), and an asymmetric unification problem
Γ = {t1 =↓ t′1, . . . , tn =↓ t′n}, the key steps of the approach are:

1. First compute a complete finite set S of G-unifiers using a finitary unification
algorithm for G. If S is empty, then there are no asymmetric unifiers.

2. For each such unifier σ from the previous step, check whether every t′iσ is in
R,E-normal form. All such unifiers are retained also as asymmetric unifiers.

3. For a unifier σ such that some t′iσ is not in R,E-normal form, compute an
equivalent equivalent asymmetric unifier if possible.

Asymmetric Unification 7

4. If both of the previous steps fail, this implies that σ or its equivalents cannot
be asymmetric unifiers in their full generality. However, there may be some
instances obtained by instantiating variables in them which are asymmetric
unifiers. A complete set of instances of a given unifier is generated by suitably
instantiating variables. This step may be expensive, so it is employed only
as a last resort (as demonstrated in Table 4 of Section 6 using unification
problems manually chosen to stress this point). For each such instance the
above steps are repeated.

We explain below how steps (1)–(4) yield an asymmetric unification algo-
rithm for exclusive or with uninterpreted symbols (XOR) from a symmetric one.
Variables appearing in Γ are called original variables to distinguish them from
new variables, called support variables by the inference rules. Variable x is said
to be in conflict with a simple term s (i.e., a term that does not have ⊕ as its
outermost symbol) if both x and s appear in some t′i in Γ . The significance of
conflicts is that a substitution of v cannot include s as a subterm, in order to
ensure the irreducibility of the right side of equations in Γ .

We present the algorithm as a collection of inference rules on a triple of sets:

σ‖Υ‖∆
σ′‖Υ ′‖∆′

,

where σ is an XOR unifier of Γ , Υ is a set of constraint pairs in which each
member has the form (v, s), where a variable v is in conflict with s , and ∆ is a
set of disequations of the form s⊕ t 6=? 0, with s and t having the same topmost
uninterpreted function symbol.

A complete set of XOR-unifiers is first generated using an XOR-unification
algorithm. For each XOR unifier σ, the algorithm starts with a triple σ‖∅‖∅.
The algorithm may generate numerous branches, some of which lead to a dead
end because either (i) no inference rule is applicable or (ii) the candidate for
an XOR unifier violates a constraint in the second component or a disequation
in the third component. Different branches can generate equivalent asymmetric
unifiers or asymmetric unifiers which are instances of other asymmetric unifiers.

We use the following notation. The result of applying a substitution θ to
Υ = {(v1, s1), · · · , (vn, sn)} is Υθ = {(vi, siθ ↓)|(vi, si) ∈ Υ}; we will rewrite
(vi, t1⊕ · · ·⊕ tn) to (vi, t1), · · · , (vi, tn). A substitution δ satisfies Υ iff δ satisfies
every constraint pair in Υ , i.e., given a pair (v, s) ∈ Υ , δ satisfies (v, s) iff δ(v)⊕
δ(s) is irreducible using R,E (in this case the rules are the theory of XOR). If δ
does not satisfy Υ , then δ violates Υ . Similarly, δ satisfies ∆ iff δ satisfies every
disequation s⊕ t 6= 0 ∈ ∆, in other words (sδ ⊕ tδ) does not rewrite to 0.

The Inference System

All inference rules below are don’t care nondeterministic rules. They are grouped
as: Splitting, Branching and Instantiation. The algorithm runs in two phases.
In the first phase, the Splitting and Branching rules are applied, attempting
to generate an asymmetric XOR unifier equivalent to the original XOR unifier.

8 S. Erbatur et al.

The Splitting rule is applied as much as possible to (i) move all toplevel origi-
nal variables out of the range of an XOR unifier, while (ii) eliminating conflicts
between original variables and subterms with which they appear in t′is in Γ .
Once it is no longer applicable, an XOR unifier equivalent to the original uni-
fier is constructed such that its range only includes new variables at top levels.
Then, branching rules are repeatedly applied attempting to eliminate conflicts
between support variables with other variables and nonvariable subterms The
Non-Variable Branching rule, which eliminates a conflict between a support
variable and a nonvariable subterm, is repeatedly applied first. This is followed
by (i) the Auxiliary Branching rule and (ii) the Variable Branching rule.
The last two rules may not eliminate any conflicts; however they are helpful
later during the second phase. In this first phase, if any of the branches yields
an asymmetric XOR unifier, the algorithm terminates; it is not necessary to
consider other branches as all asymmetric XOR unifiers from various branches
are equivalent. Checking whether there is an asymmetric unifier equivalent to
an XOR unifier is NP-complete, since monotone 1-in-3 SAT, an NP-complete
problem, can be reduced to it.

If the first phase does not succeed in generating an equivalent asymmetric
XOR unifier, all branches generated from the first phase must be considered in
the second phase. Instantiation rules are now applied to generate instances of
equivalent XOR unifiers. The Decomposition Instantiation rule generates
instances of an XOR unifier so that the rules x⊕ x⊕ y 7→ y and x⊕ x 7→ 0 are
applicable, whereas the Elimination Instantiation rule generates instances by
making support variables 0. It is possible that an XOR unifier generated by the
Elimination Instantiation rule is equivalent to the original XOR unifier (since
it may have been generated by instantiating a support variable to 0 implying
that it was unnecessary to introduce that support variable).

If along a branch, a result of Decomposition Instantiation is not an asym-
metric XOR unifier, the algorithm moves again to the first phase and applies
Splitting, since some of the original variables underneath interpreted function
symbols may get elevated to the top level in substitutions of original variables.
Elimination Instantiation is repeatedly applied only after Decomposition
cannot be applied any further. If the result is not an asymmetric XOR unifier,
then the Branching rules are applied by returning to the first phase (Splitting
is not applicable in this case.

The Splitting Rule

This rule transforms an XOR unifier σ into an equivalent XOR unifier σ′ such
that all the top variables in Range(σ′) are support variables.

[x 7→ y ⊕ S ⊕ T] ∪ σ‖Υ‖∆
([x 7→ y ⊕ S ⊕ T] ∪ σ) ◦ θ‖Υθ‖∆θ

where θ = {y 7→ v ⊕ S} and v is a fresh support variable. The rule is applied
only if (i) x, y ∈ V ars(Γ) and (ii) y /∈ V ars(S).

Asymmetric Unification 9

Even though S and T can be chosen in any way, if x has a conflict at some
simple term s in S ⊕ T , then for efficiency in our implementation, we will put s
into S, unless y ∈ V ars(s). After Splitting there will be no top level original
variables in the range of σ. So from now on, we assume that all the top variables
which appear in the range of σ are support variables.

The Branching Rules

The main objective in applying the two branching rules is to try to transform
an XOR unifier into an equivalent one without conflicts.

Non-Variable Branching. This rule considers the case that some original
variable x has a conflict at some non-variable simple term s.

σ‖Υ‖∆
σ ◦ θ‖(Υ [v′/v] ∪ (v′, s))θ‖∆θ

∨
σ‖Υ ∪ {(v, s)}‖∆θ

where there exists an assignment [x 7→ v ⊕ s⊕ S] ∈ σ and θ = [v 7→ v′ ⊕ s] with
v′ being a fresh support variable, under the conditions that x has a conflict at a
simple nonvariable terms s in Γ where (i) v /∈ V ars(s) and (ii) (v, s) /∈ Υ .

Above, Υ [v′/v] means: replace all occurrences of the variable v in the first
component of every pair in Υ by the variable v′. The first branch is used when
the conflict between x and s is successfully resolved using v by introducing a new
support variable v′; the second branch is used when that is not possible, thus
leading to an additional constraint (v, s) implying that v and s are in conflict.

Auxiliary Branching. This rule is applied when an original variable conflict
with another original variable in Γ and their substitutions in an XOR unifier
share a common part.

σ‖Υ‖∆
σ ◦ θ‖(Υ [v′/v] ∪ (v′, s))θ‖∆θ

∨
σ‖Υ ∪ {(v, s)}‖∆

where θ = {v 7→ v′ ⊕ s} with v′ being a fresh support variable, and there exist
two assignments [x 7→ v ⊕ s ⊕ S, y 7→ v ⊕ S′] in σ. This rule is applied only if
(i) x, y are in conflict in Γ , (ii) s is a simple non-variable term and v /∈ V ars(s)
and (iii) (v, s) /∈ Υ .

The additional simple nonvariable term s in the substitution for x in an
XOR unifier is used to possibly eliminate the conflict with a new variable v′,
which stands for the common shared part of x and y. The reader will notice that
unlike the Non-Variable Branching rule, both branches after this rule still
have conflicts in the substitutions of x and y which are in conflict in Γ . So this
rule does not solve the conflict directly; it is preparing for the instantiation part.

10 S. Erbatur et al.

Variable Branching. This rule is similar to the Auxiliary Branching rule
and is applied when two original variables x and y have a conflict in Γ and
share a common support variable v1 in their substitutions in an XOR unifier.
The key difference from the Auxiliary Branching rule is that instead of the
substitution for x having a simple nonvariable term that is not in conflict with
v1, it has another support variable v2. The common support variable v1 is then
split into two parts: the common part of x and y, represented by v12, and the
remaining parts of x and y, represented by v′1 and v′2, respectively.

σ‖Υ‖∆
σ ◦ θ‖Υ ′θ‖∆θ

∨
σ‖Υ ∪ {(v1, v2)}‖∆

where σ includes [x 7→ v1 ⊕ v2 ⊕ S, y 7→ v1 ⊕ S′], θ = [v1 7→ v12 ⊕ v′1, v2 7→
v12⊕v′2], v12, v

′
1 and v′2 are fresh support variables, and Υ ′ = (Υ [v12/v1)[v12/v2]∪

Υ [v′1/v1]∪Υ [v′2/v2]∪{(v12, v′1), (v12, v
′
2), (v′1, v

′
2), (v′1, v12), (v′2, v12), (v′2, v

′
1)}. This

rule is applied only if (i) x and y have a conflict in Γ and (ii) (v1, v2) /∈ Υ .
The first branch is the case when v1 and v2 have a common part, whereas

the second branch is the case when v1 and v2 have nothing in common.

Instantiation Rules

The following instantiation rules are used for solving conflicts by instantiating
support variables based on the equations x+ x→ 0 and x+ 0→ x

Decomposition Instantiation. This rule is used to solve the case that some
original variable x has a conflict with a simple nonvariable term t.

σ‖Υ‖∆
σ ◦ θ1‖Υθ1‖∆θ1

∨
· · ·

∨
‖σ ◦ θn‖Υθn‖∆θn

∨
σ‖Υ‖∆′′

where there exists an assignment [x 7→ s⊕t⊕S] in σ, x has a conflict with a simple
nonvariable subterm s in Γ and s and t have the same topmost uninterpreted

symbol; {θ1, · · · , θn} is a complete set of XOR unifiers of s
?
= t and ∆′′ =

∆ ∪ {s⊕ t 6=? 0}.

Elimination Instantiation. This rule is used to solve the case that some
original variable x has a conflict at some support variable v.

[x 7→ v ⊕ S] ∪ σ‖Υ‖∆
([x 7→ S] ∪ σ) ◦ θ‖Υθ‖∆θ

where θ = {v 7→ 0}, x and y are in conflict in Γ for some y. The rule is applied
only if yσ = v ⊕ S′ with S′ having at least one subterm.

Because v maps to 0, all pairs (v, s) in Υ will be removed from Υ .

Theorem 1. The asymmetric unification algorithm described above is sound,
terminating, and complete.

Proof. A sketch of the proof of soundness, termination, and completeness is given
in Appendix A. A complete proof is given in [11].

Asymmetric Unification 11

5 Complexity and Decidability of Asymmetric Unification

It is easy to see that asymmetric R,E-unification is at least as hard as E ∪ R-
unification. However, nothing can be said about its asymmetric unifiers of a
problem from its set of unifiers. The unification problem could have a nonempty
set of unifiers, whereas the asymmetric unification problem need not have any
asymmetric unifier. Or, the unification problem could have a single most general
unifier, whereas the asymmetric unification problem has exponentially many
solutions, as illustrated using the following asymmetric unification problem:

x1 ⊕ x2 ⊕ . . .⊕ xn =↓ a1 ⊕ . . .⊕ ak, x1 ⊕ x2 =↓ x1 ⊕ x2, . . . x1 ⊕ xm =↓ x1 ⊕ xm.

We show that there exist theories for which unification is decidable and asym-
metric unification is undecidable. These results are obtained by using a restricted
version of the Modified Post Correspondence Problem (MPCP)10. First, we de-
fine the theory (Σ,Rµ) based on the MPCP version here and prove that unifica-
tion modulo Rµ (and hence asymmetric unification modulo Rµ) is undecidable
by a reduction from MPCP. Moreover, matching modulo Rµ is shown to be de-
cidable and finitary. We use these facts to extend (Σ,Rµ) to a theory for which
unification is decidable but asymmetric unification is not.

Let Ω = {a, b}, and let P = {(αi, βi) | i = 1, . . . , n} ⊆ Ω+ × Ω+ be a finite
set of pairs of non-empty strings over Σ. Then consider the following restricted
version of the Modified Post Correspondence Problem (MPCP):

Instance: A non-empty string α ∈ Ω+.
Question: Does there exist a sequence of indices i1, . . . , ik ∈ {1, . . . , n} such
that αi1αi2 . . . αikα = βi1βi2 . . . βik?

We constructRµ from this problem as follows. We start by defining the signature
of Rµ as Ω′ = Ω′1 ∪ Ω′3 where Ω′1 = {a, b, 1, . . . , n} and Ω′3 = {f}. Thus Ω′ has
n+ 2 unary function symbols and one ternary function symbol. Additionally, we
convert strings in the MPCP instance to terms as usual. For any string w ∈ Ω∗,
let w̃(x) denote the term formed by treating a and b as unary function symbols
and the concatenation operator as function composition; in other words,

λ̃(x) = x, ãu(x) = a(ũ(x)), b̃u(x) = b(ũ(x)).

For each pair (αi, βi) of the MPCP we create a rule

f(x, i(y), z)→ f(α̃i(x), y, β̃i(z))

Let Rµ be the set of all such rules, and let Σ be the set of symbols involved
in creating them. This system is confluent and terminating: we observe that Rµ
is left-linear and has no critical pairs, hence is orthogonal. Thus the confluence
of the system follows. In addition it is easy to show that Rµ is terminating,
since each application of rules of Rµ decreases the number of occurrences of a
symbol j ∈ {1, . . . , n} in a term. Finally, (Σ, ∅,Rµ) is trivially sort-decreasing
and coherent, since all symbols have the same sort, and E is empty.

10 Both PCP and MPCP are known to be undecidable.

12 S. Erbatur et al.

Lemma 2 Matching modulo Rµ is decidable and finitary.

Proof. See Appendix B.

Lemma 3 Let c be an arbitrary constant. The following unification problem has
a solution if and only if the instance of the MPCP problem has a solution.

f(α(c), V, c) =?
Rµ f(X, c, X)

Proof. See Appendix B.

We now extend Rµ by adding a special constant ⊥ (annihilator) such that,
if it occurs in a term t, then t reduces to ⊥. That is, we add the rules

a(⊥)→ ⊥, b(⊥)→ ⊥, f(x, y, ⊥)→ ⊥, f(x, ⊥, y)→ ⊥,

f(⊥, x, y)→ ⊥, and i(⊥) → ⊥, i ∈ {1, . . . , n}
Let R⊥ be the set of those new rules. Then we denote R = Rµ ∪R⊥ the system
extended by annihilator rules. Note that R is convergent as well.

Since equations where both sides contain variables can be trivially solved by
setting the variables to ⊥, we can show that

Theorem 4. Unification modulo R is decidable.

Proof. See Appendix B.

Theorem 5. Asymmetric unification modulo R is undecidable.

Proof. The key idea is that the problem f(α(c), V, c) =↓
?
R f(X, c, X) has a

solution if and only if f(α(c), V, c) and f(X, c, X) are unifiable modulo Rµ.
The details are given in Appendix B.

6 Experiments with Unification Problems Arising in
Protocol Analysis

We implemented a variant-based algorithm for XOR and an algorithm produced
by applying the procedure outlined in Section 4 to the special-purpose XOR al-
gorithm of [10] in Maude-NPA and experimentally compared their performance.
We have run the experiments presented in this Section in an Intel Xeon machine
with 4 cores and 24GB of memory, using Maude 2.7, which includes a built-in
implementation of the variant generation.

Tables 1, 2 and 3 gather the results of unification problems from the follow-
ing protocols: (i) the running protocol example of [6], referred as ESORICS12,
(ii) the Wired Equivalent Privacy Protocol (WEPP) of [1], and (iii) the TMN
protocol of [15, 12], respectively. Table 4 gathers the results of some more com-
plex problems manually defined by the authors to stress the algorithms. Here
each unification problem combines several subproblems, shown below the table.
The ESORICS12, WEPP and TMN protocols were used in the experiments per-
formed in [6], in order to compare the contextual symbolic reachability approach

Asymmetric Unification 13

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
NS1 ⊕NS2 =↓NS3 ⊕NA 153 12 153 1 0 91
NS1 ⊕NA =↓NS2 ⊕NS3 137 5 121 1 11 80

NS1 ⊕NS2 =↓NS3 ⊕NS4 ⊕NS5 286 54 116 1 59 98
NS1 ⊕NS2 =↓NS3 ⊕NS4 ⊕NA 159 36 115 1 27 97

NS1 ⊕NS2 =↓NA 127 4 114 1 10 75
NS1 ⊕NS2 =↓ null 128 1 105 1 17 0

NS1 ⊕NS2 =↓ null⊕NS3 130 7 105 1 20 85

Table 1. Unification Problems in ESORICS12 protocol.

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
M1 ⊕M2 =↓M3 ⊕ pair(V1,M4) 51 12 44 1 13 91

pair(V, rc4(V1, kAB)⊕ ([NA, c(NA)]))
=↓ pair(V1,M1) 30 1 29 1 3 0

M1 ⊕M2 =↓M3 ⊕ V1 33 12 32 1 3 91
M1 ⊕M2 =↓M3 ⊕ ([N1, c(N2)]) 34 12 30 1 11 91

M1 ⊕M2 =↓M3 ⊕ pair(V1, pair(V2,M4)) 36 12 30 1 16 91

Table 2. Unification Problems in WEPP protocol.

presented in that paper with other approaches. However, the experiments pre-
sented in this Section are more focused on concrete unification problems that
occur during the analysis of these protocols and the efficiency of asymmetric
unification algorithms when solving them in terms of number of unifiers and
execution time.

In each table the first and second columns show, respectively, the execution
time (in milliseconds) and the number of unifiers obtained using the asymmetric
variant-based unification algorithm. The third and fourth columns show, respec-
tively, the execution time (in milliseconds) and the number of unifiers obtained
using the special-purpose asymmetric unification algorithm for exclusive-or. Fi-
nally, the two last columns present a percentage that reflects the performance
improvement of the special-purpose asymmetric unification algorithm with re-
spect to the asymmetric variant-based algorithm in terms of execution time and
number of unifiers obtained, respectively.

On the average the special-purpose asymmetric unification algorithm is about
8% faster than the variant-based one, and generates about 71% fewer unifiers.
Note, however, that in many cases the improvement in the number of unifiers is
more than 90%. Moreover the asymmetric variant-based unification algorithm
does not provide a minimal set of unifiers, whereas the special-purpose asymmet-
ric algorithm does in all our examples. Indeed, all the asymmetric unification
problems extracted from protocols have a singleton most general asymmetric
unifier, as shown in Tables 1, 2, and 3. However, as shown in Table 4, the
special-purpose algorithm can sometimes be slower than the variant-based one,
even when it generates a smaller most general set of asymmetric unifiers. The
reason is that the post-processing step of the algorithm explained in Section 4
in which appropriate asymmetric unifiers are only instances of the computed
unifiers is sometimes very expensive.

14 S. Erbatur et al.

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
M1 ⊕M2 =↓M3 ⊕M4 115 18 105 1 8 94

M1 ⊕M2 =↓M3 ⊕M4 ⊕M5 5749 1 74 1 98 0
M1 ⊕M2 =↓M3 ⊕ pair(M4,M5) 71 12 71 1 0 91
pair(M1,M2)=↓ pair(M3,M4) 65 1 70 1 -1 0

M1 ⊕M2 =↓ pair(M3,M4) 67 4 71 1 0 91
M1 ⊕M2 =↓ null⊕M3 66 7 70 1 -6 85

Table 3. Unification Problems in TMN protocol.

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
SP4 ∧ SP1 ∧ SP2 422 4 68 3 83 25
SP5 ∧ SP1 ∧ SP2 408 24 131 7 67 70
SP6 ∧ SP1 ∧ SP2 416 100 491 15 -18 85
SP7 ∧ SP1 ∧ SP2 454 360 3732 31 -722 91

SP8 ∧ SP1 ∧ SP2 ∧ SP3 151387 3 47 1 99 66
SP9 ∧ SP1 ∧ SP2 ∧ SP3 153913 33 80 3 99 66
SP10 ∧ SP1 ∧ SP2 ∧ SP3 154137 201 157 7 99 96
SP11 ∧ SP1 ∧ SP2 ∧ SP3 154534 1053 349 15 99 98
SP12 ∧ SP1 ∧ SP2 ∧ SP3 160114 5073 829 31 99 99

Table 4. Other Unification Problems

SP1 = M1 ⊕M2 =↓M1 ⊕M2

SP2 = M1 ⊕M3 =↓M1 ⊕M3

SP3 = M1 ⊕M4 =↓M1 ⊕M4

SP4 = M1 ⊕M2 ⊕M3 =↓ a⊕ b
SP5 = M1 ⊕M2 ⊕M3 =↓ a⊕ b⊕ c
SP6 = M1 ⊕M2 ⊕M3 =↓ a⊕ b⊕ c⊕ d

SP7 = M1 ⊕M2 ⊕M3 =↓ a⊕ b⊕ c⊕ d⊕ e
SP8 = M1 ⊕M2 ⊕M3 ⊕M4 =↓ a
SP9 = M1 ⊕M2 ⊕M3 ⊕M4 =↓ a⊕ b
SP10 = M1 ⊕M2 ⊕M3 ⊕M4 =↓ a⊕ b⊕ c
SP11 = M1 ⊕M2 ⊕M3 ⊕M4 =↓ a⊕ b⊕ c⊕ d
SP12 = M1⊕M2⊕M3⊕M4 =↓ a⊕ b⊕ c⊕d⊕ e

7 Conclusions and Future Work

We have shown how asymmetric unification arises in a natural way when analyz-
ing cryptographic protocols. We have investigated the complexity and decidabil-
ity of the problem and shown that variant-based unification can be adapted to
obtain a theory-generic asymmetric unification algorithm. We have also outlined
an approach for converting symmetric algorithms to asymmetric ones and ap-
plied it to an exclusive-or algorithm. Our experimental results are encouraging,
not only for increasing speed but for reducing the number of unifiers.

We plan to refine our procedures for converting algorithms by applying them
to other theories of interest to cryptographic protocol analysis. We conjecture
that our method for converting symmetric algorithms to asymmetric ones can
be developed into an algorithm for certain classes of unification algorithms and
will investigate this further. We will also investigate combining asymmetric al-
gorithms, since combined theories are a common occurrence in cryptographic
protocols.Variant-based narrowing lends itself relatively easily to such combina-
tion. Special-purpose asymmetric unification algorithms will not be as easy to
combine, but we have been investigating combination techniques that take ad-
vantage of special properties of the theories of interest to cryptographic protocol
analysis and plan to apply them in the asymmetric setting.

Asymmetric Unification 15

References

1. IEEE 802.11 Local and Metropolitan Area Networks: Wireless LAN Medium Access
Control (MAC) and Physical (PHY) Specifications. 1999.

2. D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker for secu-
rity protocol analysis. In In Proceedings of Esorics’03, LNCS 2808, pp. 253–270.
Springer, 2003.

3. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
CSFW, pp. 82–96. IEEE Computer Society, 2001.

4. H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid of
some algebraic properties. In RTA 2005, LNCS vol. 3467, pp. 294–307. Springer,
2005.

5. F. Durán and J. Meseguer. A Maude coherence checker tool for conditional order-
sorted rewrite theories. In WRLA, LNCS vol. 6831, pp. 86–103. Springer, 2010.

6. S. Erbatur, S. Escobar, D. Kapur, A. Liu, C. Lynch, C. Meadows, J. Meseguer,
P. Narendran, S. Santiago, and R. Sasse. Effective symbolic protocol analysis via
equational irreducibility conditions. In Proc. ESORICS 2012, LNCS vol. 7459, pp.
73–90. Springer, 2012.

7. S. Erbatur, S. Escobar, D. Kapur, Z. Liu, C. Lynch, C. Meadows, J.
Meseguer, P. Narendran, and R. Sasse. Asymmetric unification: A new uni-
fication paradigm for cryptographic protocol analysis. In UNIF 2011, 2011.
https://sites.google.com/a/cs.uni.wroc.pl/unif-2011/program.

8. S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal
variant termination. J. Log. Algebr. Program., 81(7-8):898–928, 2012.

9. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM J. Comput., 15(4):1155–1194, 1986.

10. Z. Liu and C. Lynch. Efficient general unification for XOR with homomorphism.
In CADE 2011, pp. 407-421, 2011.

11. Z. Liu. Dealing Efficiently with Exclusive OR, Abelian Groups and Homomor-
phism in Cryptographic Protocol Analysis. PhD thesis, Clarkson University, 2012.
http://people.clarkson.edu/ clynch/papers/Dissertation of Zhiqiang Liu.pdf.

12. G. Lowe and A.W.R.. Roscoe. Using CSP to detect errors in the TMN protocol.
IEEE Transactions on Software Engineering, 23:659–669, 1997.

13. J. Meseguer. Conditional rewriting logic as a united model of concurrency. Theor.
Comput. Sci., 96(1):73–155, 1992.

14. B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin. Automated analysis
of Diffie-Hellman protocols and advanced security properties. In Proc. CSF 2012,
pp. 78–94. IEEE, 2012.

15. M. Tatebayashi, N. Matsuzaki, and D. Newman. Key distribution protocol for
digital mobile communication systems. In Proc. CRYPTO’89, LNCS vol. 435, pp.
324–334. Springer, 1990.

16. TeReSe, editor. Term Rewriting Systems. Cambridge University Press, 2003.
17. P. Viry. Equational rules for rewriting logic. Theor. Comp. Sci., 285(2):487–517,

2002.

A Sketch of Proof of Soundness, Termination, and
Completeness of Asymmetric Exclusive-Or Algorithm

The soundness of the algorithm is easy to establish since we need to show that if
an inference rule generates an asymmetric XOR unifier, then that unifier is either

16 S. Erbatur et al.

equivalent to an XOR unifier or an instance of an XOR unifier. Termination and
completeness are nontrivial to prove; detailed proofs are given in [11]. Below we
give an informal overview of the arguments.

For termination, it must be proved that the algorithm does not go into cycles
as well as does not keep on introducing new variables in the first phase; the
termination of the second phase is easy to establish. The intertwining of two
phases also terminates if it can be proved that throughout the algorithm, only
a bounded number of new variables are introduced by various rules. Only the
Splitting and Branching rules introduce new variables. We thus first prove that
they are applied only finitely often. We then complete the proof of the absence
of cycles by proving that the Instantiation rules are applied only finitely often.

Intuitively, the number of new variables generated is bounded by (i) the
number of all possible subsets of nonvariable subterms in the original problem
and (ii) an original variable sharing exclusively with another original variable,
two original variables, and so on. The substitution for any original variable x
is an XOR of (i) a subset of nonvariable subterms appearing in the original
problem and their instances due to the Decomposition Instantiation Rule, (ii)
original variables with which x has no conflict and (ii) new variables standing
for disjoint subsets of original subterms in the substitution of x different from
substitutions of variables in conflict with x (much like v12, the common part of
x and y, and v′1 and v′2, the parts of x and y that are disjoint from each other in
the Variable Branching rule). New variables also serve as placeholders to allow
for generation of conflict-free instances of an XOR unifier in case that it does
not have an equivalent asymmetric XOR unifier.

Once it is proved that the algorithm only introduces finitely many new vari-
ables (thus implying that the Splitting rule and the three Branching rules are
only applied finitely many times), the proof of termination becomes easier since
it only needs to be made sure that the two instantiation rules cannot be applied
infinitely often. The Elimination Instantiation rule reduces the size of the triple
since variables get instantiated to 0 and then simplified.

The Decomposition Instantiation rule reduces the number of simple terms in
the substitutions for the original variables along the branch due to the unification
of s, t in x 7→ s⊕ t⊕S thus replacing s⊕ t⊕S by θi(S). For the branch in which
the disequation s ⊕ t 6=? 0 is added, the set of instances of the original XOR
unifier being investigated get reduced (the set of all possible instances of an XOR
unifiers which have to be considered for investigating equivalent asymmetric
XOR unifiers is finite since original variables only need to be instantiated by an
XOR of a subset of finitely many nonvariable subterms, variable subterms and
new variables).

The completeness proof is the most nontrivial as we need to show that no
asymmetric xor unifier is dropped by the algorithm. One way to do this check
is to ensure that every inference rule only prunes those instances of an XOR
unifier which are not asymmetric.

The splitting rule does not do any pruning of instances of an XOR unifier;
further, it is only applied to substitute an original variable.

Asymmetric Unification 17

The Non-Variable Branching rule considers two possible cases for generating
an equivalent asymmetric xor unifier based on a variable v and a nonvariable
substerm s appeaaring in the substitution of an original variable x that has a
conflict with s: (i) v cancels s and (ii) v does not cancel s, which leads to the
second branch. Since new variables are introduced, constraint sets are updated
and new constraint sets are appropriately inherited. The Auxiliary Branching
rule is similar to the Non-Variable Branching. The Variable Branching rule also
considers two possible cases for generating an equivalent asymmetric XOR unifier
based on resolving conflicts in the substitutions of two original variables. So no
instances of an XOR unifier are discarded.

As stated above, in the use of the Splitting rule and the three branching
rules, if a branch leads to an asymmetric XOR unifier, then there is no need
to consider any other branches as either they do not produce an equivalent
asymmetric unifier or do not generate a new asymmetric unifier.

Discarding of instances of an XOR unifier can take place only with the in-
stantiation rules. The Decomposition Instantiation rule does not discard any
instances of an xor unifier since the branching is done based on whether two
nonvariable subterms s and t are XOR unifiable or not. The Elimination Instan-
tiation rule discards instances of an XOR unifier by considering only the case
when a new variable is made equal to 0, while not considering the case when that
new variable is not equal to 0, but this is done only if no other way is possible.

B Proofs of Theorems in Section 5

We first prove the following lemma:

Lemma 6 Let R be a convergent term rewriting system. If R−1 is terminating
then every congruence class modulo R is finite.

Proof. Assume that [t]R is infinite and without loss of generality, t is in R-
normal form. Then there are infinitely many t′ which are reducible to t modulo
→R. Thus t reduces to infinitely many t′ through R−1-rewriting. However, since
R−1 is terminating there is no infinite R−1-rewriting sequence starting from
t. Therefore by König’s Lemma, t has only finitely many R−1-successors. This
leads to a contradiction. ut

.

Proof of Lemma 2

Note thatR−1µ is terminating; hence by Lemma 6 for each term s, the congruence
class [s]Rµ is finite. It was shown by Bürkert, Herold and Schmidt-Schauß11 that
if R is a theory where every congruence class is finite then the matching problem
modulo R is decidable and is of matching type finitary. ut

.
11 H-J. Bürckert, A. Herold, and M. Schmidt-Schauß. On Equational Theories, Unifi-

cation, and (Un)Decidability. Journal of Symbolic Computation 8(1/2): 3-49 (1989).

18 S. Erbatur et al.

Proof of Lemma 3

The “if” part is straightforward: assume that αi1αi2 . . . αikα = βi1βi2 . . . βik for
some indices i1, . . . , ik ∈ {1, . . . , n}. Then

τ = {X 7→ βi1βi2 . . . βik(c), V 7→ ikik−1 . . . i1(c)}
is a unifier for the unification problem. Note that we have

αi1αi2 . . . αikα(c) = βi1βi2 . . . βik(c) and thus

f(α(c), τ(V), c) −→∗Rµ f(αi1αi2 . . . αikα(c), c, βi1βi2 . . . βik(c))

≡ f(α(τ(X)), c, τ(X))

Conversely, suppose θ is a solution for the above equation. Then the following
necessarily holds: θ(f(α(c), V, c)) = f(α(c), θ(V), c) −→!

Rµ f(θ(X), c, θ(X)).

Now a solution for the MPCP instance can be obtained from θ(V) as follows.
Each rewrite step reveals an ij ∈ {1, . . . , n} by deleting the top symbol from
θ(V). Otherwise Rµ does not apply to f(α(c), θ(V), c) and hence we conclude
that there exists no sequence of i1, . . . , ik ∈ {1, . . . , n}. Thus by using ij ’s we
form a solution to the MPCP problem. ut

