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Abstract. An equational theory decomposed into a set B of equational
axioms and a set A of rewrite rules has the finite variant (FV) property
in the sense of Comon-Lundh and Delaune iff for each term t there is
a finite set {t1,...,tn} of — A p-normalized instances of ¢ so that any
instance of t normalizes to an instance of some ¢; modulo B. This is a very
useful property for cryptographic protocol analysis, and for solving both
unification and disunification problems. Yet, at present the property has
to be established by hand, giving a separate mathematical proof for each
given theory: no checking algorithms seem to be known. In this paper
we give both a necessary and a sufficient condition for FV from which
we derive, both an algorithm ensuring the sufficient condition, and thus
FV, and another disproving the necessary condition, and thus disproving
FV. These algorithms can check automatically a number of examples and
counterexamples of F'V known in the literature.

1 Introduction

The finite variant (FV) property is a useful property of a rewrite theory R =
(X, B, A) with signature X', rewrite rules A, and equational axioms B introduced
by Comon-Lundh and Delaune in [2]. Very simply, it states the existence of a
finite set of pairs (¢;,0;) for a given term ¢ such that: (i) ¢; is the — A p-normal
form of t6;, and (ii) for any normalized substitution p, the — 4 p-normal form
of tp is, up to B-equivalence, a substitution instance of some t;. Comon-Lundh
and Delaune list several important applications in [2], including formal reasoning
about cryptographic protocol security using constraints [3], and reducing disuni-
fication problems modulo AW B (when rules in A are viewed as equations) to
disunification problems modulo B.

We have studied in detail how, if a rewrite theory R = (X, B, A) is confluent,
terminating, and coherent modulo the axioms B, and has the FV property, one
can define an efficient narrowing strategy, which we call variant narrowing, to
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obtain a finitary unification algorithm modulo A W B if a finitary B-unification
algorithm exists [6]. We agree with Comon-Lundh and Delaune [2] that if an
efficient, dedicated AW B-unification algorithm is known, using the FV property
to generate unifiers is usually much less efficient. But such an efficient, dedicated
algorithm may not be known at all. Furthermore, for common equational axioms
such as AC, it is well-known that narrowing modulo AC' almost never terminates
[2012]. Typically it does not terminate even when R = (X, B, A) has the FV
property; yet, existence of a finite, complete set of narrowing-generated unifiers
is guaranteed by a bound on the depth of the narrowing tree that has to be
explored [6]. Therefore, we view the FV property as the basis of an attractive
method for obtaining finitary unification algorithms in many cases where no
dedicated algorithm is known, and narrowing itself would almost certainly be
nonterminating and therefore would yield an infinitary algorithm.

For all the above reasons: for reasoning about cryptographic protocols, to
solve disunification problems, and, in our view, to solve also unification problems,
it would be very useful to be able to check in an effective way whether a given
rewrite theory R = (X, B, A) has the FV property. This is the main question
that we ask and we provide an answer for in this paper: are there effective
algorithms that can ensure that R = (X, B, A) has, or does not have, the FV
property? Of course an algorithm for checking the F'V property can be different
from one for disproving it; and in general neither of these algorithms may be
able to decide whether or not a given theory has the FV property.

We approach this main goal by stages. In Section [ we give a necessary
and a sufficient condition for F'V. The necessary condition, which we abbreviate
to FVNS is the absence of infinite variant-preserving narrowing sequences. The
sufficient condition is the conjunction of FVNS with a second condition which
we call variant-preservingness (VP). So we have a chain of implications

(FVNS A VP) = FV = FVNS

This chain of implications then provides a useful division of labor for arriving
in Section [5] at the desired checking algorithms, and in Section [6] at the desired
disproving algorithm. Since checking FVNS and VP ensures FV, we need algo-
rithms checking both of these properties. It turns out that, under mild conditions
on B, VP is a decidable property, so we have an algorithm for it. Instead, for
FVNS we have a situation strongly analogous to what happens with the use of
the dependency pairs (DP) method [I] for termination proofs: the DP method is
sound and complete for termination, yet termination is undecidable. The point,
of course, is that one usually cannot compute the exact dependency graph, but
can nevertheless compute an estimated dependency graph and use it in termina-
tion proofs. This analogy is not far-fetched at all, since in fact we were inspired
by the DP-method (in its “modulo” version as developed by Giesl and Kapur
in [7]) to develop a DP-like analysis of the theory R = (X, B, A) from which
we derive our desired algorithm for checking FVNS. Regarding an algorithm for
disproving FV, since FVNS is a necessary condition for FV, it is enough to dis-
prove FVNS. Therefore, in Section [6] we give a simple sufficient condition for the
failure of FVNS that can be effectively checked.



We discuss several examples of theories that have, or fail to have, the FV
property. In particular, we show that for all the examples presented in [2], which
were there each proved or disproved to have the FV property by mathematical
arguments given for each specific theory, our checking and disproving methods
can automatically prove or disprove the FV property. At the end of the paper we
summarize our contributions, and discuss future work and applications, including
applications to the formal analysis of cryptographic protocols modulo equational
properties. All proofs are in Appendix

2 Preliminaries

We follow the classical notation and terminology from [I9] for term rewriting
and from [I3I14] for rewriting logic and order-sorted notions. We assume an
order-sorted signature X with a finite poset of sorts (S, <) and a finite number of
function symbols. We furthermore assume that: (i) each connected component in
the poset ordering has a top sort, and for each s € S we denote by [s] the top sort
in the component of s; and (ii) for each operator declaration f :s3 X ...xs, —'s
in X, there is also a declaration f : [s1] X ... X [sp] — [s]. We assume an S-sorted
family X = {X }ses of disjoint variable sets with each X countably infinite.
Ty (&), is the set of terms of sort s, and 7, ¢ is the set of ground terms of sort
s. We write 75 (X) and 75, for the corresponding term algebras. For a term ¢ we
write Var(t) for the set of all variables in ¢. The set of positions of a term ¢ is
written Pos(t), and the set of non-variable positions Posx (). The root position
of a term is A. The subterm of ¢ at position p is t|, and t[u], is the term ¢
where |, is replaced by u. A substitution o is a sorted mapping from a finite
subset of X, written Dom(o), to Ty (X). The set of variables introduced by o
is Ran(o). The identity substitution is id. Substitutions are homomorphically
extended to 75 (X). The application of a substitution o to a term ¢ is denoted
by to. The restriction of o to a set of variables V is o|y. Composition of two
substitutions is denoted by oo’. We call a substitution o a renaming if there is
another substitution o~! such that UU’1|D0m(U) = 1d.

A Y-equation is an unoriented pair t = t/, where t,t’ € Ty (X), for some
sort s € S. Given X' and a set I of Y-equations such that 7y . # ) for every
sort s, order-sorted equational logic induces a congruence relation =g on terms
t,t' € Ty(X) (see [14]). Throughout this paper we assume that Ty  # 0 for
every sort s. An equational theory (X, E) is a set of Y-equations.

The E-subsumption preorder <g (or < if E is understood) holds between
t,t" € T (X), denoted t <g ¢ (meaning that ¢ is more general than ¢’ modulo
E), if there is a substitution ¢ such that to =g t'; such a substitution o is said
to be an E-match from t to t'. For substitutions o, p and a set of variables V
we define o|ly =g plv if 2o =g xp for all x € V; o|ly <g p|v if there is a
substitution n such that (on)|yv =g p|v.

An E-unifier for a Y-equation ¢t = t’ is a substitution o such that to =g t'o.
For Var(t) U Var(t') C W, a set of substitutions CSUg(t =t') is said to be
a complete set of unifiers of the equation ¢t =g t' away from W if: (i) each



o € CSUg(t =t') is an E-unifier of t =g ¢'; (ii) for any E-unifier p of ¢t =g t
thereisao € CSUg(t = t') such that o|w <g p|lw; (iii) for all o0 € CSUE(t =t'),
Dom(o) C (Var(t)U Var(t')) and Ran(oc)NW = @. An E-unification algorithm is
complete if for any equation t = ' it generates a complete set of F-unifiers. Note
that this set needs not be finite. A unification algorithm is said to be finitary
and complete if it always terminates after generating a finite and complete set
of solutions.

A rewrite rule is an oriented pair [ — 7, where | € X, and I,r € T5(X),
for some sort s € S. An (unconditional) order-sorted rewrite theory is a triple
R = (X, E,R) with X an order-sorted signature, F a set of Y-equations, and
R a set of rewrite rules. The rewriting relation on 7 (X), written ¢ —pg ¢’ or

t Lr ' holds between t and ¢’ iff there exist p € Poss(t), | — 7 € R and a
substitution o, such that t[, = lo, and t’ = t[ro],. The relation — g, on Ty (X)
is =p; —r;=p. Note that —p/p on T;(X) induces a relation — /5 on Ty 5(X)
by [t|e —r/E [t']e iff t —r/p t'. The transitive closure of — /g is denoted by
—>E /B and the transitive and reflexive closure of — g, is denoted by —7 B
We say that a term t is —p/p-irreducible (or just R/E-irreducible) if there is
no term t' such that t —p, g t'.

For substitutions o, p and a set of variables V' we define |y —r/g plv if there
is € V such that xo —r,p zp and for all other y € V' we have yo =g yp. A
substitution o is called R/E-normalized (or normalized) if o is R/E-irreducible
for all z € V. We say a rewrite step ¢ &R/E s is normalized if the substitution
o,st. t =gt and ¢'|, = lo, is R/E-normalized.

We say that the relation — g/ is terminating if there is no infinite sequence
t1 =r/g l2 =Rr/E *** —Rr/E - We say that the relation — g, is confluent if
whenever ¢t =% t" and t —R/E t”, there exists a term ¢"”’ such that ¢’ —R/E "
and ¢ —% p t". An order-sorted rewrite theory R = (X, E, R) is confluent
(resp. terminating) if the relation —p,p is confluent (resp. terminating). In a
confluent, terminating, order-sorted rewrite theory, for each term ¢ € T4 (X),
there is a unique (up to E-equivalence) R/FE-irreducible term ¢’ obtained from
t by rewriting to canonical form, which is denoted by ¢t —', /B t' or t| gk (when

t’ is not relevant).

3 Narrowing and Variants

Since E-congruence classes can be infinite, — p/p-reducibility is undecidable in
general. Therefore, R/ E-rewriting is usually implemented [I1] by R, E-rewriting.
We assume the following properties on R and E:

1. E is regular, i.e., for each t = ¢ in E, we have Var(t) = Var(t'), and sort-
preserving, i.e., for each substitution o, we have to € Ty, (X), if and only if
t'oc € Ty (X),, and all variables in Var(t) have a top sort.

2. E has a finitary and complete unification algorithm.

3. For each t — t' in R we have Var(t') C Var(t).



4. R is sort-decreasing, i.e., for each t — ¢/ in R, each s € S, and each substitu-
tion o, t'c € Ty (X), implies to € Ty (X)..

5. The rewrite rules R are confluent and terminating modulo E, i.e., the relation
—g/E is confluent and terminating.

Definition 1 (Rewriting modulo). [42T18] Let R = (X, E, R) be an order-
sorted rewrite theory satisfying properties (1) -(5). We define the relation — g g
on T (X) byt —g,g t' iff there is a p € Posx(t), | — r in R and substitution
o such that t|, =g lo and t' = t[rol,.

Note that, since E-matching is decidable, —r g is decidable. Notions such as
confluence, termination, irreducible terms, normalized substitution, and normal-
ized rewrite steps are defined in a straightforward manner for — g g. Note that
since R is confluent and terminating (modulo E), the relation HlRy g is decidable,
i.e., it terminates and produces a unique term (up to E-equivalence) for each
initial term ¢, denoted by t|g g. Of course t —pg g t' implies t — /g t', but the
converse need not hold. To prove completeness of —g g w.rt. —p,/p we need
the following additional coherence assumption; we refer the reader to [12l7] for
coherence completion algorithms.

6. —pr g is E-coherent [I8I11], i.e., Vt1,t2,ts we have t; —g g to and t; =g t3
implies 34, 5 such that t; =% p ta, ts =% g ts, and ta =p t5.

Narrowing generalizes rewriting by performing unification at non-variable
positions instead of the usual matching. The essential idea behind narrowing is
to symbolically represent the rewriting relation between terms as a narrowing
relation between more general terms.

Definition 2 (Narrowing modulo). (see, e.g., [I1I15]) Let R = (X, E, R) be
an order-sorted rewrite theory satisfying properties 7@. Let CSUg(u =)
provide a finitary, and complete set of unifiers for any pair of terms u,u’. The
R, E-narrowing relation on T5(X) is defined as t%gR,E t' (or%s or~g4 ifp, R, F
are understood) if there is p € Posx(t), a (possibly renamed) rule | — r in R
s.t. Var(l)N Var(t) =0, and o € CSUg(t|, = 1) such that t' = (t[r]y)o.

In the following, we introduce the notion of variant and finite variant prop-
erty.

Definition 3 (Decomposition). [6] Let (X, E) be an order-sorted equational
theory. We call (A, B) a decomposition of E if E = BWA and (X, B, Z) is an
order-sorted rewrite theory satisfying properties 7@, where rules A are an
oriented version of A.

Ezample 1 (Ezclusive Or). The following equational theory, denoted Rg, is a
presentation of the exclusive or operator together with the cancellation equations
for public key encryption/decryption.



Xe0=X (1) pk(K,sk(K,M))=M (4) Xo(Y®Z)=(X®Y)DZ (6)
XX =0 (2) sk(K,pk(K,M))= M (5) XaY =YX (7)
XeXaeY =Y (3)

This equational theory (X, E) has a decomposition into A containing the ori-
ented version of equations f and B containing the last two associativity
and commutativity equations @f for @. Note that equations f are not
AC-coherent, but adding equation (3] is sufficient to recover that property.

We recall the notions of variant, finite variants, and the finite variant property
proposed by Comon and Delaune in [2].

Definition 4 (Variants). [2] Given a term t and an order-sorted equational
theory E, we say that (t',6) is an FE-variant of t if t0 =g t', where Dom(0) C
Var(t) and Ran(8) N Var(t) = 0.

Definition 5 (Complete set of variants). [2] Let (A, B) be a decomposition
of an order-sorted equational theory (X, E). A complete set of E-variants (up to
renaming) of a term t, denoted Va p(t), is a set S of E-variants of t such that,
for each substitution o, there is a variant (t',p) € S and a substitution 0 such
that: (i) t' is A, B-irreducible, (i) (to)la,p =p t'0, and (iii) (0| a,B)|varq) =B
(PO)| var(t)-

Definition 6 (Finite variant property). [2] Let (A, B) be a decomposition of
an order-sorted equational theory (X, E). Then E, and thus (A, B), has the finite
variant (FV) property if for each term t, there exists a finite and complete set of
E-variants, denoted FV p(t). We will call (A, B) a finite variant decomposition
if (A, B) has the finite variant property.

Comon and Delaune characterize the finite variant property in terms of the
following boundedness property, which is equivalent to FV.

Definition 7 (Boundedness property). [2] Let (A, B) be a decomposition
of an order-sorted equational theory (X, E). (A, B) satisfies the boundedness
property (BP) if for every term ¢ there exists an integer n, denoted by # 4 5(t),
such that for every A, B-normalized substitution o the normal form of to is
reachable by a A, B-rewriting derivation whose length can be bounded by n (thus
independently of o ):

Vt,3n,Vo s.t. t(ola p) ﬂA,B (to)lap
Theorem 1. [2] Let (A, B) be a decomposition of an order-sorted equational

theory (X, E). Then, (A, B) satisfies the boundedness property if and only if
(A, B) is a finite variant decomposition of (X, E).



Obviously, if for a term ¢, the minimal length of a rewrite sequence to the
canonical form of an instance to, with ¢ normalized, cannot be bounded, the
theory does not have the finite variant property. It is easy to see that for the
addition equations 0+Y =Y, and s(X)+Y =s(X +Y), the term ¢t = X + Y,
and the substitution o, = {X — §"(0),Y — Y}, n € N, this is the case, and
therefore, since F'V < BP, the addition theory lacks the finite variant property.

We can effectively compute a complete set of variants in the following form.

Proposition 1 (Computing the Finite Variants). [6] Let (A, B) be a finite
variant decomposition of an order-sorted equational theory (X, E). Lett € T (X)
and #4,8(t) = n. Then, (s,0) € FVa p(t) if and only if there is a narrowing
derivation t ~» ZLB s such that s is — a p-irreducible and o is — A p-normalized.

Ezample 2. The equational theory from Example [1| has the boundedness prop-
erty. Thus, we use Propositionto get the E-variants of t = M @sk(K, pk(K, M)).

Ast —'y 5 0 wehave t«iglA’B 0. Therefore, (0, id) € FVa p(t) and it is the only el-
ement of the complete set of F-variants as no more general
narrowing sequences are possible. For s = X @ sk(K,pk(K,Y)) we get

(i) 5£Z,B XY, (i) s ”"?X.—»Z@U,YHU},A,B Z, (iii) SW?X»—»U,YHZ@U},A,B Z,
(V) s ~Ixvez, yevaz}a5 41 © Z2, and (V) s »ix yy.uy,a,p0 50 (X @
KZd)v (Za{X —ZoUY — U})v (Za{X = UY — Z@U})a (Zl @Z%{X =
U Z1, Y —» U®® Zsy}), and (0,{X — U,Y — U}), are the E-variants. As no
more general narrowing sequences are possible, these make up a complete set
of E-variants. Note that (iv) is an instance of (i) and it is not necessary for a
minimal and complete set of variants.

Ezxample 3. Consider again Example [I] For this theory, narrowing clearly does
not terminate because Z1 © Za2 vz, . x,02], Zo—x,02,},A,8 Z1 ® Z5 and this
can be repeated infinitely often. However, if we always assume that we are in-
terested only in a normalized substitution, which is the case, for any narrowing
sequence obtained in the previous form, there is a one-step rewriting sequence
that provides the same result. That is, given the narrowing sequence

! !/ 1 11
DLz X 07, ZaX1 024}, AB 1D Ly~ (2 X @2 24X 02y },A,B L1 DLs
and its corresponding rewrite sequence
X X/ Z// X XI Z// XI ZI/ XI ZI/ Z// ZII
1A 04 DA DA DLy A A1 DLy ©AL DLy —aB L) DLy

we can also reduce it to the same normal form using only one application of
and the following normalized substitution p = {X — X; & X{,Y — Z{ @ Z}/}.
The trick is that rule allows combining all pairs of canceling terms and thus
gets rid of all of them at once.

Note that it is more efficient to use the variant narrowing strategy defined in [6]
than full narrowing for computing the finite variants of a term.



4 Sufficient and necessary conditions for FV

Deciding whether an equational theory has the finite variant property is a non-
trivial task, since we have to decide whether we can stop generating normalized
substitution instances by narrowing for each term. Intuitively, since the theory is
convergent, we only have to focus on normalized substitutions and, since it has
the boundedness property, we can compute the variants in a bottom-up manner.
Moreover, any rewrite sequence with a normalized substitution will be captured
by a narrowing sequence leading to the same variant (i.e., irreducible term). Our
algorithm for checking that an equational theory has the finite variant property
is based on two notions: (i) a new notion called variant—preservingness (VP)
that ensures that an intuitive bottom-up generation of variants is complete; and
(ii) that there are no infinite sequences when we restrict ourselves to such intu-
itive bottom-up generation of variants (FVNS). In what follows, we show that
(VPANFVNS)= FV = FVNS.

Variant—preservingness (VP) ensures that we can perform an intuitive
bottom—upEI generation of variants. The following notion is useful.

Definition 8 (Variant—pattern). Let R = (X, E, R) be an order-sorted rewrite
theory satisfying properties f@. We call a term f(t1,...,t,) a variant—
pattern if all subterms ti,...,t, are — g g-trreducible. We will say a term t
has a variant—pattern if there is a variant—pattern t’ s.t. t' =g t.

It is worth pointing out that whether a term has a variant—pattern is decid-
able, assuming a finitary and complete F-unification procedure: given a term
t, t has a variant-pattern ¢’ iff there is a symbol f € X with arity k and vari-
ables X1,..., X} of the appropriate top sorts and there is a substitution 6 €
CSUg(t = f(X1,..., X)) such that 0 is normalized, where t' = f(X1,..., X})0.
In the case of a term t rooted by a free symbol, ¢ has a variant—pattern if it is
already a variant—pattern, i.e., every argument of the root symbol must be irre-
ducible. And, in the case of a term ¢ rooted by an AC symbol, we only have to
consider in the previous algorithm the same AC symbol at the root of ¢, instead
of every symbol.

Definition 9 (Variant—preserving). Let R = (X, E, R) be an order-sorted
rewrite theory satisfying properties 7@. We say that the theory R is variant—
preserving (VP) if for any variant-pattern t, eithert is — g g-irreducible or there
s a normalized — g g step at the top position.

Note that a theory can have the finite variant property even if it is not variant-
preserving.

3 Note that this is not the same as innermost narrowing nor innermost narrowing up
to some bound. Consider Examplewhere innermost narrowing does not terminate
for term ¢(f(X), X), since it looks for an innermost narrowing redex each time.
A bottom-up generation of invariants does terminate (see Proposition |1) providing
terms ¢(f(X), X) and c¢(X’, f(X")). Even in the case of innermost narrowing with a
bound, it will miss the term ¢(f(X), X).



Ezample 4. Consider the following equational theory f(a,b, X) = ¢, where sym-
bol fis AC and X is a variable. The narrowing relation ~» g g terminates for any
term but the theory does not have the variant-preserving property, e.g., given
the term ¢ = f(X,Y) and any normalized substitution 6 € {X — f(a"),Y
f(", Z)} for n > 2, there is no normalized reduction for tf. However, the theory
does have the boundedness property, and therefore F'V, since for any term rooted
by f (which is the only non-constant symbol), its normal form can be obtained
in at most one step.

We characterize variant—preservingness in Section A theory that already
has the variant—preserving property, if there is no infinite F-narrowing sequence,
clearly has the finite variant property. However, if infinite E-narrowing sequences
exist, a theory may still have the finite variant property.

Ezample 5. Consider the equational theory f(f(X)) = X, which is well-known
to be non-terminating for narrowing, i.e.,

C(f(X), X) W{X»—»f(X’)},R,E C(X/, f(X,)) W{X’Hf(X”)},R,E C(f(X//)’ X”) .

When we consider all possible instances of term ¢(f(X),X) for normalized
substitutions, we obtain term ¢(f(X),X) itself and the sequence ¢(f(X), X)
~ix—f(x)hLeE (X', f(X')). The theory does have the boundedness property,
and therefore F'V, since for any term and a normalized substitution, a bound is
the number of f symbols in the term.

Not all the narrowing sequences are relevant for the finite variant property,
as shown in the previous example, and thus we must identify the relevant ones.

Definition 10 (Variant—preserving sequences). Let R = (X, E, R) be an
order-sorted rewrite theory satisfying properties f@. A rewrite sequence

to pﬂlRyE ty--- @»R7E tn is called variant-preserving if t,_1|,, has a variant-
pattern for i € {1,...,n} and there is no sequence ty —RE t!. such that m <n

/ . p1,01 Pn,On
and t, =g t,,. A narrowing sequence ty" ~~ REUt1- ~ REly, O=01" 0y,
. . . . . . P1 Pn
is called variant—preserving if o is — g g-normalized and tooc - p g t10-- =R E

t, 1S variant-preserving.

The set of variant—preserving sequences is not computable in general. How-
ever, we provide sufficient conditions in Section

Ezample 6. The infinite narrowing sequence of Example is not variant—
preserving, since for any finite prefix of length greater than 1 the computed
substitution is non-normalized. The only variant-preserving sequences for term
c(f(X),X) are the term itself and the one-step sequence with substitution
{X = f(X)}

Ezample 7. For Example [3] the narrowing sequence

! ! 1! 1!
L\ B Ly (20X, 0 2, ZoX1 0 24}, RE L1B Ly ~ (20X 021 2)-X 024 }R,E L1 DLy

is not a variant-preserving sequence, since the alternative rewrite sequence
XieX|eZl X180 X ®Z) —pE Z{ ®Z is shorter.



We prove that using variant—preserving sequences is sound and complete.

Theorem 2 (Computing with variant—preserving sequences). Let R =
(X, E,R) be an order-sorted rewrite theory satisfying properties 7@ that
also has the finite variant property. Let t € T (X) and #pr g(t) = n. Then,
(s,0) € FVg g(t) if and only if there is a variant—preserving narrowing deriva-
. o <n . . .

tion t~ g s such that s is — g g-irreducible.

The following result provides sufficient conditions for the finite variant property.

Theorem 3 (Sufficient conditions for FV). Let R = (X, E, R) be an order-
sorted rewrite theory satisfying properties 7@. If (i) R is variant—preserving
(VP), and (i) there is no infinite variant—preserving narrowing sequence (FVNS),
then R satisfies the finite variant property.

Note that variant-preservingness is not a necessary condition for FV, as shown
in Example However, the absence of infinite variant—preserving narrowing
sequences is a necessary condition for FV.

Theorem 4 (Necessary condition for FV). Let R = (X, E, R) be an order-
sorted rewrite theory satisfying properties 7@. If there is an infinite variant—
preserving narrowing sequence, then R does not satisfy the finite variant prop-
erty.

5 Checking the Finite Variant Property

In the following, we show that the variant-preserving property is clearly check-
able, in Section [5.I} but the absence of infinite variant-preserving narrowing
sequences is not computable in general, and we approximate such property, in
Section by a checkable one using the dependency pairs technique of [7] for
the modulo case.

5.1 Checking Variant—Preservingness

The following class of equational theories is relevant. The notion of E-descendants
(given in Appendix is a straightforward extension of the standard notion of
descendant for rules. Given ¢t =g s and p € Pos(t), we write p\s for the E-
descendants of p in s.

Definition 11 (Upper-E-coherence). Let R = (X, E, R) be an order-sorted
rewrite theory satisfying properties 7. We say R is upper-E-coherent if
for all t1,t9,t3 we have ty ARE to, t1 =g t3, p > A, and p\+, = 0 implies that

or all p’ < p suc at pP'\¢, = U, there exist t5, 14,15 Suc at t1 =R t3,
Iy < h that p'\t, = 0, th st th,ta,t h that t; Sp g th
tg —ﬂ}{%,E t4, té —>7%7E t5, and t4 =E t5.

Assuming E-coherence, checking upper-E-coherence consists of taking term ¢ for
each equation ¢t = ¢’ € F (or reverse), finding a position p € Pos(t) s.t. p > 4
and a substitution o s.t. to|, is — g g-reducible and then, let p = py.--- .pg, for
ie{l,...,k—1}, to|,, must be — g g-reducible. In general, upper-E-coherence
implies E-coherence but not vice versa, as shown below.
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Ezample 8. Let us consider the rewrite theory R = {¢g(f(X)) — d, a — ¢} and
E ={g9(f(f(a))) = g(b)}. For the term ¢t = g(f(f(a))), subterm a is reducible,
t =g g(b), but subterms f(f(a)) and f(a) are not reducible and thus the theory
is not upper-FE-coherent. However, the theory is trivially E-coherent because of
the use of symbol g at the top of both sides of the equation.

Now, we can provide an algorithm for checking variant—preservingness.

Theorem 5 (Checking Variant—preservingness). Let R = (X, E, R) be an
order-sorted rewrite theory satisfying properties 7(@ that is upper-E-coherent.
R has the variant-preserving property iff for alll — r,I' — v’ € R (possibly
renamed s.t. Var(1)N Var(l') = 0) and for all X € Var(l), the term t = 10, where
0 = {X — U'} such that 6 is an order-sorted substitution, satisfies that either
(i) t does not have a variant-pattern, or (ii) otherwise there is a normalized
reduction on t.

Example [I7) in Appendix [A] proves the variant-preservingness property for the
exclusive or theory. The upper-FE-coherence condition is necessary, as shown
below.

Ezample 9. The theory of Example [§] satisfies the conditions of Theorem [5| but
it is not variant—preserving. That is, ¢g(f(a)) does not have a variant—pattern.
However, g(b) is a variant—pattern, it is reducible, but it is not — g g-reducible
with a normalized substitution.

5.2 Checking Finiteness of Variant—Preserving Narrowing
Sequences

First, we need to extend the notion of defined symbol. An equation u = v is
called collapsing if v € X or u € X. We say a theory is collapse-fretﬂ if all its
equations are non-collapsing.

Definition 12 (Defined Symbols for Rewriting Modulo Equations). [7]
Let R = (X, E,R) be an order-sorted rewrite theory with E collapse-free. Then
the set of defined symbols D is the smallest set such that D = {root(l) |l — r €
Ryw {root(v) |lu=v € Eorv=ué€ E,root(u) € D}.

In order to correctly approximate the dependency relation between defined
symbols in the theory, we need to extend the equational theory in the following
way.

Definition 13 (Adding Instantiations). [{] Given an order-sorted rewrite
theory R = (X, E,R), let Insg(R) be a set containing only rules of the form
lo — ro (where o is a substitution and | — r € R). Insg(R) is called an
instantiation of R for the equations E iff Insg(R) is the smallest set such that:
(a) R C Insg(R), (b) foralll = r € R, allv such thatu=v € E orv=u€ E,
and all 0 € CSUg(v =1), there exists a rule I' — r' € Insg(R) and a variable
renaming v such that lo =g l'v and ro =g r'v.

4 Note that regularity does not imply collapse-free, e.g. equation [1| of Example [1] is
regular but also collapsing.
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Note that when F = §) or E contains only AC or C axioms, Insg(R) = R.
Dependency pairs are obtained as follows. Since we are dealing with the modulo
case, it will be notationally more convenient to use terms directly in dependency
pairs, without the usual capital letters for the top symbols.

Definition 14 (Dependency Pair). [I] Let R = (X, E, R) be an order-sorted
rewrite theory. If I — Clg(t1,...,tm)] is a rule of Insg(R) with C' a context and
g a defined symbol in Insg(R), then (I, g(t1,...,tm)) is called a dependency
pair of R.

Ezample 10 (Abelian Group). This presentation of Abelian group theory, called
R. = (X,E,R), is due to Lankford (see [10]) and has been shown to satisfy the
finite variant property in [2]. The operators X are _* _, (1)~!, and 1. The set of
equations E consists of associativity and commutativity for . The rules R are:

11

xxl—>uw (8) x -z (13)

7' —1 9) (7 txy) ™t —azxy! (14)
zrz! =1 (10) zx(z7 y) =y (15)
ey = (zry) T (10) k(g R 2) = (zry) Tt x 2 (16)

(xxy) tey—a ! (12) (xxy) tx(ysz) o sz (17)

The AC-dependency pairs for this rewrite theory are as follows. The other rules
not mentioned here do not give rise to an AC-dependency pairﬂ

ey ey
(a7t *y) ™, oxy™)
<x‘1*y‘1*z,(m*y)_

(7 txy ™ txz, zxy)

The relevant notions are chains of dependency pairs and the dependency graph.

Definition 15 (Chain). [I] Let R = (X, E, R) be an order-sorted rewrite the-
ory. A sequence of dependency pairs (s1,t1)(sa2,t2) - (sn, tn) of R is an R-chain
if there is a substitution o such that tjo —R,E Sj+10 holds for every two con-
secutive pairs (s;,t;) and (sj41,tj41) in the sequence.

Definition 16 (Dependency Graph). [I] Let R = (X, E,R) be an order-
sorted rewrite theory. The dependency graph of R is the directed graph whose
nodes (vertices) are the dependency pairs of R and there is an arc (directed
edge) from (s,t) to (u,v) if (s,t)(u,v) is a chain.

As in the dependency pair technique [I], the variant—preserving chains are
not computable in general and an approximation must be performed. The notion

® We have used the AProVE tool [§] to generate the dependency pairs. AProVE first
applies the coherence algorithm of [7] to this example which is unnecessary here and
thus we drop the dependency pairs created that way.
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of connectable terms as defined in [I] can be easily extended to the variant—
preserving case, and the estimated dependency graph [1] can be computed using
the CAP and REN procedures [I]. We omit this in the paper for lack of space
but such an estimated dependency graph has been used in all examples. Indeed,
the dependency graphs of Figures 2] and [d] shown in Appendix [A] consider the
estimated dependency graph.

Ezxample 11. Creating the dependency graph for Example [10] with AProVE, we
see that there are self-loops on b, (14)b, a, c and a. a has a
loop with a, a has a loop with (16))b, and so on. As you can see in Figure
in Appendix [A] it is a very highly connected graph.

In order to correctly approximate the bound for the finite variant property,
we include rules without defined symbols in their right-hand sides as extra de-
pendency pairs, that we call dummy.

Definition 17 (Dummy dependency pairs). Let R = (X, E, R) be an order-
sorted rewrite theory. If for a rule | — r € R the right-hand side r does not
contain a defined symbol then (I,7) is a dummy dependency pair of R.

Ezample 12 (Abelian group variani—preserving dependency pairs). Building upon
the AC-dependency pairs computed in Example [I0] we need to add these dummy
dependency pairs, to the set of dependency pairs from the prior example:

@®a : (zx1,2) ©a - (1=t 1) (I0)a: (x*a=t, 1)
a:(:rfl_1 , ) a:(x*xil*y,w

With the new dummy dependency pairs included we get the dependency graph
of Figure [ shown in Appendix [A]

Definition 18 (Cycle). [I] A nonempty set P of dependency pairs is called
a cycle if, for any two dependency pairs (s,t), {(u,v) € P, there is a nonempty
path from (s,t) to (u,v) and from (u,v) to (s,t) in the dependency graph that
traverses dependency pairs from P only.

As already demonstrated in the previous section, not all the rewriting (nar-
rowing) sequences are relevant for the finite variant property.

Definition 19 (Variant—preserving chain). Let R = (X, E, R) be an order-
sorted rewrite theory. A chain of dependency pairs (s1,t1)(s2,t2) - (Sn,tn) of
R is a variant—preserving chain if there is a substitution o such that o is
— r,g-normalized and the following rewrite sequence obtainable from the chain
si0 —grE Ciltilo —gp Cilsslo —rrp Ci[Cits]lo =% p -+ —kpE
C1[Co[ - - Crzisnlllo —r,g C1[Ca[- - - Cr—1[Crltnllllo is variant—preserving.

The notions of a cycle, the dependency graph and the estimated dependency
graph are easily extended to the variant—preserving case. The following straight-
forward result approximates the absence of infinite narrowing sequences.
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Proposition 2 (Checking Finiteness of the VP Narrowing sequences).
Let R = (X, E,R) be a variant—preserving, order-sorted rewrite theory. Let E
contain only linear, non-collapsing equations. If the estimated dependency graph
does mot contain any variant—preserving cycle, then there are no infinite variant—
Preserving narrowing Sequences.

Note that the conditions that the axioms are non-collapsing and linear are nec-
essary for completeness of the dependency graph, we refer the reader to [7] for
explanations.

Ezample 13 (Abelian group variant-preserving dependency pair graph). We can
show the variant—preserving dependency graph of Example [[2] in Figure [I] As
you can see in the picture, all the cycles have disappeared, because they involved
non-normalized substitutions, or terms without a variant—pattern, or could be
shortened. In Appendix [A] we show why we can drop some of the cycles and
edges in the original dependency graph of Figure [ shown in Appendix [A]

Finally, we are able to provide an approximation result for the absence of
infinite variant—preserving narrowing sequences. Also, we are able to compute a
bound for each defined symbol thanks to a notion of rank.

Definition 20 (Rank). The rank of a dependency pair p, denoted rankg g(p),
is the length of the longest variant—preserving chain starting from p. For a
rule | — r € R giving rise to dependency pairs dpi,dps,...,dpy,, its rank is
rankg g(l — r) = (rankg g(dp1)—1)+(rankg, g(dp2)—1)+. . .4+ (rankg g(dp,)—
1)+ 1. For a defined symbol f, its rank is rankgr g(f) = maz{rankg g(l — ) |

l —r e R,root(l) = f}. For a termt, its rank is rankpg g(t) = Xrep(rankp, g (f)*
#¢(t)) where D is the set of defined symbols in R and #(t) is the number of
appearances of f in t.

Any cycle in the variant—preserving dependency graph of course gives the rank
oo to all dependency pairs involved in the cycle. For any symbol f it is obvious
that rankr g(f) > 1iff f is a defined symbol.

Note that the dependency graph is not necessarily transitive for purposes of
rank calculation.

Ezample 14 (Abelian group variant—preserving dependency pair graph rank).
Consider again Example The rank for the dependency pairs a and a

14



is 2, the rank of all other dependency pairs is 1. Note that a has rank 2 as
according to Example [I3] there is no variant—preserving chain of length 3 as in
this case the graph is not transitive. Thus the rank of rule is 2, which means
that the rank of * is 2 and the rank of ~! is 1. Thus the rank for any term ¢ is
(#a(t) X 2) + %1 (1),

In Appendix[A] we show VP for Abelian group and Diffie-Hellman, and the finite
variant property for Diffie-Hellman. The proof of our final result for this section
is trivial by Theorem [4] since if the rank of all symbols in the signature is finite,
there are no cycles in the estimated dependency graph and we know for sure
that there is no infinite variant-preserving rewrite sequence.

Theorem 6 (Approximation for the finite variant property). Let R =
(X, E,R) be a variant—preserving, order-sorted rewrite theory. Let E contain
only linear, non-collapsing equations. If for all defined symbols f we have that
rankg g(f) is finite, then R has the finite variant property.

6 Disproving the Finite Variant Property

If there are infinite variant—preserving narrowing sequences, we are done, because
the finite variant property does not hold by Theorem[d There are works devoted
to disproving the termination of rewriting [9T6] or disproving the termination
of logic programs [17] but, to the best of our knowledge, there are no works on
non-termination of narrowing. However, we can give a simple sufficient condition.

Theorem 7 (Non-termination of narrowing). Let R = (X, E,R) be an
order-sorted rewrite theory satisfying properties 7@ above. Let E contain
only linear, non-collapsing equations. If the estimated dependency graph does
contain a variant-preserving chain (s,t)(s,t) such that (properly renamed ver-
sions of) s and t unify, called a self-cycle, then there is an infinite variant—
preserving narrowing sequence starting from term s.

Ezample 15 (ACUND). [2] Let us present the ACU example with nilpotence and
homomorphism as discussed by Comon and Delauneﬂ This is Racunn, with +
AC', which has the variant—preserving property:

X+0—X (18) h(0) — 0 (21)
X+X—-0 (19 WX +Y) = h(X)+h(Y) (22)
X+X+Y Y (20)

We get the following dependency pairs. For the first four rules we only get the
dummy dependency pair, which we do not show here, while for the last rule we
get three dependency pairs:

RYa: (h(z+y) , h(x) + h(y)) @D : (A(x +y) , h(z))
(22)c : (h(z+y) , h(y))

5 There is another, alternative term rewriting system representing this theory, which
suffers from the same problems, so we skip it.
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It is easy to see that there are self-cycles in b and c using the substitution
x +— x1+21, which also allows going back and forth between them. This gives rise
to the following graph, where the dummy dependency pairs have been omitted:

— T
(22)a ©2)b ©2)c
@ '~

By Theorem [ this theory does not have the finite variant property, as also
proved in a different way in [2].

7 Conclusions

We have recalled Comon-Lundh and Delaune’s finite variant property (FV) and
summarized some of its applications. Our main two contributions have been: (i)
giving new necessary conditions and new sufficient conditions for FV; and (ii)
deriving from these conditions algorithms for checking or disproving FV. To the
best of our knowledge, no such algorithms were known before. The algorithms
can certainly be improved. For example, more accurate ways of computing the
effective dependency graph will help the checking of FV; and a more accurate
analysis of narrowing sequences associated to cycles in the dependency graph will
help the disproving of FV. Regarding implementations, we plan to implement
these algorithms for frequently used equational axioms B such as ), C, AC, and
their combinations, so that they can be used in conjunction with the already-
implemented variant narrowing algorithm described in [6] to derive finitary uni-
fication algorithms. This will provide a key component of the Maude-NPA [5], a
tool for the analysis of cryptographic protocols modulo algebraic properties.
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Fig. 2. Dependency graph of Abelian group

A Further Examples

Ezample 16. The following equational theory borrowed from [2], denoted R pyr,
is the classical Dolev-Yao model with explicit destructors such as decryption and
projections. Note that the use of explicit destructors in this example is different
to the cancellation of public and private encryption/decryption of Example

fst(X;Y) =X (23) d(e(X,Y), Y1) =X (25)
snd(X;Y) =Y (24) (X H™' =X (26)

This equational theory does not have any equational axiom, i.e., it has a de-
composition (X, (), R). The theory trivially satisfies the finite variant property.
Moreover, since E = (), it satisfies the variant-preserving property and the as-
sociated dependency graph has no cycle. Moreover, the rank function for every
defined symbol is 1.

Ezample 17. Let R = (X, E,R) be the exclusive or theory from Example
with only f used as rules. Now with Theorem [5| we find this theory to be
variant—preserving. All the combinations of rules not involving as the first
rule do not have a variant—pattern, let us just show one of the combinations of
rule (3) with itself where | = X @ X @Y and ' = X' & X' @ Y’. We will get two
terms, one for each of the substitutions 6; = {X — I'} and 6, = {Y — I'}. We
get 10 = X' X' oY o X' @ X' @Y’ @Y which does not have a variant—pattern.
On the other hand, I, = X @ X & X' & X' @Y does have a variant—pattern but
it also has a normalized reduction with another renaming of rule (3], namely
VeVaeW — W, and substitution 0 = {V —» X @ X', W — Y'}.

Ezample 18. Consider Example [I3] for the variant—preserving dependency pair
graph of the Abelian group. For the dependency pair b and its self-loop we
need a substitution o for which (X * Y)o =a¢c (X'~ Y'~1)o. But then, e.g.,
o ={X — X"7LY — Y’7!} and the left-hand side of the dependency pair
becomes X'~17" % Y’~1"" which does not have a variant-pattern, as X'~1 ' is
reducible, so the self-loop is not a variant—preserving sequence and thus not a
variant—preserving chain.

For the dependency pairs ([[6)a, i.e., (s1,t1) = (X 1%V 1% Z, (X*Y) 1% Z),
and (I7)a, i.e., (s2,t2) = (X'« Y')"1 « Y’ Z’, X'~ % Z’) let us consider both
directions. For one direction we have ((X*Y) 1% 2)o =40 ((X'*Y")"1xY'xZ)o

18



B @ @@ @ - @e

—

@ - @ @« @

1 \(16)d
\ N Y

CPa<~—EJa @0

e _ @

Fig. 3. Variant-preserving dependency graph for Diffie-Hellman

so for example 0 = {Z — Y’ % Z', X — X')Y — Y'}. Then s10 =40 X'71 %
Y'~1 %Y’ % Z' which has a variant—pattern and for which the rewriting sequence
is X' Y"1 xY' 5«7 — (X' YY) LxY'x 2 — X'71 % Z'. Nevertheless, it is
not a variant—preserving sequence as there is a shorter rewriting sequence using
rule ([[5)a, X'~'*Y'"1 %Y’ x Z' — X'~ % Z', so there is no variant-preserving
chain here.

Similarly for the chain from a to b as the only difference is in ¢, so
that too = X’~! but that will be padded with the context of x(_, Z’) and so the
same shorter rewriting sequence exists.

In the other direction, from ([L7)a to (L6)a, we have (X'~'xZ")o =ac (X~ '*
Y~ % Z)o so then for example 0 = {Z' — Y 1Z X' — X} and sy0 =ac
(X*Y")"1%Y’+Y 1% Z which has a variant-pattern and the rewriting sequence
(XY %Y 5sY 1'% Z - X 1%Y 1% Z - (X*Y) 1% Z. The alternative
rewriting sequence applying the rules in reverse order is (X*Y')"1xY'sY ~1xZ —
(X*Y'xY)" %Y’ Z — (X *Y) "t % Z which is not shorter, so this is a variant—
preserving sequence and thus we have a variant—preserving chain.

For the dependency pairs (L6)a, i.e., (s1,t1) = (X 1+ Y 1% Z, (X xY) "1 Z)
to (I5)a, i.e., (s2,t2) = (X' * X'~1 x Y’ Y"') with for example substitution ¢’ =
{X' = XY, Z +— X*Y*Y'} we have 510 =ac X 1Y 1% X *Y xY’ which has
a variant—pattern and the rewrite sequence sjo — (X *Y) 1« X *Y Y’ — Y.
The alternate rewrite sequence is s;0 — Y~ '*Y *Y’ — Y” which is not shorter,
so we have a variant—preserving chain.

The arrow for this chain is dotted though as the concatenation of a
to a and a to a is not a variant—preserving chain. This becomes
obvious when looking at instantiations of the left-hand side of a so that
all three rules can applied in the given order. We get for example the term
t = (X*Y)" %Y *Y'"1x X %Y’ % Z" for which there is a shorter rewrite sequence
using rule (15)) twice: t = ¢ (X#Y) "L XYY "Y' 2" — Y'=YY'x2" — Z".
As this sequence is shorter we do not have a variant—preserving chain here.

Ezample 19 (Diffie-Hellman). We get a rewrite theory representing the Diffie-
Hellman theory, called Rpy, by extending the theory R, from Example [10] by
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adding a new binary symbol exp and the following two rules:

exp(z,1) — = (27)
exp(exp(,y), z) — exp(z,y * 2) (28)

We can compute the dependency pairs and the associated graph based on the
results we already have from Example Also note, that the rewrite theories
R, and Rpy both have the variant—preserving property, which we will check in
Example [20] respectively Example [2I] The following additional dependency pairs
are required, where the first one is a dummy:

a : (exp(z,1) , x)
Ja : (exp(exp(z,y),2) , exp(x,y* 2))
(28)b : (exp(exp(z,y),2) , y*z)

As you can see in Figure [3] for rule we have two independent possible
ways to go. One from the dependency pair a to a, which means we need
to potentially take an extra step after applying rule (28)). There are a lot of
possibilities to go from b, but the longest possible path has length 3. Let
us show that there is actually a chain for the path from b via a to
a. After substituting as needed for this in the left-hand side of we get
explexp(X, (U V) 1), VW) — exp(X, (U V) L« Vs« W™1), let us call this
term t. Then from there we have t — exp(X, U1« W~1) — exp(X, (U« W)™ 1)
and alternatively t — exp(X, (U V « W)~ 1% V) — exp(X, (U *W)~1) which is
not shorter. So this is really a variant—preserving chain and the rank of b is 3.
Overall that means that for rule we have rank 4, and thus rankg, g(exp) = 4.
Therefore our bound for variant narrowing will be as follows: For a term ¢ we
have (#ezp(t) *4) + (#4(t) *2) + #-1(t) as the rank.

Ezxample 20. Let us check variant—preservingness for R, by use of Theorem
For rule and any other rule there is no variant—pattern for @ where 6 sub-
stitutes another left-hand side into X. The reason is that the constant 1 needs
to stay isolated as otherwise a rewrite is possible, and so the left-hand side that
was inserted stays together and is reducible.

As rule @D does not have any variable, the property holds trivially.

For all following rules let us note that instantiating a variable that is under-
neath an inverse operator ~! with a left-hand side of another rule, immediately
results in a term that has no variant—pattern as that left-hand side stays to-
gether underneath. Thus the rules 7 do not need to be considered as all
variables appear at least once underneath an inverse operator.

In this vein for rule we only need to consider the terms created when
instantiating Y. Only combination with ,, , and results in a term
that has a variant—pattern. Let us show for example with (renamed to
variables with a prime). The resulting term is X * X 1% (X'« Y/) "1« V' % 7’
which can be reduced by rule (16) (renamed to variables with two primes) with
substitution {X” — X, Y" — X'« Y’ Z" — X x Y’ % Z'} which is normalized.
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Fig. 4. Dependency graph of Abelian group with dummy dependency pairs

For rule the only useful (read: have a chance at having a variant—pattern)
instantiations are for Z, but also as there are already 2 appearances of a term
headed by the inverse only left-hand sides with no inverse have a chance at
having a variant—pattern. That only leaves rule which results in term X ! *
Y~ % X’ % 1 which also does not have a variant—pattern.

Finally, for rule we only need to instantiate the variable Z. There are
variant-patterns for the combinations with (10), (12), (15), and (17), let us
just show the last of these combinations, with itself. The resulting term is
(X *Y) %Y % (X'« Y')"t Y’ % Z’ which has a variant-pattern but also can
rewrite with rule ((16]) (renamed with two primes) with the normalized substitu-
tion { X" — X xY Y = X' «Y',Z' =Y xY'xZ'}.

Summarized, R, has the variant—preserving property.

Ezample 21. Variant—preservingness of the Diffie-Hellman theory Rpy can be
shown using Theorem [f] based upon the variant—preservingness of R, shown in
Example[20] Let us just observe that Ry, is only adding a free symbol and rules
for it. Putting this into any variable of any of the prior rules results in a term
that has no variant—pattern. The other way around, any left-hand side put into
any of the variables of the left-hand sides of one of the 2 new rules results in a
term that has no variant—pattern. So Rpy has the variant—preserving property,
too.

B Proofs

Theorem [2| (Computing with variant—preserving sequences). Let R =
(X, E,R) be an order-sorted rewrite theory satisfying properties f@ and
that has the finite variant property. Let t € Ty (X) and #pr g(t) = n. Then,
(s,0) € FVg g(t) if and only if there is a variant-preserving narrowing deriva-
tion t&}ﬁ{lE s such that s is — g g-irreducible.

Proof. Let t be a given term. The if part is implied by Proposition |1} For the
. . . . <n o e .
only if part, let us consider a variant (s, o), i.e., to —RES and s is irreducible.
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Note that o is — g g-normalized and so, by completeness, there is at least one

narrowing sequence t?ﬁ}%)"E s’ and substitution p such that toc =g to’p and
s =g §'p. Since FVa p(t) is complete, o is a most general substitution and,
therefore, ¢’ =g o. Finally, such most general narrowing sequence or a shorter
one computing the same substitution o is variant—preserving. a

Theorem (3| (Sufficient conditions for FV). Let R = (X, E,R) be an
order-sorted rewrite theory satisfying properties 7(@. If (i) R is variant—
preserving (VP), and (ii) there is no infinite variant—preserving narrowing se-
quence (FVNS), then R satisfies the finite variant property.

Proof. Given a term t, we denote by #(t) the length of the longest variant—

preserving narrowing sequence from t¢. Such longest sequence exists by the FVNS

property. Given a term t and #(¢) = n, we prove that, for any substitution o,
<n . .

t(olr,E) =g (to)lr,E by induction on n.

— (n = 0) Then ¢ is irreducible and, for any substitution o, t(o|g g) is also
irreducible.

— (n>0) Let t = f(t1,...,tx) and o be a substitution. Let us assume that
to is eventually reduced at the top in every variant—preserving rewrite se-
quence. Otherwise, we can prove by structural induction and the bounded-
ness property that the bound for ¢ is the sum of the bounds for the arguments
t1,...,t,. We have #(t;) < #(t). By induction hypothesis, for any substi-
tution o, t;(c]r,g) is bounded by #(¢;) for ¢ € {1,...,k}. Let us pick any
variant (¢}, p;) for each t;, i € {1,...,k} such that (p;---pr) <g o. Let
t' = f(t,...,t},). By variant-preservingness, there is a rule I — r € R and
a normalized substitution 6 such that ¢ =g 16. Since #(r) < #(t), we can
apply the induction hypothesis and, for any substitution o', r(¢’| g g) is
bounded by #(r). Since 6 is normalized, ¢ is also bounded by #(r). Note
that #(t1) + - - - + #(tx) + #(r) < #(t). Thus, for any substitution o, to is
bounded by #(t). O

Theorem [4| (Necessary condition for FV). Let R = (X, E, R) be an order-
sorted rewrite theory satisfying properties f@. If there are infinite variant—
preserving narrowing sequences, then R does not satisfy the finite variant prop-
erty.

Proof. By contradiction. Let us consider that R satisfies the finite variant prop-
erty and take an infinite variant—preserving narrowing sequence. We can take any
finite prefix t@}‘{’ g ¢ and build a variant—preserving rewrite sequence to —p p
(to)|r,g- Thus, we obtain an infinite number of rewrite sequences with increas-
ing length. Since the theory is terminating for rewriting, the rewrite sequences
are increasing in length because of the computed substitutions. Finally, this con-
tradicts the boundedness property. a

We recall here the notion of descendants of a position in a rewrite sequence.
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Definition 21 (Descendants). [19] Let A :t 5,_, s and q € Pos(t). The set
g\ A of descendants of q in s is defined as follows:

q ifg<porql|p (ie,q&pandp£q),
d\A = < {p-p3-p2 | 7lps = Up, } if ¢ = p.p1.p2 with p1 € Posx (1),
0 otherwise.

If @ C Pos(t) then Q\ A denotes the set [J,co ¢\ A. The notion of descendant
extends to rewrite sequences in the obvious way. If @ is a set of pairwise disjoint
positions in ¢ and A : ¢ —* s, then the positions in Q\ A are pairwise disjoints.
The notion of descendant is extended to an equational theory E as follows.

Definition 22 (E-descendants). Let E be a set of reqular and sort-preserving

X -equations. Let E= {u —-v|u=vorv=uc E}. Given two termst =g
s, d.e., A :t =% s, and a set Q of pairwise disjoint positions in t, the E-

descendants of @ in s are Q\s = Q\A.

Theorem [5 (Checking Variant—preservingness). Let R = (X, E, R) be an
order-sorted rewrite theory satisfying properties 7(@ that is upper-E-coherent.
R has the variant—preserving property iff for alll — r,l' — r' € R (possibly
renamed s.t. Var(l)N Var(l') =0) and for all X € Var(l), the term t = 10, where
0 = {X — U'} such that 0 is an order-sorted substitution, satisfies that either
(i) t does not have a variant-pattern, or (ii) otherwise there is a normalized
reduction on t.

Proof. The only if part is immediate by definition. For the if part, let ¢t =
f(t1, ..., t,) with t1,...,ty — g p-irreducible terms. If ¢ is irreducible, then we
are done. Otherwise t is reducible and there is a rule [ — r and a substitution 6
s.t. t =g 16. Let n be the number of redexes in §. We prove, by induction on n,
that there exists a rule I’ — r’ € R and a substitution ' s.t. t =g I'60’ and ¢’ is
— g, g-normalized.

(n =0) Then, 0 is —p g-normalized and we are done.

(n > 0) Let X — u be a binding in 6 s.t. u is reducible. We prove below that u is
reducible at the top and, thus, let us just assume it. Let I’ — v’ € R and ¢’ be
such that v =g I'0’. Let us assume Var(l')N Var(l) = 0. Let 0 = {X — I'}.
There is a substitution p s.t. t =g lop, i.e., 0| varq) = (0p)|var@). Then, by
the condition given in the Theorem, there is a normalized substitution on
lo, i.e., there is a rule I” — 7" and a substitution #” such that lo =g 10"
and 0" is — g g-normalized. Now, when we consider the term 6" p, we can
apply the induction hypothesis because p contains less redexes than 6 and
we obtain that there is a rule I’ — " and a substitution 6" such that
t=gl"0"p=pU"0" and §" is — g g-normalized.

Finally, given ¢t = f(t1,...,t;) with t1,...,tx — g, g-irreducible terms, rule
I — r and substitution 6 s.t. t =g 16, and such that X — wu is a binding in
s.t. u is reducible, we just have to prove that u is reducible at the top. Let us
prove it by contradiction. Let p1, ..., p, be the topmost reducible positions
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inws.t. p; #aforie{l,...,m}. Let us pick one i € {1,...,m}. Let px
be any position of variable X in [. Since t1,...,t; are irreducible, position
px.-pi € Pos(10) does not have any E-descendant in ¢, i.e., px.p;\+ = 0. Oth-
erwise, it will be a clear proper subterm of one of ¢y, ..., tx. But, px.pi\¢t =0
implies by upper-E-coherence that (10)|,, = w must be reducible, which con-
tradicts the assumption. a
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