
Formal Analysis and Implementation of a TPM 2.0-based
Direct Anonymous Attestation Scheme

Stephan Wesemeyer
s.wesemeyer@surrey.ac.uk

University of Surrey

Christopher J.P. Newton
c.newton@surrey.ac.uk
University of Surrey

Helen Treharne
h.treharne@surrey.ac.uk
University of Surrey

Liqun Chen
liqun.chen@surrey.ac.uk
University of Surrey

Ralf Sasse
ralf.sasse@inf.ethz.ch

ETH Zurich

Jorden Whitefield
jorden.whitefield@ericsson.com

Ericsson AB, Finland

ABSTRACT

Direct Anonymous Attestation (Daa) is a set of cryptographic
schemes used to create anonymous digital signatures. To provide
additional assurance, Daa schemes can utilise a Trusted Platform
Module (Tpm) that is a tamper-resistant hardware device embedded
in a computing platform and which provides cryptographic primi-
tives and secure storage. We extend Chen and Li’s Daa scheme to
support: 1) signing a message anonymously, 2) self-certifying Tpm
keys, and 3) ascertaining a platform’s state as recorded by the Tpm’s
platform configuration registers (PCR) for remote attestation, with
explicit reference to Tpm 2.0 API calls. We perform a formal analysis
of the scheme and are the first symbolic models to explicitly include
the low-level Tpm call details. Our analysis reveals that a fix pro-
posed by Whitefield et al. to address an authentication attack on an
Ecc-Daa scheme is also required by our scheme. Developing a fine-
grained, formal model of a Daa scheme contributes to the growing
body of work demonstrating the use of formal tools in supporting
security analyses of cryptographic protocols. We additionally pro-
vide and benchmark an open-source C++ implementation of this
Daa scheme supporting both a hardware and a software Tpm and
measure its performance.

KEYWORDS

Formal Verification, Security Protocols, TPM, DAA

ACM Reference Format:

Stephan Wesemeyer, Christopher J.P. Newton, Helen Treharne, Liqun Chen,
Ralf Sasse, and JordenWhitefield. 2019. Formal Analysis and Implementation
of a TPM 2.0-based Direct Anonymous Attestation Scheme. In Proceedings

of ACM Conference (ASIACCS ’20). ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Devices such as laptops, smartphones, tablets, and Internet of
Things devices, which connect to the Internet, are commonplace.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIACCS ’20, June 2020, Taipei, Taiwan

© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, establishing their current state in terms of their configu-
ration, security settings and “trustworthiness” is difficult. Trusted
computing is one approach that enhances the security on these
devices by installing a “root of trust” (RoT). These roots of trust can
be used to attest that devices are in a “trustworthy” state, meaning
that the devices should behave as expected for a specific purpose.

The Trusted Platform Module (Tpm) is a separate chip especially
designed to be such a RoT and the Trusted Computing Group (TCG)
reports there are billions of Tpms embedded in branded PCs, laptops
and servers [44]. A Tpm is a resource-constrained cryptographic
co-processor that is embedded within a commodity device which
we refer to as the Host. The combination of a Host and Tpm is called
a Platform. Software can execute cryptographic operations on the
Tpm via its Application Programming Interface (API). A Tpm can,
when required, store cryptographic keys and other sensitive data
in protected memory. Note, that a RoT must be guaranteed by a
trusted third party, e.g., a Tpmmanufacturer such as Infineon, before
it can act as a RoT for a Platform.

Tpms can be used to collect evidence and provide signed reports
about a Host’s code and data during boot time, e.g., the time it takes
to load code from disk to memory or compute hashes of installed
software to detect file-tampering.

The TCG have defined and standardised the Tpm commands [38]
necessary to provide a range of services, including: attesting Platform
configuration registers (PCR) and attesting other Tpm objects, e.g.,
keys, clock, time and audit digest data. These attestation commands
enable a Tpm to sign an internally generated data structure. A Tpm
can also be used to sign an externally provided digest. All of these
signing commands can either be performed anonymously or oth-
erwise. Quoting PCR values is particularly important in order to
verify the trustworthiness of a Platform.

For some use cases, it is desirable that these signing operations
can be conducted using a secure and privacy-preserving scheme
which protects users’ privacy, and reduces the knowledge that ex-
ternal entities can learn about a system. Moreover, the level of
protection should be under the user’s control. One scheme that pro-
vides such protection is Direct Anonymous Attestation (Daa) [6].
Daa is an anonymous signature scheme designed to provide anony-
mous digital signatures which can be used for device attestation and
signing while providing user-controlled anonymity and privacy.
The TCG have defined the commands in Tpm 2.0 to flexibly support
a number of different Daa schemes.

One such scheme is an Elliptic-Curve-DAA scheme (Ecc-Daa)
which comprises five main operations: Setup, Join, Sign, Verify,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ASIACCS ’20, June 2020, Taipei, Taiwan Chen and Newton et al.

and Link. The Setup and Join are used to guarantee the Tpm as the
RoT with the help of a trusted third party. Sign, Verify and Link are
respectively used to sign messages or attestation data anonymously,
verify those signatures and allow a user to link two or more such
anonymous signatures if desired.

Chen et al. [16] defined an Ecc-Daa scheme in terms of Tpm
commands and described, at a high level, the Setup, Join, Sign and
Verify phases of their scheme. They also provided a computational
security proof of the Tpm command TPM2_Sign that is instrumental
in both the Join and Sign phases and on which the TPM2_Sign
command in the TCG documentation was based. Their scheme,
however, does not provide sufficient detail for an implementation.

We address this lack of detail by defining the implementation-
level details for Chen et al. ’s Ecc-Daa scheme [16] using the most
recent Tpm hardware version: Tpm 2.0, version 1.38 (a Tpm evaluation
module made by Infineon for the Raspberry Pi [25]). Using the
available Tpm 2.0 commands, we explicitly specify the sequence
of Tpm 2.0 calls needed to implement the various Ecc-Daa phases.
Moreover, apart from supporting signing a message anonymously
we extend the Sign phase of the scheme to support the attestation
(self-certifying) of Tpm keys and the attestation (quoting) of PCR
values.

Contributions:Weprovide threemain contributions. The first con-
tribution is the Tpm 2.0 API level detail of Chen et al. ’s scheme [16]
using the most recent Tpm 2.0 specification and its extension to
include Certify and Quote operations. Second, we provide a formal
analysis of the scheme using the Tamarin Prover. The models
used for the analysis were specifically designed to include Tamarin
representations of the low-level Tpm 2.0 calls involved in the scheme.
We state the authentication and security properties required by the
scheme based on Chen [14] and prove these symbolically using the
Tamarin Prover [35], which is a symbolic modelling and analysis
tool. Our analysis is based on the approach taken by Whitefield et

al. [46] and we verify that their proposed fix for an authentication
attack is also required in our extended version of Chen et al. ’s
scheme. Moreover, we correct Whitefield et al. ’s definition of user-
controlled anonymity. Third, we make an open-source reference
implementation of the scheme available in C++ and benchmark its
performance on a Raspberry Pi (using an ARMv7 processor and
Infineon’s hardware Tpm). Our implementation can be used as a
basis for further development of Ecc-Daa schemes using Tpm 2.0
and comparative benchmarking. It should also lower the barrier of
entry for other researchers who want to explore Tpm-based solu-
tions. Note that our Ecc-Daa implementation also runs on an Intel
x86 platform using a software Tpm emulator [26].

All the Tamarin models and the C++ reference implementation
can be found at [18, 19].

2 RELATEDWORKS

Brickell, Camenisch and Chen originally proposed Daa [6] and used
a simulation based proof to verify their scheme. Brickell, Chen and
Li [7, 8] subsequently proposed an Ecc-Daa scheme based on elliptic
curve pairings and introduced a game based model to prove their
scheme. Their schemes identified security notions that included
correctness, user-controlled anonymity, user-controlled traceability,
and we introduce these properties in detail in Section 3.2. Chen’s

scheme [14] improved upon the efficiency of the Brickell, Chen
and Li [8] scheme so that fewer Tpm calls were required, and non-
frameability was introduced as a further security property to be
considered. Chen, Morrissey and Smart [17] proposed a more effi-
cient Ecc-Daa scheme than Brickell, Chen and Li [8]’s scheme by
using Type III pairings. Chen et al. [21] proposed an implementa-
tion of an improved version of the Chen, Morrissey and Smart [17]
scheme. This implementation was developed entirely in software
and covered all of the phases of an Ecc-Daa scheme. Nonetheless, no
documentation of the Tpm calls required to implement the Ecc-Daa
scheme was included in the implementation and the source code is
not provided.

Recently, Yang et al. [47] introduced an implementation of an
Ecc-Daa scheme based on Tpm 2.0 calls. They particularly focus
on the Sign operation and reduce the number of exponentiations
required. They provided a rigorous analysis and an associated im-
plementation of the Sign operation.

Another family of Ecc-Daa schemes is Enhanced Privacy ID
(EPID). Brickell and Li proposed an EPID scheme [10] and proved
it in a game based model. Luther [34] provides implementations
of two Daa schemes: EPID [10], and the Lightweight Anonymous
Attestation Scheme with Efficient Revocation [31] on Tpm 2.0. Acar
et al. [1] demonstrated that the API for a Tpm allows an adver-
sary to use a Tpm as a static Diffie-Hellman (DH) oracle. Brown
and Gallant [11] found that although solving a static DH problem
is still computationally infeasible, it is simpler to solve than the
computational DH problem.

Whitefield et al. [46] performed a detailed symbolic analysis
of the ISO/IEC 20008-2 standardised Daa scheme based on elliptic
curves (Ecc-Daa) in which they found and provided a fixed for an
authentication attack. While they also formally verified their Ecc-
Daa scheme, their analysis is not as fine-grained as ours and their
definition of user-controlled anonymity is too strong.

Camenisch, Drijvers and Lehman [13] have proposed a UCmodel
for an Ecc-Daa scheme. Their scheme preserves a new set of security
properties. Subsequently, Camenisch et al. [12] added an additional
property that should be preserved in the presence of malicious
parties, and their security analysis is also based on UC models.

As our interest is in defining Ecc-Daa schemes which use Tpms,
we used Chen et al. ’s scheme [16] as the basis since this is one of
the most recent schemes that focuses on detailed Tpm 2.0 calls. We
defined the security properties of the scheme based on the work
by Chen [14] rather than those presented more recently in Ca-
menisch et al. [12, 13] as their scheme cannot yet be implemented
by the current Tpm 2.0 specification.

3 DIRECT ANONYMOUS ATTESTATION

Daa is a special group signature scheme where the group manager
(Issuer) issues credentials which can be used to verify that a signa-
ture was created by a valid member of the group. However, unlike
other group signature schemes, given a valid signature the group
manager is unable to identify the signer.

Chen et al. defined a Ecc-Daa scheme [16] with five operations,
Setup, Join, Sign, Verify and Link as summarised below. This paper
makes explicit that the Sign operation can cover three distinct
contexts.

Formal Analysis and Implementation of a TPM 2.0-based
Direct Anonymous Attestation Scheme ASIACCS ’20, June 2020, Taipei, Taiwan

• Setup - system parameters must be chosen and the Issuer
needs to generate its keys. The system parameters and the
Issuer’s public keys are then published and available to the
group and to anyone who needs to verify the validity of a
signature.
• Join - a Host using a Tpm joins the group and obtains an
attestation key (AK) credential for an Ecc-Daa key created
by the Tpm. The key can then be used to anonymously sign
a message, or attest to data from this Tpm.
• Sign - this operation uses an Ecc-Daa key to sign data in
three different contexts: to sign a message (Sign), to attest
another key generated by the Tpm (Certify) and to attest PCR
values confirming the state of the system (Quote).
• Verify - verifying a signature and returning true (valid) or
false (invalid).
• Link - checking two signatures to see if they are linked and
returning true (linked) or false (un-linked). Signatures us-
ing the same Ecc-Daa key can be linked by using the same
basename in the signature process.

3.1 Notation

The following symbols and abbreviations apply throughout the
paper:

t A security parameter.
p, n Prime numbers.
[x , y] The set of integers from x to y inclusive, if x , y are integers

satisfying x ≤ y.
Zp The set of integers modulo p, i.e., [0,p − 1]. These form a

prime field, Fp . Also note that Fpm is an extension finite
field with pm elements, wherem is a positive integer.

Zp∗ The multiplicative group of invertible elements in Zp , i.e.,
the set of integers in [1,p − 1].

G1 An additive cyclic group of order n over an elliptic curve.
The curve has points with co-ordinates in Fp × Fp .

P1 A generator of G1.
G2 An additive cyclic group of order n over an elliptic curve.

The curve has points with co-ordinates in Fp2 × Fp2 .
P2 A generator of G2.
[k]P Multiplication operation that takes a positive integer k and

a point P on the elliptic curve E as input and produces as
output another point Q on the curve E, where Q = [k]P =
P + P + . . . + P , i.e., the sum of k copies of P .

GT A multiplicative cyclic group of order n.
ĥ A bilinear map ĥ : G1 × G2 → GT such that for all P ∈
G1,Q ∈ G2, and all positive integers a, b, the equation
ĥ([a]P , [b]Q) = ĥ(P ,Q)ab holds. This bilinear map is also
called a pairing function.

H A cryptographic hash-function. We need several hash func-
tions:
- Hp : {0, 1}∗ → Zp is used when we want to hash to a
co-ordinate on the elliptic curve,

- Hn : {0, 1}∗ → Zn is used when we want to hash to a
multiplier for an elliptic curve point and

- Hk : {0, 1}∗ → Z2k a general hashing function.
Hs The ‘map to point’ function, used to map a random string, rs ,

to a tuple Hs (rs) = (s̄2,y2) such that (Hp (s̄2),y2) is a point

on the curve G1. The function Hs is essentially the function
I2P given in ISO/IEC standard document 11770-4 [28] using
SHA256 as the Key Derivation Function (KDF).

⊥ The item is unspecified. To avoid unnecessary if–then–else
constructs in the diagrams, this carries through. So, for group
items, for example, if A =⊥, then [b]A will also equal ⊥.

len16(x) The length of x expressed as a 16-bit integer (most significant
bit first).

senc A symmetric-key encryption function, senc(data, key).
sdec A symmetric-key decryption function, sdec(cipher, key).
aenc An asymmetric encryption function, aenc(data, ekey).
adec An asymmetric decryption function, adec(cipher, dkey).

m A message to be signed.

3.2 Security Properties

In this section we provide an intuitive description of the security
properties our scheme is designed to provide. These properties
were first introduced by Brickell et al. [8] and then refined by
Chen [14]. More recently, Camenisch et al. [13] have proposed
an alternative set of security properties but their scheme cannot
yet be implemented by the current Tpm 2.0 specification. In this
paper, since our scheme is based on Chen et al. and their proofs,
our definitions use the terminology presented in [14].

Recall that we use the term Platform to describe the unique,
one-to-one combination of a Host and a Tpm. We use the term mes-
sage to represent a signature, a certified key or a quoted PCR value
that can be verified by a Verifier. Note that the Tpm component
of a Platform is the trusted element that generates the signatures,
certified keys and quoted PCR values in conjunction with the (po-
tentially untrusted) Host.

SP1: Correctness: requires the scheme to be consistent and
ensures that, in the absence of an adversary, the protocol can be
executed correctly.

User-controlled traceability: this property covers the three
notions of:

- SP2: User-controlled linkability: given a single basename
bsn(, ⊥), an adversary finds it hard to create two different
messages under the same private key with both messages
associated with that bsn, but the messages are not linked.

- SP3: Unforgeability: an adversary, who is in the possession
of a set of Platforms’ private keys and associated credentials,
finds it hard to forge a valid message for a private key and
credential, which is not in that set.

- SP4:Non-frameability: no combination of dishonest Issuers
and Platforms can create a valid messagem0 which can be
linked to some given messagem1 generated by an honest
Platform, unless that Platform produced the messagem0.

User-controlled anonymity: this property combines the two
notions of:

- SP5: Anonymity: an adversary, who does not know the
private key of a Platform, finds it hard to recover the identity
of the Tpm used by the Platform from a given message.

- SP6: User-controlled unlinkability: given two messages
m0 and m1 associated with two basenames bsn0 and bsn1
respectively, where bsn0 , bsn1, an adversary, who does not
know the private key(s) of the associated Platforms, finds

ASIACCS ’20, June 2020, Taipei, Taiwan Chen and Newton et al.

it hard to tell whether or not the two messages originated
from the same Platform.

We propose the following additional security property based on the
work done by Whitefield et al. [46] which addresses a particular
issue during the Join process:

SP7: Agreement during the Join: this property ensures that
both the Platform and Issuer confirm each other’s identity and agree
on the credentials that were created during the Join operation.

Our work provides the missing fine-grained details of the scheme
proposed by Chen et al. [16] which in turn is based on the work
of [7–9, 14, 21]. This body of research has game based models for
an Ecc-Daa scheme satisfying all the above properties (SP1-SP6).
The security analysis for the whole scheme at the Tpm command
level does not exist, apart from the detailed analysis of the signing
phase using Tpm commands (TPM2_Commit and TPM2_Sign) [16].
The proofs of the schemes are independent of the Tpm commands,
and provide the mathematical soundness of the overall schemes.
Consequently, for our Tamarin analysis we do not require a game
based proof of an Ecc-Daa scheme in terms of its Tpm commands
since the assumptions we rely upon are at a mathematical level and
not at the Tpm command level.

3.3 Tpm Key Management and Usage

In this section we explain how a Tpm generates and manages its
keys, an understanding of which is needed in order to implement
an Ecc-Daa scheme that utilises a Tpm.

One of the critical functions of a Tpm is to provide any keys that
are needed by the Host. The Tpm’s keys form a hierarchy with a
primary key at the top and other child keys below. When a child
key, K , is created, the Tpm passes back information to the Host
which includes public data about the key Kpd and its sensitive data
Ksd. Kpd contains the public key and information about how the
key was created. Ksd contains the private key and is encrypted
(“sealed”) under its parent’s AES key. However, when a primary key
is created we only receive its public data from the Tpm. The private
data can be stored in the Tpm’s persistent memory, or re-created as
needed. The keys are handled in this way as the Tpm has limited
storage capacity and so, apart from any primary keys, the key data
is stored outside of the Tpm. Keys need to be loaded before they can
be used and flushed from the Tpm when not required to make space
for other keys.

Note that there are several key hierarchies available in a Tpm [38],
but in our implementation we only use the endorsement key hier-
archy. This hierarchy requires external certification of the primary
key which then allows it to be used to endorse other keys. This pri-
mary key in the endorsement hierarchy is called the endorsement
key and denoted by (e, E), where e is the private key and E is the
corresponding public key. As this is a primary key, only its public
data, EPD , which includes E, is passed back to the host. All other
keys in our implementation (i.e., the Ecc-Daa key and any other
key to be certified) are children of this endorsement key.

3.4 The Setup Operation
Before an Ecc-Daa scheme can be used, its parameters need to be
agreed between all parties involved. Setting these parameters may
be done by the Issuer or by some other authority as follows:

(1) Choose the security parameter t .
(2) Choose an asymmetric bilinear group pair (G1,G2) of large

prime order n and an associated pairing function ĥ.
(3) Choose two random generators P1 and P2.

Once this is done the Issuer takes the following steps:

(1) Chooses two random integers x ,y in Zn . These are the
Issuer’s private keys.

(2) Computes X = [x]P2 and Y = [y]P2. These are the Issuer’s
public keys.

(3) Publishes the following information:
– group public parameters = (G1, G2, GT , ĥ, P1, P2, Hn , Hp ,
Hk),

– group public key = (X ,Y),

3.5 The Join Operation

The algorithm for the Join operation is shown in Figures 1 and
2. Note that information that is known to the different entities is
given at the top of the protocol diagrams. Recall that during the
Join operation the Host communicates with the Issuer to obtain an
attestation key credential to use with its Ecc-Daa key. Calls to the
Tpm are used to obtain the necessary keys and information that the
Issuer requires. A number of important points are now made about
this protocol. The letters corresponding to the items marked on the
relevant protocol diagrams.
For Figure 1:

(a) The Tpm creates an Ecc-Daa key whose public key isQs . The
host receives both the public data QPD and the sensitive
data QSD of this Ecc-Daa key. The hosts then sends the
QPD and the public endorsement key, E to the issuer. At
an implementation level, this key must be: fixed to this Tpm,
fixed to its parent in the Tpm’s key hierarchy and restricted
so that it will only sign digests that it has generated itself.

(b) The issuer creates a challenge K1 and encapsulates it using
themake credential procedure. The result of this procedure is
passed to the Platformwhich uses the TPM2_ActivateCredential
call to unpack the data and retrieves K1. Implementation
level details of both of these credential procedures are de-
tailed in Appendix A.1.

(c) Notably, the construction of str includes the public endorse-
ment key, E. This addition was identified as an important
requirement to protect against attacks with a rogue Tpm by
Whitefield et al. [46]. The next three steps create a signature
for str using three distinct Tpm calls.

(d) The inputs for this call to TPM2_Commit are all ⊥, and in
this case the commit command returns the point E.

(e) The data is hashed using TPM2_Hash which also returns a
ticket, tkt , that is used to confirm that the hashwas generated
by the Tpm.

(f) Using TPM2_Sign the Tpm checks tkt and generates a signa-
ture.

(g) The Issuer confirms that the value of K1 returned by the
Platform correspond to the original challenge and verifies
the Host’s signature, σch .

At this point in the Join operation, the Issuer is convinced that
the Ecc-Daa and endorsement keys both belong to the same Tpm

Formal Analysis and Implementation of a TPM 2.0-based
Direct Anonymous Attestation Scheme ASIACCS ’20, June 2020, Taipei, Taiwan

Tpm Host Issuer

e, Epd X, Y, Epd x, y

Host preparesTPM2_Create
� create Ecc-Daa keygenerate ds ∈ Zn

Qs = [ds]P1

-Qsd, Qpd macalculate Qsd and Qpd
Issuer challengesstore Qsd and QpdTPM2_Load

� Qsd, Qpd
load DAA key extract E from Epd -E , Qpd

check and store E , Qpd

K1 ← {0, 1}t

Host respondsTPM2_ActivateCredential mb
[cb1, ŝ1] = make_credential(E , Qpd,K1)� cb1, ŝ1� cb1, ŝ1

K1 = activate_credential(cb1, ŝ1)
-K1 str = X ‖ Y ‖ K1 ‖ E mc

TPM2_Commit
S =⊥

� s̄2, y2, S (s̄2, y2) = (⊥,⊥) mdcalculate a counter value cv

rcv ← Zn

E = [rcv]P1 -E, cv

p = Hk(P1 ‖ Qs ‖ str ‖ E)TPM2_Hash
� p

ptpm = Hk(p)

generate tkt me-ptpm, tkt

ptpm, tktTPM2_Sign
� cv , ptpm, tkt

check tkt

nJ ← {0, 1}t

v = Hn(nJ ‖ ptpm)

w = rcv + v · ds (mod n) -nJ , w Issuer verifies responsemfv = Hn(nJ ‖ ptpm)

σch = (nJ , v, w) -K1, σch check K1

extract Qs from Qpd

str = X ‖ Y ‖ K1 ‖ E
E′ = [w]P1 − [v]Qs

p′ = Hk(P1 ‖ Qs ‖ str ‖ E′)

p′
tpm = Hk(p′)

v′ = Hn(nJ ‖ p′
tpm)

verify v = v′mg

Figure 1: Initiating the Join

and that the Ecc-Daa key that it received can be used for signing
by the Host. The remainder of the Join creates the attestation key
credential, (A,B,C,D), for the Ecc-Daa key as shown in Figure 2.
For Figure 2:

(a) The Issuer calculates the attestation key credential, (A,B,C,D),
for the Ecc-Daa key.

(b) The Issuer signs this credential, σcre . This is effectively a
double Schnorr signature that confirms to the host that B
and D are correctly related, i.e., B and P1 and D andQs have
the same discrete logarithm.

(c) The Issuer creates an encryption key, K2 and uses it to en-
crypt the attestation key credential. The Issuer encapsulates
K2 using the make credential procedure. The result of the
procedure together with the encrypted attestation key cre-
dential are sent to the Host.

(d) The Host uses TPM2_ActivateCredential to obtain the key,
K2. This key is then used to decrypt Ĉ and obtain the Ecc-Daa
key’s credential.

(e) The Host then checks the Issuer’s signature.
(f) The Host confirms that the attestation key credential is valid

using the bilinear map, ĥ.

3.6 The Sign Operation

Signing with an Ecc-Daa key is a two stage process. First, the attesta-
tion key credential (A,B,C,D) is randomised and the TPM2_Commit
command is used to prepare parameters for the subsequent signing
process. Second, the Ecc-Daa key is used for any of the three distinct
signing contexts (Sign, Certify and Quote).

Figure 3 shows the first stage, assuming that the required keys
have been loaded into the Tpm. The linking basename, bsn, is either
unset (⊥) or is set to {0, 1}∗. Note that if bsn =⊥, then s̄2 and y2
will both be ⊥ and remembering that we have said that ⊥ carries
through in any formula we see that TPM2_Commit just returns
E = [rcv1]S . K and L will both be unset as will J (all will be ⊥).
These then carry through for all of the other calculations.

Signatures using the same basename (,⊥) will have the same
values of J and K which tells a Verifier that they were generated
by the same signer and can therefore be linked. Nevertheless, the
Verifier cannot tell the identity of the signer from this and the
signer’s anonymity is preserved.

Figures 4, 5 and 6 show the second stage. The mechanism for
signing a message,m, using TPM2_Sign is shown in Figure 4. In
the figure:

ASIACCS ’20, June 2020, Taipei, Taiwan Chen and Newton et al.

Tpm Host Issuer

e, Epd, ds X, Y, E , Qpd x, y, E , Qpd, Qs

Issuer creates AK credential
r ← Znma A = [r]P1; B = [y]A

C = [x]A+ [rxy]Qs

D = [ry]Qs

l← Zn

RB = [l]P1; RD = [l]Qsmb u = Hn(P1 ‖ Qs ‖ A ‖ B ‖ C ‖ D ‖ RB ‖ RD)

j = l + yr · u (mod n)

cre = (A,B,C,D), σcre = (u, j)mc K2 ← {0, 1}taes

Ĉ = senc(cre ‖ σcre,K2)Host verifies AK credential
TPM2_ActivateCredential

[cb2, ŝ2] = make_credential(E , Qpd,K2)� cb2, ŝ2, Ĉ� cb2, ŝ2
keep ĈK2 = activate_credential(cb2, ŝ2)

-K2 mdcre ‖ σcre = senc(Ĉ,K2)

(A,B,C,D) = cre, (u, j) = σcre

extract Qs from Qpd

R′
B = [j]P1 − [u]B meR′
D = [j]Qs − [u]D

u′ = Hn(P1 ‖ Qs ‖ A ‖ B ‖ C ‖ D ‖ R′
B ‖ R′

D)

check :

u = u′,

Check pairings

ĥ(A, Y) = ĥ(B,P2) and mfĥ(A+D,X) = ĥ(C,P2)

store (A,B,C,D)

Figure 2: Completing the Join

Tpm Host

ds X, Y, A, B, C, D

Host commits
l← Zn

R = [l]A; S = [l]B

T = [l]C; W = [l]D

set bsn

(s̄2, y2) = Hs(bsn)

TPM2_Commit

J = (Hp(s̄2), y2)� s̄2, y2, S (note: S 6=⊥)
calculate a counter value cv1

J = (Hp(s̄2), y2)

K = [ds]J

rcv1 ← Zn

L = [rcv1]J ; E = [rcv1]S -K, L, E, cv1 These parameters are then used
for signing.

Figure 3: Preparing to use the Ecc-Daa key

(a) If J , K and L are all ⊥ they make no contribution to the hash,
Hk .

(b) As before a ticket, tkt1, is used to confirm that the digest, h1,
being signed has been generated by the Tpm.

Figure 5 shows the mechanism for using TPM2_Certify to attest
(self-certify) that a key QK was generated by and is loaded into
the Tpm. Figure 6 shows the mechanism for attesting to a set of
PCR values (quoting) where TPM2_Quote is used to report on the
state of the Platform as recorded by its PCR values. As the data

Tpm A message, m Host

ds m X,Y,R, S, T,W

bsn, J,K,L,E, cv1

Host signs
md = Hk(m)

c = Hk(md
‖ R ‖ S ‖ T ‖W ‖ J ‖ K ‖ L ‖ E)� cTPM2_Hash

h1 = Hk(c)

-h1, tkt1generate tkt1

store h1TPM2_Sign
� cv1, h1, tkt1check tkt1

nM ← {0, 1}t

h2 = Hn(nM ‖ h1)

s = (rcv1 + h2 · ds) (mod n) -s, nM h2 = Hn(nM ‖ h1)

Output:

Message, m

σM = (bsn, R, S, T,W, J,K, h2, s, nM)

Figure 4: Signing a message,m (Sign)

that they are signing is internally generated there is no need for
the extra TPM2_Hash function. Information on the attestation data
generated by these commands is given in Appendix A.2.

Formal Analysis and Implementation of a TPM 2.0-based
Direct Anonymous Attestation Scheme ASIACCS ’20, June 2020, Taipei, Taiwan

Tpm A key QK Host

ds QKsd, QKpd X,Y,R, S, T,W

’credential data’ bsn, J,K,L,E, cv1

TPM2_Load
� QKsd, QKpd

load QK load QK

Host certifies
c = Hk(′credential data′

‖ R ‖ S ‖ T ‖W ‖ J ‖ K ‖ L ‖ E)� c, cv1
TPM2_Certify

A = certify QK

h1 = Hk(c ‖ Hk(A))

nC ← {0, 1}t

h2 = Hn(nC ‖ h1)

s = (rcv1 + h2 · ds) (mod n) -A, s, nC h1 = Hk(c ‖ Hk(A))

h2 = Hn(nC ‖ h1)

Output:

Attestation data for QK , A

σK = (bsn, R, S, T,W, J,K, h2, s, nC)

Figure 5: Certifying a key, QK (Certify)

Tpm A pcr_set Host

ds ’pcr data’ X,Y,R, S, T,W

bsn, J,K,L,E, cv1

Host quotes

c = Hk(′pcr data′

‖ R ‖ S ‖ T ‖W ‖ J ‖ K ‖ L ‖ E)� c, cv1 ,pcr_set
TPM2_Quote

P = quote pcr_set

h1 = Hk(c ‖ Hk(P))

nQ ← {0, 1}t

h2 = Hn(nQ ‖ h1)

s = (rcv1 + h2 · ds) (mod n) -P, s, nQ
h1 = Hk(c ‖ Hk(P))

h2 = Hn(nC ‖ h1)

Output:

Attestation data for pcr_set, P

σQ = (bsn, R, S, T,W, J,K, h2, s, nQ)

Figure 6: Quoting a set of PCR values (Quote)

3.7 The Verify and Link Operations

Figure 7 shows the procedure for verifying the different Ecc-Daa
signatures. This consists of two parts: a) checking the Ecc-Daa
credential; and b) checking the signature itself.

Note that the Verifier needs access to the Issuer’s public keys, X
and Y . This is shown at the top of Figure 7 together with the infor-
mation needed for verifying the different signatures. Additionally,
if bsn =⊥ then J , K and therefore L′ will all be unset (=⊥) and will
make no contribution to hash c ′.

The Verifier can also check that two signatures are linked, if
their corresponding J and K values are equal and not ⊥ (not shown
in Figure 7).

4 IMPLEMENTATION

Implementation was straightforward once the protocols were writ-
ten out in terms of the Tpm calls (see Appendix A.3). The protocols
were implemented in C++, using the GNU GCC compiler [23],
the IBM implementation of a Tpm software stack (IBM TSS) [27],
OpenSSL [36] and the Apache Milagro crypto library (AMCL) [42].
There were approximately 7,900 lines of code (excluding all of the
library code). The structure of the code is shown in Figure 8.

Verifier

(X, Y) and (m,σM) or (QKpd,A, σK) or (P, σQ)

Verify attestation key credential

verify ĥ(R, Y) = ĥ(S, P2) and ĥ(R+W,X) = ĥ(T, P2)

(s̄2, y2) = F(bsn)

verify J = (Hp(s̄2), y2)

L′ = [s]J − [h2]K

E′ = [s]S − [h2]W

Verify signature
σM = (bsn, R, S, T,W, J,K, h2, s, nM) and m

md ′ = Hk(m)

c′ = Hk(md ′ ‖ R ‖ S ‖ T ‖W ‖ J ‖ K ‖ L′ ‖ E′)

h′
1 = Hk(c′)

h′
2 = Hn(nM ‖ h′

1)

verify h′
2 = h2

Verify QK certificate
Calculate the key name, QN , from QKpd

Check the key name, QN , against that given in A

σK = (bsn, R, S, T,W, J,K, h2, s, nC) and ’credential data’

c′ = Hk(′credential data′ ‖ R ‖ S ‖ T ‖W ‖ J ‖ K ‖ L′ ‖ E′)

h′
1 = Hk(c′ ‖ H6(A))

h′
2 = Hn(nC ‖ h′

1)

verify h′
2 = h2

Verify PCR quote
Check the PCR value given in P against that expected

σQ = (bsn, R, S, T,W, J,K,P, h2, s, nQ) and ’pcr data’

c′ = Hk(′pcr data′ ‖ R ‖ S ‖ T ‖W ‖ J ‖ K ‖ L′ ‖ E′)

h′
1 = Hk(c′ ‖ H6(P))

h′
2 = Hn(nC ‖ h′

1)

verify h′
2 = h2

Figure 7: Verifying the Ecc-Daa signatures (Verify)

Figure 8: Structure of the C++codebase

The protocols were tested on two platforms: a Raspberry Pi 3
(ARM v7) with an Infineon Tpm [25] and an Intel x86_64 laptop with
the Tpm calls implemented using the IBM Tpm emulator [26]. The
protocols were benchmarked on both platforms and the results are
presented in Appendix A.5.

The Tpm specification includes two pairing friendly EC curves,
BN_P256 and BN_P638. Recent developments in cryptanalysis [2]
indicated that the BN_P256 curve is not as secure as previously

ASIACCS ’20, June 2020, Taipei, Taiwan Chen and Newton et al.

thought, but this was still used in our tests as the other curve
(BN_P638) is not implemented in the Infineon Tpm, or in the Tpm
emulator. Using the BN_P256 EC curve fixes the security parameter,
t(= 256), the groupsG1,G2 andGT and as a consequence the values
of p and n as well.

The choice of generators for G1 and G2 is constrained. P1, the
generator for G1 is fixed in the Tpm specification, while that for P2
is fixed by AMCL.

The hash function, Hk is fixed as SHA256 and other hash func-
tions are obtained by calculating SHA256 for the data and then
taking the result (mod p) for Hp and (mod n) for Hn .

5 THREAT MODEL

5.1 Component Model

Our Ecc-Daa scheme consists of four physical components, a Host
and its Tpm, an Issuer and a Verifier. Recall that a Platform is
the combination of a Host with a Tpm. The Tpm is responsible for
securely deriving keys and providing other cryptographic functions
for the Host. While a Tpm is assumed to be tamper-resistant, we
nevertheless allow some private keys which are held by Tpms or
the Issuers to be potentially revealed as part of an attack.

5.2 Channel Model

Our Ecc-Daa scheme operates over two channels:

(1) Tpm ↔ Host
(2) Host ↔ Issuer and Verifier

While a Tpm is a Host’s RoT and typically embedded into its mother-
board, the Tpm remains a separate entity. Communication between
the Host and the Tpm is over the Low Pin Count bus and following
Camenisch et al. [12], we assume that there is a perfectly secure
channel between the Host and the Tpm, i.e., an adversary has no
control over the channel and does not know it is being used. In the
same paper, no constraints are imposed on the channel between
the Host and the Issuer which means that it is under the control
of an adversary and we also make this assumption. We return to
the subtleties regarding these precise assumptions and their formal
modelling in Section 6.3.

The channel model assumes a classical Dolev-Yao (DY) [22] ad-
versary that can intercept, block, replay, spoof and send messages
on the channel from any source. The DY adversary also learns the
content of all messages unless they are cryptographically protected
in which case the DY can only decrypt them if the decryption keys
are known or can be derived.

6 TAMARIN SECURITY PROOFS

6.1 Methodology

The Tamarin Prover [35] is a state-of-the-art protocol verification
tool for symbolic modelling. It supports unbounded verification,
mutable global state, and flexible user-defined equational theories.
Protocols are modelled using multi-set rewriting rules and proper-
ties are specified using first-order logic. The tool offers automatic
verification succeeding in many cases, as well as an interactive
verification mode for manual proof tree traversal. The tool pro-
vides both proofs, and disproofs by counter-example. Moreover, the

Tamarin Provermodels all communication using the standard DY
adversary model.

We faithfully represent the protocol specification given in Sec-
tion 3 in Tamarin models. The naming convention used in these
models follows closely the names of the Tpm commands as well as
the variable names and labels used in Figure 1 through Figure 7. Our
models are based on the approach of Whitefield et al. [46] for their
modelling of the Daa scheme specified by ISO/IEC-20008-2:2013
mechanism 4 [29].

Due to the fine-grained modelling of our Ecc-Daa scheme, the
computational complexity of verifying it using the Tamarin Prover
proved challenging even on a server with 2 Intel Xeon E5-2667 CPUs
(16 cores, 32 threads) and 378GB of RAM. In order to reduce the
computational complexity of our models, we separate the analysis
into three parts: a) Join, Sign and Verify; b) Join, Certify and Verify;
and c) Join, Quote and Verify. Each of these will have two mod-
els: with or without a basename set. All of them share copies of
the same Join operation as the Tamarin Prover does not support
including shared code.

For example, the Tamarin models for our Ecc-Daa scheme that
model the Join, Sign and Verify operations, require almost 1400
lines of code consisting of over 38 rules. To model the interactions
between a Tpm, a Host, an Issuer and a Verifier requires almost
1000 lines of code. The remainder is used to specify lemmas which
encapsulate the security properties our model satisfies. To our
knowledge, this is the first time that all the security properties
of an Ecc-Daa scheme have been expressed formally.

Note that we do not discuss the Setup and Link operations. The
Setup operation is an off-line process and does not need to be
modelled. The Link operation simply compares certain values in
two signatures and returns true or false depending on whether
these values match or not. This functional property is captured
within our Tamarin model as part of functional correctness but
not discussed in more detail in the paper.

The Tamarin Prover is then used to verify our scheme’s security
properties (SP1 to SP7, as described in Section 3.2) for these models.
SP1, SP2, SP3, SP4 and SP7 are encoded using first-order logic formu-
lae and prefixed by the lemma identifier in themodels. The formulae
are then evaluated by the Tamarin Prover over runs of the scheme
defined in the models. In order to verify the anonymity (SP5) and
user-controlled unlinkability (SP6) properties, we require a further
twelve variants since their proofs use the Tamarin Prover’s Ob-
servational Equivalence proof mode [4], instead. SP5 and SP6 are
considered to be indistinguishability properties and Observational
Equivalence is the standard way of proving those in a symbolic
model. In this mode, the Tamarin Prover reasons about two sys-
tems (for example, two instances of a protocol), by showing that a
DY adversary cannot distinguish these two systems. While it would
have been desirable to prove these two properties without these
additional models, due to the high number of rules in our first-order
logic models, the resultant state space is too large for exploration
in the Tamarin Prover’s observational equivalence proof mode.
Therefore, to prove these properties, the 12 variants for this mode
use fewer rules. This is achieved by collapsing the respective Join
& Sign, Join & Certify, and Join & Quote operations and treating
the Host and its Tpm as a single entity for these 12 variants only.
This simplification only removes the model’s fine-grained mapping

Formal Analysis and Implementation of a TPM 2.0-based
Direct Anonymous Attestation Scheme ASIACCS ’20, June 2020, Taipei, Taiwan

Table 1: 18 Tamarinmodel variants

Tamarin Prover’s Proof mode

First-order Logic Obs. Equiv.

Context bsn 6=⊥ bsn =⊥ bsn 6=⊥ bsn =⊥
Sign SP1, SP2, SP3 SP1, SP3, SP5 SP6 SP5 SP6

SP4, SP7 SP7

Certify SP1, SP2, SP3 SP1, SP3, SP5 SP6 SP5 SP6
SP4, SP7 SP7

Quote SP1, SP2, SP3 SP1, SP3 SP5 SP6 SP5 SP6
SP4, SP7 SP7

to the Tpm calls but does not restrict the knowledge a DY adversary
gains by observing the protocol. Table 1 shows an overview of all
the different models and which security properties are included in
each.

Due to the complexity of encoding all the calls between aHost, its
Tpm, the Issuer and a Verifier in our models, the standard heuristic
employed by the Tamarin Prover to prove the model’s proper-
ties only works for one of our security properties (SP2). All other
security properties required the assistance of a proof oracle that re-
orders the ranking of the open proof goals in the Tamarin Prover,
and thus enabling it to pick the ones which will result in the desired
proof. The oracles only influence termination, not the result as such,
so soundness is preserved. These oracles were constructed by using
the web interface of the Tamarin Prover and stepping through
these proofs. The steps were then encoded into a Python script of
the order of about 100 lines of code (see Chapter 9 of the Tamarin
manual [41]). In our models, the lemmas that require the use of
such an oracle are labelled with the prefix “oracle_” while the one
without the need for an oracle has the prefix “auto_”.

Our 18 Tamarin models and associated oracles are available
at [19] together with instructions on how to reproduce the results.

6.2 Symbolic Modelling

The Tamarin Prover provides symbolic analysis, i.e., instead of
using finite field elements or points of an elliptic curve we consider
abstract terms. For example, symmetric encryption of a messagem
under the key k is given by senc(m,k). When processing a model,
the Tamarin Prover operates under the perfect cryptography as-
sumption. In other words, the DY adversary can only decrypt mes-
sages for which she knows the key, she cannot brute-force a key
or mathematically derive it, nor can she “undo” a hash of a mes-
sage or find a hash collision. However, she can manipulate terms
symbolically, i.e., build up new terms by combining existing ones
or computing new ones using her knowledge of the protocol.

Our Ecc-Daa scheme’s security relies on verifying numerous
mathematical equalities involving complex terms using a combi-
nation of bilinear maps, finite field arithmetic and hashes. In order
to ensure the validity of the computations, we introduced our own
equational theories whose purpose is to verify the correct con-
struction of terms in order to simplify them according to their
mathematical properties.

As we have stated above there are 18 Tamarin models and they
are partitioned into two classes: those representing schemes that
have a basename set (bsn ,⊥), and those which do not set a base-
name (bsn =⊥). This means that during the analysis an adversary is
not able to produce signatures without basenames in models with
basenames and vice versa. This arguably limits the capabilities of
the adversary and the results of the symbolic modelling are thus
not in the context of the most general adversary.

6.3 Ecc-DaaModelling Choices

Separation of Host and Tpm: our Ecc-Daa scheme relies on a Host
and its Tpm which are co-located but distinct components. As such
both the Host and Tpm are modelled as separate entities, and the
binding of a Tpm to a Host constitutes a Platform. In our models
there is a one-to-one correspondence between a Host and a Tpm,
i.e., a Host has only one Tpm and that Tpm is bound to that Host
only. Modelling this separation allows for the Host and its Tpm to
be treated independently, in particular it allows for the model to
explore scenarios where the Host or Tpm or both are compromised.

Secure Channel between the Host and its Tpm: following the chan-
nel model described in Section 5.2, the communication between
the Host and the Tpm has been modelled as a secure channel, i.e.,
a channel which the DY adversary cannot observe nor interfere
with. While this is a very strong restriction on the capabilities of
the DY adversary, it reflects the current security assumption around
the interaction between the Host and its Tpm. Moreover, having
modelled this channel separately, it also allows for some of these
assumptions to be relaxed individually in future.

Issuer and Verifier: both these parties have been modelled as
independent entities in the models. It is important to note that the
models allow the Issuer to be compromised, i.e., its private keys can
be leaked, while there is no such requirement on the Verifier as it
does not handle any sensitive information. Both Issuer and Verifier
communicate with the Host over an insecure channel which is
fully controlled by the DY adversary. Note that the communication
between the Host and the Issuer during the Join phase is usually
assumed to use a secure and authenticated channel [29]. However,
establishing such a channel when the Host and Issuer are not co-
located is difficult and if the Join phase of our scheme can be verified
to work using an insecure channel, then it will also work when
a secure and authenticated channel can be established. Modelling
an insecure channel between a Host and a Verifier is, however, a
realistic assumption since a Verifier can be any third party who has
obtained, through any channel, a given signed message, certified
key or quoted PCR values and wants to establish the data’s integrity
and authenticity.

6.4 Formalisation of Security Properties

Having modelled our Ecc-Daa scheme using the Tamarin Prover’s
multi-set rewriting rules, we now formalise its security proper-
ties. Notably, SP7 highlighted a weakness in the Join phase of our
Ecc-Daa scheme which was easily rectified. This fix, however, is
critical since a successful Join phase is required by all the other
security properties since they are concerned with the security or
indistinguishability of the messages created by a Platform after it
has successfully completed the Join phase of our scheme.

ASIACCS ’20, June 2020, Taipei, Taiwan Chen and Newton et al.

Some notes on the notation used in Tamarin’s lemmas: “All”
is Tamarin’s version of the universal quantifier, ∀. The logical
operators AND (∧), NOT (¬) and IMPLIES (=⇒) are expressed
using “&”, “not()” and “==>” respectively. Temporal variables are
prefixed with a “#”, e.g., “#t01”, and “@” indicates a specific time
point, e.g., “@ t01”. Anything following “//” or in between “/* */” is
a comment and therefore ignored by Tamarin.

SP1: Correctness: This property requires the Tamarin Prover to
find that there exists an execution (called a trace in Tamarin) of
our scheme in which no private keys have been revealed and all the
steps in the protocol are executed in the correct order and with the
right parties. Consequently, the Tamarin Prover needs to prove
that our Ecc-Daa scheme allows a given Platform to go through its
Join phase with an Issuer successfully and using the credentials it
obtained during that phase to then execute the Sign, Certify and
Quote operations to generate a message, e.g., signature, certified
key, or some quoted PCR values, which a Verifier can check using
the corresponding Verify operation. In our Tamarin models this
property is captured by all lemmas whose names are prefixed with
“oracle_correctness” and they all proved successfully.

SP2: User-controlled linkability: This property states that for a
given single basename bsn(, ⊥), a DY adversary finds it hard to
create two different messages, siдma1 and siдma2, under the same
private key, e.g., f 1, and basename, bsn, but the messages are not
linked. Since the “hardness” of a problem is related to its computa-
tional complexity, we need to recast this statement as an assertion
on the messages and their private keys. Consequently, we encode
this property in Tamarin by stating that given twomessages, which
are not linked but which used the same basename, can only have
been created if the private keys used in their creation were different
to start with. The lemma shown in Listing 1 shows our implemen-
tation.� �

1 lemma auto_SP2_UserControlledLinkability:
2 " All bsn sigma1 sigma2 f1 f2 #t01 #t02 #t03.
3 //given 2 signatures that are not linked
4 UnlinkedSignatures(sigma1 , sigma2) @ t01
5 & not(sigma1=sigma2) // and different
6 //but used the same base name and
7 //a private f1 and f2, respectively
8 & VerifiedSignatureDeAnonymised(bsn , sigma1 , f1) @ t02
9 & VerifiedSignatureDeAnonymised(bsn , sigma2 , f2) @ t03
10 ==> //then f1 is not the same as f2
11 not(f1=f2) "� �

Listing 1: Linkability

Note that this lemma is only applicable to the variants of our
models in which a basename can be set. In order to prove SP2,
we defined an action label, VerifiedSignatureDeAnonymised, in-
side the rule called Verifier_Check_TPM_Message responsible for
checking the validity of a message. This action label recovers the
private key associated with that message and thus allows us to
reason about the private keys used in the message. This should
obviously not be possible according to the mathematical properties
of the Ecc-Daa scheme, however, we only used this to demonstrate
that any two valid signatures which are not linked must have used
distinct private Ecc-Daa keys, f 1 and f 2. This lemma proves in all
applicable variants of our model.

SP3: Unforgeability: This property states that a DY adversary,
who is in the possession of a set of Platforms’ private keys and

associated credentials, finds it hard to forge a valid message for
a private key and credential, which is not in that set. In order
to encode this property into a lemma for the Tamarin Prover,
we again need to recast it to be suitable for symbolic analysis.
As a result, our lemma states that if there exists a valid message
m associated with a Platform P , but P did not send it, then P ’s
credentials must have been compromised and the adversary used
them to createm. This property holds in the two variants of our
models, i.e., when a basename can be set, bsn ,⊥, and when the
basename is unset, bsn =⊥.

Our proof shows that a verifiable message either originated
from a Platform P , which has not been compromised, i.e., whose
keys have not leaked, or from a DY adversary in possession of P ’s
private keys. In other words, a DY adversary cannot construct a
valid message for a Platform P any other way than by knowing P ’s
private keys.

SP4: Non-frameability: This property states that no combination
of dishonest Issuers and Platforms can create a valid message,m0,
which can be linked to some given message,m1, generated by an
honest Platform, unless that Platform produced the message,m0.
In our model this needs to be recast into a positive assertion which
we capture in a lemma that states when given a Platform P whose
private keys have not been revealed and which sent a valid message
m1 that can be linked to a second valid messagem0 then P must
have also sent the second messagem0. This property does not apply
to the models in which the basename is not set since linking of
messages requires a basename to be set.

SP5: Anonymity: Anonymity in our scheme is the requirement
that a DY adversary, who does not know a Platform’s private key,
finds it hard to recover the identity of the Tpm used by the Platform
from a given message. In the Tamarin Prover this property can
be expressed using Observational Equivalence properties (cf. Sec-
tion 6.1).

In our models, we provide the adversary with the public keys
of two distinct Tpms as well as two messages, siдma1 and siдma2
where one Tpm created siдma1 while the other Tpm created siдma2.
Using its Observational Equivalence mode, the two systems that the
Tamarin Prover needs to distinguish differ by the message the
adversary is shown. In the first system, the adversary gets presented
with, for example, siдma1, while in the second system siдma2 is
used, instead. If the adversary can associate at least one of the public
Tpm keys with a given message but not the other message, then the
two systems differ and the anonymity will be broken. Therefore, if
the Tamarin Prover cannot distinguish these two systems then the
adversary is unable to tell the messages apart and the anonymity
of the signatures are preserved. This lemma proves in all 6 variants
of our model with and without a basename.

SP6: User-controlled unlinkability: User-Controlled unlinkability
is the requirement that the user’s identity is not revealed through
her messages. In the Tamarin Prover this is again expressed as an
Observational Equivalence. For this property, our Tamarin model
generates either two messages with random basenames from one
Platform, or two messages with random basenames from two dif-
ferent Platforms. The Tamarin Prover then checks if those two
systems can be distinguished. In other words if it were possible
to spot that the two signatures come from the same Tpm or that
they came from different Tpms then that would break the desired

Formal Analysis and Implementation of a TPM 2.0-based
Direct Anonymous Attestation Scheme ASIACCS ’20, June 2020, Taipei, Taiwan

unlinkability. This lemma proves in all 6 variants of our model with
and without a basename.

SP7: Authentication - Injective Agreement during Join:We describe
the authentication security property which initially did not hold
and required an amendment to our Ecc-Daa scheme. Whitefield et

al. [46] in their analysis of the ISO/IEC-20008-2:2013 mechanism 4
Ecc-Daa scheme [29] demonstrated an attack which showed that
the standard did not satisfy the weak agreement property of Lowe’s
hierarchy of authentication specifications [33]. This hierarchy is
the de-facto standard used for authentication properties in sym-
bolic verification. Their proposed fix for the attack is to include the
public endorsement key of the Tpm, E, in the proof of knowledge,
σch (cf. Figure 1). We incorporated their fix into our scheme be-
cause without it our scheme suffers from the same attack. Indeed,
with the fix our Ecc-Daa scheme satisfies Lowe’s stronger injective
agreement property which in our setting translates to: whenever
a Platform P , identified by its Tpm’s public endorsement key, E,
completes a run of the Join operation, apparently with the Issuer I ,
then I has previously been running the protocol, apparently with
Platform P , and I was acting as an Issuer in its run, and both P
and I agree on the exchanged credentials. Note that this lemma
proves in the six variants of our model even though we assume
that the Join operation between a Platform and an Issuer is exe-
cuted over an insecure channel. This gives a stronger result than
assuming a secure, authenticated channel as per the ISO standard
and demonstrates the power of the symbolic verification.

To summarise, the formalisation and proofs of the security prop-
erties required utilising two distinct proof methodologies, i.e., Ob-
servational Equivalence proofs versus first order logic statements,
which required the creation of separate models for each one. More-
over, the complexity of some of the proofs meant that additional
models were needed all of which impacts on the capability of the
adversary to observe and create messages. However, given these
constraints, we have shown that all of our security properties can
be proven given a suitable model of our Ecc-Daa scheme.

7 CONCLUSION AND FUTUREWORKS

In this paper we have presented the fine-grained details of Tpm 2.0
API calls needed to implement Chen et al. ’s scheme [16] and ex-
tended it to include Certify and Quote operations.

This research has developed numerous formal models to cap-
ture the details of this Ecc-Daa scheme at the level of Tpm 2.0 calls.
Moreover, all Ecc-Daa security and authentication properties have
been formalised and verified in a symbolic model. The verification
of our models shows that Whitefield et al. ’s fix [46] for their au-
thentication attack is also required in Chen et al. ’s scheme [16]
and hence we recommend that the TCG incorporate this fix into a
future errata of the Tpm specification.

To reduce the complexity of the formal analysis, our proofs were
done in variants of our model. However, the use of variants of a
symbolic model can reduce the adversarial capabilities. Our future
research will therefore look at approaches to decompose our model
in a way which preserve the adversarial capabilities while keeping
the complexity of the analysis within the tool’s capacity.

Note that these properties were proved in the context of where
the adversary could not control the channel between a Host and

its Tpm as their physical co-location should make the channel be-
tween them secure. While the Tpm itself is protected, the channel
provides no protection and is accessible with additional equipment.
Therefore, in future, we will consider a stronger adversary with
physical access to Platforms on which it can perform side-channel
attacks without compromising the Tpm, i.e., extract any private keys
generated and stored within a Tpm. This might include modelling a
passive adversary who can only eavesdrop on the data items trans-
ferred between the Host and its Tpm and an active adversary who
can additionally inject, spoof and block data items on that channel.

In addition to symbolic analysis tools such as Tamarin Prover,
verifiers such as CryptoVerif [5] or EasyCrypt [3] have also been
successful in formally analysing computational proofs and com-
plementing our research with mechanised computational proofs
would also be another interesting area of future research.

We implemented the Ecc-Daa scheme in C++ using the Tpm 2.0
specification and a hardware Tpm. To the best of our knowledge,
this is the first open-source implementation of an Ecc-Daa scheme
using a Tpm. Our implementation has shown significant differences
in the signing performance when the basename is empty or set,
and understanding this metric is important when designing engi-
neering solutions. In particular, requiring signatures to be linked
is an expensive operation. Yang et al. [47] have recently proposed
an optimised Daa scheme so that the signing performance is more
comparable when the basename exists and when it is empty. One
interesting future work would be to explore a formal analysis of
their optimised Daa scheme.

Providing a symbolic model as well as a reference implemen-
tation for Ecc-Daa is very timely, since recent novel application
areas for Daa have been identified, such as web authentication
systems, e.g., FIDO [32], and Intelligent Transportation Systems
(ITS) [20, 45]. Our reference implementation has been used in a
Personal Activity and Health Data Tracking use case as produced
within the context of the FutureTPM project [24]. Another avenue
for future research would be to apply our Ecc-Daa implementation
to a Vehicle-to-Anything (V2X) communication use case for ITS.
V2X is required to be privacy-preserving [45], and applying our
Ecc-Daa scheme would enable ITS entities to generate and certify
their own anonymous credentials. These credentials can be used
for the signing of V2X messages, and other entities can verify the
messages without prior knowledge. One further advantage of our
Ecc-Daa scheme would also address establishing the trustworthi-
ness of ITS entities using “remote attestation” [43]. For example,
in ITS vehicles will be largely controlled and operated by a wide
array of software, and being able to attest, the software components
executing on vehicles is of critical importance. Measurements of
the software a vehicle is running can be stored in the Tpm’s PCR,
and an Ecc-Daa signature produced.
Acknowledgements: The research was partly funded by the fol-
lowing EPSRC projects: Improving customer experience while en-
suring data privacy for intelligent mobility - EP/N028295/1, Privacy
Enhanced Capabilities for VANETs using Direct Anonymous Attes-
tation Project - EP/R511791/1, and the European Union’s Horizon
2020 research and innovation programme under grant agreement
No. 779391 (FutureTPM).

ASIACCS ’20, June 2020, Taipei, Taiwan Chen and Newton et al.

REFERENCES

[1] Tolga Acar, Lan Nguyen, and Greg Zaverucha. 2013. A TPM Diffie-Hellman
Oracle. IACR Cryptology ePrint Archive 2013 (2013), 667.

[2] Razvan Barbulescu and Sylvain Duquesne. 2018. Updating Key Size Estimations
for Pairings. Journal of Cryptology (29 Jan 2018). https://doi.org/10.1007/s00145-
018-9280-5

[3] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt: A Tutorial. In Foundations of

Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures. 146–166.
https://doi.org/10.1007/978-3-319-10082-1_6

[4] David Basin, Jannik Dreier, and Ralf Sasse. 2015. Automated symbolic proofs of
observational equivalence. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security. ACM, 1144–1155.
[5] Bruno Blanchet. 2007. Cryptoverif: Computationally sound mechanized prover

for cryptographic protocols. In Dagstuhl seminar “Formal Protocol Verification

Applied, Vol. 117.
[6] Ernie Brickell, Jan Camenisch, and Liqun Chen. 2004. Direct Anonymous At-

testation. In Proceedings of the 11th ACM Conference on Computer and Com-

munications Security (CCS ’04). ACM, New York, NY, USA, 132–145. https:
//doi.org/10.1145/1030083.1030103

[7] Ernie Brickell, Liqun Chen, and Jiangtao Li. 2008. A New Direct Anonymous
Attestation Scheme from Bilinear Maps. In Trusted Computing - Challenges and

Applications, First International Conference on Trusted Computing and Trust in In-

formation Technologies, Trust 2008, Villach, Austria, March 11-12, 2008, Proceedings.
166–178. https://doi.org/10.1007/978-3-540-68979-9_13

[8] Ernie Brickell, Liqun Chen, and Jiangtao Li. 2009. Simplified security notions of
direct anonymous attestation and a concrete scheme from pairings. International
journal of information security 8, 5 (2009), 315–330.

[9] Ernie Brickell, Liqun Chen, and Jiangtao Li. 2011. A (Corrected) DAA Scheme
Using Batch Proof and Verification. In Trusted Systems - Third International

Conference, INTRUST 2011, Beijing, China, November 27-29, 2011, Revised Selected

Papers. 304–337. https://doi.org/10.1007/978-3-642-32298-3_20
[10] Ernie Brickell and Jiangtao Li. 2012. Enhanced Privacy ID: A Direct Anonymous

Attestation Scheme with Enhanced Revocation Capabilities. IEEE Trans. Depend-

able Sec. Comput. 9, 3 (2012), 345–360. https://doi.org/10.1109/TDSC.2011.63
[11] Daniel R. L. Brown and Robert P. Gallant. 2004. The Static Diffie-Hellman Problem.

IACR Cryptology ePrint Archive 2004 (2004), 306.
[12] Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick, and

Rainer Urian. 2017. One TPM to Bind Them All: Fixing TPM 2.0 for Provably
Secure Anonymous Attestation. In IEEE Symposium on Security and Privacy. IEEE
Computer Society, 901–920.

[13] Jan Camenisch,ManuDrijvers, and Anja Lehmann. 2016. Universally Composable
Direct Anonymous Attestation. In Public Key Cryptography (2) (Lecture Notes in

Computer Science), Vol. 9615. Springer, 234–264.
[14] Liqun Chen. 2009. A DAA Scheme Requiring Less TPM Resources. In Information

Security and Cryptology - 5th International Conference, Inscrypt 2009, Beijing,

China, December 12-15, 2009. Revised Selected Papers. 350–365. https://doi.org/10.
1007/978-3-642-16342-5_26

[15] Lily Chen. 2009. Recommendation for Key Derivation Using Pseudorandom Func-

tions. SP 800-108. National Institute for Standards and Technology.
[16] Liqun Chen and Jiangtao Li. 2013. Flexible and scalable digital signatures in TPM

2.0. In 2013 ACM SIGSAC Conference on Computer and Communications Security,

CCS’13, Berlin, Germany, November 4-8, 2013. 37–48. https://doi.org/10.1145/
2508859.2516729

[17] Liqun Chen, Paul Morrissey, and Nigel P. Smart. 2009. DAA: Fixing the pairing
based protocols. Cryptology ePrint Archive, Report 2009/198. https://eprint.iacr.
org/2009/198.

[18] Liqun Chen, Chris Newton, Ralf Sasse, Helen Treharne, Stephan Wesemyer,
and Jorden Whitefield. 2020. Ecc-Daa C++Implementation. GitHub. https:
//github.com/UoS-SCCS/ecc-daa.

[19] Liqun Chen, Chris Newton, Ralf Sasse, Helen Treharne, Stephan Wesemyer, and
Jorden Whitefield. 2020. Ecc-Daa Tamarin models. GitHub. https://github.com/
tamarin-prover/tamarin-prover/tree/develop/examples/asiaccs20-eccDAA.

[20] Liqun Chen, Siaw-Lynn Ng, and Guilin Wang. 2011. Threshold Anonymous
Announcement in VANETs. IEEE Journal on Selected Areas in Communications

29, 3 (2011), 605–615. https://doi.org/10.1109/JSAC.2011.110310
[21] Liqun Chen, Dan Page, and Nigel P. Smart. 2010. On the Design and Implementa-

tion of an Efficient DAA Scheme. In CARDIS (Lecture Notes in Computer Science),
Vol. 6035. Springer, 223–237.

[22] Danny Dolev and Andrew Chi-Chih Yao. 1983. On the security of public key
protocols. IEEE Trans. Information Theory (1983).

[23] Free Software Foundation, Inc. 2019. GCC, the GNU Compiler Collection. https:
//gcc.gnu.org [Online; accessed 12-June-2019].

[24] FutureTPM. 2018-2020. Future Proofing the Connected World: A Quantum-
Resistant Trusted Platform Module (EU H2020 Project, Grant Agreement No.
779391).

[25] Infineon Technologies AG. 2017. Iridium SLB 9670 TPM2.0 Linux.
https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670-
tpm2.0-linux/ [Online, accessed 03-May-2019].

[26] International Business Machines. 2017. IBM’s Software TPM 2.0 Version 1119.
https://sourceforge.net/projects/ibmswtpm2 [Online, accessed 03-May-2019].

[27] International Business Machines. 2017. IBM’s TPM 2.0 TSS Version 1119. https:
//sourceforge.net/projects/ibmtpm20tss/ [Online, accessed 03-May-2019].

[28] ISO/IEC 11770-4:2017 2017. Information technology – Security techniques – Key

management – Part 4: Mechanisms based on weak secrets. Standard. International
Organization for Standardization, Geneva, CH.

[29] ISO/IEC 20008-2:2013 2013. Information technology - Security techniques - Anony-

mous digital Signatures Part 2: Mechanisms using a group public key. Standard.
International Organization for Standardization, Geneva, CH.

[30] Jakob Jonsson and Burt Kaliski. 2003. Public-Key Cryptography Standards (PKCS)

#1: RSA Cryptography Specifications Version 2.1. RFC 3447. RFC Editor. http:
//www.rfc-editor.org/rfc/rfc3447.txt

[31] Vireshwar Kumar, He Li, Noah Luther, Pranav Asokan, Jung-Min (Jerry) Park,
Kaigui Bian, Martin B. H. Weiss, and Taieb Znati. 2018. Direct Anonymous
Attestation with Efficient Verifier-Local Revocation for Subscription System.
Cryptology ePrint Archive, Report 2018/290. https://eprint.iacr.org/2018/290.

[32] Rolf Lindemann, Jan Camenisch, Manu Drijvers, Alec Edgington, Anja Lehmann,
and Rainer Urian. 2017. FIDO ECDAA Algorithm. https://fidoalliance.org/specs/
fido-uaf-v1.1-id-20170202/fido-ecdaa-algorithm-v1.1-id-20170202.html

[33] Gavin Lowe. 1997. A Hierarchy of Authentication Specification. In 10th Com-

puter Security Foundations Workshop (CSFW ’97), June 10-12, 1997, Rockport, Mas-

sachusetts, USA. 31–44.
[34] Noah Robert Luther. 2017. Implementing Direct Anonymous Attestation on TPM 2.0.

Master’s thesis. Virginia Tech. https://vtechworks.lib.vt.edu/handle/10919/86349
[35] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. 2013. The

TAMARIN Prover for the Symbolic Analysis of Security Protocols. In Computer

Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,

Russia, July 13-19, 2013. Proceedings. 696–701. https://doi.org/10.1007/978-3-642-
39799-8_48

[36] OpenSSL. 2017. OpenSSL Cryptography and SSL/TLS toolkit. https://www.
openssl.org/ [Online, accessed 03-May-2019].

[37] TCG. 2014. EK Credential Profile: For TPM Family 2.0. Rev 2.0. Trusted Computing
Group.

[38] TCG. 2016. Trusted Platform Module 2.0 Library Specification. Rev. Trusted
Computing Group. https://trustedcomputinggroup.org/resource/tpm-library-
specification/

[39] TCG. 2016. Trusted Platform Module 2.0, Part 1: Architecture. Rev 1.38. Trusted
Computing Group.

[40] TCG. 2016. Trusted Platform Module 2.0, Part 2: Structures. Rev 1.38. Trusted
Computing Group.

[41] The Tamarin Team. 2016. Tamarin prover manual. https://tamarin-prover.github.
io/manual/tex/tamarin-manual.pdf [Online: accessed 09-April-2019].

[42] The Apache Software Foundation. 2019. The Apache Milagro Cryptographic
Library. https://github.com/apache/incubator-milagro-crypto/ [Online, accessed
03-May-2019].

[43] The Trusted Computing Group. 2016. TPM 2.0 Library Specification. https:
//trustedcomputinggroup.org/resource/tpm-library-specification/ [Online, ac-
cessed 11-April-2019].

[44] Trusted Computing Group. 2018. Trusted Computing. https://
trustedcomputinggroup.org/trusted-computing/ [Online; accessed 27-June-2018].

[45] JordenWhitefield, Liqun Chen, Thanassis Giannetsos, Steve Schneider, and Helen
Treharne. 2017. Privacy-enhanced capabilities for VANETs using direct anony-
mous attestation. In 2017 IEEE Vehicular Networking Conference, VNC 2017, Torino,

Italy, November 27-29, 2017. 123–130. https://doi.org/10.1109/VNC.2017.8275615
[46] Jorden Whitefield, Liqun Chen, Ralf Sasse, Steve Schneider, Helen Treharne, and

Stephan Wesemyer. 2019. A Symbolic Analysis of ECC-based Direct Anonymous
Attestation. In IEEE 4th European Symposium on Security and Privacy.

[47] Kang Yang, Liqun Chen, Zhenfeng Zhang, Chris Newton, Bo Yang, and Li Xi. 2018.
Direct Anonymous Attestation with Optimal TPM Signing Efficiency. Cryptology
ePrint Archive, Report 2018/1128. https://eprint.iacr.org/2018/1128.

A APPENDIX

A.1 The Activate Credential Procedure

At the start of the procedure to issue a credential, the Issuer receives:
(1) E – information about the public RSA endorsement key.
(2) Qpd – the public data for the Ecc-Daa key.

The Issuer generates an attestation key credential, C (to use with
the Ecc-Daa key) together with a random credential key, K . This
key, K , is used to encrypt the attestation key credential, C and the

https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1007/978-3-540-68979-9_13
https://doi.org/10.1007/978-3-642-32298-3_20
https://doi.org/10.1109/TDSC.2011.63
https://doi.org/10.1007/978-3-642-16342-5_26
https://doi.org/10.1007/978-3-642-16342-5_26
https://doi.org/10.1145/2508859.2516729
https://doi.org/10.1145/2508859.2516729
https://eprint.iacr.org/2009/198
https://eprint.iacr.org/2009/198
https://github.com/UoS-SCCS/ecc-daa
https://github.com/UoS-SCCS/ecc-daa
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/asiaccs20-eccDAA
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/asiaccs20-eccDAA
https://doi.org/10.1109/JSAC.2011.110310
https://gcc.gnu.org
https://gcc.gnu.org
https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670-tpm2.0-linux/
https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670-tpm2.0-linux/
https://sourceforge.net/projects/ibmswtpm2
https://sourceforge.net/projects/ibmtpm20tss/
https://sourceforge.net/projects/ibmtpm20tss/
http://www.rfc-editor.org/rfc/rfc3447.txt
http://www.rfc-editor.org/rfc/rfc3447.txt
https://eprint.iacr.org/2018/290
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-algorithm-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-algorithm-v1.1-id-20170202.html
https://vtechworks.lib.vt.edu/handle/10919/86349
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://www.openssl.org/
https://www.openssl.org/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://github.com/apache/incubator-milagro-crypto/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/trusted-computing/
https://trustedcomputinggroup.org/trusted-computing/
https://doi.org/10.1109/VNC.2017.8275615
https://eprint.iacr.org/2018/1128

Formal Analysis and Implementation of a TPM 2.0-based
Direct Anonymous Attestation Scheme ASIACCS ’20, June 2020, Taipei, Taiwan

activate credential process used to make sure that K can only be
used by the Host if:

(1) E comes from a Tpm used by the Host.
(2) The Daa key was generated by the same Tpm.
To do this the Issuer

(1) Validates E. In the simplest case this can be done by check-
ing E against a list of valid public endorsement keys. More
generally this will be done by providing a certificate for the
key that is validated by the Tpm’s manufacturer. If E is valid
the Issuer can assume that E has the correct properties to
’unwrap’ the credential blob (described below) that will be
generated. The endorsement key should be an RSA storage
key and to align with the TCG endorsement key profile [37]
this key will be a 2048 bit RSA key, that will use AES 128 as
its symmetric encryption algorithm and SHA256 as its hash
algorithm.

(2) Confirms that the Ecc-Daa key has the necessary properties
for the credential being issued. The Ecc-Daa key should be
an restricted ECC signing key that is fixed to the Tpm and
fixed to its parent. Object properties are detailed in Part 1 of
the Tpm 2.0 specifications (pg. 166) [39]. In our case the key
will use SHA256 as its underlying hash algorithm.

(3) Calculates the name of the Ecc-Daa key. This name is derived
from the key’s public data, for details see Part 1 (pg. 124) and
Part 2 (pg. 135) of the Tpm specifications [39, 40].

Qn = nameAlgID16 ∥ Hname (Qpd)

nameAlgID16 is the 16-bit identifier for the hash algorithm,
Hname (0x000b for SHA256).

(4) Generates a random seed value, s ← {0, 1}t .
(5) Derives a symmetric encryption key, ke , and an HMAC key,

kh using a key derivation function. These keys are used to
protect the keyK . The seed and the name of the Ecc-Daa key
are both parameters of the key derivation function (KDF).
Using the name is important as it ties in the Ecc-Daa key. De-
tails of the key derivation function are given in Part 1 of the
Tpm 2.0 specifications (pg. 43) [39] and the NIST Special Pub-
lication 800-108 [15]. An additional parameter is used in the
KDF to separate the different keys, for ke it is “STORAGE”,
while for kh it is “INTEGRITY” (both are null terminated
strings and the null is included in the calculations). For our
purposes we write:

ke = KDF (s, “STORAGE”,Qn)
kh = KDF (s, “INTEGRITY ”,NULL)

(6) Encrypts K using the key, ke , giving K̂ . This encryption is
done using AES 128 in CFB mode with an IV of zero.

K̂ = senc(K,ke)

(7) Generates an HMAC,H , for K̂ using the key kh . The HMAC
also incorporates the key name, Qn:

H = hmac(kh , len16(K̂) ∥ K̂ ∥ Qn)

(8) The encrypted key and theHMAC together form a ‘credential
blob’, cb=H ∥ len16(K̂) ∥ K̂ .

(9) Encrypts the seed s using E, giving ŝ – in the Tpm specifica-
tion this is called the secret. The encryption uses RSA-OAEP
encryption with SHA256 as the hash function and MGF1
padding. It also uses a null terminated label, “IDENTITY",
see RFC3447 [30].

ŝ = aenc(s, E)

(10) Encrypts C using K , giving Ĉ.

Ĉ = senc(C,K)

(11) Sends the encrypted attestation key credential, Ĉ, the cre-
dential blob, cb=H ∥ len16(K̂) ∥ K̂ , and the secret, ŝ , to the
Host.

In the Join operation diagrams (Figures 1 and 2) this process is
abbreviated as:

[cb, ŝ] = make_credential(E,Qpd,K) and
Ĉ = senc(C,K)

The Host uses the Tpm command to unwrap the credential blob and
return the key, K . To do this the Host loads the endorsement and
Ecc-Daa keys into the Tpm and then uses TPM2_ActivateCredential
to obtain the key, to do this the command:

(1) Decrypts the secret seed, s , using the private endorsement
key.

s = adec(ŝ, e)
(2) Uses the seed together with Ecc-Daa key’s name (which the

Tpm already knows) to generate the encryption and HMAC
keys that were used to create the credential blob.

ke = KDF (s, “STORAGE”,Qn)
kh = KDF (s, “INTEGRITY ”,NULL)

(3) Uses these keys to check the integrity of the blob and decrypt
the key, K . To do this:

(a) The credential blob is split into its component parts, H
and len16(K̂) ∥ K̂

(b) The HMAC is calculated

H ′ = hmac(kh , len16(K̂) ∥ K̂ ∥ Qn)

and checked against the value from the credential blob.
(c) The credential key, K , is calculated

K = sdec(K̂,ke)

(4) The credential key is then returned to the Host.
On the protocol diagram this is written as:

K = activate_credential(cb, ŝ)

The Host can then decrypt and use the attestation key credential,
C.

C = senc(Ĉ,K)
In the Join operation this procedure is used twice. In the first

case there is no attestation key credential to be encrypted, but the
Issuer wants to check that the Host has access to the Tpm and can
therefore unwrap the credential blob that it creates. In the second
case the attestation key credential is the A, B, C and D values that
form the Ecc-Daa key’s attestation key credential together with
the signature that the Host uses to validate the attestation key
credential that it has received from the Issuer.

ASIACCS ’20, June 2020, Taipei, Taiwan Chen and Newton et al.

A.2 Attestation Data

Attestation data is generated by a number of Tpm commands. Here
we are just considering the TPM2_Certify and TPM2_Quote com-
mands. The attestation data is described in Part 1 of the Tpm 2.0
specifications (pg. 194) [39] with further details given in Part 2 of
the Tpm 2.0 specifications (pg. 107 and pg. 109) [40]. The attestation
data structures have the following fields:

(1) magic – a 32 bit number that is used to tag structures that
are generated by a Tpm (referred to as the TPM_ GENER-
ATED_VALUE, 0xFF544347).

(2) type – the type of the attestation structure.
(3) qualifiedSigner – the qualified name of the signing key.When

using a Daa key this field is set to be an empty buffer.
(4) extraData – external information provided by the caller. This

field should be set to the commitment data, c , but in current
versions it is an empty buffer. This will be fixed in the next
version of the Tpm standard.

(5) clockInfo – clock data.
(6) firmwareVersion – a 64 bit number identifying the firmware

version.
(7) attested – data specific to the attestation type.

For TPM2_Certify this is:
(a) name – the name of the key being certified.
(b) qualifiedName – the qualified name of the key being cer-

tified. When using a Daa key to certify a key this field is
set to be an empty buffer.

while for TPM2_Quote it is:
(a) pcrSelect – information on the PCR values being selected

and the hash algorithm being used.
(b) pcrDigest – the digest of the selected PCR values.

Note that the clockInfo and firmwareVersion fields are not used
directly in our Ecc-Daascheme.

A.3 Implementation Note

Writing protocols in terms of Tpm calls requires reading and under-
standing the Tpm 2.0 specification and this makes Tpm development
challenging and causes a high-barrier of entry.

While the Tpm 2.0 specification [43] was designed to be easily
maintainable, it is nevertheless challenging to read mainly due to
its sheer size. It consists of over 1400 pages split into four parts
which not only cover the core specifications, but also numerous
errata covering the continuous development of the Tpm specification.
Therefore, a particular Tpm will be based on the core specification
and all of the relevant errata which it implements.

Once the relevant Tpm calls were identified it was found that the
best way to proceed was to write test programs for these Tpm calls
and to run them using the Tpm simulator. The Tpm simulator can
always be reset and any mistakes rectified, this is not so easy with
the actual device itself.

A.4 Timing Tests

The timing tests (sets of 50 runs) were repeated a number of times
to see if there was a pattern to the occurrence of outliers. These
tests were carried out both with, and without, resetting the Tpm,
almost all data sets had outliers in varying positions. For example,
Figure 9 shows the timing data for TPM2_Load for two different

0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

Figure 9: Two sets of 50 timings of TPM2_Load

(times in ms).

Table 2: Timings for the Join operation

Time (ms) M SD

Host prepares 255.7 3.2

TPM2_Create 219.2 2.2

TPM2_Load 36.4 2.6

Issure challenges 2.6 0.3

Host responds 395.5 6.4

TPM2_ActivateCredential 219.4 3.2

TPM2_Commit 89.1 2.6

TPM2_Hash 25.1 2.6

TPM2_Sign 62.7 2.7

Issure verifies response 47.5 1.8

Issure creates AK credential 74.3 16.5

Host verifies AK credential 410.0 3.3

TPM2_ActivateCredential 219.4 3.2

Check pairings 148.4 0.7

runs. Both runs show outliers, but in entirely different positions.
The timings given in Tables 2 to 4 are for all of the runs that were
undertaken with the outliers removed.

A.5 Benchmarks

The protocols were implemented in a number of separate programs:
• The Setup and Join protocols: generate a random Ecc-Daa
key and obtain its attestation key certificate;
• The Sign protocol: signing a message using the Ecc-Daa key
and its randomised attestation key certificate;
• The Verify protocol: verify the signature and check the ran-
domised attestation key certificate.

The Sign and Verify programs were run with and without a base-
name. If a basename was used it was a random string of 1 - 33 bytes.

Formal Analysis and Implementation of a TPM 2.0-based
Direct Anonymous Attestation Scheme ASIACCS ’20, June 2020, Taipei, Taiwan

Similar programs were written to test the Certify and Quote oper-
ations. The programs ran on a single thread, and opportunities for
improving performance by multi-threading were ignored. The oper-
ations were implemented using readily available software packages
rather than highly tuned code and, as such, they provide a baseline
for future comparison. Prior to running the Certify operation, an

0 10 20 30 40 50

0

20

40

60

80

100

Figure 10: Timings for 50 runs of Issuer creates AK creden-

tial (times in ms).

Ecdsa key was generated and loaded into the Tpm. Similiarly, prior
to running the Quote operation, we chose an arbitary but represen-
tative PCR to attest. Consequently, the Tpm was configured with
PCR 23 (the application PCR) set to a known value. This is read and
attested to by the Quote operation. Verification then checks the
attestation data for the expected value and verifies the signature
on the attestation data as well. In a real situation a number of PCR
values in the Tpm will be set at boot time and Quote is then used to
attest these values and confirm the state of the system.

Each operation was run 200 times and the times were measured
using the C++ timing functions. The timings reported are for the op-
erations running on a Raspberry Pi and Infineon Tpm. The inputs are
random, and the times taken can therefore vary (see Figure 10 which
shows the time taken for ‘Issuer creates attestation key credential’
procedure of the Join operation). The mean (M) and standard devia-
tion (SD) of the results are reported. There were a few (< 6%) large
outliers in some of the measurement sets (see Appendix A.4). How-
ever, as there seemed to be no pattern to their occurrence, these
were removed before calculating the values that are shown in the
tables. Some operations (for example, TPM2_ActivateCredential
and ‘Verify attestation key credential’) occur in more than one of
the protocols and the timings for these are averaged over all of the
results rather than being reported separately.

Table 2 shows the timings for the Join operation. The times for the
calculations carried out on the hardware Tpm are slow reflecting the
use of amodest processor, e.g., 219.4ms for TPM2_ActivateCredential.
It is not clear what processor is used, or the Tpm’s clock speed, and
Infineon have not published this information. Note that on the Rasp-
berry Pi processor significant time is taken for the pairings (i.e.,
148.4ms for Check pairings) – this is known to be a slow operation.

Table 3 shows the timings for the signing operations. It should
be noted that with a basename the TPM2_Commit command takes
much longer than without one (224.0ms vs 90.9ms), because with a
basename the commit requires three exponentiations rather than
just one (see Figure 3). Hence, using a basename, for example to

Table 3: Timings for the Sign operations

bsn =⊥ bsn 6=⊥

Time (ms) M SD M SD

Host commits 169.2 13.0 312.1 15.9

TPM2_Commit 90.9 1.1 224.0 1.0

Host signs 94.1 3.7 91.8 5.0

TPM2_Hash 26.7 1.5 26.2 2.0

TPM2_Sign 67.2 3.0 65.5 3.7

Host certifies 54.0 1.7 54.1 3.0

TPM2_Certify 53.9 1.7 53.9 3.0

Host quotes 53.3 2.3 53.8 2.0

TPM2_Quote 53.1 2.3 53.6 2.0

Table 4: Timings for Verify operation

bsn =⊥ bsn 6=⊥

Time (ms) M SD M SD

Verify AK credential 155.2 15.5 155.0 15.5

Verify signature 185.1 17.8 204.3 18.8

Verify QK certificate 184.4 16.4 203.2 19.0

Verify PCR quote 185.6 17.8 202.4 17.8

link signatures, is an expensive operation. Note also that the times
for the ’Host certifies’ and ’Host quotes’ operations are shorter
than for the ’Host signs’ operation as there is no need for the extra
hash.

Table 4 presents the timings for the Verify operations. Note that
verifying the attestation key credential (calculating the pairings)
takes a significant amount of the verification time as this again uses
the pairings which is a slow operation.

Timings for the laptop and Tpm emulator are not shown because
all of the Tpm timings were around 88ms which may be due to
obfuscation being used to mask Tpm commands in the simulator.

	Abstract
	1 Introduction
	2 Related Works
	3 Direct Anonymous Attestation
	3.1 Notation
	3.2 Security Properties
	3.3 Tpm Key Management and Usage
	3.4 The Setup Operation
	3.5 The Join Operation
	3.6 The Sign Operation
	3.7 The Verify and Link Operations

	4 Implementation
	5 Threat model
	5.1 Component Model
	5.2 Channel Model

	6 Tamarin security proofs
	6.1 Methodology
	6.2 Symbolic Modelling
	6.3 Ecc-Daa Modelling Choices
	6.4 Formalisation of Security Properties

	7 Conclusion and Future Works
	References
	A Appendix
	A.1 The Activate Credential Procedure
	A.2 Attestation Data
	A.3 Implementation Note
	A.4 Timing Tests
	A.5 Benchmarks

