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Abstract
The Noise specification describes how to systematically con-
struct a large family of Diffie-Hellman based key exchange
protocols, including the secure transports used by WhatsApp,
Lightning, and WireGuard. As the specification only makes
informal security claims, earlier work has explored which
formal security properties may be enjoyed by protocols in the
Noise framework, yet many important questions remain open.

In this work we provide the most comprehensive, system-
atic analysis of the Noise framework to date. We start from
first principles and, using an automated analysis tool, compute
the strongest threat model under which a protocol is secure,
thus enabling formal comparison between protocols. Our res-
ults allow us to objectively and automatically associate each
informal security level presented in the Noise specification
with a formal security claim.

We also provide a fine-grained separation of Noise proto-
cols that were previously described as offering similar security
properties, revealing a subclass for which alternative Noise
protocols exist that offer strictly better security guarantees.
Our analysis also uncovers missing assumptions in the Noise
specification and some surprising consequences, e.g., in some
situations higher security levels yield strictly worse security.

For reproducibility, the sources of our tool Vacarme and all
Noise protocol models are available [18]. A technical report
with additional details and proofs is available at [17].

1 Introduction

The Noise framework [24] defines a set of protocols that
enable two agents to establish a secure channel. Some of its
protocols serve as building blocks in widely used protocols,
including WhatsApp, Lightning, and WireGuard [13, 19, 23].

In a Noise protocol, the agents first exchange messages
that constitute a handshake, derive from these messages a
symmetric key, which they use to encrypt and integrity protect
all following messages exchanged during their session.

Noise allows an unbounded number of distinct handshakes.
Each variant can be described by a small, human-readable
string, called a pattern. Some patterns are for two peers who
know each other’s long term key before starting the session.
Others are designed for a client without a long-term key, who
connects to a server whose long-term key is a priori unknown.
Some patterns have a one round-trip handshake, resulting in
low latency, whereas others feature a two or more round-trip
handshake, which increases latency but may help hide the
identity of peers to outsiders. Moreover, message payloads
can even be exchanged during the handshake, protected
with the best key currently available, and the properties
achieved may therefore differ from message to message until
the handshake completes. All this makes Noise protocols
very flexible. For example, WhatsApp, WireGuard, and
Lightning use different Noise patterns in their transport layer.
This flexibility also makes it hard to assess the guarantees
provided by these patterns and to choose the best protocol
given specific system assumptions.

We summarize prior work in Table 2, discussed in detail
in Section 2.3. The most relevant prior work is the Noise
Explorer tool [20], designed to analyze the informal security
levels described in the specification, which we compare in
Section 2.3.1. However, both the Noise specification and all
prior works leave crucial questions open: First, which Noise
protocol should practitioners use for a given scenario and
initial key distribution? Second, Noise theoretically offers an
unbounded number of protocols, but are they all interesting,
or are some Noise protocols subsumed by others?

We answer both questions rigorously and systematically.
We answer the first by providing the strongest threat model
under which each protocol is secure, enabling practitioners to
make a trade-off between security and privacy. For the second,
we give a formal framework and a methodology for comparing
patterns, which we implemented in a tool and evaluated on
all the patterns from the specification. Our results notably
show that there are optimal patterns for each protocol setup,
so other patterns from the specification provide no additional
benefits.



We establish our results in the symbolic model and use
the state-of-the-art Tamarin protocol analysis tool [25] to
formally analyze a substantially wider range of properties
than previous works. This includes all classical security
properties [22], under a broad class of threat models (along
the lines of “Know your enemy” [2]), over all protocols in
the Noise specification, on a per message basis.

Contribution

Just as a spectral analysis decomposes sound into its constitu-
ent parts, we use our new tool Vacarme to decompose Noise
into its constituent components and study their interaction.
Our primary contribution is a systematic, fine-grained analysis
of the Noise protocol family, which answers the following
questions: (a) Under which precise threat models are mes-
sages secure, i.e., do both secrecy and agreement properties
hold? (b) What are the anonymity guarantees for the main
Noise protocols? (c) How should one choose a suitable Noise
protocol, given a PKI infrastructure and requirements? We
expand on these points as well as additional contributions in
the following.

Threat Models and Protocol Hierarchies: We approach
Noise protocol analysis systematically. For a set of atomic
adversary capabilities (e.g., key compromise) and standard
security goals (e.g., secrecy), we measure security by all
combinations of the latter under the former. In doing so, we
provide the most fine-grained analysis of the Noise framework
to date (see Section 2.3): we consider ephemeral key reveals
(omitted previously), secrecy for the recipient (only previously
considered for the sender), anonymity, etc. This yields a rich
algebra of security properties that captures the full spectrum of
use cases and security requirements of the Noise framework.
We formally prove how each message in a Noise protocol can
be attributed with maximal security guarantees in the form
of the strongest threat models under which confidentiality,
authentication, or anonymity holds. Finally, we show how
these strongest threat models can be used to compare Noise
protocols and determine when one protocol provides better
security and anonymity than another, for any threat model.

Analysis with Vacarme: We show how to efficiently com-
pute the strongest threat models using Tamarin as a back-end
and we implement this methodology in our Noise protocol
analysis tool Vacarme (French for “lots of Noise”). Our
push-button tool thus leverages Tamarin’s soundness and com-
pleteness guarantees [5,25]. Using Vacarme, one can automat-
ically and formally assess under which threat models some
requirements hold and compare different handshakes. We thus
effectively answer the above questions (a) and (b), and are
the first to analyze anonymity properties for Noise protocols.
We also ran Vacarme on all Noise protocols listed in the spe-
cification both for evaluating our tool and for interpreting the
analysis results. The results themselves yield the following
contributions.

Refining the Noise levels: In contrast with the informal
levels proposed in the Noise specification [24], our results
have precise formal definitions, are machine-checked and
considerably more granular. Further, our approach objectively
and automatically assigns a formal meaning to the original
levels as a special case.

Our results also uncovered several shortcomings of the
Noise levels [24]. First, even though the levels appear to get
stronger monotonically, as suggested by the Noise specifica-
tion, we find that this is not actually the case. This is surpris-
ing and can lead to misguided protocol choices in practice.
Second, we explain why the levels, as specified in [24], impli-
citly assumed that ephemeral keys cannot be compromised,
which considerably weaken these guarantees. Finally, in con-
trast to the 9 Noise levels, we provide 74 distinct levels and
show why this increased precision is crucial to well-informed
protocol choices.

Selecting the Best and Identifying Redundant Protocols: Us-
ing our results, we automatically compared almost all Noise
protocols listed in the specification and produced a hierarchy
thereof. Using this hierarchy, we provide guidelines on which
Noise protocol to choose, given a setup that describes what
PKI or symmetric keys are available, and the expected range
of adversary capabilities (threat model). We also identify re-
dundant handshakes, which provide fewer guarantees than
other handshakes, given the same setup. With regards to the
Noise specification, we properly separate the threat-model as-
sumptions, security goals, and monotonicity of security prop-
erties between handshakes. This allows practitioners to evalu-
ate their environment assumptions independently of the goals
they want to achieve, and enables them to pick the appropriate
protocol required for their use-case, answering question (c).

Further Results and Recommendations for Noise: We
make further contributions to the Noise framework and its
application. An example thereof comes from our analysis of
Noise protocols using a Pre-Shared Key (PSK): if a (publicly
known) dummy key is used as PSK (a suggestion made in
the specification), we show that, surprisingly, some protocols
provide incomparable levels of security when using a dummy
PSK compared with when using no PSK at all. Another ex-
ample concerns anonymity, where our results reveal a missing
requirement related to the handling of session identifiers.

Overall, our analysis uncovered numerous subtleties in the
Noise specification and its protocols that were previously
unknown. We also show how to systematically improve the
specification, and we provide a tool to help practitioners.

Organization: In Section 2 we describe background on
Noise and Tamarin, followed by detailed discussion of related
work. We explain the security goals and threat models in
Section 3 and present our tool Vacarme in Section 4. We
discuss the results and practical implications in Section 5 and
we draw conclusions in Section 6.



Nomenclature Informal meaning
N No static key available
K Static key known before (e.g., via PKI)
X Static key transmitted over the network
I Static key transmitted earlier than with X

psk Pre-shared symmetric key available
n ∈ N Appended to any other item, delays its use

Table 1: Summary of Noise options and nomenclature for funda-
mental patterns. A fundamental pattern consists of two letters and an
optional psk token. The letter I may only appear in the first position.

2 Background and Related Work

We first describe the Noise handshakes, its pattern syntax, and
security properties. Afterwards we provide background on
the Tamarin prover and we discuss related work.

2.1 The Noise Framework
The Noise Protocol Framework [24] specifies a family of
two-party handshakes for establishing secure channels. In
addition to specifying 59 handshakes and claiming various
security properties for them, it also specifies how additional
handshakes can be derived. The proposed uses are extremely
broad, ranging from handshakes between unidentified parties
to handshakes between parties having pre-shared static asym-
metric and symmetric keys.

2.1.1 Handshakes

Each handshake specified by the Noise Protocol Framework
is built from a succinct set of simple primitives: a Diffie-
Hellman group, a hash function, a key derivation function, and
an Authenticated Encryption with Associated Data (AEAD)
cipher. Although the specification is written in a generic fash-
ion, it limits the instantiation of said primitives to a small
selection, with a rationale for each choice. Thus, the security
properties ascribed to each handshake are only claimed to
hold for the given instantiations.

Each handshake is described by a pattern following a
simple grammar. A pattern has two parts: pre-messages and
messages. Pre-messages describe setup assumptions, namely
knowledge that the parties must share before starting the hand-
shake, for example keys given by a Public Key Infrastructure
(PKI). Messages describe operations that each party must
perform when sending or receiving handshake messages.

Pre-messages, messages, and computations thereon are
described by a list of tokens and a direction specifying sender
and recipient. Tokens refer to keys. Each party may have an
ephemeral key (usually denoted by the letter e), and a static,
or long-term, public key (usually denoted by the letter s).
Additionally, the parties may share a secret called the PSK
(a symmetric key usually denoted as psk). Not all patterns
require all these keys.

Definition 1 (Handshake pattern). A pre-message token is e
or s. A message token is e, s, es, se, ss, ee, or psk. Single
letter tokens and psk are called key tokens and two-letter
tokens are called Diffie-Hellman tokens (or DH tokens for
short).

A direction is -> or <-. A pre-message (respectively mes-
sage) pattern is a pair of a direction and a non-empty list
of pre-message (respectively message) tokens. A handshake
pattern (or, for brevity, a handshake) has a name, and is a
possibly empty list of pre-message patterns (followed by el-
lipsis if non-empty) and a non-empty list of message patterns.
The list of pre-message patterns must contain at most one
pre-message pattern per direction, and the message patterns
must have alternating directions.

As an illustration, we depict three handshake patterns in
Figure 1. Noise handshake participants always exchange an
ephemeral public key with the other party, and may optionally
also exchange a static (long-term) public key or one or more
PSKs. The name of the handshake defines the fundamental
pattern and is given by two letters indicating how static keys
are used. There are four possibilities for the initiator, and three
for the recipient: N means that no static key is available, K
means the partner already knows the static key, and X means
the static key is transmitted to the partner. For the initiator, I
is also available and means the static key is transmitted imme-
diately, improving authentication properties for the recipient,
at the cost of revealing the initiator’s identity and thus a loss
of anonymity for the initiator. The handshake’s first letter
depends on the initiator’s key and the second letter on the
recipient’s key. Table 1 contains a reference summary.

Note that the psk key token can be used in a message pat-
tern to indicate that both parties should use their PSK and mix
it with their current symmetric key. This adds psk to the hand-
shake name, making it a non-fundamental pattern. Note that
by default each available key computation and transmission
is done as early as possible.

To delay certain actions, deferred patterns are created by
adding a number to the pattern name, which defers the trans-
mission of the named token (see I1K1 shown in Figures 1 and
2) or the use of derived keys, e.g., psk (for psk), by a number
of messages, usually 1 or 2. For example, psk1 in a handshake
name means that psk will be used one message after it could
have been used. Deferred patterns were designed to improve
identity hiding properties at the expense of latency. A special
case of PSK usage is with a publicly known symmetric key,
called a dummy key, which modifies the protocol’s behavior
without using any additional secrets.

For the sake of brevity, we do not describe the formal se-
mantics of tokens. We direct the interested reader to [17].
In the next example, however, we try to give an intuition of
the semantics of a few patterns, omitting some details for
simplicity.



NN:
-> e
<- e, ee

KK:
-> s
<- s
...
-> e, es, ss
<- e, ee, se

I1K1:
<- s
...
-> e, s
<- e, ee, es
-> se

Figure 1: Three Noise handshakes (colors match those of Figure 2,
to help the reader, but are not part of the syntax)

Example 1 (Handshake syntax and semantics). Consider
NN (shown in Figures 1 and 2a), a Noise handshake loosely
corresponding to an unauthenticated Diffie-Hellman key ex-
change. There are no pre-messages, so the ellipsis is omitted.
In the first message, the initiator (on the left) sends his ephem-
eral public key ge, indicated by the key token e in the first mes-
sage pattern. Each message sent ends with a payload, protec-
ted using AEAD under the best available key (this step is not
materialized as a token in the Noise syntax, but comes impli-
citly at the end of all message patterns). Here, p1 is sent in the
clear. In the second message, the recipient (on the right) sends
his own ephemeral key ge′ , indicated by the key token e in
the second message pattern. The token ee means that when
processing the second message, both parties derive a Diffie-
Hellman term from their respective ephemeral keys. Specific-
ally, after the second message, the initiator knows his private
key e and the recipient’s public key ge′ . He can thus com-
pute gee′ = (ge′)e. The recipient’s situation is symmetrical: he
knows ge and e′ and can thus compute gee′ = (ge)e′ . Colloqui-
ally speaking, the DH term obtained by mixing the initiator’s
and recipient’s ephemeral keys is gee′ . They will use this value
to seed a secret symmetric key, which is the initial current key,
and is used to protect payloads, here p2, with AEAD and the
hash of all previous computation steps as additional data.

One can also mix different keys as DH terms. When several
such terms are present, they can be mixed together using a
key derivation function to obtain a new current key.1 This is
illustrated by KK, a Noise handshake loosely corresponding
to an authenticated Diffie-Hellman key exchange shown in
Figures 1 and 2b. Both pre-messages contain the same unique
key token s, meaning both parties should already know their
peer’s public static key before starting the handshake. Namely,
the initiator (respectively recipient) knows his private static
key s (respectively s′) and his partner’s public static key
gs′ (respectively gs). Then in the first message the initiator
(i) sends ge (key token e) in clear text because the current
symmetric key is initially empty (i.e., not yet determined), (ii)
computes the DH term ges′ (DH token es) and mixes it with
the current symmetric key that is then no longer empty (i.e.,
can now be used), (iii) computes the DH term gss′ (DH token
ss) and mixes it with the current symmetric key (the resulting
value is denoted as k1 in Figure 2b), and finally (iv) sends the

1We use mix in an overloaded manner, to both denote DH-computation
with two half-keys, and KDF-application with two secrets.

Alice(e) Bob(e′)
ge, p1−−−−−−−−−−−−−−−−−−→

ge′ ,aead(p2,kdf(gee′ ))
←−−−−−−−−−−−−−−−−−−

(a) NN handshake

Alice(e,s,gs′ ) Bob(e′,s′,gs)

k1 := kdf(ges′ ,gss′ )
ge,aead(p1,k1)−−−−−−−−−−−−−−−−−−−−−−−→

k2 := kdf(k1,gee′ ,gse′ )

ge′ ,aead(p2,k2)←−−−−−−−−−−−−−−−−−−−−−−−

(b) KK handshake

Alice(e,s,gs′ ) Bob(e′,s′)
ge,gs, p1−−−−−−−−−−−−−−−−−−−−−−−→

k1 := kdf(gee′ ,ge′s)

ge′ ,aead(p2,k1)←−−−−−−−−−−−−−−−−−−−−−−−
k2 := kdf(k1,gse′ )

aead(p3,k2)−−−−−−−−−−−−−−−−−−−−−−−→

(c) I1K1 handshake

Figure 2: Alice & Bob notation for the handshakes of Figure 1.
e,e′ (respectively s,s′) are ephemeral (respectively static) private
keys and the pi are payloads exchanged during the handshake. In
transport mode, payloads are encrypted with the last key material
used in the handshake. For legibility, we omitted the associated data
of AEAD encryptions, which roughly corresponds to the hash of all
preceding sent messages along with the public keys in pre-messages.

first payload protected using AEAD under the current sym-
metric key k1 with the transcript of all messages exchanged
so far as additional data. When receiving the corresponding
message (i.e., the pair 〈ge,c〉, where c is the encrypted
payload), the recipient performs the same computations and
obtains the symmetric key k1 and can therefore decrypt c.

For the second message, the recipient sends ge′ (key token
e), computes two DH terms corresponding to ee and se,
and obtains the symmetric key k2 accordingly. Similarly, the
message ends with the second payload protected by AEAD
with the key k2 and the hash of all previous computation steps
as additional data.

Finally, the transport mode can start where all payloads
are protected with AEAD under a derivative of the final
symmetric key k2 and empty additional data.

2.1.2 Security levels

The specification defines 3 source levels (degree of authentic-
ation of the sender provided to the recipient), 6 destination
levels (degree of confidentiality provided to the sender), and
10 identity-hiding levels (protection of the sender’s or the
recipient’s public key), where higher numbers indicate bet-
ter security. The descriptions of these security properties are
informal and non-trivial to interpret.

Example 2. Destination Property 4, quoted from [24]: ‘En-
cryption to a known recipient, weak forward secrecy if
the sender’s private key has been compromised. This pay-
load is encrypted based on an ephemeral-ephemeral DH, and



also based on an ephemeral-static DH involving the recipi-
ent’s static key pair. However, the binding between the re-
cipient’s alleged ephemeral public and the recipient’s static
public key has only been verified based on DHs involving both
those public keys and the sender’s static private key. Thus, if
the sender’s static private key was previously compromised,
the recipient’s alleged ephemeral public key may have been
forged by an active attacker. In this case, the attacker could
later compromise the intended recipient’s static private key
to decrypt the payload (this is a variant of a "KCI" attack
enabling a "weak forward secrecy" attack).’

This informal description discusses how the encryption
key has been derived and describes a possible attack that an
attacker could use. However, it does not explore any other
circumstances in which the encryption key might be comprom-
ised or how this property relates to more traditional notions
of message confidentiality and authentication.

Example 3. Source Property 2, quoted from [24]: ‘Sender
authentication resistant to key-compromise imperson-
ation (KCI). The sender authentication is based on an
ephemeral-static DH ("es" or "se") between the sender’s static
key pair and the recipient’s ephemeral key pair. Assuming
the corresponding private keys are secure, this authentication
cannot be forged.’

The above definition is clearer than Example 2 insofar as
it explicitly refers to a well known and established definition.
However there is still considerable ambiguity. For example,
is this authentication injective [22] (preventing replays)?

2.2 The Tamarin Prover

The Tamarin prover [25] (Tamarin for short) is a protocol
verification tool for the symbolic model. Tamarin supports
stateful protocols, a high level of automation, and equival-
ence properties [5], which are necessary to model privacy
properties such as anonymity. Tamarin has previously been
applied to numerous, substantial, real-world protocols with
complex state machines, numerous messages, and complex
security properties. Examples include TLS 1.3 [6, 10], mo-
bile communication protocols [4, 9], and instant messaging
protocols [8].

In the symbolic model, messages are described by terms.
For example, enc(m,k) represents the message m encrypted
using the key k. The algebraic properties of cryptographic
functions are specified by equations over terms. For example,
dec(enc(m,k),k) = m specifies the expected semantics for
symmetric encryption: decryption using the encryption
key yields the plaintext. As is common in the symbolic
model, cryptographic messages only satisfy those properties
explicitly specified algebraically. This yields the so-called
black-box cryptography assumption: one cannot exploit
potential weaknesses in cryptographic primitives beyond
those explicitly specified. Still, a wide range of attacks,

including logical attacks and attacks based on an explicit
algebraic model, are covered.

The protocol itself is described using multi-set rewrite
rules. These rules manipulate multisets of facts, which model
the current system state with terms as arguments. These
rules yield a labeled transition system describing the possible
protocol executions (see [3, 25] for details on syntax and
semantics). Tamarin combines the protocol semantics with
a Dolev-Yao [12] style adversary. This adversary controls
the entire network and can thereby intercept, delete, modify,
delay, inject, and build new messages.

In Tamarin, security properties are specified in two ways.
First, trace properties, such as secrecy or variants of authentic-
ation, are specified using formulas in a first-order logic with
timepoints. For each specified property, Tamarin checks that
the property holds for all possible protocol executions, and all
possible adversary behaviors. To achieve this, Tamarin (sym-
bolically) explores all possible executions in a backward man-
ner, starting from attack states, which are counterexamples to
the security properties, and trying to reach legitimate starting
states. The formulas constituting the specification are called
lemmas and represent claims to be analyzed.

Equivalence properties, such as anonymity, are expressed
by requiring that two instances of the protocol cannot be dis-
tinguished by the adversary. Such properties are specified
using diff -terms (which take two arguments), essentially de-
fining two different instances of the protocol that only differ
in some terms. Tamarin then checks observational equival-
ence (see [5]). That is, it compares the two resulting systems
and checks that the adversary cannot distinguish them for any
protocol execution and any adversarial behavior.

In fully automatic mode, Tamarin either returns a proof
that the property holds, or a counterexample, representing an
attack, if the property is violated, or it may fail to terminate
as the underlying problem is undecidable. Tamarin can also
be used in interactive mode, where users can guide the proof
search. Moreover users can supply heuristics called oracles
to guide the proof search in a sound way. Given the number
of handshakes and properties to check, we require fully
automatic analyses. We thus rely on handshake-independent
oracles in our analyses as they allow us to tame the protocol’s
complexity, as explained in Section 4.1.3.

We also describe the properties of the underlying crypto-
graphic primitives used in Noise and how they are composed.
As mentioned previously, Noise uses four distinct crypto-
graphic primitives, which we model in Tamarin:
• Diffie-Hellman (DH) Group: We model both the case of

a prime order group and Curve25519, a primitive recom-
mended by the specification which is of non-prime order
and contains a small subgroup, following [11]. Our Tam-
arin model also faithfully captures the symbolic behavior
of the exponentiation operator, including the existence of
multiplicative inverses, associativity, commutativity, and
identity.



• AEAD: We model this as a distinguished function sym-
bol that can either be decrypted (with the correct key
and nonce) or verified (ensuring the authenticity of the
associated data).
• Hash and KDF functions: We model both as distinct func-

tion symbols that each behave as a random oracle.

2.3 Related Work

Our methodology builds on ideas presented in “Know your
enemy” [2], which investigates the systematic integration of
adversary capabilities in symbolic models. In this work, we
improve and extend its approach, for example by leveraging
both static and dynamic analysis and enlarging the set of
adversary capabilities. Further, we apply this methodology on
a much larger scale than in the original paper in terms of the
number of protocols and properties compared.

Previous research [14, 15, 21] has examined the security
of a single Noise protocol handshake (IKpsk2) in the context
of the WireGuard VPN protocol. However, only two previous
works have set out to formally analyze the Noise framework
as a whole. In this section we discuss these works in detail
and summarize the differences in Table 2.

2.3.1 Noise Explorer [20]

Noise Explorer is a tool that automatically generates formal
models for Noise handshakes. The formal models encode the
protocols as well as the secrecy and authentication claims
drawn from the Noise specification and can be automatically
verified using the ProVerif [7] protocol analysis tool.

Noise Explorer presents its analysis results in a human-
readable way by translating the formal security claims that
were (dis)proved to textual descriptions. Further, it can also
be used to automatically generate a reference implementation
for a particular handshake, which is, however, not formally
related to the verified model, i.e., these implementations are
not proven correct or secure.

Methodology: Noise Explorer’s approach differs substan-
tially from our own. Their analysis begins with informal
security claims in the Noise protocol specification which
they manually translate to formal statements. This mapping
between natural language in protocol specifications and
logical formulas in formal models is subjective and risks
human error. Later, in Section 5.2, we will show how our
methodology avoids these issues by systematically construct-
ing a granular family of threat models from which we can
objectively and automatically recover the correspondence to
the Noise protocol specification.

This methodological difference has a practical consequence
as both the Noise protocol specification and Noise Explorer
associate each security claim with a level, a natural number,
and interpret it in a monotonic order. However, we show later
in Example 9 that the claims ordering, given by logical im-

plication on the associated formulas, is in fact non-monotonic
with respect to the levels and consequently, in certain hand-
shakes, an apparently ‘stronger’ security claim can in fact be
weaker than a ‘weaker’ claim.

Participants and Sessions: Noise Explorer only considers
a fixed scenario where an honest initiator interacts with an
honest recipient in the presence of a single malicious party.
In particular, this excludes an honest agent acting as both an
initiator and a recipient, which is common in many real world
deployments of Noise (e.g., P2P settings such as Lightning).
Additionally, Noise Explorer does not support any additional
identities or participants. Hence it does not consider attacks
on authentication which require more than two honest par-
ticipants to perform. In contrast we consider an unbounded
number of participants engaging in an unbounded number of
sessions, including scenarios in which honest participants act
as both an initiator and recipient.

This fixed two party scenario has consequences for models
involving a passive adversary. A passive adversary cannot
emulate dishonest agents, so the models only consider two
fixed, honest agents. As a result, one obtains incorrect results.
For example, Bob, who can only act as a recipient, can obtain
aliveness of Alice, who can only act as an initiator, upon
reception of e from the first message of NN. However, in
practice, the property is actually violated as this ephemeral
key could have been sent by any other honest agent.

Security Claims: In the Noise protocol specification the
PSK family of handshakes are presented without associated
claims. We consider Perfect Forward Secrecy (PFS) in the
context of the subsequent compromise of (i) a participants’
static keys, (ii) pre-shared keys, or (iii) both static and pre-
shared keys. Noise Explorer only evaluates the third scenario.
However, in many real world deployments, pre-shared keys
are not as well secured as static keys and may be shared across
devices. As Noise Explorer does not consider the compromise
of a PSK alone, it cannot be used to explore PFS in this
scenario.

Noise Explorer uses a relatively weak form of message
agreement. The strongest claim it can verify is that if Bob re-
ceives a message, then at some point Alice sent that message
and intended to send it to Bob. This does not imply the ab-
sence of replay attacks (where Bob receives Alice’s message
more than once), nor does it imply that Alice sent the message
in the same session that Bob received it. Contrastingly, our
analysis covers these properties, which we discuss further in
Section 3.2.

Noise Explorer does not verify security properties in the
presence of compromised ephemeral keys. We explore this
scenario and provide a full set of results in Section 5 which
allow protocol designers to evaluate which handshakes are
best suited to scenarios where RNGs may be suspect.

Cryptographic Primitives: Unlike Tamarin, ProVerif does
not handle Associative-Commutative (AC) function symbols.
Consequently, Noise Explorer has a lower fidelity model of



8 handshakes All Noise handshakes
Dowling [16] Noise Explorer [20] Our Work

Setting (Model) Computational Symbolic Symbolic
Automated & machine-checked (ProVerif) (Tamarin)
Reduction to cryptographic definitions
Systematic wrt. atomic capabilities
Strongest threat model computation
Generates reference implementations †
Intruder-chosen payloads
Compromise s/e/PSK / / / / / /
Dishonest generation s/e / / /
Active attacker
Anonymous agreement
Identity hiding (anonymity)
PFS of keys/messages / / ∗ /

Table 2: Not all formal analyses are equivalent. We compare our framework and tool with prior works in terms of modeling choices, threat
models, verification tools, and analyzed goals. Legend: †: These implementations are automatically generated, but not formally verified to be
correct or secure. ∗: PFS results for PSK handshakes are incomplete. For “Compromise s/e/PSK”, we require results with and without the
corresponding compromise (see Section 3.3.1). “Dishonest generation of e/s” refers to our Dre/Drs intruder capabilities (see Section 3.3.1).

DH exponentiation than our own. In particular, Noise Explorer
does not consider ((ga)b)c equal to ((ga)c)b. In contrast, we
model DH exponentiation as an AC symbol and the preceding
equality holds in our model. Both Noise Explorer and Tamarin
model the possibility of small subgroup elements in X25519,
however, only Tamarin models the possibility of ‘equivalent’
public keys (which are bitwise distinct elements that behave
equivalently under exponentiation). The DH models used
by Tamarin and ProVerif are compared and discussed further
in [11].

2.3.2 fACCE Noise Analysis [16]

Recently [16] proposed a new computational model for ana-
lyzing multi-stage channel establishment protocols which is
of independent interest. Their approach is more scalable than
previous computational models and allows the authors to re-
use proofs between related protocols in order to reduce the
manual burden on the (human) prover.

They demonstrate the flexibility and efficacy of their model
on the Noise protocol framework. As in our work they con-
sider ephemeral key reveals and extend the Noise security
claims. However, despite their improved model, analyzing
each handshake is still a manual effort that requires signific-
ant work. Consequently, they focus on a subset of the Noise
handshakes (8 of 59) and target strong security properties
which hold only for later handshake messages. Contrastingly,
we are able to cover the entire handshake space and explore
the weaker properties that early handshake messages enjoy.

3 Security Goals and Threat Models

We describe in this section our formal model of the Noise
Framework, including how we handle crucial questions such
as the encoding of roles and identities, as well as security

claims and attacker capabilities. Our descriptions here are
mostly semi-formal, due to space constraints. The full formal
definitions, theorems, and proofs are given in [17].

3.1 Protocol and Environment Description
Formal models of security protocols must make critical de-
cisions about how to encode abstract notions such as agents’
state, identity, and agents’ interactions with other protocol par-
ticipants. In this section, we explain our decisions, describe
our model’s behaviors, and justify our model’s effectiveness.
As Noise is a protocol framework designed to be used in
concert with a higher level application about whose behavior
we can make few assumptions, we shall keep our model as
general as possible and avoid artificially restricting handshake
behavior.

Agents and sessions: We describe the behavior of protocol
participants in terms of agents with local state that engage in
protocol sessions with each other. We allow for an unboun-
ded number of agents, engaging in an unbounded number of
sessions and allow each agent to engage in multiple concur-
rent sessions, potentially playing multiple roles. In contrast,
some previous verifications of Noise [20, 21] assumed that
there are only two ‘honest’ agents. Whilst this might be ap-
propriate to model a single client talking to a fixed server, it
does not capture more general deployments, with multiple
clients, multiple servers, or parties that act as both, as in P2P
networks like Bitcoin or Lightning. In general, we allow the
adversary to determine when entities are created, when they
engage in sessions, and with whom they communicate. In
Section 3.3, we will discuss explicit adversary actions, such
as compromising a party, creating a dishonest agent, etc.

Identities: Some formal models endow agents with unique
identifiers, which are used in the protocol or in the protocol’s
security claims. Although internally we use unique identifiers



to distinguish the local state of each agent, we do not other-
wise use these artificial labels. Instead, agents represent each
other’s identities in terms of the keys used in each session.
This captures behavior in handshakes with long-lived keys re-
used between sessions, as well as handshakes relying on PSKs
for authentication or handshakes only providing ephemeral
keys. This ensures we do not impose any artificial restrictions
on applications using the Noise protocol framework, which
make their own decisions as to how agents are identified.

The Noise framework does describe an explicit session
identifier that is output to the application when a handshake
concludes, which we use to identify specific sessions. We do
not (a priori) assume that this identifier is unique or that the
application keeps it secret. We will see how this conservative
decision allows us to find a previously undocumented applic-
ation requirement in Section 5.5. Additionally, we treat the
identities of remote parties as a tuple of exchanged key mater-
ial, for example, the other entity’s public ephemeral, public
static, or pre-shared keys which have been exchanged. This
allows us to define a meaningful notion of identity even for
handshakes without any long term secrets, i.e., that provide
anonymous connections for one or more participants.

Pre-messages: In some handshakes, Noise supports pre-
distributed public keys or PSKs, which one or both parti-
cipants may have access to. In practice, an application us-
ing the Noise framework will describe how this information
would be transferred and authenticated. Consequently, we
treat this part of the framework abstractly and simply distin-
guish when the provided information is authentic, or when the
adversary has tampered with it due to some compromise of
the authentication infrastructure. For example, an application
using a certificate-based system cannot distinguish between
legitimate certificates and those an adversary has generated
after compromising the CA. In a Trust on First Use model,
this would mean (correctly) trusting an honest key or incor-
rectly trusting an adversary controlled key. We describe in
Section 3.3 how we can use these recorded labels, in con-
junction with our parameterized adversary, to capture the full
spectrum of authentication behavior.

PSK: Similarly, we support the Noise PSK modes, which
offer an alternative and complementary notion of a pre-
distributed token. Noise does not specify how PSKs should be
treated. For example, they could be uniquely issued to a spe-
cific pair of agents, thus authenticating each party to the other,
or to a group of entities and thus provide only authentication
to this group, which is weaker than pairwise authentication.
In protocols using dummy keys, like WireGuard [13], the
PSK may even be publicly known. We allow the adversary
to assign shared keys to any combination of agents it wishes,
which includes all of the previously described scenarios. This
includes shared keys that are intended to be secret, but to
which the adversary legitimately has access or shared keys
that the adversary can access through dishonest means such
as compromising an agent.

Payloads: As the Noise Framework allows an application to
transmit data alongside message payloads, we carefully model
this functionality to give the adversary the maximum possible
power. For example, when we later consider agreement proper-
ties, we allow the adversary to specify each message payload,
as well as the handshake’s prologue. This can be interpreted
as the adversary influencing or even dictating the application-
level protocol. However, when checking for the secrecy of a
given payload, we must model this one payload as a randomly
drawn value, as is customary in the symbolic model.

Transport mode: When a handshake finishes, the Noise
Framework describes a transport phase, where applications
can send or receive messages to or from the other party.
We treat these messages like the handshake payloads in
the previous paragraph, with the addition of an explicit
sequence number as described in the specification. Although
in principle there can be many transport phase messages, and
applications are not required to alternate between sending
and receiving, we show that it suffices to consider the
initial transport phase messages sent by each party, allowing
us to exclude further transport phase messages from our
model [17, page 34]. Intuitively, this is due to the fact that
key material remains unchanged.

Consequently, in the remainder of this paper, we consider
the worst case scenario for the application layer and make
minimal assumptions, letting the adversary choose payloads
except the ones for which secrecy should be proven. Our
model is also useful for future application designers wishing
to check the specific combination of their application with
a particular Noise handshake. We make it easy to plug a
Tamarin model of an application layer into our handshake
pattern models. One can thereby derive specific guarantees
about the composition of both protocols, which will be at least
as strong as the guarantees we discuss in this paper, as we
assume the worst case application layer in our work.

3.2 Security Claims

Noise allows the application layer to send payloads alongside
handshake messages, using the best available protection at
that stage of the protocol. Consequently, these payloads may
have weaker security guarantees than payloads sent later after
the handshake’s completion. The Noise specification claims
informal security properties for each handshake message and
for the first two payloads after the handshake’s completion.

We analyze the security of each potential payload (i.e.,
reasoning on a per message basis) but consider well-defined
security claims based on a comprehensive set of threat models.
We now describe these security claims and describe the threat
models in the next section. Our claims can be parameterized
by a role (Initiator I or recipient R), and a payload position,
which indicates its location in the handshake.

Definition 2 (Claims). We consider the following claims:



Secrecy of a particular payload at position i ∈ N, from the
perspective of a given role r.

Non-injective agreement from the perspective of a re-
cipient accepting a payload at position i ∈ N on the
payload content, its additional data, and the sets Ss,Sr
of (supposedly) exchanged keys identifying respectively
the sender and the recipient. Ss and Sr may contain PSK,
public ephemeral key, or/and public static keys. If the
claim is true, this means that if the recipient, identified by
Sr, accepts a payload from a peer he believes is identified
by Ss, it was at some point sent by a peer identified by
Ss with an intended recipient identified by Sr. However,
there is no injective correspondence between these
events, i.e., replay is possible.

Injective agreement additionally requires that any success-
fully received message must correspond to a unique
legitimate transmission, ruling out replay attacks.

Anonymity of a given role r with respect to its public static
key.

These claims have a standard formalization. Agreement
claims are written as in [22]. Anonymity claims are encoded
as observational equivalence, as is standard in the symbolic
model setting [1, 5]. Specifically, anonymity is falsified when
an adversary conforming to a given threat model can dis-
tinguish an agent using a public, static key gs known to the
adversary from an agent using a second public, static key
gs′ also known to the adversary. When this happens, given a
list of ‘candidate’ public keys containing an agent’s key, the
adversary can recognize this agent.

Secrecy and agreement claims broadly correspond to the
families of informal security levels given in the Noise specific-
ation: source and destination properties. Anonymity claims
model a part of identity hiding properties, which are an in-
formal notion used in the Noise specification that refers to
the identities not being deducible by the attacker. In conjunc-
tion with our threat models, explained in the next section,
we will later see that these claims encompass the informal
descriptions from the Noise protocol specification and go
considerably further in many respects.

3.3 Security Properties

We evaluate claims with respect to a range of threat models,
which are modeled by describing the adversary’s capabilit-
ies. A claim and a threat model together specify a security
property, which we can evaluate. In this section, we describe
the adversary’s possible capabilities, how we combine these
capabilities into threat models, and how we can concisely
summarize the resulting information.

To motivate our formulation, let us focus first on secrecy
and agreement properties. These have the general form of
τ =⇒ C ∨ t , where τ represents a ‘trigger’ that occurs
whenever the claim in question applies (e.g., upon reception

active Active adversary

Re Actor ephemeral key is revealed
Rre Peer’s ephemeral key is revealed
Rs Actor’s static key is revealed
Rrs Peer’s static key is revealed
Rpsk The pre-shared key owned by the actor for this session is revealed

R<
e Actor’s ephemeral key is revealed before the claim

R<
re Peer’s ephemeral key is revealed before the claim

R<
s Actor’s static key is revealed before the claim

R<
rs Peer’s static key is revealed before the claim

R<
psk The pre-shared key owned by the actor for this session is revealed

before the claim

Dpki Dishonest pre-message PKI
Dre Peer’s ephemeral key is dishonestly generated
Drs Peer’s static key is dishonestly generated

Figure 3: Atomic Adversary Capabilities. We refer to the set of
capabilities as A.

of a message for agreement claims), C describes the guaran-
tees expected to hold for that claim (e.g., secrecy of the ex-
changed payload for a secrecy claim), and t describes a threat
model, which describes a combination of adversarial capab-
ilities. Note that when combined with a claim to form a se-
curity property, threat models are implicitly negated, see Sec-
tion 3.3.2. Thus a security property is a statement that the
protocol provides the guarantees of the claim C we consider,
unless the adversary has access to the capabilities described
in t. We have already defined the claims we consider in the
previous subsection. We now describe how we formulate the
threat model t.

3.3.1 Adversary Capabilities

Intuitively, our threat models can each be expressed as a com-
bination of atomic adversarial capabilities. We summarize
these capabilities in Figure 3 and explain their meaning here.

The symbol active denotes that the adversary is active. A
passive adversary can only read, drop, and reorder messages,
but not modify, send, or replay messages. R denotes a reveal
or compromise of some key, and comes in two flavors: one
where the reveal occurs before the time of the claim (e.g.,
R<
psk) and one where the reveal can occur at any time (e.g.,

Rpsk). D refers to dishonest key generation. Namely, Dpki

expresses that the keys received by anyone as pre-messages,
for instance through a PKI, can be dishonestly generated;
i.e., no assurance is provided of their well-formedness and
received keys can be, e.g., gs−1

or g. Drs expresses that the
peer’s static public key could be dishonestly generated.

Note that there is no Ds or De as we assume that the actor’s
private static and ephemeral keys were honestly generated.
However, we only make this assumption for the actor, that
is the honest agent for which a security guarantee must be
provided, and not for other actors, most notably the actor’s
peer (see Drs, Dre, and Dpki).



These capabilities capture a realistic class of adversarial
capabilities, including the ability to compromise the private
state of the local or remote party, interfere with the application
layer authentication system, and register malicious agents
with the adversary’s choice of key. In [17, Section 2.2.4], we
provide a formal interpretation in our model of each of these
capabilities, which we lack the space to explore here.

Anonymity claims: The anonymity claims are substantially
more complex to model and analyze as they rely on obser-
vational equivalence (see Section 2.2). Such properties are
well-known to be computationally much more expensive to
analyze than trace properties.

For this reason, we analyze anonymity claims with re-
spect to a strict subset of adversary capabilities, namely
Aa = {Rrs,Rpsk,active} instead of A. The adversary does
not have access to other capabilities: ephemeral keys cannot
be revealed, the PKI is honest, and the peer of the role whose
identity we try to hide always receives honest static keys. We
also assume that there is at most one initiator and one recipi-
ent, and that Diffie Hellman operations are implemented on a
prime order group.

Albeit strict, these restrictions still allow us to gain useful
insights about Noise’s anonymity guaranties as we will see in
Section 5.4.

3.3.2 Threat Models

We now model an adversary who possesses a given subset
of these capabilities, including all or none of them. We first
describe how these capabilities can be combined into a threat
model and afterward how they can be used to evaluate a se-
curity property.

Definition 3. Let A be the set of adversary capabilities given
in Figure 3. We define the set of threat models, denoted by
T , to be the (subset of) propositional logic formulas, built
from A, ∧, ∨, and the bottom element ⊥, which represents
an empty threat model.

Note that when combined with a claim to form a security
property, threat models are implicitly negated. That is, a threat
model does not describe the adversary’s permitted capabilit-
ies, but rather its excluded capabilities, i.e., the threat model
determines under what circumstances the claim is not required
to hold. Hence the empty threat model ⊥ affords the attacker
the most power as the claim must hold in all circumstances
(and vice versa for the maximal threat model). However, not
all combinations of capabilities are meaningful. For example,
R<
rs∧Rrs is intuitively equivalent to threat model R<

rs as re-
vealing the key prior to the claim also satisfies the requirement
to reveal the key at any point. We define a notion of redund-
ancy that we use to eliminate such redundant threat models.

Definition 4. We define � to be the smallest reflexive and
transitive relation over threat models containing: R<

x � Rx

for x ∈ {e,re,s,rs,psk}, Dpki � Drs, and Dx � active,
for x ∈ {rs,re,pki}.

For t1, t2 ∈ T , we say that t1 subsumes t2 when t1 � t2.

We can use this to reduce the number of relevant threat
models using the following result.

Theorem 1. Let C be a claim, and t1, t2 ∈ T be such that
t1 � t2. If C holds in threat model t1 then it also holds in t2.

Our ordering � induces a partial order on the set of threat
models T , and thus yields an equivalence relation ' defined
as t1' t2 when t1� t2 and t2� t1. We denote as T̄ the quotient
of the set of threat models by '. The set T̄ represents the set
of distinct threat models that we will consider.

T̄ is still large: it contains more than 1012 elements. Al-
though this indicates how fine-grained our analysis is, this
large number poses two problems. First, the raw results of
evaluating these threat models against each claim would be
beyond human comprehension. Therefore, we develop a tech-
nique to condense these results into a single summary state-
ment without any loss of precision. Second, evaluating all
of these threat models would take substantial computational
resources. We address this problem in Section 5.

3.4 Finding the Strongest Threat Model
We now show that for a given claim, there exists a unique
element of T̄ that subsumes exactly those threat models under
which the claim holds. This allows us to summarize succinctly
the conditions under which a claim holds.

Theorem 2 (Strongest threat model). Let C be a claim. Let
T̄1(C) be the set of threat models under which C is true. There
exists a unique element in T̄1(C) that subsumes all other threat
models in T̄1(C). We denote this element by B(C) and call it
the Strongest Threat Model (STM) for C.

Without loss of generality, we can represent the unique
STM by a representative of B(C) in Disjunctive Normal Form
(DNF), wherein there are sequence of clauses connected by
disjunctions (∨), and each clause is composed of conjunctions
(∧) of adversarial capabilities. Each clause corresponds dir-
ectly to a minimal set of capabilities required for the adversary
to violate the security claim. Informally we will refer to this
representative in DNF as the STM.

Example 4. Secrecy of the third payload of I1N from the
perspective of the initiator (called claimer) holds under the
strongest threat model: Rre∨Dre∨(Re∧Rs). This is equival-
ent to the following statement, where p denotes the payload:

Trigger(p) =⇒ Secret(p)∨ (Rre∨Dre∨ (Re∧Rs))
Which means one of the following must be true:
• The secrecy claim on the payload p holds, i.e., Secret(p).
• The adversary compromised the peer’s ephemeral key.
• The peer’s ephemeral key was generated by the adversary.



• The adversary compromised both the claimer’s ephem-
eral and static key (as modeled in the conjunct Re∧Rs).

These cases cover all possible attacks using combinations
of atomic adversarial capabilities. Furthermore, each case
is minimal, e.g., in the fourth case it must be that no attack
is possible if the adversary only compromises the claimer’s
ephemeral key (Re) but not the claimer’s static key (Rs).

Consequently, for each claim C (secrecy, non-injective
agreement, injective agreement, and anonymity), we can con-
dense the result to a single threat model B(C), which sum-
marizes the exact capabilities the adversary needs to violate
the property given by C. This reduces our set of results for all
claims to where they can be inspected by hand.

We now exemplify how this choice of threat models, com-
bined with security claims, is expressive enough to encode
well-known standard security notions.

Example 5. Secrecy under R<
rs∨R<

s captures a form of PFS
where payload secrecy holds unless the actor’s or the actor’s
peer’s static, private key is compromised before the claim.

Example 6 (KCI resistance). Key Compromise Impersona-
tion (KCI) resistance can be modeled as injective agreement
under the threat model Re ∨ Rre ∨ Dre ∨ Rrs ∨ Drs. In
plain English, agreement holds unless the actor’s ephemeral
key is compromised, or an asymmetric key of the actor’s
peer is either compromised or was in fact generated by the
adversary. Hence even if the actor’s static key is compromised,
agreement still holds.

However, we must still compute this STM. Naively, a brute
force strategy enumerating all threat models in T̄ would suf-
fice, where we submit all proof obligations as lemmas to Tam-
arin for each claim. However, this would yield more than 1012

proof obligations per handshake, message, and security claim.
We refine this approach so that computation is manageable in
Section 4.1.

4 Vacarme

In the previous section, we described the security properties
we consider. We now present our tool, called Vacarme, which
is available at [18], and how we evaluated it.

Vacarme can take any two-way Noise pattern and computes
the STM for each of its messages and security claim. Vacarme
builds upon Tamarin [25] by first converting the pattern into
a set of Tamarin proof obligations, running Tamarin on them,
and finally analyzing the results.

4.1 Performance optimizations
Our methodology involves generating one Tamarin proof ob-
ligation (lemma) for each claim and each threat model. How-
ever, as noted previously, a naive brute force approach in-
voking Tamarin for each of them would require prohibitive

computational resources. Instead, we use several techniques
to reduce the overall computation time.

First, we employ static analysis to reduce the number
of proof obligations required (Section 4.1.1). A runtime
framework, described in Section 4.1.2, uses dynamic ana-
lysis to minimize the invocations to Tamarin given the res-
ults of already examined proof obligations. To further re-
duce analysis time, we developed a dedicated, but handshake-
independent, provably sound Tamarin heuristic, which reduces
Tamarin’s proof search, that we describe in Section 4.1.3.

4.1.1 Static Analysis

We start with several a priori observations that reduce the
number of Tamarin invocations.

Threat Models and Handshakes: Taking the quotient of T
by ' reduces the number of distinct conjunctions of atomic
capabilities in A from 16,384, to 1,701. We explain and prove
in [17] how and why results for conjuncts are enough to
compute the STMs. We can also consider how elements of A
interact with the claim under consideration. For example, if a
claim considers a point in the protocol where an ephemeral
key for a party has not yet been instantiated, we need not
consider this key’s reveal. Similarly, where the handshake
pattern has no pre-messages, Dpki gives the adversary no
additional power.

Threat Models and Claims: Next, we note that when ana-
lyzing agreement, a passive adversary cannot make use of any
knowledge gained to affect the views or actions of the other
participants, because they cannot insert their own messages.
Hence we need not consider key reveals whilst considering
agreement for passive adversaries. Similarly, for a passive
adversary attempting to violate a secrecy property, the timing
of a key reveal does not change the adversary’s ultimate know-
ledge set, which means that there is no difference between the
timed and untimed variants of a reveal, and we can infer the
result for one by evaluating the other. Furthermore, revealing
a key after a claim does not increase the adversary’s ability
to violate non-injective agreement at the time of the claim.

Trivial Attacks: In many threat models, the adversary
may have enough knowledge to perform a trivial attack
on a handshake. For example, if the adversary completely
compromises the peer’s state, then secrecy and agreement
properties no longer hold. Similarly, if the adversary learns
any PSKs present and at least one private key for each Diffie
Hellman operation, they can compute the session key. We
generalize these observations into a wider category of trivial
attacks, which are important for our tool’s efficiency. For
such cases, we can immediately conclude that the claim is
false based on a simple static analysis.

The above observations allow us to immediately infer that
over 99% of proof obligations are false. This leaves us with,
on average, only 63 proof obligations per remaining claim,
as opposed to the 16,384 naive ones. There is a varying



number of claims per pattern, depending on, e.g., its number
of messages. Overall, this leaves us with about 410,000 proof
obligations for 53 patterns. Note that we show in [17] that
all our reductions are sound in that we have formally proven
that they not impact the actual results.

4.1.2 Dynamic Analysis

Our static analysis techniques substantially reduce the num-
ber of proof obligations, but the required computational effort
would still be substantial. However, there are further rela-
tionships between these tasks that we can exploit. We lift our
definition of subsumption (Definition 4) from threat models to
proof obligations in the natural way. Namely, the subsumption
relation is the smallest reflexive, transitive relation such that:
• if t � t ′ (t is a stronger threat model than t ′) then for any

claim C, the lemma ‘C holds in t’ subsumes the lemma C
holds in t ′;
• for any given threat model, message, and set of keys,

injective agreement subsumes non-injective agreement;
and
• for any given threat model and message, if S and S′ are

sets of keys where S⊆ S′, then non-injective agreement
on this message and keys S′ subsumes non-injective agree-
ment on the same message and keys S.

The resulting subsumption over-approximates, but does not
coincide with, entailment, i.e., for lemmas P1,P2, if subsump-
tion relates P1 and P2, and P1 is true then P2 must also be true.

We can now consider the proof obligations (written as
Tamarin lemmas, combining a claim and a threat model) we
submit to Tamarin as nodes in a directed acyclic graph, whose
edges are determined by the subsumption relationship which
we can statically compute. In order to calculate the STM
under which a claim holds, we must label each node in this
graph with True or False. However, we can use the subsump-
tion relationship to speed up this labeling. For example, if a
property is true, then all weaker properties must also be true.
Likewise, if there is a counterexample for a property, then
that counterexample also holds for any stronger property.

We still have to choose a tree traversal strategy, i.e., in
which order we perform the individual proof obligations. We
designed a dedicated heuristic that approximates the expec-
ted payoff, i.e., how many tasks we could save from ana-
lysis. Overall, this reduces the number of proof obligations
from 410,000 to 150,000. Again, the reduction is provably
sound [17].

4.1.3 Proof Search Heuristic in Tamarin

We also introduce a new proof heuristic (also called an oracle)
to improve Tamarin’s performance and to prevent looping.
Tamarin uses heuristics to prioritize which constraints should
be satisfied whilst constructing a proof or counterexample.

By construction, poor heuristics cannot render Tamarin
unsound, but they can slow it down. Previously, Tamarin’s
heuristics used only limited information about the current set
of open constraints in order to determine which constraints
should be prioritized. We improve upon that by additionally
examining the entire constraint system from a global view.

Thanks to this extra flexibility, we are able to design a heur-
istic that delays the introduction of new identities or sessions
into a trace. We ensure that all constraints concerning the
already present sessions are first satisfied, before we consider
constraints that might require the introduction of a new party.
This ensures that we find straightforward contradictions early
on, before investigating more complex scenarios. In this work,
we can ensure this condition syntactically by inspecting the
constraints output by Tamarin.

We stress that our oracle is handshake-independent and
does not impact the validity of our results: Tamarin remains
sound, and for trace properties, complete.

4.2 Toolchain and Evaluation
Toolchain: Vacarme’s core consists of 5k lines of Rust. First,
a generator converts any Noise pattern into a set of Tamarin
input files that describe the protocol and all proof obligations
using aforementioned static analysis. Given these Tamarin
models, our runtime framework, a combination of Python
and bash scripts, runs Tamarin with our oracle using the
aforementioned dynamic analysis. The complete toolchain is
push-button: given any Noise handshake, written in the Noise
syntax as in Figure 1, or any Noise handshake name from
the specification, it returns a table of STMs for all claims
and messages. We also provide tool support to interpret the
results and compare handshakes, as explained in Section 5.

Evaluation: While Vacarme can take an arbitrary two-way
Noise pattern as input, we ran it on all such patterns that are
listed in the specification, both for evaluating our tool and for
interpreting the analysis results. To determine the STM for
secrecy and agreement properties for the 53 two-way Noise
patterns described in the specification, Vacarme required a
total of 150,000 lemma evaluations, requiring 74 CPU-days
on cores ranging from 2.2 to 2.6 GHz, and a peak requirement
of 75 GB RAM. Anonymity proofs for a relevant subset of
46 patterns took another 97 CPU-days, with a peak memory
usage of 125 GB RAM. The complete results and the tool
to reproduce them are available at [18], and a large subset is
also available at [17, Appendix B, pages 78–95]. We discuss
these results in Section 5.

5 Analysis Results and Practical Implications

We describe our analysis results and their implications for the
Noise protocol community. First, in Section 5.1, we use Va-
carme to infer the strongest security properties for all two-way
handshakes mentioned in the specification, which allows us to



construct a protocol hierarchy. This enables one to optimally
choose a handshake given, e.g., the PKI context of a given
application. This includes a discussion on deferred patterns,
for which we show that few of them offer useful trade-offs.
Their improvement is for privacy only, and generally only
one deferred pattern is relevant for each fundamental or PSK-
based pattern. Second, in Section 5.2, we revisit the security
levels claimed in the Noise specification and derive a formal
interpretation of them from first principles. Along the way, we
uncover some surprising properties about the security levels
claimed by the specification. In Section 5.3, we revisit some
of the subtleties surrounding protocols with a PSK and how
they relate to non-PSK modes. Furthermore we make specific
security claims for the various PSK handshakes, which are
missing from the Noise protocol specification. Finally, we
present anonymity results in Section 5.4: e.g., session identi-
fiers put privacy at risk, and some identity-hiding levels are
flawed. We conclude by summarizing our most important
recommendations for the Noise specification in Section 5.5.

General Properties: Our systematic approach also enables
us to discover some general properties that all analyzed
handshakes satisfy. First, for injective agreement we observe
one of two cases: (i) the STM for it is either exactly the same
threat model as for non-injective agreement, or (ii) injective
agreement fails under all (even the weakest) threat models.
In other words, messages can either be trivially replayed,
or never. Second, in handshakes where public keys are
distributed by a PKI, an agent only needs to trust that its own
channel to the PKI is secure (and not necessarily the channel
between the PKI and the peer). Finally, we observe that the
guarantees offered by successive handshake messages are
monotonic: subsequent messages enjoy, at worst, the same
properties as previous messages.

5.1 Selecting patterns using hierarchies

Our results can be used to choose a suitable Noise pattern for a
given context, such as a given key infrastructure. To do so, we
must first define our system parameters, which allow us to par-
tition the set of patterns into classes that correspond to distinct
real-world use cases. Second, we introduce an order on a hand-
shake’s security properties. Together, these enable us to sys-
tematically infer the optimal handshake for a given scenario.

System Parameters: System parameters describe which
parties are capable of storing static keys or shared symmetric
keys and whether they are available in advance to remote
parties. For example, in settings like web browsing, initiators
may not require any authentication, but servers require au-
thenticating against a pre-shared static public key. Thus, we
identify the following system parameters:
1. Which roles have their own individual static key. This

can be either none, initiator, recipient, or both.
2. If there are static keys, whether these are transferred be-

fore or during the handshake.

3. Whether a PSK is available.
For example, if a designer has access to a pre-shared static key
for the recipient, a non-pre-shared static key for the initiator,
and no PSK, then the Noise specification offers 4 possible pat-
terns: KX, K1X, KX1, and K1X1. The last three are deferred
patterns, which were designed to improve identity hiding
properties at the expense of latency. As we will see later, our
results show that these deferred patterns in fact provide no
better security properties than KX. To establish such results,
we shall formally compare handshakes, as explained next.

Order on handshakes: We say that a handshake A offers
better security properties than B if for all claims C and threat
models t, if B satisfies C in t, then A also satisfies C in t.
Intuitively, this means that the handshake A provides better
security than B for every claim, i.e., it is secure against
stronger adversaries. This relation is easily computable from
the STMs we obtained for each claim.

Hierarchy: We apply the previous methodology to the 46
handshakes2 where we could compute a STM for anonym-
ity in under about 100 CPU-hours per proof obligation. For
all these handshakes, we could also compute the STMs for
secrecy and agreement claims. A selection of these results
is shown in Figure 4. Overall we see that (i) in most cases
adding a PSK improves properties, and the earlier the PSK
is used the better; (ii) few deferred handshakes are actually
useful. In the remainder of this section, we expand upon and
justify the latter claim.

Redundant patterns: Overall secrecy and agreement can
be optimized together by avoiding deferred patterns: the
earlier payloads are encrypted, the better (Figure 4a). In
contrast, secrecy/agreement and anonymity are antagonistic:
for example, KK1 provides better anonymity but worse
secrecy/agreement than KK. They require the same system
parameters (no PSK, pre-shared static keys for both agents)
and represent thus two incomparable trade-offs. This can be
seen on Figure 4b as KK and KK1 are two maximal, incompar-
able elements among blue, oval nodes. Nevertheless we show
that each class of identical system parameters admits at most
two maximal elements. Practitioners need only consider these
handshakes, as other ones, which we call redundant, offer
inferior security properties. Overall, only 2 deferred patterns
are not redundant (NK1 and KK1).3 For example, KK and
KK1 make K1K and K1K1 redundant, and KX makes K1X,
KX1, and K1X1 redundant. In particular, although the Noise
specification introduced deferred patterns for their better an-
onymity properties, we found out that KX has strictly stronger
anonymity guarantees than KX1. Table 3 summarizes these
remarks for all non-PSK system parameters.

24 patterns timed out: IKpsk1, X1X, X1X1, XXpsk3; NN and its derivat-
ives do not involve static keys.

3NK offers stronger secrecy and agreement than NK1, as shown in Fig-
ure 4a, but NK1 offers better anonymity properties, which are not considered
in Figure 4a.
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Figure 4: Excerpts of our Noise protocol hierarchy . An arrow from K1K to KK means that for every threat model t, if a security property holds
for K1K in t, then it also holds for KK in t. In other words, KK offers stronger properties than K1K. Rectangles indicate variants that assume a
PSK, and ovals variants without a PSK. Protocols with identical system parameters have the same color.

Role Early use Deferred use
Initiator Always better properties Always worse properties

Recipient Better secrecy/agreement Better or worse privacy

Table 3: When to defer using a static key with the es or se tokens.
The only non-redundant deferred patterns among those we analyzed
are patterns where the first use of the recipient’s static key (with
es) is delayed by one round-trip.

5.2 Security Levels in the Noise Standard

The Noise protocol specification lists informal payload se-
curity properties called levels for each payload message of
a handshake (e.g., Examples 2 and 3). Correctly mapping a
formal security model to informal prose is generally challen-
ging. In this section, we explain how we automatically derive
a formal definition of the Source and Destination Levels.

Relating Threat Models and Security levels: As we have
seen, our fine-grained analysis allows us to associate each
handshake payload with the STM under which secrecy for the
sender and non-injective agreement between sender and recip-
ient holds. Considering every handshake payload, we discover
74 unique STMs. That is, the security of any message payload
is represented by one of those 74 STMs. These 74 distinct
security classes can be related to the 9 levels discussed in
the Noise specification by considering fewer atomic capab-
ilities: instead of considering the STM among all possible
threat models constructed from the set A of atomic adversarial
capabilities as in Theorem 2, we consider the strongest of
those threat models where no ephemeral key is revealed and
the PKI is attacker-controlled, which we call the simplified
STMs. Then the equivalence classes yielded by the relation
relating handshakes with the same simplified STM fit exactly
the Source and Destination Levels of the Noise specification,

Security Level Simplified Strongest Threat Model

Destination

0 >
1 active∧Dre
2 Rrs∨ (Drs∧active)
3 active∧Dre∧ (Drs∨Rrs)
4 active∧Dre∧ (Drs∨R<

rs∨ (R<
s ∧Rrs))

5 active∧Dre∧ (Drs∨R<
rs)

Source 1 active∧ (R<
s ∨ (Dre∧ (R<

rs∨Drs)))
2 active∧Dre∧ (R<

rs∨Drs))

Table 4: Interpretation of the source and destination levels of the
Noise specification in terms of simplified STMs. The simplification
consists of ignoring ephemeral key reveals and assuming the PKI is
dishonest.

except for Source Level 0, as shown in Tables 4 and 5. In
other words, our method is able to automatically derive a
classification of payloads by their security properties that not
only fits the Noise specification but additionally refines it by
considering more adversarial capabilities.

Using Figure 3 and Tables 4 and 5, we can now straightfor-
wardly translate back the formal definitions of the levels we
uncovered into intuitive, yet unambiguous statements. These
threat models can be translated back into prose as well:

Example 7. We can now properly define Destination Level
4 (described in Example 2) as: Secrecy of the payload holds
unless the adversary is active, the recipient’s ephemeral key
was generated by the adversary and
• the recipient’s static key was generated by the adversary,

or
• the recipient’s static key is revealed before the message

is sent, or
• the recipient’s static key is revealed at any time and the

sender’s static key is revealed before the message is sent.



Sub-levels of Source Level 0 Simplified STM
Source Level 0.0 >
Source Level 0.1 active
Source Level 0.2 active∧ (Dre∨R<

s )
Source Level 0.3 active∧Dre

Table 5: We found that Source Level 0 can be sub-divided into 4
sub-levels. As in Table 4, we assume here a dishonest PKI and the
absence of ephemeral key reveals and higher number means stronger.

Refining Source Level 0 (agreement): Although Source
Level 0 is divided into four further levels, these levels are
very weak. They range between ‘The property never holds
(>)’ and ‘The adversary must be active and transmit a value.’
The Noise specification refers to all such messages as being
at the same level. The relevance of the additional security
offered by the subdivision depends on the threat model.
For example, in threat models where being active is very
costly or impossible for the adversary, e.g., as in some mass
surveillance scenarios, these subdivisions are meaningful.

Refining Destination Levels (secrecy): Unlike the Noise
specification, we consider secrecy not only from the sender’s
point of view, but also from the recipient’s point of view.
We uncovered two new levels with corresponding simplified
STMs: Rs∨Dre and Rs∨ (Rre∧ (R<

rs∨Drs)), which we will
call 0′ and 0′′ respectively, as they are incomparably strong.
Notably, Level 0′ is much weaker than Destination Level 1,
but is found on messages that are Destination Level 2 for the
sender’s point of view. The following example illustrates why
this could come as a surprise to some readers of the Noise
specification.

Example 8 (Asymmetry of secrecy for the sender and recipi-
ent). We consider a threat model where no key is revealed and
the agents have a way to ensure the authenticity of preshared
static keys. We also consider the first message of X1K, which is
Destination Level 2 for the initiator (sender). In such a threat
model, when the initiator sends a payload, he has a guarantee
that the attacker cannot learn the sent payload. In contrast,
this message is Level 0′ for the recipient of this message.
When a recipient receives this message, it could be that the
attacker knows the decrypted payload (for example, because
the attacker impersonated the alleged sender). Depending on
the application layer and the purpose of such a message, the
recipient may need message confidentiality to be guaranteed.

Uncovering Missing Assumptions in the Specification: The
fact that when we consider threat models without ephemeral
key reveals we obtain roughly the classification of the Noise
specification suggests that the Noise specification actually
assumes that ephemeral keys cannot be revealed. Currently,
this assumption is only explicit for Destination Level 5 and
Identity-hiding levels, which seems to (wrongly) imply it
is not assumed for the others. In practice, weak ephemeral
keys are possible with the many mobile phones, routers, and

Pattern Message Destination STM (secrecy for the sender)Level

IX 2 3 (Rre ∧ (Rrs ∨ Re)) ∨ (Re ∧ Rs) ∨ (active ∧
(Dre ∧ (R<

rs ∨R<
e ∨Drs))∨ (Drs ∧R<

re))

X1X 3 5 (active ∧ ((Drs ∧ R<
re) ∨ (Dre ∨ (R<

rs ∨
Drs)))∨Re ∨ (Rre ∧Rrs)

Table 6: Strongest threat models (STM) for secrecy of some mes-
sages from the point of view of the sender, to illustrate Example 9.

IoT devices suffering from poor quality RNGs. It is therefore
prudent to systematically investigate this aspect of the threat
model. Using our results and non-simplified threat models,
it is possible to check whether a particular message would
be revealed to an adversary in the event that one, or even
both, of the involved parties had a faulty RNG. This allows
a protocol designer to select a Noise handshake to mitigate
this issue, when it is a real-world concern.

Uncovering Non-monotonicity of Levels: A perhaps sur-
prising consequence of considering such threat models is that
the security levels given in the specification are not mono-
tonic, while users and readers will most likely understand
from the specification and their association with (linearly
ordered) numbers that they are monotonic. Worryingly, a user
may upgrade from one handshake to another with a higher
Destination Level and, yet, lose security.

Example 9 (Non-monotonic secrecy upgrade). Consider
the choice of a protocol with the goal of transmitting one
payload from Alice to Bob. For the designer, only the secrecy
of this payload, from Alice’s point of view, matters. In the
initial setup, both parties have a static key (but do not know
their peer’s static key in advance) and no PSK is available.

We consider a scenario where Alice’s ephemeral key
can be revealed (i.e. Alice’s device has a weak or faulty
RNG) and the attacker is passive. Obviously no security is
possible in the scenario where one party is fully compromised
so we exclude it and we get the following threat model:
t = (Re∧Rs)∨Rre∨active.

With Alice as the recipient, we see in Table 6 that the
second message of pattern IX (labeled Destination Level 3)
fulfills our requirements. Upgrading our guarantee from Level
3 to Level 5 should be an improvement, so we alternatively
consider sending the sensitive payload as message 3 of pat-
tern X1X with Alice as the initiator, which is labelled Level 5.
However, under the above threat model t, this payload is not
secret with X1X, since there is an attack when Alice’s ephem-
eral key can be revealed (Re). This means that an ‘upgrade’
from a Level 3 to a Level 5 leads to an attack on secrecy,
which the Level 3 handshake message would have prevented.

Note that we automatically identified this example from
the table of all STMs, again illustrating our framework’s ex-
pressiveness.



5.3 PSK Handshakes
There are no security claims about PSK patterns in the Noise
specification. Our method automatically discovers the detailed
Source and Destination properties of PSK patterns and we
discuss our results here.

5.3.1 Degrees of PFS

As an illustration, we focus here on the insight we can gain
from applying this methodology to secrecy from the sender’s
point of view. In particular, our analysis reveals three slightly
different flavors of PFS, whose distinction can be crucial for
protocol designers.

The first flavor (mapping to non-PSK Destination Level 5)
corresponds to PFS relying on asymmetric keys: the attacker
must have compromised the static keys before the session took
place in order to break the secrecy of the messages. However,
they can compromise the PSK before or after the session.

The second flavor is reverse: the PFS guarantee relies on
the PSK only. The attacker must have compromised the PSK
before the session took place, but they may compromise the
static keys before or after the session.

The third flavor is the intersection of the two previous
sets of guarantees, which is a kind of PFS that leverages
both the PSK and asymmetric keys. The attacker must have
compromised both the static key and the PSK before the
session took place.

To illustrate why these distinctions are beneficial, consider
the example of WireGuard (based on IKpsk2). WireGuard
justifies using a PSK pattern by invoking post-quantum
resistance [13, § V. B.], and allows the use of a public
dummy PSK. PFS relying on asymmetric keys only is not
post-quantum resistant, and PFS relying on the PSK only fails
when using a public PSK. Therefore only the aforementioned
third form of PFS is suitable for WireGuard’s goals. In
contrast, the Noise specification defines 6 levels, and in
particular cannot distinguish between these flavors of PFS,
while we do make this distinction and, moreover, effectively
distinguish between 16 levels.

5.3.2 Non-PSK versus dummy PSK

As mentioned before, the Noise specification allows PSK-
patterns to be used without securely distributing a PSK by
setting the PSK to a public value like 0, called a dummy PSK.
We model the public nature of these dummy PSKs by consid-
ering PSK-patterns where the PSK is immediately revealed
to the adversary. We now compare such protocols with public
dummy keys to the corresponding non-PSK patterns. Surpris-
ingly, we find their security properties differ.

Before the first psk or DH token, PSK and non-PSK
patterns have a different policy with respect to payload
encryption. Non-PSK patterns send payloads in clear text,
whereas PSK patterns send them with AEAD with a public

value as the symmetric key. This has consequences for
agreement and anonymity properties.

Agreement: The first message of some non-PSK patterns
like NN (see Figure 2a) is Source Level 0.0 because the
recipient cannot distinguish them from the second message
of the handshake. Thus, even with a passive adversary,
a recipient can mistake the second message of another
handshake for a first message and falsely conclude that he
has agreed upon a session with this non-existent initiator.
In the corresponding PSK-handshake, encryption of the
first payload prevents message confusion (even though the
encryption key is public), and the payload of the first message
becomes Source Level 0.1. Note, however, that Source Level
0.0 and 0.1 are both very weak (agreement is violated against
an active adversary), and 0.1 could also be achieved in
non-PSK handshakes using mere message tagging.

Anonymity: For KNpsk0 and KXpsk2, our analysis revealed
that the anonymity of the initiator never holds in the PSK hand-
shake with a dummy PSK, whereas it holds in some threat
models in the corresponding non-PSK handshake. In the case
of KXpsk2, this is due to the early encryption of payloads
described above. Indeed, the authenticated data associated
with the AEAD of the first payload contains a hash of the ini-
tiator’s public key. Given a candidate public key, the attacker
can compute the corresponding associated data and verify the
integrity of the AEAD encrypted payload received over the
network. The verification operation succeeds if and only if the
candidate public key is correct, thus breaking the initiator’s
anonymity. This also affects several other PSK handshakes
that are not part of our formal analysis.

We investigated the following modification of the Noise
specification: the function encryptAndHash returns the
cleartext when called before the first psk or DH token.
With this modification, our tool proves that the initiator’s
anonymity is now guaranteed by KXpsk2 if the adversary
is passive. This shows that encrypting payloads before the
first psk or DH token can actually strictly weaken anonymity
guarantees in some circumstances. Our tool also proves that
this modification has no other effect on secrecy and agree-
ment guarantees, except the effect on agreement discussed
above. This modification has no effect on KNpsk0, however,
as this handshake begins with a psk token. Strengthening
the anonymity guarantees of KNpsk0 would require more
involved modifications to encryptAndHash.

Except for the cases above, agreement, secrecy, and an-
onymity properties are the same for the dummy PSK and
non-PSK handshakes we considered.

5.4 Anonymity Results

We did not run all anonymity proofs to completion, as ob-
servational equivalence is considerably more expensive to
check than trace properties. Yet, our results for 46 patterns
give some interesting insights. Firstly, the Noise specification



allows applications to use the hash of the transcript of the
handshake as a session identifier [24, § 11.2]. This hash is
computable solely from public values, including the public
keys of peers. Therefore, if the adversary has access to this
hash and a list of public keys, he can discover the identity
of the peers. As a result, anonymity cannot hold, even for a
passive adversary. For this reason, the specification should
clearly state that this session identifier must be kept secret by
applications with anonymity requirements.

We did not model all nine Identity-hiding levels of the
specification, but we do refine Level 7 of the Noise specific-
ation for example. It reads as follows: ‘An active attacker
who pretends to be the initiator without the initiator’s static
private key, who subsequently learns a candidate for the ini-
tiator private key, can then check whether the candidate is
correct.’ The initiator of KN achieves Identity-hiding Level 7,
and yet we find an attack against his anonymity under weaker
assumptions: an active adversary and no key compromise.
The adversary impersonates the recipient while guessing the
initiator’s public key. The initiator accepts the second mes-
sage of the handshake if and only if the guess is correct. This
suggests that investigating every identity hiding level of the
Noise protocol framework would be fruitful future work.

Finally, our work provides the very first machine-checked
anonymity results for the Noise framework. We discuss our
results at greater length in [17, Section 4.2], where we show-
case the precision we can achieve through examples that
meaningfully distinguish different classes of privacy attacks.

5.5 Summary of Analysis Insights

We summarize some of the insights provided by our
analysis and make explicit recommendations for the Noise
specification.

Session identifiers: If the session identifier defined in §11.2
of the Noise specification is public, then anonymity never
holds (see Section 5.4). The specification should explicitly
state that applications requiring identity hiding for their hand-
shake must treat this session identifier as a secret value.

Early encryption in PSK patterns: As explained in
Section 5.3, some payloads are encrypted before the first
psk or DH token with a public value as a symmetric key.
This brings some marginal benefits (agreement against a
passive adversary for some early payloads, which could also
be achieved by mere tagging) but violates the anonymity
guarantees of several patterns like KXpsk2. The specification
should highlight this unexpected impact on anonymity when
using a PSK pattern with a dummy key.

Security claims: As explained in Section 5.2, security levels
are given under the assumption that ephemeral keys cannot
be compromised. This assumption should be made explicit,
along with the consequence that the security levels are not
monotonic. It should also be explained that secrecy from the
recipient’s point of view is sometimes weaker than secrecy

from the sender’s point of view as given by the Destination
Level. Protocol designers may otherwise incorrectly assume
there is no distinction between perspectives.

6 Conclusion

We have presented a fine-grained analysis of the protocols
from the Noise specification, revealing subtle differences that
were previously unknown and discovering classes of hand-
shakes that should not be used. Our results help practitioners
in selecting the right Noise handshake for their circumstances,
for example by using our hierarchy in Figure 4b.

Our methodology is generic and not tailored to Noise.
Hence it can be directly applied to other families of secur-
ity protocols. One possible item of future work would be to
compare the Noise handshakes and their properties with the
security properties provided by other non-Noise authentic-
ation protocols. We would also like to further optimize our
use of equivalence properties to analyze anonymity in greater
detail and for more handshakes.
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