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ABSTRACT
OpenID Connect is the most widely used Internet protocol for dele-
gated authentication today. It provides single sign-on functionality
for users who use their account with an identity provider to au-
thenticate to different services, called relying parties. Unfortunately
OpenIDConnect is not privacy-friendly: the identity provider learns
with each use which relying party the user logs in to. This necessi-
tates a high degree of trust in the identity provider, and is especially
problematic when the relying parties’ identity reveals sensitive
information.
We present two extensions to OpenID Connect that address this pri-
vacy concern. We first present a simple extension that prevents the
identity provider from learning to which relying parties its users
log in, and we further extend this solution to also prevent colluding
relying parties from tracking users. We give formal security proofs
for both standard OpenID Connect and our extensions using the
Tamarin security protocol verification tool.

KEYWORDS
OpenID Connect; single sign-on; privacy; protocol verification
ACM Reference Format:
Sven Hammann, Ralf Sasse, and David Basin. 2020. Privacy-Preserving
OpenID Connect. In Proceedings of the 15th ACM Asia Conference on Com-
puter and Communications Security (ASIA CCS ’20), October 5–9, 2020, Taipei,
Taiwan.ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3320269.
3384724

1 INTRODUCTION
The Internet provides access to an ever increasing number of ser-
vices, many of which require its users to have an account with cre-
dentials. This is a considerable cognitive burden for users and leads
to password reuse and other poor security practices [21]. Delegated
authentication protocols offer a way out of this dilemma. These
protocols allow a user to use her account at an identity provider
(IdP) to log in to other services, called relying parties (RP). The
user’s account at the IdP should then be protected with a password
and preferably with a second authentication factor. This provides
users with single sign-on functionality, where one account can be
used to log in to many different services. The most widely used
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delegated authentication protocol today is OpenID Connect [30],
supported by identity providers like Google and Microsoft.

The downside of OpenID Connect is that the IdP learns exactly
which RPs a user accesses, and when and how often. This is prob-
lematic for user privacy. First, the very act of logging in to an RP
reveals sensitive information about the user. Consider for example
an RP hosting a medical forum for patients with an incurable dis-
ease, a chatroom for abuse victims, or a help site for people with
substance abuse disorders. Second, the IdP often possesses user
profiles containing verified personal user attributes. This allows the
IdP to link the data about which RPs the user visits to a uniquely
identified person rather than just a pseudonym. For example, the
VERIMI IdP service [4] performs extensive verification procedures,
such as video identification for ID cards and passports.

For these two reasons, allowing an IdP to observe and collect
its users’ login data requires trusting that the IdP will not use this
data inappropriately. Moreover, the IdP must be trusted to protect
this data against both malicious insiders and outsiders. Clearly, it
is desirable to reduce the need for such a high degree of trust.

Providing IdPs with this login data is also problematic from
the perspective of data protection regulations. In particular, the
European General Data Protection Regulation (GDPR) mandates
that the collection of user data is limited to what is necessary in
relation to the purposes for which the data is processed [1]. We show
how OpenID Connect can be extended so that the IdP no longer
learns at which RP the user logs in. Thus, this information about
the RP is, in fact, unnecessary, and hence should not be collected
in the first place.

Contributions. We present two privacy-friendly extensions of
OpenID Connect called Privacy-preserving OpenID Connect (POIDC)
and pairwise POIDC. Both extensions achieve login unlinkability
with respect to the IdP, whichmeans that the IdP cannot distinguish,
given two RPs, which RP the user logged in to.

In POIDC, we implement the following functionality without
the IdP learning the RP’s identity:

• The user can give consent to log in to a specific RP.
• The IdP signs id_tokens that are only valid for that one RP.
• The user’s browser is redirected to the correct URL owned
by that RP.

In pairwise POIDC, we address an additional privacy concern.
Two or more RPs may collude, sharing information provided by
the OpenID Connect protocol to link user accounts at different RPs
to the same person. There is an existing protection mechanism in
OpenID Connect that prevents this, called pairwise subject identi-
fiers, where the IdP assigns different identifiers for the same user
and different RPs. However, this mechanism requires the IdP to
look up the correct pairwise identifier for the user at the RP she
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wishes to log in to. Thus, pairwise identifiers seem to conflict with
hiding the RP’s identity from the IdP.

We solve this conflict by presenting a new design for pairwise
identifiers. Our pairwise POIDC protocol provides login unlinkabil-
ity with respect to both the IdP and colluding RPs. This is accom-
plished by a zero-knowledge proof carried out between the user
agent (the user’s browser) and the IdP. Pairwise POIDC’s improved
privacy properties therefore come at the cost of higher complexity
and increased size of the exchanged messages.

Due to this trade-off, the appropriate protocol choice depends on
the situation. For example, many RPs require personal information
about their users, such as an e-mail address or a physical address,
for example, when the RP must ship physical goods to the user.
When multiple RPs have access to this kind of personal information,
they can already link their users’ accounts. Thus, pairwise subject
identifiers provide no privacy benefit here. Therefore, POIDC can be
used with public subject identifiers as a strict privacy improvement
over standard OpenID Connect.

When RPs do not receive personal information about their users,
then pairwise subject identifiers prevent colluding RPs from linking
their users’ accounts. Thus, for these RPs, pairwise POIDC should
be used to obtain login unlinkability with respect to both the IdP
and the RPs. We summarize the provided privacy properties and
our recommendations for the two situations described in Figure 1.

Another important feature of our proposed extensions is that
they provide the same security guarantees as standard OpenID
Connect. To show this, we formalize the security properties of
standard OpenID Connect, POIDC, and pairwise POIDC as trace
properties and prove them using the security protocol verification
tool Tamarin [29, 31]. For all three protocols, we show that a user
can only log in to an RP when that user has started the protocol and
has given consent for logging in to that RP. Previous security proofs
for OpenID Connect have been manual [20]. Hence we provide the
first security proofs for OpenID Connect that use an automated
security protocol verification tool. Furthermore, our models use
a new and more precise way to symbolically model signatures,
introduced recently by Jackson et al. [26]. Thus, our models capture
a wider range of attacker capabilities with respect to signatures than
has been traditionally considered for symbolic protocol verification.

Outline. In Section 2, we provide background on OpenID Con-
nect. In Section 3, we define our attacker models, system model,
and privacy properties. We describe the protocol details of POIDC
in Section 4 and of pairwise POIDC in Section 5. We present the
security properties we proved using Tamarin in Section 6. We
compare with related work in Section 7 and draw conclusions in
Section 8.

2 BACKGROUND ON OPENID CONNECT
A delegated authentication protocol involves three parties: iden-
tity providers (IdPs), relying parties (RPs), and users. Users have
accounts at IdPs. An authenticated user can request a (short-lived)
token from the IdP that she can use to log in to an RP. The most
widely used protocol of this kind is OpenID Connect [30], built on
top of the OAuth 2.0 standard [24].

Example 1. A popular OpenID Connect implementation is Google
Sign-In. A user can click on a Sign InWith Google button, for example

on stackoverflow.com. She is then redirected to Google, where she is
asked to log in to her Google account, if she is not already logged in.
The Google page then displays a message that asks the user to confirm
that she wants to log in to Stack Overflow. She must also confirm
that Stack Overflow may access her e-mail address. Afterwards, she
is redirected to stackoverflow.com, where she is logged in and her
user profile already contains her verified e-mail address.

More generally, when a user wishes to log in to an RP using
OpenID Connect, she first selects her IdP from a given list of alter-
natives. This is usually done by selecting the appropriate button
on the RP’s page. The user is then redirected to the IdP, where she
authenticates herself (the IdP’s authentication mechanism is not
part of OpenID Connect). The IdP then asks the user for consent to
log in to the RP and to release some of her data to the RP. The next
steps depend on which OpenID Connect flow is used.

In implicit flow, when the user gives consent, the IdP sends a
signed JSON Web Token (JWT) [27], called the id_token, to the
RP via the user’s browser. This token includes an issuer identifier
identifying the IdP, a subject identifier identifying the user, and
an audience identifier denoting the identity (called client_id) of the
intended recipient RP. This ensures that the id_tokenwill only be ac-
cepted by that RP. The id_tokenmay contain additional information,
such as the user’s e-mail address, if requested by the RP.

In authorization code flow, a code is first forwarded via the user’s
browser to the RP, which is then exchanged for an id_token via a
direct channel between the RP and the IdP. In this flow, the RPmight
additionally have to authenticate to the IdP. This direct channel
between RP and IdP is incompatible with our privacy goals. We
thus use implicit flow as the base for our extensions.

Throughout this paper, we denote standard OpenID Connect by
OIDC, referring to the implicit flow, unless stated otherwise. We
focus on the id_token functionality offered by OIDC only and we
do not consider OAuth 2.0 access tokens.

Example 2. In Example 1, the id_token contains: www.google.com
as the issuer identifier; the identifier for stackoverflow (called client_id)
chosen by Google as the audience identifier; the identifier Google as-
signed to the user as the subject identifier; the user’s e-mail address;
and a nonce that was generated by the RP and sent to the IdP.

There are two kinds of subject identifiers in OIDC, called public
and pairwise subject identifiers. A public subject identifier is a
unique identifier for a user at an IdP. Pairwise subject identifiers are
specific to the RP, so the IdP looks up the user’s pairwise identifier
for a specific RP when creating an id_token for that RP.

OIDC has the following setup: The RP must register with the
IdP and provide a set of URIs called redirect_uris that belong to the
RP and to which id_tokens may be sent. The RP provides additional
metadata, such as its name, which the IdP shows the user when
asking for login consent.

OIDC (implicit flow) consists of the following nine steps, illus-
trated in Figure 2.

(1) The user, using her user agent (typically a web browser),
initiates the protocol by requesting to log in to the RP. She
specifies which IdP she wants to use.

(2) The RP redirects the user agent to the IdP, sending its client_id
and a freshly generated nonce as query parameters.



Login-
unlinkability
w.r.t. the IdP

Login-
unlinkability
w.r.t. colluding RPs

Standard OIDC
with pairwise
identifiers
POIDC ✓
Pairwise
POIDC

✓

(a) If RPs require additional user-identifying information,
then use POIDC.

Login-
unlinkability
w.r.t. the IdP

Login-
unlinkability
w.r.t. colluding RPs

Standard OIDC
with pairwise
identifiers

✓

POIDC ✓
Pairwise
POIDC

✓ ✓

(b) If RPs require only subject identifiers,
then use pairwise POIDC.

Figure 1: Privacy properties fulfilled by standard OIDC, POIDC, and pairwise POIDC in two different situations.

(3) The user agent is redirected to the IdP, forwarding these
query parameters to the IdP (the user also logs in at the IdP,
if necessary, which is not part of OIDC).

(4) The IdP opens a dialogue to be displayed in the user agent,
asking the user to confirm that she wishes to log in to the
RP belonging to the client_id. For this, the IdP looks up a
human-readable client_name that belongs to the client_id.

(5) The user clicks the confirm button in the dialogue.
(6) The IdP returns an id_token as described earlier. In particular,

the id_token contains the client_id in its aud (audience) field,
and the nonce that was chosen by the RP.

(7) The user agent forwards the id_token to the RP (namely, to
an endpoint called the redirect_uri, which must be one of the
redirect_uris that are registered at the IdP for the RP).

(8) The RP validates the IdP’s signature on the id_token and
compares the aud field with its own client_id. The RP accepts
the id_token only if these values are equal (and signature
validation succeeds).

(9) The RP notifies the user agent whether the login was suc-
cessful.

3 SETUP, ASSUMPTIONS, AND PROPERTIES
In this section, we explain our setup, including the attacker models
that we consider when analyzing privacy and security.

3.1 System model
The following parties are involved in our protocols.

The RP exposes an interface, such as a button, which allows
the user to send login requests from its user agent. It also contains
endpoints for requests sent to a redirect_uri registered for the RP.

The user agent is a standard browser that can perform actions,
such as cryptographic operations, by loading JavaScript code from
web pages. This code is executed locally in the browser and is
therefore part of the user agent. Messages that are sent to the user
agent but are not forwarded are sent as URI fragment identifiers [6].
These identifiers are accessible to the JavaScript code and can thus
be processed by the user agent. However, unlike query parameters,
they are not sent to the IdP back-end.

The IdP corresponds to the IdP back-end only. Messages sent to
the IdP in our protocol descriptions are sent as query parameters.

RP User Agent IdP

(1) Initiate protocol

(2) client_id, nonce

(3) client_id, nonce

(4) User consent?

(5) Give consent

(6) id_token

(7) id_token

(8) Validate id_token

(9) Login confirmation

Figure 2: OpenID Connect implicit flow.

3.2 Attacker models
We employ different attacker models for the properties we analyze.
We consider security with respect to a standard Dolev-Yao network
attacker, which we formalize in Section 6. For privacy, we consider
two different attacker models: An honest-but-curious IdP, and a set
of colluding RPs.

Definition 1. An honest-but-curious IdP follows the protocol, but
retains detailed transcripts of each protocol run that contain every
message the IdP received during the run. The IdP analyzes these
transcripts and correlates information from transcripts for different
protocol runs.

We argue that this is the right adversary model for analyzing
OpenID Connect. First, a malicious IdP can trivially violate its users’
privacy and security. The IdP can log in under one of its users’
account at any RP by forging id_tokens. Thus, it can learn which



RPs the user visits, namely those where the user has an account. It
can even obtain additional data from the user’s account at the RP.

Our assumption that the user’s IdP is not malicious is clearly a
basic assumption underlying OpenID Connect. Moreover, this as-
sumption is realistic for IdPs associated with major companies such
as Google or Microsoft, which are concerned about their reputation.
If an IdP’s misbehavior were detected, then news of this would
spread quickly, with disastrous effects for the IdP. While corporate
IdPs are extremely sensitive about their reputation, they are also
businesses and their business model often includes monetizing user
data, for example through targeted ads. Thus, while the IdP has
strong incentives to adhere to its protocol definition, it still wishes
to gather as much user data as possible, provided this cannot be
detected.

When analyzing privacy, in contrast to security, we do not con-
sider a network attacker. A network attacker can observe the traffic
between users and RPs to see where a user logs in. The problem of
protecting user privacy against a network attacker is independent
of protecting user privacy with respect to the IdP, and it cannot be
solved by the delegated authentication protocol alone. To ensure
privacy against a network attacker, a user must employ other meth-
ods such as mix networks [12] or Tor [15] to realize an anonymous
communication channel.

Definition 2. A set of colluding RPs consists of (potentially mali-
cious) RPs that share information obtained during protocol runs
with each other, such as information contained in id_tokens.

Colluding RPs try to link their users’ accounts to the same per-
son. When an id_token includes the user’s e-mail address, then they
can trivially link this information. However, when no such informa-
tion is explicitly given, linking accounts should not be possible. In
standard OIDC, there are two different kinds of subject identifiers:
public and pairwise. If public identifiers are used, then the same
identifier is used for the user at each RP, and thus colluding RPs can
link two accounts to the same person. Pairwise identifiers prevent
this by assigning a different identifier for the user for each RP.

We also make the standard assumption that the honest-but-
curious IdP and the colluding RPs are computationally bounded
by a polynomial with respect to an implicit security parameter. In
particular, they cannot perform an arbitrary number of guesses
with respect to a hashed value’s pre-image.

3.3 Privacy properties
We now state the privacy properties to be achieved by our protocols.

Definition 3. Login unlinkability with respect to the IdP. A
delegated authentication protocol P provides login unlinkability
with respect to the IdP if, for any user u and any two honest RPs
rp0 and rp1, an honest-but-curious IdP cannot distinguish between
a transcript of a protocol run where the user u logs in to rp0, and
one where u logs in to rp1, even if the IdP has access to additional
transcripts from previous protocol runs (by any users). An honest
RP follows its protocol description and does not collude with the
IdP.

Note that this defines a stronger requirement than secrecy of
the RP’s identity. In particular, it also prevents the IdP from linking
repeated logins of the same user to the same RP.

Definition 4. Login unlinkability with respect to colluding
RPs. A delegated authentication protocol P provides login unlinka-
bility with respect to a set of colluding RPs if a set S of (potentially
malicious) RPs cannot distinguish, given information learned from
users’ logins, whether any two logins to two different RPs in S were
performed by the same honest user u or by two different honest
users u and u’. An honest user is a user for which none of the user’s
credentials are known by any of the colluding RPs.

We describe next our two protocols. The first protocol, POIDC,
achieves the first privacy property. The second protocol, pairwise
POIDC, achieves both, but at the cost of higher complexity.

4 POIDC: PROTECTING AGAINST THE IDP
The IdP learns to which RP the user logs in using OIDC because the
client_id, which identifies the RP, is sent to the IdP. The client_id
serves two purposes. First, it is included in the aud (audience) field
of the id_token, so that the token is only valid for that one RP.
Second, the IdP looks up the following data for the RP based on its
client_id:

(1) a human-readable name for the RP (called the client_name),
which it displays when asking the user for consent to log in
to that RP; and

(2) a set of redirect_uris that belong to the RP and can be used
for sending an id_token to that RP.

Note that the trivial solution for privacy where the client_id is
not sent to the IdP, and thus not included in the id_token either,
would not be secure. Such an id_token would be valid for any RP,
and a malicious RP could use any id_token it was sent to log in
under the user’s account to any other RP.

We now show how POIDC achieves privacy by hiding the RP’s
identity from the IdP while preserving security. That is, our goal is
to provide the following properties:

(1) Login-unlinkability with respect to an honest-but-curious
IdP; and

(2) security with respect to a Dolev-Yao network attacker.
POIDC relies on two main features. First, POIDC replaces the

client_id with a one-time pseudonym for the RP, used as the audi-
ence of the id_token. Second, POIDC enables the user agent to ask
the user for consent to log in to an RP, since this can no longer be
done by the IdP.

4.1 Masking the client_id
We replace the client_id that is sent to the IdP with a hashed value
H (client_id| |rp_nonce| |u_nonce). In this expression, H is a crypto-
graphic hash function, u_nonce is a cryptographically secure, un-
predictable, random value generated in the user agent, rp_nonce is
the nonce generated by the RP for replay protection, and | | denotes
concatenation. It is critical that the u_nonce is generated by the
user agent so that the IdP back-end does not learn its value.

Including the rp_nonce in the hash means that it does not have
to be sent in plaintext, and thus prevents the IdP from potentially
obtaining information about the RP from the rp_nonce, e.g., if RPs
use different nonce formats. Note that adding the u_nonce is still
necessary since we do not want to depend on the RP to provide
sufficient randomization.



We include H (client_id| |rp_nonce| |u_nonce) in the id_token, in
a field called private_aud. This field replaces OIDC’s aud (audi-
ence) field, and we call a token that has a private_aud field a pri-
vate_id_token. Such a token is different from a usual id_token (the
otherwise mandatory aud field is missing). An RP that runs OIDC
would therefore not accept a private_id_token. Thus, POIDC can be
run in parallel with standard OIDC with no risk of interference.

4.2 User consent in user agent
In OIDC, the IdP presents a user consent dialogue asking her if
she wishes to log in to a particular RP. In POIDC, the IdP cannot
look up the required information since it does not know the RP’s
identity. Thus, a user consent dialogue is instead shown locally by
the user agent without looking up information in the IdP back-end.
For this, we must enable the user agent to map a client_id to a user-
readable client_name. This mapping must be authentic, since an
attacker could otherwise impersonate any RP to the user to obtain
an id_token of the user for that RP.

We therefore introduce an additional step when the RP originally
registers at the IdP (or when the IdP enables support for POIDC),
where the IdP sends a signed token called a client_id_binding to the
RP. The client_id_binding contains:

• the RP’s client_id;
• the RP’s client_name, the name of the RP as it can be under-
stood and checked by the user; and

• the RP’s set of registered redirect_uris that are valid end-
points to send the private_id_token to. The IdP must verify
that these endpoints belong to the RP.

During a POIDC protocol run, the RP includes its client_id_binding
token in a URI fragment so that it is sent to the user agent, but
not to the IdP back-end. With this information, the user agent can
construct a user consent dialogue displaying the client_name. The
user agent will further only forward the private_id_token to one of
the redirect_uris listed in the client_id_binding.

4.3 POIDC Protocol steps
The protocol steps of POIDC are illustrated in Figure 3.

(1) The user u initiates the protocol by requesting to log in to
the RP. She specifies which IdP she wants to use, e.g., by
clicking on the corresponding button on the RP’s web page.
This triggers a request sent from the user agent to the RP.

(2) The RP redirects the user agent to the IdP, sending the
client_id_binding (containing its client_id) and its rp_nonce
to the user agent as URI fragments. These URI fragments are
accessible to JavaScript, but are not sent to the IdP back-end.
This redirect must not contain an HTTP referer header.

(3) The user agent is redirected to the IdP to load its website,
but this request does not contain any query parameters.

(4) The IdP sends its website to the user agent. The website
contains JavaScript code that allows the user agent to per-
form the actions in Steps 5–9, as well as the IdP’s public
verification key pkIdP that is used in the next step.

(5) The user agent executes the JavaScript code to verify the
IdP’s signature on the client_id_binding using pkIdP. If this
verification succeeds, the user agent then opens a dialogue

RP User Agent IdP

(1) Initiate protocol

(2) client_id_binding,
rp_nonce

(3) Request website
no query parameters

(4) Website contents:
JavaScript code, pkIdP

(5) Validate client_id_binding
Obtain user consent

(6) masked_aud :=
H (client_id | |rp_nonce | |u_nonce)

(7) masked_aud

(8) private_id_token

(9) private_id_token,
u_nonce

(10) Recompute
H (client_id | |rp_nonce | |u_nonce)

Validate private_id_token

(11) Login confirmation

Figure 3: Privacy-preserving OpenID Connect.

for the user to confirm that she wishes to log in to the RP
with the client_name in the client_id_binding.

(6) The user agent generates a cryptographically secure random
value u_nonce and computes
masked_aud := H (client_id| |rp_nonce| |u_nonce).

(7) It sendsmasked_aud to the IdP back-end, using, for example,
an XMLHttpRequest.

(8) The IdP back-end returns a private_id_token to the user
agent, which contains H (client_id| |rp_nonce| |u_nonce) in its
private_aud field.

(9) The user agent verifies that the private_aud field of the re-
ceived private_id_token contains the value for
H (client_id| |rp_nonce| |u_nonce) it computed earlier. If this
verification succeeds, the user agent sends this token and
its u_nonce to the redirect_uri given in the client_id_binding,
using, for example, window.open(redirect_uri).



(10) The RP validates the IdP’s signature on the private_id_token
and recomputesH (client_id| |rp_nonce| |u_nonce) from its own
client_id, the rp_nonce that it generated earlier, and the
u_nonce that it received from the user agent.
It accepts the private_id_token only if its private_aud field
matches this recomputed value (and signature validation
succeeds).

(11) The RP notifies the user agent whether the login was suc-
cessful.

Recall that the IdP is honest-but-curious and thus, in Step 4,
provides JavaScript code that correctly performs Steps 5–9.

Note that the user may have to log in to her account at the IdP
if she does not have an existing session. This authentication step
is, however, not explicitly part of the OIDC protocol, and thus is
not part of POIDC either. A user authenticating to the IdP is also
independent of the RP, so there is no risk of leaking information
about the RP’s identity during that process.

4.4 Privacy proof
We show that POIDC provides login-unlinkability with respect
to the IdP. We show that this only depends on the secrecy of the
u_nonce, but not on the secrecy of the rp_nonce. Thus, an RP who
uses a predictable rp_nonce would not break the user’s privacy.

Theorem 1. POIDC provides login-unlinkability with respect to an
honest-but-curious IdP in the random oracle model, even if that IdP
knows the value of any rp_nonce that was used during protocol runs.

Proof. First, note that any transcript of a protocol run from the
IdP’s viewpoint only contains one message that the IdP receives,
containing a value of the form H (client_id| |rp_nonce| |u_nonce).

To distinguish the setting where a user logs in to RP rp0 with
client_id cid0 from the setting where the user logs in to RP rp1 with
client_id cid1, the IdP would have to distinguish
H (cid0 | |rp_nonce0 | |u_nonce) from H (cid1 | |rp_nonce1 | |u_nonce). In
the random oracle model, these are both random values drawn from
the same distribution from H ’s domain, and are thus indistinguish-
able to the IdP.

Furthermore, since u_nonce is a cryptographically secure, un-
predictable, random value, the IdP cannot efficiently compute a
pre-image of the hash, even if the IdP has access to the client_id
and rp_nonce. □

5 PAIRWISE POIDC: PROTECTING ALSO
AGAINST COLLUDING RPS

The previous version of POIDC requires public subject identifiers.
Namely, there is a single subject identifier for each user at the
IdP, and this identifier is included in each id_token for the user,
regardless of the intended audience RP. Thus, it does not provide
privacy with respect to colluding RPs, who can link accounts to the
same user.

In standard OIDC with pairwise identifiers, the IdP can simply
look up the respective identifier when the user wishes to log in to
an RP. When the IdP should no longer learn to which RP the user
logs in, designing pairwise identifiers becomes more challenging.

We outline next the requirements for implementing pairwise
identifiers in POIDC. Our goal is to provide the following properties:

(1) Login-unlinkability with respect to an honest-but-curious
IdP;

(2) login-unlinkability with respect to colluding RPs; and
(3) security with respect to a Dolev-Yao network attacker.
Each requirement follows from one of these goals, which we list

next to the requirement.
User Agent Computable Identifiers (Login-unlinkability with

respect to the IdP)
The user agent must be able to compute the pairwise identi-
fier for the user at a specific RP, since the IdP does not know
to which RP the user wishes to log in.

No Identifier Registration (Login-unlinkability with respect
to the IdP)
There must be no difference between the first login (regis-
tration) of a user at an RP and to an RP where the user has
logged in before. Thus, the IdP cannot generate new pairwise
identifiers or even keep any sort of pairwise identifier list
for the user.

Pairwise Identifier Unlinkability (Login-unlinkability with
respect to colluding RPs)
Comparing pairwise identifiers must not provide the RPs
with any information that enables linking them to the same
user. This is the main reason to have pairwise identifiers,
and is easy to solve in isolation, but is challenging when
combined with the other requirements.

IdP-hidden Identifiers (Login-unlinkability with respect to
the IdP)
While the pairwise identifier for a specific user at an RP
must be persistent for functionality reasons, the IdP must
not be able to link protocol runs where the user uses the
same pairwise identifier.

User-bound Identifiers (Security)
An IdP must only sign an id_token that contains a subject
identifier that belongs to the user who is currently logged
in at the IdP. While this requirement is again simple in iso-
lation, it rules out many potential solution for the other
requirements.

We first explain our design for User Agent Computable Identifiers
that have No Identifier Registration. First, we introduce a global
user identifier user_id, which is unique to each user at the IdP,
and is not shared with RPs. Then, we define the following map-
ping from a user_id to pairwise identifiers for RPs. The pairwise
identifier for an RP with client_id cid is given as pairwise_sub :=
H (user_id| |cid), where H is a cryptographic hash function. Thus,
the user agent can compute the pairwise identifier, and it is not
necessary to keep a list of identifiers for each user.

We ensure Pairwise Identifier Unlinkability by requiring that the
user_id is an unpredictable random value from a large domain so
that an RP with client_id cid cannot feasibly obtain a user’s user_id
by brute force from a pairwise identifier H (user_id| |cid). That is,
the RP should not be able to efficiently compute an x such that
H (x | |cid) matches the pairwise identifier. In particular, the user_id
must not be a username chosen by the user.

For IdP-hidden Identifiers, the user agent must mask the identifier
similarly to how it masks the audience field. For this, it generates a
cryptographically secure, unpredictable, random value u_nonce_2



and computes
H (pairwise_sub| |u_nonce_2) = H (H (user_id| |cid)| |u_nonce_2) . This
masked value is then sent to the IdP to be used as a masked subject
identifier in a run of pairwise POIDC.

Finally, to ensure User-bound Identifiers, the IdP must be certain
that the masked subject identifier provided by the user agent has
been computed from the current user’s user_id, i.e., that it is of
the form H (H (user_id| |x)| |y) for some x and y. To solve this, the
user agent proves this statement in zero-knowledge, e.g., using
ZKBoo [22]. ZKBoo provides an efficient way to prove this kind of
statement. In particular, ZKBoo is well suited for proving statements
of the formy = H (x) and has been evaluated for SHA-256 to require
55ms of time and 836 KB of space [22]. While our statement uses
a nested hash and would thus result in a larger circuit, the scale-
up is linear in the circuit size. Thus, ZKBoo supports a practical
implementation of pairwise POIDC.

We next give the protocol description for pairwise POIDC, as
illustrated in Figure 4.

(1) The user u initiates the protocol by requesting to log in to
the RP. She specifies which IdP she wants to use, e.g., by
clicking on the corresponding button on the RP’s web page.
This triggers a request sent from the user agent to the RP.

(2) The RP redirects the user agent to the IdP, sending the
client_id_binding (containing its client_id) and its rp_nonce
to the user agent as URI fragments. These URI fragments are
accessible to JavaScript, but are not sent to the IdP back-end.
This redirect must not contain an HTTP referer header.

(3) The user agent is redirected to the IdP to load its website,
but this request does not contain any query parameters.

(4) The IdP sends its website to the user agent. The website con-
tains JavaScript code that allows the user agent to perform
the actions in Steps 5–10, as well as the IdP’s public verifica-
tion key pkIdP and the user’s unique identifier user_id.

(5) The user agent executes the JavaScript code loaded from
the IdP’s side to verify the IdP’s signature using pkIdP on
the client_id_binding. If this verification succeeds, the user
agent then opens a dialogue for the user to confirm that
she wishes to log in to the RP with the client_name in the
client_id_binding.

(6) The user agent generates two cryptographically secure ran-
dom values, u_nonce and u_nonce_2, then computes the fol-
lowing values:
• The masked audience identifier for the RP,
masked_aud := H (client_id| |rp_nonce| |u_nonce).

• The pairwise subject identifier for the RP to which the user
wishes to log in, pairwise_sub := H (user_id| |client_id).

• The masked version thereof,
masked_sub := H (pairwise_sub| |u_nonce_2).

(7) The user agent sends masked_aud and masked_sub to the
IdP back-end, using, for example, an XMLHttpRequest.

(8) The user agent provides a zero-knowledge proof to the IdP
back-end showing that masked_sub is a value of the form
H (H (user_id| |x)| |y) for some x and y, where user_id is the
user’s unique identifier.

(9) If the IdP back-end accepts the zero-knowledge proof, it then
returns a private_id_token to the user agent, which contains

RP User Agent IdP

(1) Initiate protocol

(2) client_id_binding,rp_nonce

(3) Request website
no query parameters

(4) Website contents:
JavaScript code,
pkIdP, user_id

(5) Validate client_id_binding
User consent

(6) masked_aud :=
H (client_id | |rp_nonce | |u_nonce)

pairwise_sub := H (user_id | |client_id)
masked_sub := H (pairwise_sub | |u_nonce_2)

(7) masked_aud,
masked_sub

(8) ZK-Proof:
masked_sub =

H(H(user_id ||x)||y)
for some x and y

(9) private_id_token
(10) private_id_token,

pairwise_sub
u_nonce, u_nonce_2

(11) Recompute
H (client_id | |rp_nonce | |u_nonce),
H (pairwise_sub | |u_nonce_2)
Validate private_id_token

(12) Login confirmation

User logged in under pairwise_sub

Figure 4: Privacy-preserving OpenID Connect with pairwise
subject identifiers.



H (client_id| |rp_nonce| |u_nonce) in its private_aud field and
masked_sub in its subject field.

(10) The user agent verifies that the received private_id_token
contains the expected values in the private_aud and subject
fields. If this verification succeeds, the user agent sends this
token, as well as pairwise_sub, u_nonce, and u_nonce_2 to
the redirect_uri given in the client_id_binding, using, for
example, window.open(redirect_uri).

(11) The RP validates the IdP’s signature on the private_id_token.
It then recomputes H (client_id| |rp_nonce| |u_nonce) from its
own client_id, the rp_nonce that it generated earlier, and the
u_nonce that it received from the user agent. It also recom-
putes the masked_sub from pairwise_sub and u_nonce_2 that
the user provided. It accepts the private_id_token and con-
siders the user logged in to the account under the identifier
pairwise_sub only if the id_token’s private_aud and subject
field match the expected, recomputed, values (and signature
validation succeeds).

(12) The RP notifies the user agent whether the login was suc-
cessful.

5.1 Transitioning to pairwise POIDC
To transition to pairwise POIDC from standard OIDC using pairwise
subject identifiers, it is necessary to switch to the new kind of
subject identifiers of the form H (user_id| |client_id).

If standard OIDC with pairwise subject identifiers created by the
IdP were used before, then these can be converted to the subject
identifiers introduced by pairwise POIDC as follows. The user re-
quests an identifier switch for a specific RP, and the IdP creates a
signed JWT called a transition_token. A transition_token contains
the user’s old pairwise identifier for that RP and the new one of the
form H (user_id| |client_id). Upon the next login to the RP, the user
presents a transition_token in addition to an id_token, and the RP
will transfer the user’s account to the new subject identifier.

Note that the login where the switch happens can still be ob-
served by the IdP. Login unlinkability holds between logins to all
RPs for which the switch has already been made and thus pairwise
POIDC login is used.

5.2 Privacy proofs
We show that pairwise POIDC provides login-unlinkability with
respect to the IdP. In particular, this only depends on the secrecy of
u_nonce and u_nonce_2, but not on the secrecy of any other values
used to construct the hash functions.

Theorem 2. Pairwise POIDC is login-unlinkable with respect to
an honest-but-curious IdP in the random oracle model, even if that
IdP knows the value of any rp_nonce or pairwise_sub of the form
H (user_id| |client_id) that were used during protocol runs.

Proof. The messages that the IdP receives during a protocol
run contain one value of the form H (client_id| |rp_nonce| |u_nonce),
one value of the form H (H (user_id| |client_id)| |u_nonce_2), and the
messages exchanged during the zero-knowledge proof.

Consider an IdP that tries to distinguish the two settings where a
user logs in to RP rp0 with client_id cid0 and one where the user logs
in to RP rp1 with client_id cid1. In the first setting, the IdP receives

H (cid0 | |rp_nonce0 | |u_nonce) andH (H (user_id| |cid0)| |u_nonce_2). In
the second setting, he receives H (cid1 | |rp_nonce1 | |u_nonce) and
H (H (user_id| |cid1)| |u_nonce_2).

In the random oracle model, all of these values are picked ran-
domly using the same distribution over the hash function’s domain.
Furthermore, both u_nonce and u_nonce_2 are unpredictable ran-
dom values, so the IdP cannot efficiently compute a pre-image
of the hash functions, not even with access to any rp_nonce or
pairwise_sub of the form H (user_id| |client_id).

The messages exchanged in the zero-knowledge proof do not
provide any information about the client_id by the definition of a
zero-knowledge proof. □

We next also show that pairwise POIDC provides login unlink-
ability with respect to colluding RPs. Note that we assume that
id_tokens contain no user-identifying information in addition to
the subject identifiers.

Theorem 3. Pairwise POIDC is login-unlinkable with respect to
colluding RPs in the random oracle model.

Proof. Each pairwise subject identifier has the form
H (user_id| |client_id). In the random oracle model, each such value
with a different client_id is a different random value from the hash
function’s domain, and thus does not provide any information about
the user_id. Furthermore, the user_id is an unpredictable random
value, and thus no RP can efficiently compute a pre-image of the
hash function. □

Note that leaking a user’s user_id would break login unlinkability
with respect to colluding RPs. Thus, pairwise POIDC implemen-
tations must ensure that the user_id is not persisted in the user
agent’s state in a way that could be accessible by malicious RPs.

6 SECURITY PROOFS WITH TAMARIN
We used the Tamarin prover [29, 31] to prove security properties
for standard OIDC, both implicit flow and code flow, as well as
POIDC and pairwise POIDC. All Tamarin theories and proofs can
be found at [23].

6.1 The Tamarin Prover
Tamarin [29, 31] is a state-of-the-art automated tool for security
protocol verification in the symbolic model of cryptography. In
Tamarin, protocols are described by multiset rewriting rules, and
trace properties, like secrecy and authentication, are specified in
a first-order logic fragment. Tamarin provides a counterexample,
representing an attack, if a verification attempt terminates with-
out proof. In general, termination is not guaranteed due to the
undecidability of the underlying protocol verification problem.

Tamarin works in the symbolic model, also called Dolev-Yao
(DY) model, where messages are represented as terms. The DY
attacker represents an attacker who controls the network. He sees
all messages and can block, reorder, and manipulate them, but he
cannot break cryptography, e.g., he cannot forge signatures.

Security protocol execution is represented by a labeled state
transition system. Here, a state is a finite multiset of so-called
facts, including terms as their arguments, and models the current
snapshot of the protocol’s execution. This includes the local state



of all participants, as well as all messages sent over the network
and the messages an attacker can construct from those. The steps
performed by a protocol participant or the attacker are specified
as rules, rewriting one state into another. Rules are of the form
name: l -[ a ]--> r with l, a, and r all finite sequences of
facts. l are called the premises, a the actions, and r the conclusions
of the rule. A step of multiset rewriting starts in a given state s ,
uses a rule name: l -[ a ]--> r, and can be executed if there
is a substitution σ such that σ (l) ∈ s . Triggering the rule results
in a new state s ′ = (s \ σ (l)) ∪ σ (r ). Note that we simply write
name: l --> r if there are no actions, or we present a rule where
actions are omitted for brevity.

An execution starts with the empty multiset and alternates states
and rewriting rule instances. The rule instance between two states
is a step between those states. The trace of the execution is the
sequence of the used rules’ actions. A trace property is defined over
traces, and holds for a protocol if and only if it holds on all possible
traces for that protocol, resulting from all possible interleavings of
executions of multiset rewriting rules modeling the protocol. These
rewriting rules model protocol execution steps from an unbounded
number of concurrent protocol sessions and attacker actions.

6.2 Signature model
Symbolic models of cryptography have traditionally formalized
signature verification by the equation

verify(sign(msg, sk),msg, pk(sk)) = true .

Any input to verify that is not exactly of this form does not match
the pattern and thus implicitly returns false. Our models instead
use an improved, more precise, way to model signatures recently
introduced by Jackson et al. [26]. They show that using the equation
above does not accurately capture subtle behaviors that are present
even in EUF-CMA (existential unforgeability under chosen message
attack) secure signature schemes.

In particular, the prevailing definition for unforgeability does
not impose any restrictions on signatures that are verified with
respect to an attacker-generated public key. For example, it may be
possible to generate a public key pk′ and a signature sig′ such that
verify(sig′,msg, pk′) = true for any msg. These kinds of behaviors
are not modeled by the equation traditionally used in symbolic
verification, and thus verification would not find any attacks that
exploit such behavior. We use the verification model introduced
in [26] that works as follows.

The verify check must return true if not doing so would vio-
late the correctness of the signature scheme. The verify check must
not return true if doing so would violate EUF-CMA security, i.e.,
the unforgeability, of the signature scheme. In all other scenarios,
e.g., when verify is used with respect to a public key that was not
generated using the prescribed generation algorithm, the attacker
chooses the result returned by verify, while maintaining consis-
tency between multiple checks with the same arguments.

This model provides a sound over-approximation of the sub-
tle behaviors that may be possible even for an EUF-CMA secure
signature scheme. In particular, a proof in this model holds for
any EUF-CMA secure signature scheme, even if the attacker could
exploit unexpected behavior that may arise when signatures are
verified using attacker-generated public keys.

6.3 OpenID Connect model in Tamarin
We next explain our Tamarin models for OIDC and POIDC. These
protocols differ from traditional cryptographic protocols, and the
differences affect modeling.

The first important difference is that these protocols operate
on the application layer. As such, they rely on the security of the
secure channel, usually provided by TLS. Thus, it is insufficient to
model an insecure network and cryptography: TLS channels with
abstract security properties must also be modeled.

Another important difference is that the user directly participates
in the protocol via her user agent (browser), while usually security
protocols describe only the machines at both ends. The user’s intent
and consent to log in to an RP are critical for defining our main
security property. Thus, the user must be modeled as a separate
protocol role who interacts with her user agent.

We next describe our abstract TLS channel model and our user-
browser communication model. These models provide the baseline
for our protocol models and are included in each of them.

Abstract TLSmodel and agent compromise.We assume that
TLS and the underlying public-key infrastructure are secure. A
formal analysis of TLS is out of scope for this work, but can be
found in [13]. We model a TLS connection abstractly as a channel
between a browser endpoint, which is not authenticated, but is
invariant during a session, and an authenticated server endpoint.
This models the common scenario where server certificates are
used, but no client certificates. The server endpoint is modeled
as a public name $Server and the browser endpoint as a session
identifier ~brID_TLS, which is freshly generated for each session.

We next show in more detail how we model abstract TLS chan-
nels using rules in our Tamarin models. The rule for initiating a
TLS session in our Tamarin models looks as follows.

rule Init_TLS_Session:
[ !St_Browser_Init(~brID, $User), Fr(~brID_TLS) ] -->
[ !St_Browser_Session(~brID, $Server, ~brID_TLS),
!St_Server_Session($Server, ~brID_TLS) ]

Fr(~brID_TLS)models ~brID_TLS as a freshly generated, unique,
and unpredictable value. The rule generates two facts that are
used in protocol rules to exchange messages over the TLS chan-
nel. Note that facts starting with an exclamation mark, such as
!St_Browser_Init(...) can be used multiple times, i.e., they are
not consumed when used as the input of a rule. We show an exam-
ple protocol rule to illustrate how these facts model received and
sent messages. The rule models an authentication request to the
IdP in OIDC implicit flow. We omit some details, since the purpose
is just to illustrate the TLS channel model.

rule AuthRequest_IdP:
[ !Client_to_Server_TLS(~brID_TLS, $IdP
, <'authRequest', ...>)
, !St_Server_Session($IdP, ~brID_TLS)
, !St_RP_Registered($RP, $IdP, $client_id, ...) ] -->
[ St_IdP_1(...)
, !Server_to_Client_TLS($IdP, ~brID_TLS
, <'show', <'authDialog', $IdP>>) ]

We show the corresponding rules executed by the browser later.
Note that the facts denoting messages on a channel can be used



as input multiple times, modeling a channel that is not inherently
replay-protected.

We add rules to Tamarin’s built-in Dolev-Yao attacker that allow
him also to create TLS channels. We also provide rules that allow
the attacker to compromise RPs and IdPs. A compromised RP or IdP
leaks its secrets to the attacker. Furthermore, an attacker can send
arbitrary messages over TLS channels controlled by a compromised
RP or IdP as well as learn any message received on such channels.

Modeling the user and user agent. We differentiate between
the user (person) and the user agent (browser). We model commu-
nication between the user and her user agent as a secure, replay-
protected channel. Malware on the user’s device would make this
assumption invalid, but is an orthogonal problem to the one we
address in this work.

We assume that a single user agent is only used by one user
at a time, but that a user can have multiple user agents. The user
performs checks with respect to human-readable names and URIs.
The user checks whether the RP’s name in a consent dialogue is
the one she intended to log in to. That is, the user remembers the
RP’s name to which she wants to log in, and only gives consent if
the displayed name is the one she remembers.

The user performs actions, such as initiating the protocol (e.g., by
clicking on a button on the RP page) or giving consent (by clicking
on a button in a consent dialogue). The browser is reactive, and
performs actions only if prompted to do so. The following three
kinds of prompts can be sent to the browser.

(1) User actions, such as clicking on a link or entering a URI.
(2) A server sending content, triggering a web page to be dis-

played to the user, and/or the execution of JavaScript code.
(3) A server redirecting the browser to another URI.

We next show how we formalize each of these actions in our
Tamarin models. User actions are modeled as follows.

rule Browser_Performs_User_Action:
[ User_InputTo_Browser($User, ~brID,
<'userAction', $Server, message>)
, !St_Browser_Init(~brID, $User)
, !St_Browser_Session(~brID, $Server, ~brID_TLS)] -->
[ !Client_to_Server_TLS(~brID_TLS, $Server, message) ]

The User_InputTo_Browser fact models a secure message from
the user to the browser. For example, when the user clicks on a Login
with IdP idp button on RP rp, this is modeled as a secure message
<'userAction', $rp, <'loginWith', $idp>> from the user to
the browser. The browser then reacts to this input by sending a
message to the server named. In the example, the browser sends
a TLS message <'loginWith', $idp> to the RP where the user
clicked on the button.

We next show the rule for displaying web pages to the user.

rule Browser_Shows:
[ !Server_to_Client_TLS($Server, ~brID_TLS,
<'show', message>)
, !St_Browser_Session(~brID, $Server, ~brID_TLS)
, !St_Browser_Init(~brID, $User)] -->
[ Browser_Shows_User(~brID, $User, $Server, message) ]

When the browser receives a TLS message <'show', message>
from a server, the browser then displays message to the user, mod-
eled as a Browser_Shows_User fact.

For example, when the IdP requests the user to authenticate, the
IdP sends <'show', 'authDialog'> to the browser. The browser
then displays a dialogue asking the user to enter her credentials for
IdP I, Browser_Shows_User(~brID, $User, $I, 'authDialog').
We next show the rule for redirection.
rule Browser_Redirects_To_URI:
[ !Server_to_Client_TLS($Server1, ~brID_TLS1,
<'redirectToURI', $uri, message>)
, !St_Browser_Session(brID, $Server1, ~brID_TLS1)
, !St_Browser_Session(brID, $Server2, ~brID_TLS2)
, !Uri_belongs_to($uri, $Server2)] -->
[ !Client_to_Server_TLS(~brID_TLS2, $Server2, message) ]

The browser receives <'redirectToURI', $uri, message>
from server $Server1, requesting to redirect message to $uri. The
fact !Uri_belongs_to($uri, $Server2) denotes that this URI
belongs to server $Server2, so the browser redirects message to
$Server2. Note that these rules require that the browser has active
TLS sessions with one or more servers, which are modeled by
the !St_Browser_Session(...) facts. If the browser does not yet
have an active session with one of these servers, then the
Init_TLS_Session rule must first be executed.

In general, the browser is stateless and unaware of any protocol
logic. The one notable exception is the JavaScript code that the
browser loads from the IdP website in POIDC and pairwise POIDC.
In this case, the browser keeps state that models its progression
through the code execution. In particular, the browser is in one of
two possible states after loading the code and displaying the consent
dialogue: (1) waiting for the user to give consent, or (2) waiting for
a private_id_token to be returned from the IdP back-end. After the
browser sends the private_id_token to the redirect_uri given in the
client_id_binding, the JavaScript code execution is finished.

6.4 Security property and proofs
We formalize user authentication similarly to the authentication
property given by Fett, Küsters, and Schmitz [20]: An attacker
should not be able to log in under an honest user’s account at an
honest RP using an honest IdP. For our security property definition,
an honest user is one where the user’s account at the IdP has
not been compromised, and the user does not use compromised
browsers or platforms. An honest RP or IdP is an entity that is not
controlled by the attacker.

We explicitlymodel the user’s actions separate from the browser’s,
and our security property also refers to the user’s actions. An honest
user using an uncompromised user agent should only be logged in
at an honest RP using an honest IdP if the user has both expressed
her intent (by starting the protocol) and her consent (by confirming
a consent dialogue). We formalize this as follows.

Definition 5. A delegated authentication protocol is secure with
respect to user authentication if the following holds for any honest
RP rp, honest IdP idp, honest user u, and browser b. Whenever u
is logged in at RP rp with IdP idp on b as a result of running the
protocol, then b belongs to u, u has initiated the protocol, and u
has given consent to log in to RP rp with IdP idp.



Our formalization of this definition in Tamarin differs slightly
for the different flows. For OIDC implicit flow and POIDC, we use
the following formalization.
lemma Intent_Consent_and_Correct_Browser:
"All rp uid idp #finish.
RP_gets_IDToken(rp, uid, idp)@finish
& not (Ex #j. Is_Compromised(idp)@j)
& not (Ex #j. Is_Compromised(rp)@j)
& not (Ex #j. AdversaryRegisters(uid)@j) ==>
(Ex usr browserSession browser
#k #start #consent #m #n.
UserID_belongs_To(uid, usr, idp)@k // (1)
& UserGivesConsent(usr, rp, idp)@consent // (2)
& UserStartsSession(usr, rp, idp)@start // (3)
& BrowserUser(browser, usr)@n // (4)
& BrowserServerSession(browser, rp, session)@m // (4)
& RPgetsIDToken_FromBr(rp, session, idp)@finish // (4)
& consent < finish & start < consent)" // (5)

This lemma can be understood as follows. Whenever an honest
RP rp receives an id_token that contains a subject identifier uid
that belongs to an honest user and an issuer identifier idp that
belongs to an honest IdP, then the following hold.

(1) The subject identifier uid belongs to the user usr.
(2) The user usr has given consent to log in to rp using idp.
(3) The user usr has started the protocol session intending to

log in to rp using idp.
(4) The RP obtained the id_token in a session with a browser

that belongs to usr.
(5) The protocol start happened before giving consent, and giv-

ing consent happened before the RP received the id_token.
We next explain the adjustments that must be made for the

OIDC code flow models. When the code flow is used, the RP re-
ceives the id_token from the IdP directly rather than from the
browser. Thus, in condition (4), we require that the RP receives
the code instead of the id_token from the user’s browser, denoted by
RPgetsCode(rp, browserSession, idp)@getCode in that model.

For pairwise POIDC, the id_token does not directly contain the
user’s global user identifier uid, but rather a pairwise subject iden-
tifier of the form h(<uid, cid>), and we write

(RP_gets_IDToken(rp, h(<uid, cid>), idp)@finish

in the left-hand side of the implication. Thus, the lemma ensures
that this identifier was computed from the user_id uid that belongs
to the user usr who gave consent and started the session.

We provide five Tamarin models, each with between 320 and
340 lines of code. The models are available at [23]. The proofs for
the following theorems were computed automatically on a server
with 2 CPUs of type Intel(R) Xeon(R) E5-2650 v4 @ 2.2 GHz, 256
GB of RAM, running Ubuntu 16.04.3 LTS. Each CPU has 12 cores,
but we limited our computation to use 10 cores only. The proof
runtimes are given in Figure 5. The proofs are also available at [23].
Theorem 4. OIDC implicit flow and authorization code flow, both
with and without client secret, are secure with respect to user authen-
tication.

Theorem 5. POIDC and pairwise POIDC are secure with respect to
user authentication.

Proof Runtime
OIDC implicit flow 14s
OIDC code flow without client secret 30m41s
OIDC code flow with client secret 3m20s
POIDC 28m50s
Pairwise POIDC 13m14s

Figure 5: Proof runtime for automatic proof of user authen-
tication in five different Tamarin models.

7 RELATEDWORK
We first compare POIDC and pairwise POIDC to other privacy-
preserving single sign-on solutions. Afterwards, we compare our
formal security analysis of OIDC, POIDC, and pairwise POIDC to
work related to the formal analysis of OIDC and the underlying
OAuth 2.0 protocol.

7.1 Privacy-preserving single sign-on
Fett, Küsters, and Schmitz have proposed the privacy-preserving
single sign-on system SPRESSO [18], for which they prove that the
IdP does not learn the RP where the user logs in. Their approach is
different from ours: They develop an entirely new protocol whereas
we propose changes to the existing OIDC standard. Furthermore,
they do not protect privacy with respect to colluding RPs. Their
proposal (and ours) are the only ones that we are aware of that
actually prove the claimed security and privacy properties.

Other single sign-on systems with enhanced user privacy have
been proposed. For example, Maheswaran et al. propose Crypto-
Book [28], which builds a privacy-preserving cryptographic layer
on top of existing protocols such as OAuth 2.0. Their system re-
quires a user to obtain credentials from multiple credential pro-
ducers (IdPs), and while it makes use of OAuth 2.0, it is an en-
tirely different credential system rather than an extension of an
existing standard. Dey and Weis propose PseudoID [14], a privacy-
preserving extension for OpenID, OIDC’s predecessor, based on
blind signatures. Their solution introduces a blind signing service
where the user must first blind a token that she then presents to
the IdP. The use of this service adds steps to the user login pro-
cess. The Mozilla Persona (or BrowserID) single sign-on system [2],
which is no longer supported, was also designed to provide privacy-
preserving single sign-on based on a user’s e-mail address. However,
several attacks on its privacy properties were given by Fett, Küsters,
and Schmitz [17].

An alternative to systems based on an identity provider are
user-centric systems that require the user to use a secret key when
logging in. Themost prominent line of work in this area is on anony-
mous credentials, introduced by Camenisch and Lysyanskaya [9]
and implemented in idemix [11]. Camenisch and Pfitzmann ex-
plain the privacy issues of federated identity management and how
idemix can solve them [10]. There are also other user-centric iden-
tity systems based on similar ideas, such as U-Prove [3]. However,
these systems have seen little adoption and have not challenged
the prominence of standards such as OIDC. One reason for this
lack of adoption is the difficulty of key management. This problem
also applies to proposals that combine delegated authentication



protocols with secret keys held by users, such as the proposal by Ca-
menisch, Gross, and Sommer to improve privacy in theWS-Security
standard [8], or UnlimitID by Isaakidis et al. [25].

7.2 Formal analysis of OIDC or OAuth 2.0
Fett, Küsters, and Schmitz have used their web infrastructure model
(WIM) [17] for the manual analysis of OIDC [20]. They also ana-
lyzed the OpenID Financial-grade API using the same model [16],
as well as OAuth 2.0 [19]. In our OIDC analysis using Tamarin, we
model the web infrastructure more abstractly to allow for proof
automation and machine-checked proofs.

In the realm of automated analysis, Bansal et al. have used the
WebSpi [5] framework for analyzing web applications based on
ProVerif [7] to automatically discover attacks on OAuth 2.0. How-
ever, neither WebSpi nor WIM model the user as an entity separate
from the browser, which makes it difficult to reason about explicit
user consent. An interesting direction for future work in this area
is to formally model a more detailed web infrastructure, closer to
WIM, while still allowing for automation, and additionally model
the user as a separate entity. Such a model could be used to obtain
even stronger guarantees about the security of web-based protocols
such as OIDC.

8 CONCLUSION
We have presented two extensions of OpenID Connect that prevent
the IdP from learning which RPs a user visits. POIDC requires only
few changes to OIDC and protects privacy with respect to the IdP,
while pairwise POIDC additionally protects privacy with respect to
colluding RPs at the cost of performing a zero-knowledge proof. We
have given manual privacy proofs and machine-checked security
proofs for our protocols. Ours are the first machine-checked proofs
for OpenID Connect and include our extensions.

Users, IdPs, and RPs all benefit from our proposal. Users directly
benefit since they have the guarantee that the IdP does not learn
to which RPs they log in, reducing the amount of trust they must
place in the IdP. RPs, especially those offering sensitive services,
no longer need to trade-off features offered by OpenID Connect
against their users’ privacy. IdPs decrease the amount of critical
data in their application logs, which helps them to conform to data
minimization regulations, such as those mandated by the GDPR.

Due to the widespread deployment of OpenID Connect, our
proposal has the potential to significantly improve privacy for most
internet users. We therefore plan to work with the OpenID Connect
standardization committee to adopt our extensions as new OpenID
Connect flows in the standard. We are currently working on a
reference implementation of our proposal.
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