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What is research impact?



Concept

Insight

Technique

Tool



Two instances 
qValidate production compilers 

uBlack-box analysis 

qAnalyze floating-point software
uDynamic analysis 



Validate 
Production 
Compilers



Compiler complexity
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LLVM bug 14972

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)



Developer comment

“... very, very concerning when I 

got to the root cause, and very 

annoying to fix …”

http://llvm.org/bugs/show_bug.cgi?id=14972



Vision

P ≡
P1

P2 P3

Pk
Pn

…



Key challenges

qGeneration         
u How to generate different, yet equivalent tests?

qValidation
u How to check that tests are indeed equivalent?

qBoth are long-standing hard issues



Equiv. modulo inputs

qRelax equiv. wrt a given input i
uMust: P(i) = Pk(i) on input i

uOkay: P(j) ≠ Pk(j) on all input j ≠ i

qExploit close interplay between 
uDynamic program execution on some input

uStatic compilation for all input



Profile

program P

output O

input I executed
unexecuted



Mutate
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Find bugs

…..
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Revisit challenges

qGeneration (easy)        
u How to generate different, yet equivalent tests?

qValidation (easy)
u How to check that tests are indeed equivalent?

qBoth are long-standing hard issues



LLVM bug 14972

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)



Seed file

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out



Seed file

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out

unexecuted



Transformed file

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)



Reduced file

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)



LLVM bug autopsy

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

GVN: load struct
using 32-bit load



LLVM bug autopsy

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

GVN: load struct
using 32-bit load

SRoA: read past 
the struct’s end 

è

undefined 
behavior



LLVM bug autopsy

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

GVN: load struct
using 32-bit load

remove

SRoA: read past 
the struct’s end 

è

undefined 
behavior



GCC bug 58731

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out
^C



GCC bug autopsy

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out
^C

PRE: loop invariant



GCC bug autopsy

LIM

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out
^C



GCC bug autopsy

integer overflow

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out
^C



Seed program

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out

no longer a
loop invariant



Athena (OOPSLA’15) 
Prune & inject dead code

Hermes (OOPSLA’16)
Mutate live code

Orion (PLDI’14)
Prune dead code



bug counts

GCC LLVM TOTAL
Reported 841 781 1622
Fixed 612 419 1031

• ISSTA’15: Stress-testing link-time optimization
• ICSE’16: Analyzing compilers’ diagnostic support 
• PLDI’17: Skeletal program enumeration (SPE)



LLVM 3.9 & 4.0 Release Notes 
“… thanks to Zhendong Su and his team
whose fuzz testing prevented many bugs

going into the release …”  



GCC’s list of contributors

“Zhendong Su … for reporting numerous bugs”
“Chengnian Sun … for reporting numerous bugs”

“Qirun Zhang … for reporting numerous bugs” 

https://gcc.gnu.org/onlinedocs//gcc/Contributors.html



Take-away: Not only do good 

research, but be its loyal, 

continuous user! 



Analyze 
Floating-Point 

Software



Floating-point code

§ Important: bugs can lead to disasters
§ Challenging: hard to get right 



Why difficult? 

q FP Math ¹ Real Math  

q Non-linear relations

q Transcendental functions

sin, log, exp, …

Challenging for all known approaches



New perspective: ME 
Analyzing numerical programs
• Coverage-based testing
• Boundary value analysis
• Numerical exception detection
Floating-point constraint solving 

Mathematical optimization (MO)

+ Mathematical 
Execution (ME)

(p, Á)

r

input x drives p to satisfy Á $ x minimizes r



FP constraints



Step 1



Step 2



Construct R



Minimize R



Theoretical guarantees



Example

+

+



XSat & results

• Developed the ME-based XSat tool 

• Evaluated against MathSat and Z3

• Used SMT-Comp 2015 FP benchmarks

• Result summary

• 100% consistent results

• 700+X faster than MathSat

• 800+X faster than Z3



Take-away: Don’t be afraid of difficult 
problems, look at them from new 

perspectives,

even for “damned” problems!



Generalizations

qCoverage-based testing of FP code

qBoundary value analysis 

qFP exception detection

qPath divergence detection



































ME in the long run

qOffers a new general analysis paradigm 

qComplements existing approaches

uRandom concrete execution (CE)

uSymbolic execution (SE)

uAbstract execution (AE)



Peeking into the future …



What is the key mission of 

Computer Science? 



To help people turn creative 

ideas into working systems



Software research is

central to this mission





A lot of progress 

to celebrate for!



But …















Can we move beyond “coding”?



Your wish?





Hardest: communicate the wish







Bret Victor: Inventing on Principle





Goal is the object, not the code



Can we directly
manipulate & explore the object

to express the “wish”?



Can we directly
manipulate & explore the object

to express the “wish”?

Perhaps via visualization & virtual reality?





Thank you!

Advancing Software Analysis via Changed Perspectives

GCC LLVM TOTAL

Reported 841 781 1622

Fixed 612 419 1031

your wish? 


