
Advancing Software Analysis
via Changed Perspectives

Zhendong Su

ETH Zurich

Mehrdad Afshari Vu Le Chengnian Sun Qirun ZhangZhoulai Fu

What is research impact?

Concept

Insight

Technique

Tool

Two instances
qValidate production compilers

uBlack-box analysis

qAnalyze floating-point software
uDynamic analysis

Validate
Production
Compilers

Compiler complexity

4

15

19

0
2

4
6

8
10

12
14

16
18

20

LLVM GCC Linux

LoC (million)

LLVM bug 14972

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

Developer comment

“... very, very concerning when I

got to the root cause, and very

annoying to fix …”

http://llvm.org/bugs/show_bug.cgi?id=14972

Vision

P ≡
P1

P2 P3

Pk
Pn

…

Key challenges

qGeneration
u How to generate different, yet equivalent tests?

qValidation
u How to check that tests are indeed equivalent?

qBoth are long-standing hard issues

Equiv. modulo inputs

qRelax equiv. wrt a given input i
uMust: P(i) = Pk(i) on input i

uOkay: P(j) ≠ Pk(j) on all input j ≠ i

qExploit close interplay between
uDynamic program execution on some input

uStatic compilation for all input

Profile

program P

output O

input I executed
unexecuted

Mutate

…..

O

I

O

I

O

I

O

I

EMI

…..

O

I

O

I

O

I

O

Iequivalent modulo I

Find bugs

…..

O

I

O’ ¹ O

I

Revisit challenges

qGeneration (easy)
u How to generate different, yet equivalent tests?

qValidation (easy)
u How to check that tests are indeed equivalent?

qBoth are long-standing hard issues

LLVM bug 14972

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

Seed file

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out

Seed file

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out

unexecuted

Transformed file

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

Reduced file

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

LLVM bug autopsy

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

GVN: load struct
using 32-bit load

LLVM bug autopsy

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

GVN: load struct
using 32-bit load

SRoA: read past
the struct’s end

è

undefined
behavior

LLVM bug autopsy

$ clang –m32 –O0 test.c ; ./a.out
$ clang –m32 –O1 test.c ; ./a.out
Aborted (core dumped)

GVN: load struct
using 32-bit load

remove

SRoA: read past
the struct’s end

è

undefined
behavior

GCC bug 58731

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out
^C

GCC bug autopsy

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out
^C

PRE: loop invariant

GCC bug autopsy

LIM

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out
^C

GCC bug autopsy

integer overflow

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out
^C

Seed program

$ gcc –O0 test.c ; ./a.out
$ gcc –O3 test.c ; ./a.out

no longer a
loop invariant

Athena (OOPSLA’15)
Prune & inject dead code

Hermes (OOPSLA’16)
Mutate live code

Orion (PLDI’14)
Prune dead code

bug counts

GCC LLVM TOTAL
Reported 841 781 1622
Fixed 612 419 1031

• ISSTA’15: Stress-testing link-time optimization
• ICSE’16: Analyzing compilers’ diagnostic support
• PLDI’17: Skeletal program enumeration (SPE)

LLVM 3.9 & 4.0 Release Notes
“… thanks to Zhendong Su and his team
whose fuzz testing prevented many bugs

going into the release …”

GCC’s list of contributors

“Zhendong Su … for reporting numerous bugs”
“Chengnian Sun … for reporting numerous bugs”

“Qirun Zhang … for reporting numerous bugs”

https://gcc.gnu.org/onlinedocs//gcc/Contributors.html

Take-away: Not only do good

research, but be its loyal,

continuous user!

Analyze
Floating-Point

Software

Floating-point code

§ Important: bugs can lead to disasters
§ Challenging: hard to get right

Why difficult?

q FP Math ¹ Real Math

q Non-linear relations

q Transcendental functions

sin, log, exp, …

Challenging for all known approaches

New perspective: ME
Analyzing numerical programs
• Coverage-based testing
• Boundary value analysis
• Numerical exception detection
Floating-point constraint solving

Mathematical optimization (MO)

+ Mathematical
Execution (ME)

(p, Á)

r

input x drives p to satisfy Á $ x minimizes r

FP constraints

Step 1

Step 2

Construct R

Minimize R

Theoretical guarantees

Example

+

+

XSat & results

• Developed the ME-based XSat tool

• Evaluated against MathSat and Z3

• Used SMT-Comp 2015 FP benchmarks

• Result summary

• 100% consistent results

• 700+X faster than MathSat

• 800+X faster than Z3

Take-away: Don’t be afraid of difficult
problems, look at them from new

perspectives,

even for “damned” problems!

Generalizations

qCoverage-based testing of FP code

qBoundary value analysis

qFP exception detection

qPath divergence detection

ME in the long run

qOffers a new general analysis paradigm

qComplements existing approaches

uRandom concrete execution (CE)

uSymbolic execution (SE)

uAbstract execution (AE)

Peeking into the future …

What is the key mission of

Computer Science?

To help people turn creative

ideas into working systems

Software research is

central to this mission

A lot of progress

to celebrate for!

But …

Can we move beyond “coding”?

Your wish?

Hardest: communicate the wish

Bret Victor: Inventing on Principle

Goal is the object, not the code

Can we directly
manipulate & explore the object

to express the “wish”?

Can we directly
manipulate & explore the object

to express the “wish”?

Perhaps via visualization & virtual reality?

Thank you!

Advancing Software Analysis via Changed Perspectives

GCC LLVM TOTAL

Reported 841 781 1622

Fixed 612 419 1031

your wish?

