Validity Checking for Finite Automata over Linear
Arithmetic Constraints *

Gary Wassermann and Zhendong Su

Department of Computer Science, University of Califoriayis
{wasserng, su}@s. ucdavi s. edu

Abstract Decision procedures underlie many program analysis pnudl&radi-
tional program analysis algorithms attempt to prove soropgmty about a single,
statically-defined program by generating a single congtraiccordingly, tradi-
tional decision procedures take single constraints ad.ifptiending these tradi-
tional program analysis algorithms to reason about pathyinfinite languages
of programs (as generated by a given metaprogram) requirew &lass of deci-
sion procedures that reason about languages of constreimisspaper introduces
the parameterized class of validity checking problems thie¢ as input a lan-
guage generatodl. The parameters are: (1) the language formalisrofof2) the
theory under which each string in the languageois interpretted, and (3) the
guantification (existential/universal) of the constraiitt the language to which
the validity property applies. We introduce such decisimbfems by presenting
an algorithm that decides whether a given finite state autmmé generates any
valid linear arithmetic constraints.

1 Introduction

Many program analysis and formal verification problems pedio validity or satisfi-
ability checking over some logical theories. Consequestbnificant effort has been
devoted to designing efficient decision procedures foratiesories. Traditional pro-
gram analysis problems address individual programs, sadéb&sion procedures that
underlie program analysis algorithms take a single coimstta Extending program
analysis problems to address potentially infinite langsazfeprograms (as generated
by a metaprogram) requires decision procedures that takeidaes of constraints. We
introduce the study of such decision procedures in this pdpe input to decision
procedures over languages of constraints is a languageagend, where each string
in the language of4 is a constraint in a given theory. The problem such procedure
address is: Does there exist a valid constraint in the laggo#éA, or alternatively, are
all constraints in the language gfvalid?

As an example application, consider a web application #iats user input (e.g., a
username and password) and generates a query to a backehds#ate.g., a banking
system) to authenticate the user. Errors in the applicatiay allow a malicious user to
send specifically crafted input to cause the applicatiorettegate a query with a tautol-
ogy as its conditional clause. This is one example of a widsspsecurity vulnerability

* This research was supported in part by NSF CAREER Grant Ng6®®! and a generous
gift from Intel. The information presented here does noessarily reflect the position or the
policy of the Government and no official endorsement shoelthferred.

G:({\/7/\7_‘7(7)7_7+7:7#7>7§7<7Z7}U%UV7
{bE, bT,bF,bS, pred, aE,aT}, Pz, bE)

bE == DbEVDT | bT aE == aE+aT | aT
bT =:= DbTADF | bF al ==V | =V | &

Pz =< bF x= —-bS | bS cmp == = | # | >
bS = (bE) | pred | > | < | <
pred ::= aEcmpaE

Figure 1. GrammarG for linear arithmetic constraints, wheréis a set of variables.

known adatabase command injecti¢h]. These vulnerabilities can be discovered stat-
ically by constructing a language generatbto conservatively characterize the set of
database queries that the application may generate [2]v@itifcation problem then
reduces to checking whethdraccepts any tautologies.

We denote this class of problems parametrically asI¥ ;7 4 k. The first param-
eter,II, is the formalism for describing the language generatdhat VALID 7,6
takes as input. The second parameteiis the theory under which each string4ii.A)
(i.e., the language ofl) is to be interpreted. The third paramet&t,e {3,V}, spec-
ifies whether the goal is to find whether anfy (= J) or all (K = V) constraints in
L(A) are tautologies. This paper introduces such decisionl@mbby presenting an
algorithm for VALID psa a3, Where “FSA’ is short for “Finite State Automaton,” and
“LA’is short for “Linear Arithmetic.” In practice, FSAs arsufficient for modeling web
applications as query constructors [2].

The challenge of XLID ;7.4 x for any non-trivialIl is that£(.A) may be infinite,
so naively enumerating(.4) and checking each constraint will not yield a decision
procedure. Instead, the algorithm must exploit the finissrod the representation gf.

The rest of the paper is structured as follows. Section 2gpteghe WLID rsa 1A ,3
problem more precisely and defiredthmetic loopsaindlogical loops which represent
the main challenges of the problem. Sections 3 and 4 addrismatic and logical
loops respectively. Section 5 surveys related work, andl $eoncludes.

2 Overview

This section first defines the parameters f@\ rsa 4,3 and makes some general
observations, and then sets up the high-level structuteecdigorithm.

2.1 TheVALID FSA,LA,3 Problem

Finite state automata (FSAs) are defined by a five-tugle X, 4, qo, g5), WhereQ is a
set of statesy is the alphabet of terminals from the input languaigg, Q x X' x Q is

a transition relationgy € @ is a start state, angk € @ is a final state. The semantics
of FSAs is standard. The gramm@rin Fig. 1 defines the syntax for linear arithmetic
constraints. Again, the semantics of the language is stdndad the grammar rules
reflect the operator precedence. Because eaclf (.A) must be interpreted as a linear
arithmetic constraint, ford to be a valid input to ¥LIDgsa1a,3, £(A) C L(G). For
the sake of compactness and for certain steps in our algaritie transition relation
will sometimes be presented &5~ Q x X* x Q.

r+x+ 2z

(\VAY
8

Figure 2. Two example FSAs.

let ai = (gi,a,qx) bij = (gi,0,95) cjp = (g5, ¢,)
a—bce Pg N 5N:5NU{aik}
bij, cjr € 07 UdN Or(air) = dr(ai) U {{bij, cjr}}

Figure 3. CFL-reachability algorithm—the cases fis's of lengths other than 2 are analogous.

We select® = “LA’ to explore because it is broadly applicable, and the eyath
problem of validity checking for integer arithmetic coraiits is undecidable (due to
the undecidability of Diophantine equations [3]). Althdugultiplication by a constant
is within the theory of linear arithmetic, we forbidk' from appearing inX. If we
allowed, for example, an FSA to have a loop over2” we would characterize the
multiplication as < 2™,” and exponentiation with variables is difficult to reasdoat.

A few concrete examples of inputs toAMD gsa 14,5 help to illustrate the signif-
icance of the finite representation and the challenges idllmnit. Consider, for ex-
ample, the FSA shown in Fig. 2a. Because of cycles in the aatimm it accepts an
infinite language. By considering single passes through efits cycles, we discover
the tautology shown in Fig. 2b. However, a single pass thn@ugycle is not sufficient
to discover possible tautologies in general. For example, gasses through the cycle
in the FSA shown in Fig. 2c are needed to discover the tauyalogig. 2d.

Our algorithm for validity checking of automata uses a camtion of automaton
transformations and a theorem that bounds the number ofregrts needed for a tau-
tology. It generates validity queries in the theory of fiostler arithmetic and sends them
to a first-order arithmetic decision procedure [4]. If theAR& cepts some tautology, at
least one of the finite number of first-order arithmetic gegmust be a tautology.

2.2 Definitions and Setup

Our algorithm for the ¥XLID rsa a3 problem uses a modified version of context free
language (CFL) reachability to create abstractions of tipeii FSA for use at certain
steps. This CFL-reachability algorithm takes as input atexinfree grammarz =
(N, X, P, S) and an FSA4A = (Q, X, 4, qo, qr), and produces an augmented FSA
A" = (Q,XUN,drUdN, R, qo, qr) Wheredr anddy are sets oferminal transitions
andnon-terminal transitiongtransitions labeled with terminals and non-terminalsfro
G) respectively, andg : 6y — P(P(dn Udr)) is the set ofeference transitionsThe
transitions inA" are defined bys: = § plus the minimal solution to the constraint
shown in Fig. 3. The standard CFL-reachability algorithnegloot include reference

YoED) e
=Gt
(s2,t)®

(b)

A

Figure 5. Examples for arithmetic and logical FSAs.

transitions [5]. Figure 4 depicts an FSA produced - TAT —
by CFL-reachability, showing terminal transitions as - s .’3” O S
solid, nonterminal transitions as dashed, and reference” 7 %

transitions as dotted, assuming that— B C € Pg.
Fort € o, we writet ~»t' if t € s; € dg(t) for some
s let* ~ ’ denote the reflexive, transitive closures of Figure 4. CFL-reachability.
"o and letdk () = U, esn (51 U Upes, 01(1)).
The references effectively form parse trees for all of thiegs in £(.A)—"all” because
of the syntactic correctness requirement, il€.4) C £(G).

Let “o;;” abbreviate {g;, 0, g;).” BecausebE cannot be derived fromaE in Rg,
if aE;; € dn, then for any strings accepted on g;—g; path over the transitions in
dn(aEyj), s € L(N, X, Pg,aE). Similarly, if bE;; € o, then for any string generated
on ag;—q; path,s € L(N, X, Pg,bE). This leads to the following lemma:

Lemma 1. Each cycle in4, an input toVALID rsa a3, IS either arithmetic (i.e., within
05 (aE;;) for someaE;; € dy) or logical (i.e., withind}; (bE;;) for somebE;; € o and
not withiné}, (aEy;) for anyagy; € dn).

The subsequent sections present one technique for haratlthgetic cycles and
another for logical cycles, but neither technique workslfoth kinds of cycles. This
motivates the primary CFL-reachability-based abstraatised in our algorithm.

Definition 1 (Arithmetic FSA). Let A = (Q, X, 0,0r, g0, qgr) andpred,, € 4. The
arithmetic FSA(gs, ¢:)® or Ass = (Q',X,0',0%,¢s,9:) Wwhere@Q' = {q € Q |
(g,0,¢) €8} U{q}, 0 ={t€d|tecdy(pred,)}, anddi(t) = dr(t) if t € &’ and
() otherwise.

Definition 2 (Logical FSA). Let A = (Q, X, ,dr, qo,qr). Thelogical FSAA;, =
(Q/72 U 375/56;%7(]03q}7)’ WherEQ/ = {q € Q | (qvavq/) € 6/} U {qF}' B =
{lai- a0 | @i, q5 € Q'}, 6" = {oij € 6 | o # pred A oi; € 67 (bEor)} U {(ai, 4j)i;
| pred;; € 0}, 0(t ¢ &) = 0, anddp(t € &) = U, c50 ({0 a3} } i 5, =
{pred;;} ; {s:} otherwisg.

The FSA fragment in Fig. 5a has two arithmetic FSAs. The oriiméeé by (s1, ¢) in-
cludes all states and solid transitions in the figure. Thedaiimed by(s, t)¢ excludes
the states; and thez-transition. Figure 5b shows the logical FSA that resulsrr
abstracting out the arithmetic FSAs in Fig. 5a. The labeltherstates show the corre-
spondence between the original FSA and the logical FSAhAwitic FSAs include no
logical cycles and logical FSAs include no arithmetic cgcle

We split the problem of validity for FSAs into two subproblepand in order to
define the sub-problems precisely, we definear FSAs

Definition 3 (Linear FSA). An FSAA is alinear FSAIff A is deterministic|£(A)| =
1, and.A is minimal (i.e., it includes no useless states or transgjo

The first subproblem takes as input a linear logical FSA andyxes a linear arith-
metic constraint that is valid if the linear logical FSA aptsa tautology. To this end,
Sect. 3 casts arithmetic FSAs as network flow problems. Tbensesubproblem takes
as input a logical FSA and produces a finite number of linegicld FSAs such that
at least one accepts a tautology iff the input FSA acceptsitaltayy. Section 4 uses
a finite model theorem to unroll logical loops based on the Imemof variables in the
arithmetic FSAs.

3 Arithmetic Loops

We address arithmetic loops by casting questions abotinaeiic automata as ques-
tions about network flows. The algorithm has four main stepst, given an arithmetic
FSAA=(Q,X,§ = (6r Udn), IR, qs, q:) We define a labelling function

L:(5 U U (t,s,ﬂ)—»]—"

teo
St€5R(t)

whereF is a set offlow variables In the constraint that this construction generates, the
value of L(t € dr) equals the number of times the transitiomas taken in some accept-
ing path. The value ok (¢, s;) equals the number of times the corresponding derivation
occurs in the parse tree of the generated string. The firsbp#ire constraint existen-
tially quantifies the flow variables because theL\b rsa 4,5 problem asks whether
there existny tautologies: 3y ccodon(z) f

The second step constrains the values of flow variables sohhaalues they can
take correspond to derivations and paths thradgh

W A fz0 A @ AL®)=D> Llts) A

fecodon(L) teESN st€0R(t)
) NL@t) =k+ > L(t',sp), k= 1if t = pred,,
tes ves 0 otherwise
sy ESR()

tesy

Conjunction (1) prohibits solutions that would have a

transition being traversed a negative number of times. .. TF] LF I

Figure 6 illustrates how (2) and (3) balance the flow of o-- - *NT* -—>0

incoming and outgoing reference transitions. Fr, L F
The third step universally quantifies the variables g b

in V .N X because the MLIDgsa a3 problem asks ! - - "

whether there existstautology “V,cvns v.” Z Fi=Fyr = Z E
The fourth step useS(pred,,) to generate #ow-

comparisorconstraint that relates the number of times Figure 6. Flow balancing.

each transition is taken with the value of the generatedesgion. Because addition
commutesC uses the number of times each term occurs to calculate the wéhrith-
metic expressions.

Clpred,,) = /\ (L(cij) = 1) = C(aEy;) ¢ C(aEjr) ClaEy) = Y C(aTp)
{aE.i,cmp,;,aE ¢ }E5 R (pred,,) aE;; ~» aTw
{cij}eéR(cmpij)

CaTi;) = Y (L(@aTy,{vi}) xv) — Y (L(aTi, {—i, vk;}) X v)
{vij }€or(aTw) {—ik,vk; tEOR(ATH)
Tarski’s theorem [4] establishing the decidability of fiser arithmetic guarantees
that expressions of this form are decidable when the varsatainge over real numbers.
We state here a completeness result:

Theorem 1. If the flow-comparison expression generated from an aritinfSA s, ¢
is not valid, then(s, t) does not accept a tautology.

Furthermore, when two or more arithmetic FSAs are linkedisatjally by logical
operators (e.g.,A’ or ‘ V'), we can merge in a natural way the constraints that model
the arithmetic FSAs, and the completeness result holdbiéosequence of automata.

Theorem 2. If the flow-comparison expression generated from a linegicial FSAA
is not valid, then4 does not accept a tautology.

Unsoundness If the flow variables ranged over integers, this constructwould be
sound. Because they range over real numbers, they may tal@eimtegral values and
not correspond to any path through the FSA.

4 Logical Loops

Consider an arithmetic FSA with antransition from its last state to its first state. The
arithmetic FSA might not accept any tautology, but two or expasses through the
arithmetic FSA joined byV’ may be a tautology, as in the case of the FSA in Fig. 2a.

4.1 Setup and Loop Unrolling

Unfortunately, we cannot use equations to address logicgdd as we did for arith-
metic loops. If we did, the generated constraint would noinbfrst-order arithmetic.
Instead, we “unroll” the loop a bounded number of times sa ihtéhe loop accepts
some tautology, the unrolling must also accept some tagyolo

The algorithm for generating linear logical FSAs from a givegical FSA has
three main steps. (1) Remove thetransitions. (2) Collapse all strongly connected
components (SCCs) in the FSA to form a dag, and enumerateaths fhrough the
dag. (3) Transform each collapsed SCC in an E&Anto a linear FSA that replaces
the SCC in4;.

The first step uses graph transformations and an adaptdtideMorgan’s law to
propagate~’ inward. Due to space constraints, the details are omitezd but can be

found in the companion technical report [6]. The second stegraightforward, so we
omit the details. Section 4.2 presents the third step inild&ach step preserves the
property of accepting a tautology.

The third step takes as input a logical FSA witheutransitions that only produces
syntactically correct strings (as stated in Sect. 2.2)sHtep relies on the syntactic
correctness property, which implies that parenthesesaambed on all paths, and the
parenthetic nesting depth is bounded. Because parentaesedways balanced, we
can abstract all paths between a pair of matching parergheseaparenthetic FSA
(9:, q;)?, which is defined as follows:

Definition 4 (Parenthetic FSA). Let logical FSAA = (Q, X, 6,0r, q0,qr) Where
bSs € 0 andbS,; ~ bEy;. Theparenthetic FSAlgs, ¢:)? or Ay = (Q', 2,0, 0%,
s, qt) where
Q' ={q¢€Q|(g0,¢)€d}U{a}
By, = {(4i; 40" | ¢i,q5 € Q'}
§'={t € 6| —IbS;;.bSs ~ bS;; ~ t}
U {(gi, qjD§; € 6 | bS;5 € 6"}
U {Qinqjl)% | bs;; € o A bS;; ~» bEkl}
ety b} 1) s,y — 7 bs
iy Q)5 (2, g5)5; 1 N If bS;; = s
Op(t €0') = {6R(i‘1) b e ATy otheri/vise t

This abstraction is analogous to the abstraction that deéirithmetic and logical FSAs,
except that parenthetic FSAs can be nested within parenff®As.

After abstracting away parenthetic FSAs, the SCC only Wtaand A-transitions
and transitions over arithmetic and parenthetics FSAs @siatunits. The following
theorem provides the basis for the bounded loop unrollirggat. 4.2:

Theorem 3 (Loop Unrolling Theorem). Let T = {¢1,--- ,tm}, where each; is
a comparison of linear arithmetic expressions, andsebe the number of distinct
variables inT'. Then(\/,.-t) is a tautology iff there exists som& C T such that
|T"] < (n+2) and(\/,c t) is atautology.

Proof. Helly's theorem states that K4, --- , K,,, are convex sets in-dimensional
Euclidean spac&™ in whichm > n, and if for every choice ofi + 1 of the setsK;
there exists a point that belongs to all the chosen sets,ttiege exists a point that
belongs to all the set&, - -- , K,,, [7]. This implies that ifK4, - - - , K,,, are convex
sets as before but have no points in common, then there egists choice of. + 1 of
the setsK; that have no points in common.

If ¢, vV ---Vt, is a tautology, then by DeMorgan’s law; A --- A —it,, iS un-
satisfiable. Eacht; can be rewritten as; by replacing the comparison operator with
its opposite (e.gs< = >). Linear inequalities and linear equalities each definevern
spaces (half-spaces and hyperplanes, respectively),iwheren is the number of vari-
ables occurring in them. If each falls into one of these categories (i.e., its comparison
operator is one of <, >, >, <, =}), then some choice of + 1 of them is unsatisfiable,
and the disjunction of the correspondin® is a tautology.

Paren({si1,...,sn}

Conj({b1,...,bn}

Conj(s1) V -+ V Conj(sn)
(Disj(b1)) A - A (Disj(bn))

_— — — —

Disj((a:, 4;)7;) = Paren(Ute{kaleéN\bEkle(S (bs,,)y Paths(t,0))
Disj((q:, QJDZ (g, a0 Vv -V (ai, 4i)*
Num Vars+2
Paths(t € on, d) = U,,c5,) ZiP(s¢ \ (dU{t}),dU{t})
Paths((q:, 4;)7;, {{la: a:D3}

(
(
(
(Nij o, d)=0

Us, ePaths(es,d) {ULy si}

sy, €Paths(tn,,d)

)
d) =
(gi:a5)%;. d) = {{(ai, ;)7 }}
)
) =

Zip({t1,...,tn},d

Figure 7. Algorithm to construct a linear FSA from an SCC of a logical FSA.

However, a linear disequality (i.ea,- « # b) defines a non-convex region. Specifi-
cally, the points that do not satisfy a disequality lie inragéé hyperplane. Suppose that
for all choices ofr + 1 convex regions (as defined by thés) there exists some poipt
that satisfies the;’s. Suppose further that for some choicenof 1 convex regions all
points common to the region lie in the hyperplane that do¢satisfy some disequality
s;. Then a choice of + 2 of thes;’s are required for unsatisfiability, and consequently
n + 2 of thet;’s are required for validity.

The only non-convex shape definable by linear constrairgsahayperplane as its
region of unsatisfiability. Consequently, given a Sedf convex regions whose inter-
section (is necessarily convex and) is not confined to a Ipya@ee, no addition of a
finite number of non-convex linear constraintsSaan causes to become unsatisfi-
able. Therefore, no more thgn + 2) ¢,;’s will be needed for a tautology. O

4.2 Linearizing Strongly Connected Components

Figure 7 defines five function®aren, Conj, Disj, Paths, andZip. These five func-
tions are used to construct a linear logical F8Afrom a strongly connected component
of a logical FSAA, such that4; accepts a tautology iffl; accepts a tautology.

The algorithm to constructl; begins as follows. Led; be an SCC without--
transitions, with parenthetic FSAs abstracted, and wisint &tnd final stateg, and
qr, respectively. Construct a single parenthetic FSA by agldiné (¢.,(, o) and
(gr,) , qp) and lettingq, andgg be the start and final states, respectively. Begin con-
structing a linear FSA by callin®isj((¢a, 45)?,5)- Disj interprets((qa, gs)?,5) as the
parenthetic FSA that it represents. The 8€T; - - - } over whichDisj() takes a union
includes all of the nonterminal transitions from which omignjunctive expressions
(i.e.,“an--- ADb") can be derived, but all expressions the can be derived eantered
and exited througlv-transitions. ThePaths function then returns a set of sets of
transitions, where each sebf transitions includes all of the arithmetic and parerithet

—O0>0———>0>0—>—>0>0
—(Ww+2)— —(Ww+2)—
Figure 8. An example SCC and the result of Fig. 7, where v = NumVars.

FSAs on some shortest (i.e;ds’ € S.s’ C s) acyclic path derived from the tran-
sition t. BecauseA; is strongly connected, each path represented by the sebeeltu
from Paths can be entered and exited through'‘and disjunction weakens expres-
sions monotonically, if a tautology can be constructed ftbenconjunctive expressions
returned fromPaths, then.A, accepts a tautology. Because conjunction strengthens ex-
pressions monotonically, and the conjunctive expressietisned fromPaths are all
Paths returns all shortest conjunctive expressions{ifaccepts some tautology, then
a tautology can be constructed by the shortest conjunctimessions.

Paths passes the set representing all shortest conjunctive €siprs toParen,
which begins to construct a linear structure by callidgnj on each expression, and
connecting the results with/” A DNF expression constructed by disjoining several
instances of one of these conjunctive expressions can detoe¢d into a CNF expres-
sion.Conj constructs such a CNF expression. Because it constructd-segtession,
each element (arithmetic or parenthetic FSA) in the set edmaindled individually and
independently byDisj. If the element is a parenthetic FSB;sj recurses down and
produces a linear construction based on the parenthetic F8# element is an arith-
metic FSA,Disj disjoins Num Vars + 2 copies of it, wheréVum Vars is the number of
distinct variables that appear in the original FSA (ilév, € V | v;; € §}|). Theorem 3
implies that if any (necessarily finite) disjunction of ctnaints from a given set consti-
tutes a tautology, then at ma¥um Vars + 2 of the constraints are needed to construct
a tautology. Given a complete linear structure, a lineaickld=-SA can be constructed
by using the sequence of tokens as the labels for the tramsiin a linear FSA.

To illustrate the algorithm, Fig. 8 shows an example SCC,remeimbers (1-5)
represent arithmetic FSAs. The setonsists of three sets, and below that, the begin-
ning of the constructed linear FSA shows how those sets @@ Npte that each set
in S consists of the arithmetic FSAs along a path that can beeghtand exited from
V-transitions but has onlx-transitions between arithmetic FSAs.

4.3 Soundness, Completeness, and Complexity

Taken together, the algorithms for constructing lineaidag-SAs from a logical FSA
are sound and complete for finding tautologies in logical SA

Theorem 4 (Soundness and Completenes§jiven an FSAA whereL(A) C L(G),
the algorithm presented in Sect. 4 produces a finiteSsebf linear logical FSAs such
that there exists an FSA ifi4 that accepts a tautology iffl accepts a tautology.

Proof. The abstraction fromd to a logical FSAA’ described in Sect. 2.2 maintains
language equivalence if a path throughincludes paths through the arithmetic FSAs
that correspond to their names. The algorithm to remeweansitions produces a log-
ical FSA AT from A’ such that there exists a bijective mapping L(A1) — L(A')
whereb(pt) = ¢’ impliespt = ¢'. Collapsing SCCs and finding paths through the
dag produces a finite séty+ of FSAs fromA* such that a path il can be mapped

to a path in somels € S 4+, and vice versa. The algorithm in Fig. 7 then produces a fi-
nite setS 4 of linear logical FSAs fronb 4+, such that, by the algorithm in Sect. 4.2 and
Theorem 3, there exists an FSA™ € S 4 that accepts a tautology iff soroks € S 4+
accepts a tautology. a

A logical FSA is no larger than the FSA from which it is abstest Removing--
transitions produces at most a constant number of instari@zch state, so the result-
ing FSA has siz€(|Q)|) in the size of the input. The states in the FSA can be pargétion
into @, those states that can be reached from themselygsthose that cannot. Let
q = Q4| andp = |Q@,|. Collapsing SCCs and enumerating all paths generafes)
paths. From each of these paths, the algorithm in Fig. 7 peslinear logical FSAs. If
p > ¢, then each path has length(p). Otherwise, each path is bounded|sy, which
is O(27), and the length of the FSA produced from edtle [, which isO(n(¢29)),
wheren is the number of unique variables in the arithmetic FSAs.e€aah path has
lengthO(max(p, ng2?)). From each path a query, which is linear in the size of the,path
is created and sent to a first-order arithmetic decisionquiore.

5 Related Work

This section surveys closely related work.

First-Order Theories Tarski established the decidability of the first-order the-
ory of real numbers with addition and multiplication thrduguantifier elimination [4].
Collins used cylindrical decomposition to check validitythe same theory more effi-
ciently, but his algorithm also has high complexity [8]. Tirst-order theory over inte-
gers is undecidable because of the undecidability of sgliiophantine equations [3].
However, an important fragment, Presburger Arithmetidgsidable [9].

Linear Constraints In program analysis and formal verification, decision proce
dures for linear constraints are widely used. Some propesdhiques include Fourier-
Motzkin variable elimination [10], the Sup-Inf method ofdglsoe [11], and Nelson’s
method based on Simplex [12]. More tractable algorithmshmfound by restricting
the class of integer constraints further. Pratt gives anmmtyial time algorithm for the
form of linear constraints < y + k, wherek is an integer [13]. Shostak considers a
slightly more general problemx +by < k, whereq, b, andk are integer constants [14].
He uses “loop residues” for an algorithm which requires exqudial time in the worst
case. Aspvall and Shiloach give a refined algorithm for threeséorm which runs in
polynomial time [15]. Su and Wagner [16] leverage ideas fRmaitt and Shostak to pro-
pose the first polynomial time algorithm for a general cldggsteger range constraints
underlying the standard example (range constraints [¥dpstract interpretation [18].

Combined Theories In 1979, Nelson and Oppen proposed a method for com-
bining theories in a decision procedure [19]. Contempotia@prem provers, such that
as in Necula and Lee’s certifying compiler [20], use Nelsad ®ppen’s architecture
for cooperating decision procedures. In 1984, Shostakduired an algorithm for de-
ciding the satisfiability of quantifier-free formulas in angbined theory [21]. This al-
gorithm improved over previous decision procedures by Emgimnultiple theories to
be integrated uniformly instead of using separate, comaatinig processes. This al-
gorithm serves as the basis for decision procedures fousgévaral tools including
PVS [22], STeP [23], and SVC [24]. SVC uses a decision proaefhr a fragment of
first-order logic which excludes quantifiers, but includgsaity, uninterpreted func-
tions and constants, arrays, records, and bit-vectors gflsas/ propositional connec-
tives. CVC Lite [25] is a descendant of SVC that includes dtipuSAT solver and
support for quantifiers.

Helly-like Theorems Helly-like theorems have been used to improve certain in-
dividual linear programming problems, such as finding a pioithe intersection of a
family of convex sets [7,26]. In 1994, Amenta proved a gelmetation between Helly-
like theorems and generalized linear programming [27]. &ohthese, however, use
Helly’s theorem as this paper does: to bound the number aftcaints needed to find a
tautology in unboundedly large sets of constraints.

6 Conclusions and Future Work

We have introduced the class of decision problems for laggganeratorSALID ;7 ¢ i
(motivated by the need for advanced checking of meta-prgyrand an algorithm for
VALIDEsa LA 3. Our algorithm is based on casting FSAs as network flow probslend
leveraging a novel application of Helly’s theorem to boune humber of comparison
expressions needed for a tautology. The network flow-basedtuction is unsound
because the flow variables may take on non-integral values.

This paper opens up several interesting directions foréuvork. First, language
generators that can match calls and returns, such as trematat and push-down au-
tomata, are better suited for certain program analysislenodin meta-programming
than finite state automata. Because the algorithm preséetedrelies on the bound-
edness of parenthetic nesting, new insights will be needledristruct algorithms over
these more expressive formalisms. Second, we expect thdasiechniques to the
ones presented here will yield an algorithm &LIDgsa A v. Third, this algorithm
does not exploit much of the finer-grained structure of thé P&e expect that this
can be used to provide an alternative, and frequently lol@ind on the number of
expressions needed for a tautology. Fourth, we are inegt@sistudying the relation of
VALIDEsaLA,3 t0 MSO logic, which also has an automata-based formulakorally,
we would like to find matching upper and lower bounds for¥fa.1Desa A, 3 problem
in order to know its exact complexity.

References

1.

AW

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
. Owre, S., Shankar, N., Rushby, J.: PVS: A Prototype \éatiftn System. In: Proc. CADE

23.

24,
25.
26.

27.

Borland, M.: Advanced SQL Command Injection: Applyingatee-in-depth practices in
web-enabled database applications (2002)

. Christensen, A.S., Mgller, A., Schwartzbach, M.1.: Freanalysis of string expressions. In:

Proc. SAS'03. (2003) 1-18 URIht t p: / / ww. bri cs. dk/ JSA/ .

. Matiyasevich, Y.: Solution of the tenth problem of Hilbelat. Lapok21 (1970) 83-87
. Tarski, A.: A Decision Method for Elementary Algebra anddinetry. University of Cali-

fornia Press (1951)

. Gould, C., Su, Z., Devanbu, P.: Static checking of dynaftyigenerated queries in database

applications. In: Proc. ICSE’04. (2004)

. Wassermann, G., Su, Z.: Validity Checking for Finite Autia over Linear Arithmetic.

Technical report, University of California, Davis, CompuScience Dept. (2006)

. Danzer, L., Grinbaum, B., Klee, V.: Helly's theorem atsdrelatives. In: Proceedings of the

Symposium on Pure Mathematics. Volume 7 of Convexity., ANIS6@) 101-180

. Collins, G.E.: Hauptvortrag: Quantifier elimination feal closed fields by cylindrical alge-

braic decomposition. In: A. Theory and Formal Languages7%)

. Wolper, P., Boigelot, B.: An automata-theoretic apphoadPresburger arithmetic constraints

(extended abstract). In: SAS, Springer-Verlag (1995) 21-3

Pugh, W.: The omega test: a fast and practical integgraneming algorithm for depen-
dence analysis. In: Proc. Supercomputing. (1991) 4-13

Bledsoe, W.: The Sup-Inf method in Presburger arittanéfechnical report, University of
Texas Math Department (1974)

Nelson, G.: Techniques for program verification. Techhieport, Xerox PARC (1981)
Pratt, V.: Two easy theories whose combination is haedhilical report, MIT (1977)
Shostak, R.: Deciding linear inequalities by computoap residues. J. ACN28 (1981)
Aspvall, B., Shiloach, Y.: A polynomial time algorithrarfsolving systems of linear inequal-
ities with two variables per inequality. SIAM Computi®g1980) 827-845

Su, Z., Wagner, D.: A class of polynomially solvable mwgnstraints for interval analysis
without widenings and narrowings. In: Proc. TACAS’04. (290

Cousot, P., Cousot, R.: Static determination of dynaroperties of programs. In: Sympo-
sium on Programming. (1976) 106—130

Cousot, P., Cousot, R.: Abstract interpretation: A edifattice model for static analysis of
programs by construction or approximation of fixpoints. RQPL. (1977) 234-252
Nelson, G., Oppen, D.C.: Simplification by cooperatiegision procedures. TOPLAB
(1979) 245-257

Necula, G.C., Lee, P.: The design and implementationa&rafying compiler. In: Proc.
PLDI. (1998)

Shostak, R.E.: Deciding combinations of theories. JMAR1 (1984) 1-12

11. (1992)

Bjarner, N., Browne, A., Chang, E., Colon, M., Kapur, Manna, Z., Sipma, H., Uribe,
T.E.: STeP: Deductive-algorithmic verification of reaet@nd real-time systems. In: Proc.
CAV. (1996)

Barrett, C.W., Dill, D.L., Levitt, J.R.: Validity Chedahkg for Combinations of Theories with
Equality. In: Proc. FMCAD. (1996) 187-201

Barrett, C., Berezin, S.: CVC Lite: A new implementatiohthe cooperating validity
checker. In: Proc. CAV. (2004)

Avis, D., Houle, M.E.: Computational aspects of Hellfigsorem and its relatives. Interna-
tional Journal of Computational Geometry Applicatidn& 995) 357-367

Amenta, N.: Helly-type theorems and generalized lipeagramming. Discrete & Compu-
tational Geometryl2 (1994) 241-261

