
HDD: Hierarchical Delta Debugging

Ghassan Misherghi Zhendong Su
Department of Computer Science

University of California, Davis

{ghassanm, su}@ucdavis.edu

ABSTRACT
Inputs causing a program to fail are usually large and often con-
tain information irrelevant to the failure. It thus helps debugging
to simplify program inputs. The Delta Debugging algorithm is a
general technique applicable to minimizing all failure-inducing in-
puts for more effective debugging. In this paper, we present HDD,
a simple but effective algorithm that significantly speeds up Delta
Debugging and increases its output quality on tree structured inputs
such as XML. Instead of treating the inputs as one flat atomic list,
we apply Delta Debugging to the very structure of the data. In par-
ticular, we apply the original Delta Debugging algorithm to each
level of a program’s input, working from the coarsest to the finest
levels. We are thus able to prune the large irrelevant portions of
the input early. All the generated input configurations are syntacti-
cally valid, reducing the number of inconclusive configurations that
need to be tested and accordingly the amount of time spent simpli-
fying. We have implemented HDD and evaluated it on a number
of real failure-inducing inputs from the GCC and Mozilla bugzilla
databases. Our Hierarchical Delta Debugging algorithm produces
simpler outputs and takes orders of magnitude fewer test cases than
the original Delta Debugging algorithm. It is able to scale to inputs
of considerable size that the original Delta Debugging algorithm
cannot process in practice. We argue that HDD is an effective tool
for automatic debugging of programs expecting structured inputs.

Categories and Subject Descriptors: D.2.5[Software Engineer-
ing]: Testing and Debugging—Debugging aids, Testing tools.

General Terms: Reliability.

Keywords: Automated debugging, Delta Debugging.

1. INTRODUCTION
Programmers spend a significant amount of their time debugging

programs. Studies consistently show that software maintenance
typically requires more time than any other programming activ-
ity [11]. For an exhibited bug, programmers must determine which
portions of a given test case induce a program failure. This search
phase of the debugging process is slow and arduous. Once the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

program’s errant behavior is finally understood, the bug is often
quickly fixed.

Many times, a programmer is given a large test case that pro-
duces a failure. Reducing this test case simplifies the debugging
process because there are fewer irrelevant details contained within
the test case, allowing the programmer to focus on issues pertinent
to the failure. Minimizing test cases has traditionally been left to
humans.

1.1 Delta Debugging
Delta Debugging, a technique by Zeller and Hildebrandt, is an

approach for automating test case minimization [20]. It consists of
two algorithms:

Simplification: In this algorithm, the failure-inducing input is sim-
plified by examining smaller configurations of the input. The
algorithm recurses on the smaller failure configurations until
it cannot produce a smaller configuration that still produces
a failure; and

Isolation: This algorithm attempts to find a passing configuration
such that with the addition of some element it becomes a fail-
ing configuration. The algorithm works in both directions,
finding bigger passing cases that are subsets of a failing case.

Isolation produces outputs which are less intuitive as a debugging
aid for the programmer. The single element difference is not indi-
vidually responsible for the failure, it merely guarantees that some
symptom is exhibited. The programmer then has to sift through the
potentially large failure-inducing configuration to determine what
else may be responsible for the failure. Although isolation may
generally be faster than simplification, for large test cases, it may
lead to worse running times because of the time spent testing the
large configurations. In this paper, we will be mainly concerned
with the first algorithm, simplification. More details on Delta De-
bugging are given in Section 3.1.

1.2 Hierarchical Delta Debugging
Input data is often structured hierarchically; however, Delta De-

bugging ignores input structure and may attempt many spurious
input configurations. Our insight is that the existing input structure
can be exploited to generate fewer input configurations and simpler
test cases for more effective automated debugging. In this paper,
we propose a Hierarchical Delta Debugging algorithm, HDD, to
validate our hypothesis.

There are numerous examples of input data with recursive defi-
nitions. When input is nested and at least partially balanced, there
is temptation to take advantage of this in our test case minimization
algorithm. We present several examples of input data for which Hi-
erarchical Delta Debugging is applicable. In the most general case,

any data defined by a context-free grammar is a good candidate for
Hierarchical Delta Debugging. If a context-free grammar is nec-
essary for the definition of a particular language, a simple regular
language cannot suffice. The data set is thus likely to be nested,
giving us an advantage over standard Delta Debugging. We give
below a few concrete scenarios where Hierarchical Delta Debug-
ging may be applied:

Programming Languages: Programs can make use of a Hierarchi-
cal Delta Debugger when considered as input into a compiler
or interpreter. If a large program causes a failure in a spe-
cific compiler, the Hierarchical Delta Debugger can operate
over the program’s abstract syntax tree (AST). The minimum
configuration is found at all levels of the AST. For exam-
ple, the algorithm first finds the minimum configuration of
classes, prototypes, global variables, and top level functions.
It then recurses into methods, statements, and local declara-
tions. Following this, it determines the minimum configura-
tion of sub-statements and expressions. This process is per-
formed to the lowest level of the AST. Declarations demon-
strate that there are cases when some nodes depend on higher
non-ancestral nodes within the AST. We will later present an
approach to solve this problem.

HTML/XML: HTML and XML are also excellent candidates for
Hierarchical Delta debugging. These languages, as gener-
ated both by humans and machines, are widely deployed. In
both cases the inputs tend to be well nested. XML can bene-
fit much from a syntactically aware algorithm because it ad-
heres to a strict grammar. Furthermore, XML is meant to be
general, thus a single implementation may be applicable to
many program inputs.

Video Codecs (compressor/decompresser): Hierarchical Delta De-
bugging can be applied successfully to cases when data is of
limited depth. Consider a simple video codec that crashes on
a particular video sequence due to a subset of the frames not
necessarily immediately neighboring one another. Suppose
that the encoding scheme consists of several groups contain-
ing a single key frame and multiple delta frames. Our al-
gorithm first selects the minimum configuration of groups in
the failing sequence. It then recurses one level below to de-
termine which delta frames are inducing the failure. Reach-
ing the result is significantly faster than a flat implementation
since we have removed the irrelevant groups first before con-
sidering their individual frames.

UI Interactions: User interfaces also demonstrate a potential use
for Hierarchical Delta Debugging. GUI applications may
crash after complicated user sessions. The programmer ben-
efits from a minimized session in that the failure can be re-
produced and examined in a simpler form. UI interactions
can be categorized into levels of tasks, e.g., “open the docu-
ment” and “print.” These high level tasks can be composed
of other tasks such as “opening the print dialogue,” “select-
ing the printer,” “configuring the printer,” and “selecting the
pages.” At the lowest level of this task hierarchy are the ac-
tual actions required to perform these tasks, including mouse
movements and other events. With this hierarchy, one can
apply Delta Debugging to find the minimum number of in-
teractions that induce some error. Unfortunately, automating
the creation of this hierarchy is difficult; a user must catego-
rize various actions manually, perhaps inside the interaction
recording program.

void f()

{

int x; int y;

if (x!=0) { y= x; } else { return 0; }

while (y!=0) { y--; }

return y;

}

Figure 1: An example program.

1.3 Main Contributions
In this paper, we develop a general Hierarchical Delta Debug-

ging algorithm to exploit hierarchical characteristics of program in-
puts. When attempting to find which portions of an input to prune,
there is little reason to choose arbitrary points for division. Instead,
we work along the boundaries of the tree from the top to the bot-
tom. By limiting ourselves to one level at a time, we are examining
smaller groups of nodes for minimization. This also exploits the
relative independence of nodes on different branches of the tree.

Our algorithm produces only syntactically valid configurations
provided that the input specific tree manipulators are capable. While
this seems counter to the purpose of failure finding, it is indeed con-
sistent. The goal of the algorithm is to determine a failure-inducing
input that should be valid to the program. Parsing related issues are
not the problem addressed by this paper. If our input is not well-
formed, techniques such as Delta Debugging should be employed
to determine why the parser does not fail gracefully. In many cases,
spurious test configurations that fail at the parse level before trig-
gering our desired bug waste testing time.

The original Delta Debugging algorithm produces test cases that
can be difficult to read by minimizing things such as identifiers, and
removing section boundaries. This is often counter to the purpose
of making the debugging process easier. Our approach can make
the minimized input more closely resemble the original structure.
A developer may find this easier to understand because of its simi-
larity to a real test case.

We have implemented our algorithm and applied it in two set-
tings: (1) bugs in the GCC compiler, and (2) bugs in the Mozilla web
browser for XML processing. On real failure-inducing inputs from
the GCC and the Mozilla bugzilla databases, our algorithm generates
orders of magnitude fewer test cases and produces simpler outputs
than the original Delta Debugging algorithm, resulting in signifi-
cantly faster minimization time. This evaluation confirms the ef-
fectiveness of our Hierarchical Delta Debugging algorithm when
applied to programs accepting structured inputs.

1.4 Paper Outline
The rest of the paper is structured as follows. We first use a

concrete example to explain the intuition of our Hierarchical Delta
Debugging algorithm (Section 2). Next, we present our algorithm
(Section 3), followed by an empirical evaluation to compare our
technique to the original Delta Debugging algorithm (Section 4).
Then, we survey closely related work (Section 5). Finally, we dis-
cuss possible improvements to our current algorithm (Section 6),
and conclude (Section 7).

2. EXAMPLE
In this section, we demonstrate a contrived C program to illus-

trate our algorithm. Details of the algorithm will be given in Sec-
tion 3.

The first step of our algorithm is to parse a failure-inducing input.
Using the parse tree, we manipulate the input and generate new test
cases. Consider the contrived program shown in Figure 1. The

(a) Figure 1’s AST. (b) The result of our algorithm on Figure 2a.

Figure 2: Applying Hierarchical Delta Debugging to the code in Figure 1.

parsed input should be the AST of the program. Figure 2a shows
the AST of the program in Figure 1. In this example, there is only
one function causing the compiler to fail. Let us assume that the
post-decrement operator, “y--,” is the source of the failure.

Our algorithm begins processing at the top level of the parse tree.
We first determine the minimum configuration of functions, global
variables, prototypes, and type definitions. There is only one top
level form in our example, the function f(). Our algorithm will
first try to exclude this function from the configuration. The func-
tion is required to induce the compiler error; it will thus be included
in the top level’s minimum configuration.

Once the minimum configuration of a particular level is deter-
mined, we try the next level of the AST. Note that there may be
multiple parents for all the nodes at a level. We use the standard
Delta Debugging algorithm [20] to determine the minimum con-
figuration of all these nodes. Each subtree could instead be treated
individually, yielding an algorithm similar to a pre-order tree traver-
sal. We examine this optimization in more detail in Section 6.

Figure 2b shows the result of the Hierarchical Delta Debugging
algorithm applied to the original AST in Figure 2a. The minimized
AST corresponds to the following code:

f() { int y; while (0) { y--; } }

We stated previously that the post-decrement operator was the
source of the compiler failure. Note that the minimum nodes rele-
vant to this error are chosen for any level. For example, if the vari-
able y were not declared at the second level, our program would not
type check and thus the compiler may not exhibit the failure. The
while statement on the second level is of particular interest. The
condition of the while statement was deemed irrelevant. Handling
this case correctly is left to the tree manipulator; ours inserted an
empty condition, 0, in-place of the original condition. Some imple-
mentations may attempt to replace the loop with its body. There are
several nodes in the AST that have required children. To produce
syntactically valid inputs, we must handle removal of their children
on a case by case basis, most likely by substituting in the smallest
allowable syntactual fragment.

3. HIERARCHICAL DELTA DEBUGGING

3.1 Background on Delta Debugging
Before presenting HDD in detail, we explain the simplifying

Delta Debugging algorithm [20], hereafter called ddmin, as it is

integral to HDD. The input to the ddmin algorithm is a failure-
inducing configuration, i.e., a list of elements that causes a program
to fail when given as input. The goal of the ddmin algorithm is to
determine a subset of the input such that no one element can be re-
moved from it while preserving the failure. Zeller and Hildebrandt
call this a 1-minimal test case [20]. The ddmin algorithm proceeds
by executing the following steps to find a 1-minimal test case:

1. Reduce to subset: Split the current configuration into n par-
titions. Test each partition for failure. If a partition does
induce the failure, then treat it as the current configuration
and resume at Step 1.

2. Reduce to complement: Test the complement of each parti-
tion. If any induces the failure then treat it as the current
configuration and resume at Step 1.

3. Increase granularity: Try splitting the current configuration
into smaller partitions, 2n if possible, where n is the cur-
rent number of partitions. Resume at Step 1 with the smaller
partitions. If the configuration cannot be broken down into
smaller partitions, the current configuration is 1-minimal and
the algorithm terminates.

Each split is chosen to produce sub-partitions of similar size to re-
move as much as possible from the input. This characteristic of the
ddmin algorithm makes it much like a binary search. If each split
is successful, we can reduce the input by at least half each iteration
(assuming “reduce to subset”). Unfortunately this is not likely to
occur because the input is not split according to the structure of the
failure-inducing configuration. Furthermore, the failure-inducing
portions of the file may also be scattered throughout the file. Our
approach addresses these issues better when simplifying structured
inputs.

3.2 Algorithm Description
We are concerned with hierarchical inputs. Why not first deter-

mine the minimal failure-inducing configuration of coarse objects?
Following this intuition, we can recursively minimize configura-
tions starting from the top-most level. By limiting simplification
to one level of the hierarchy at a time, we can prune data more
intelligently. At each level we must try multiple configurations to
determine the minimum failure-inducing configuration. This pro-
cess employs the ddmin algorithm at each level.

Before a level is processed, we must first know how many nodes
there are in a level, and name each node. Without addressing nodes

Figure 3: The AST after the first iteration of HDD.

we cannot compactly select a configuration for testing. Node nam-
ing is implemented by traversing the tree and assigning a unique
identifier to each node at the level of interest. Nodes are named
only before we process their levels.

Unparsing a configuration of the tree is required for each at-
tempted test configuration. This is the most frequent operation ex-
ecuted by HDD. Our implementation traverses the tree, checking
for node inclusion in the configuration before printing a particular
node.

After determining the minimum configuration at a level, one ap-
proach to refining the input is to output the new configuration and
re-parse it for further processing. This approach, though simple, is
not ideal since we spend time re-parsing needlessly. We eliminate
this step by providing primitives for tree pruning. This is imple-
mented by removing all irrelevant nodes from a level. Following
tree pruning we proceed to the next level. Figure 3 shows the first
iteration of the Delta Debugging algorithm applied to the AST in
Figure 2a.

Algorithm 1 shows HDD’s pseudocode. Line 2 begins the pro-
cess at the top level of the tree (where level = 0). We count and
tag the nodes at the current level on lines 3 and 8 with an auxiliary
function TAGNODES. If there are nodes at the current level (line
4), we try minimizing the nodes of that level using the standard
Delta Debugging algorithm, DDMIN (line 5). Although not shown
in the algorithm, ddmin must call a testing procedure to determine
if a configuration induces the failure. This procedure must be given
the input tree and the level currently under inspection. Line 6 re-
moves the irrelevant nodes from the tree with the auxiliary function
PRUNE. On line 7, we progress to the next level of the tree for pro-
cessing.

3.3 Algorithm Complexity
We now discuss HDD’s complexity with respect to the number

of tests performed. Our HDD algorithm has the same worst-case
complexity as ddmin, generating quadratic number of tests in the
size of the original input. Our worst-case happens when the input
is a flat list, essentially reducing HDD to one call to ddmin on the
entire input.

For inputs with nested structures such as programs, we expect
HDD to perform much better. We empirically validated this claim
using a few real-world examples, and we delay that discussion to
Section 4. In this section, we instead examine the performance of
HDD with specific input characteristics. We consider the following
two scenarios:
The Ideal Case: Suppose HDD is run on a balanced tree of size

n with constant branching factor b such that for each par-

Algorithm 1 The Hierarchical Delta Debugging Algorithm
1: procedure HDD(input tree)
2: level← 0
3: nodes← TAGNODES(input tree, level)
4: while nodes 6= ∅ do
5: minconfig ← DDMIN(nodes)
6: PRUNE(input tree, level,minconfig)
7: level← level + 1
8: nodes← TAGNODES(input tree, level)
9: end while

10: end procedure

ent exactly one child remains in the configuration. There are
logb n levels in this tree. At each level, we invoke ddmin, and
thus require O(b2) tests. Consequently, we run O(b2 logb n)
tests, or simply O(log n), because b is constant.

A More Realistic Case: The above scenario is too idealistic for-
many cases. Instead let us suppose that exactly m children
are relevant from each relevant parent. While this is unlikely
to occur in practice, we may consider m to be an upper bound
on the number of children that are taken in all cases. We
cannot choose more than b nodes from every parent; conse-
quently we must have m ≤ b. Intuitively, it is clear that
the number of nodes to examine becomes fairly large further
down the tree.

At the top level we examine the root of the tree. For any sub-
sequent level, i, we examine b nodes for every included par-
ent, or b

`

mi−1
´

nodes. We run ddmin at each level, there-
fore we try at most O

`

(b
`

mi−1
´

)2
´

tests at level i. Sum-
ming over the entire tree, we have:

1 +

logbn
X

i=1

“

b ∗m
i−1

”2

= 1 + b
2

logbn
X

i=1

“

m
i−1

”

2

≤ 1 + b
2

logbn
X

i=1

m
i−1

!2

= 1 + b
2

„

mlogbn − 1

m− 1

«2

, when m 6= 1.

Given m and b, we conclude that HDD runs worst-case:

O

„

mlogbn − 1

m− 1

«2
!

= O
“

m
2logbn

”

number of tests, when m 6= 1. Substituting 1 for m in the
initial summation above, we have 1 + b2logbn. Thus, we
run O(logbn) tests, which is consistent with the idealistic
example above. If we choose all b nodes from each parent,
i.e., when m = b, we have O(b2logbn) = O(n2). Thus, we
run absolute worst-case O(n2) tests. For a specific case in
between, such as b = 4 and m = 2, we have O(22log4n) =
O(n).

Though the relative benefit gained by HDD depends on the shape
of the input tree, we never perform asymptotically more tests than
the original Delta Debugging algorithm. If the tree is well balanced,
we can expect large portions of the original input to drop whenever

we remove a node high in the tree. This property is what enables
us to achieve better asymptotic bounds.

3.4 On Minimality
We now examine the problem of simplifying failure-inducing in-

puts from a more formal perspective. In particular, we investigate
the quality of produced output from a simplifying algorithm. The
most natural metric for a generated output is its size, and the ob-
vious notion to consider is minimality: How small is the output?
Zeller and Hildebrandt propose various definitions for minimality
in the context of ddmin [20]. We introduce similar definitions for
trees instead of sequences of elements as used in their definitions.
First, we define the meaning of tree simplification in terms of two
predicates simplify and simplify∗.

DEFINITION 3.1 (SIMPLIFY). For any two trees T and T ′,
the predicate simplify(T, T ′) holds iff T ′ can be derived from T

by removing a single node.

DEFINITION 3.2 (SIMPLIFY*). For any two trees T and T ′,
the predicate simplify∗(T, T ′) holds iff T ′ can be derived from T

by removing zero or more nodes, and more precisely:

• simplify∗(T, T); and

• simplify∗(T, T ′) =

∃T ′′
`

simplify(T, T
′′) ∧ simplify∗(T ′′

, T
′)
´

DEFINITION 3.3 (GLOBAL-TREE-MINIMAL). Given program
P and input tree T , T ′ is global-tree-minimal if simplify∗(T, T ′)
and P (T ′) = fail, and for all T ′′ such that simplify∗(T, T ′′) and
P (T ′′) = fail, it holds |T ′| ≤ |T ′′|.

Ideally, we would want an algorithm that finds a global-tree-
minimal input that induces the failure. Unfortunately, we will show
next that this is infeasible in general. Our notion of global-tree-
minimality coincides with Zeller and Hildebrandt’s notion of global-
minimality, because a tree is merely a hierarchy of the actual input
configuration. Global-tree-minimality is a very difficult problem
computationally; we show that the problem is NP-complete. First,
we formulate the decision version of this problem, GMT, where we
treat the given program P as a constant-time oracle because we are
interested in the number of generated test configurations.

DEFINITION 3.4 (GMT). Given program P , a failure-indu-
cing input T , and a positive integer K , is there a tree T ′ with
|T ′| ≤ K , such that simplify∗(T, T ′) and P (T ′) = fail?

THEOREM 3.5. GMT is NP-complete.

PROOF. GMT is clearly in NP, because given a GMT instance
(P, T, K), we can guess a configuration S from T , and verify both
|S| ≤ K and P (S) = fail, all in polynomial time.

To show that GMT is NP-hard, we reduce the hitting set problem
(HS) to GMT. Recall that in the hitting set problem, we are given a
collection C of subsets of a finite set S and positive integer K ≤
|S|, and the question is: Is there a subset S ′ ⊆ S with |S′| ≤ K

such that S′ contains at least one element from each subset in C?
The hitting set problem is known to be NP-complete [8].

Given an instance (C, S, K) of HS, we construct an instance
(P, T, K) of GMT as follows:

• P (t) = fail iff for each c ∈ C, there exists a child s of t such
that s ∈ c; and

• T = root(s1, . . . , sn), where root(s1, . . . , sn) denotes a
tree with root as the root and si ∈ S as its children.

This is clearly a polynomial time reduction. It is also straightfor-
ward to verify that (C, S, K) has a hitting set S ′ with |S′| ≤ K if
and only if (P, T, K) has a failure-inducing input T ′ with |T ′| ≤
K. Here we measure the size of a tree as the number of children
under the root node “root.”

Global-minimality is thus a difficult problem; neither HDD nor
ddmin can claim to produce global-minimal configurations. Instead
of attempting to achieve such an elusive goal, we will attain mini-
mality with respect to the immediate “neighbors” of a failing con-
figuration. With such a goal, we can merely examine all neigh-
bors of the current failing configuration until none induce the error.
Then we have attained a local-minimal input. Program failures tend
to mirror this: Some portion of the input is relevant to the failure,
the rest can be removed piece by piece.

DEFINITION 3.6 (1-TREE-MINIMAL). Given a program P

and input tree T , T ′ is 1-tree-minimal if simplify*(T, T ′) and P (T ′)
produces a failure, and for all S such that simplify(T ′, S), P (S) 6=
fail.

Before evaluating HDD’s output with respect to such a property,
let us discuss minimality with ddmin. DDmin’s behavior at the
finest granularity is what allows it to assure 1-minimality: it tries
all individual elements of the configuration alone, or tries to re-
move single elements from the current configuration until no sin-
gle element can be removed. By definition, 1-minimality is assured
since the algorithm terminated and thus there is no single element
that can be removed. Our approach constrains ddmin to subsets of
the failure-inducing configuration. When we call ddmin to remove
nodes at a specific level, we may enable nodes at some other level
of the tree to be removed.

Our algorithm will not re-attempt to remove nodes on levels
higher than the current level, hence HDD may not always produce
1-minimal configurations. Any algorithm which does not produce a
1-minimal configuration does not produce a 1-tree-minimal config-
uration either, since the elements in the configuration must also be
nodes in the tree. We now demonstrate several alternate algorithms
derived from HDD that satisfy 1-minimality or 1-tree-minimality.

Suppose all internal nodes of the input tree represent only collec-
tions of other nodes and do not contribute any of the actual elements
that makeup the the program’s failure-inducing configuration. Con-
sider non-terminals from context-free grammars as a good example
of this. If we ensure that all leaf nodes are put on the last level,
then HDD’s final call to ddmin will include all elements in the con-
figuration. This guarantees that the final result is 1-minimal with
respect to these individual elements, by merely relying on ddmin
to do so. By considering trees of this type, HDD alone is sufficient
for 1-minimality. This approach does not adequately take advan-
tage of the hierarchical nature of HDD: the final output may not be
1-tree-minimal. For example, consider a C program inducing some
failure in a C compiler. Assume that the compound statement “{}”
is inside the aforementioned program and is irrelevant to inducing
the failure. Removing just one of the contained braces causes a
parse error, potentially preventing the compiler from inducing the
failure. Removing the entire statement from the program may still
induce the failure. If a tree has a single parent node for the com-
pound statement, then a 1-tree-minimal input cannot contain the
compound statement.

We now present an algorithm, HDD+, consisting of a greedy
phase and a final 1-tree-minimality assurance phase. First we per-
form the greedy phase: a call to HDD on the input configuration
tree. This phase will attempt to trim the tree as best it can with-
out consideration for 1-tree-minimality. The second optimality ori-
ented phase is symmetric with the final step of ddmin. It will try

to remove individual nodes from the tree one by one in a BFS-like
manner. It will repeat the attempt on the entire tree continually as
long as the previous iteration successfully removed at least a single
node. This algorithm produces a 1-tree-minimal configuration by
definition: the final input tree does not have a single node that can
be removed, otherwise the algorithm would not have terminated.
In the worst case, the entire algorithm generates O(n2) number of
test inputs on trees of size n. As we have previously shown, HDD
generates worst-case O(n2) test inputs. Each iteration of the sec-
ond phase requires at most n tests, and since it removes at least one
element from the tree each iteration, it cannot iterate more than n

times. It follows that the second phase also generates worst-case
O(n2) test inputs, affirming our analysis.

We present another algorithm for 1-tree-minimality, HDD*. This
algorithm repeatedly calls HDD until a single call fails to remove
a single element from the input tree. Since ddmin will attempt to
remove every node in the tree individually at least once, HDD will
attempt to remove every node in the tree individually at least once.
If HDD cannot remove a single node from the tree, the tree is 1-
tree-minimal. It is possible that each iteration of this algorithm
removes only one node from the tree, and since each iteration gen-
erates worst-case O(n2) test inputs, it follows that HDD* gener-
ates worst-case O(n3) test inputs. We find this is very unlikely
in practice. Implementing HDD* is simple with an already work-
ing HDD implementation, so for comparison we included it in our
empirical results. We hope by our evaluation to demonstrate two
conclusions: (1) worst-case analysis for HDD, ddmin, and HDD*
does not reflect what happens in practice, and (2) 1-minimality is
not necessarily the best criteria for input minimization.

PROPOSITION 3.7. Both HDD+ and HDD* produce 1-tree-mi-
nimal configurations.

We suspect HDD and HDD* may produce output close to the
global minimum for practical settings. We leave this as future work
to validate this claim.

4. EMPIRICAL EVALUATION
We have evaluated HDD in two settings: bugs in the GCC com-

piler and bugs in XML processing of the Mozilla web browser. In
this section, we discuss our experience with the algorithm.

4.1 The C Programming Language
We created a tree processing module for the C programming lan-

guage in order to test various GCC failure-inducing programs. Our
AST manipulator was implemented as an extension to Elsa [13], a
GLR parser for C++. We augmented Elsa’s AST nodes with meth-
ods and data to facilitate manipulation. There was little inheritance
among AST nodes in the Elsa framework, forcing us to duplicate
functionality more than we should have. For example, an if state-
ment has specific variables for each of its three children: the con-
dition, the then branch, and the else branch. A for loop, on
the other hand, has entirely different variables for its children: an
initializer, a condition, a post-incrementor, and a body.
Although the process of printing and pruning is similar for both
of these statements, their implementation could not be adequately
factored. This lack of generality made implementation tedious. We
examine alternative approaches in Section 7.

We now apply HDD to a concrete example. To simplify com-
parison, we choose the same program demonstrated in Zeller and
Hildebrandt’s work on delta debugging [20]. Figure 4 shows a pro-
gram that causes GCC-2.95.2 to fatally abort, even though the
poorly written program is valid C code. The problem lies within

double mult(double z[], int n)

{

int i;

int j;

for (j= 0; j< n; j++) {

i= i+j+1;

z[i]=z[i]*(z[0]+0);

}

return z[n];

}

int copy(double to[], double from[], int count)

{

int n= (count+7)/8;

switch (count%8) do {

case 0: *to++ = *from++;

case 7: *to++ = *from++;

case 6: *to++ = *from++;

case 5: *to++ = *from++;

case 4: *to++ = *from++;

case 3: *to++ = *from++;

case 2: *to++ = *from++;

case 1: *to++ = *from++;

} while (--n > 0);

return (int)mult(to,2);

}

int main(int argc, char *argv[])

{

double x[20], y[20];

double *px= x;

while (px < x + 20)

px++ = (px-x)(20+1.0);

return copy(y,x,20);

}

Figure 4: A program that crashes GCC-2.95.2.

the for loop of the function mult(), where an incorrect floating
point optimization causes GCC to crash.

The Hierarchical Delta Debugging algorithm first determines that
the only relevant function is mult() by calling ddmin on the first
level of the code’s AST (Figure 5a). Next, it removes the return
type, double, and the return statement because they are also ir-
relevant for the bug (Figure 5b). At the next level, the algorithm
determines that the loop initializer, condition, and post-incrementor
are not necessary to induce the failure (Figure 5c). The algorithm
then unsuccessfully attempts to simplify the expressions inside the
two assignment statements. It cannot produce a smaller configura-
tion from these expressions because they are integral to inducing
the failure, and HDD terminates with the program shown in Fig-
ure 5c. Reaching this output required 86 test cases, significantly
fewer than the 680 tests performed by ddmin.

To further test the performance of HDD, we applied it to other
real programs from the GCC bugzilla database (http://gcc.gnu.
org/bugzilla). Our examples exhibited a number of characteris-
tics, each highlighting interesting results. We selected the first three
examples based only on our ability to reproduce failures within our
limited testing environment. Table 1 shows our empirical results.
For each program in the table, we list size, bug report number from
the bugzilla database, and the number of tests and final sizes as

double mult(double *z, int n)

{

int i;

int j;

for (j=0;j<n;j++) {

i=i+j+1;

z[i]=z[i]*(z[0]+0);

}

return z[n];

}

mult(double *z, int n)

{

int i;

int j;

for (j=0;j<n;j++) {

i=i+j+1;

z[i]=z[i]*(z[0]+0);

}

}

mult(double *z, int n)

{

int i;

int j;

for (;;) {

i=i+j+1;

z[i]=z[i]*(z[0]+0);

}

}

(a) The minimized first level. (b) The minimized second level. (c) The final output.

Figure 5: HDD applied on various levels of the code in Figure 4.

computed by ddmin, HDD, and HDD*. We use a token as our unit
of size because a token abstracts details such as identifier length
and whitespace. Our algorithm could have minimized such char-
acteristics, but doing so is unlikely to help the developer. We now
discuss the result for each test case:

bug.c: The first program, bug.c, is the same example we demon-
strated in Figure 4. HDD ran almost an order of magnitude
fewer tests than ddmin—a common result in our evaluation.
HDD’s output size was nearly identical to that of ddmin,
though HDD’s is slightly smaller. The output from HDD
is shown in Figure 5c. For comparison, we show ddmin’s
output below (formatted for easier reading):

t(double z[], int) {

int i;

int j;

for(;;j++) {

i=i+j+1;

z[i]=z[i]*(z[0]+0);

}

}

In this example, the main distinction was the removal of the
loop terminator, “j++,” something ddmin failed to do. In
ddmin’s case, there are two possible ways to remove the ex-
pression “j++” from the loop without modifying the loop it-
self. One possibility is for the post-increment operator to fall
on the correct boundary when ddmin operates at the granu-
larity of two characters. The other is for the entire expres-
sion to fall on a correct boundary at the granularity of three
or more characters, assuming the introduction of whitespace.
Indeed, ddmin’s output is very sensitive to whitespace. Al-
though only slightly better, HDD’s output could have been
shortened if our implementation had attempted to remove pa-
rameters from function signature. A quick comparison with
ddmin’s output shows that the parameter is not necessary,
though it failed to remove the parameter altogether:

t(double z[],int) { ...

It is interesting to note that ddmin was able to remove the
parameter’s name only because of GCC’s lax treatment of in-
valid function definitions.

boom7.c: The program boom7.c is relatively small in size and
contains many variable declarations with one deep expres-
sion that induces the bug. HDD ran more than an order of

magnitude fewer tests than ddmin, and the output was also
significantly smaller—about half the size of ddmin’s output.
Early versions of our implementation failed to minimize the
program significantly, but as we added support for minimiz-
ing unary expressions properly, HDD was able to produce a
small failure inducing statement. The output from ddmin is
less informative; it is not clear which portions correspond to
the original. The output is not even parseable at points, for
example:

(long int)(signed short)

(var0=9>(var1=var1=8))""""

Compiling ddmin’s output under a newer version of GCC pro-
duces a syntax error.

HDD* minimized the file even further than HDD. On the
first iteration, HDD dramatically reduced an expression cru-
cial for the failure, leaving many variables without references
in the program. Since the original variable references were
at deeper levels than the variable declarations themselves, at-
tempting to remove them in the first iteration caused a type-
checking error that prevented the compiler from failing. The
second iteration was then able to remove the irrelevant vari-
ables since they were no longer needed.

cache.c: Program cache.c is relatively large, mainly due to the
high number of header files included by the preprocessor.
This characteristic is less than ideal for our approach since
the resulting AST is flat, with many function prototypes and
a few relevant functions following. The ddmin algorithm
was quite capable of scaling with respect to the program size
since most of the input is not pertinent. Even so, HDD still
ran more than an order of magnitude fewer tests with an out-
put size just under that of ddmin’s. The most significant
contributor was HDD’s ability to unravel a heavily nested
and parenthetical expression. Had our implementation re-
moved parameters from function signatures or semi-colons
after case statements, it would have removed five additional
tokens. Not surprisingly, HDD* was able to remove a single
unreferenced variable, yielding a slightly smaller program
than HDD.

cache-min.c: The synthetic example, cache-min.c, exhibits a char-
acteristic that affirms our approach. The program is a nearly
minimized version of cache.c with parentheses introduced in
all subexpressions. It may seem strange that a nearly min-
imized input requires nearly the same number of test cases

size bug report ddmin tests HDD tests HDD* tests ddmin size HDD size HDD* size
File (tokens) (id) (# of tests) (# of tests) (# of tests) (tokens) (tokens) (tokens)

bug.c 277 unknown [20] 680 86 164 53 51 51
boom7.c 420 663 3727 144 304 102 57 19
cache.c 25011 1060 1743 191 327 62 61 58

cache-min.c 145 1060 1074 114 182 71 59 59

Table 1: Experimental results. All tests were performed against GCC version 2.9.5.2.

for the ddmin algorithm, but a nearly minimized program ac-
tually induces poor behavior in ddmin. This is because the
algorithm tries in vain to remove large portions of the pro-
gram. Although HDD is also limited by this, HDD constrains
the number of nodes examined at one time. If a tree is fairly
well balanced and of significant depth, we scale quite well in
comparison. The output from cache-min.c was slightly more
minimized than cache.c because all references to the variable
“line” were dropped and thus HDD was able to eliminate
the declaration “int line;”. This is the same declaration
that previously allowed HDD* to minimize cache.c, beyond
what HDD was able to do.

4.2 XML
Unlike C, XML seems intuitively to be an interesting applica-

tion for HDD because, unlike C, it is general, very strict, and often
deeply nested. These characteristics make XML an ideal candidate
for HDD. In this section, we experimentally confirm this.

Because of XML’s generality, a single implementation of HDD
can be applied uniformly in many application domains. The pro-
cess of our experimentation is evidence of this: we first imple-
mented the XML tree processing module for HDD and then searched
for XML document types on which to experiment. Our imple-
mentation is very simple; it is written in less than 150 lines of
Python code using the DOM API. Although it may not always
produce documents that are valid with respect to a specific docu-
ment type definition (DTD), the generated documents are always
well-formed.

While compilers and web browsers may tolerate bad inputs, XML
parsers do not. This strictness is beneficial, even when users cre-
ate XML documents directly, because it forces users to conform
before facing mysterious errors or vendor lock-in. Because XML
parsers are more strict, ddmin is more likely to produce documents
that fail to parse, and is thus less likely to succeed. Consider that
all tags present in a document must also have their closing tags to
be processed. Removing one tag without the other will not induce
the failure, even if the tags are both irrelevant. Furthermore, tags
themselves must have matched angle brackets. Any configuration
that produces a boundary covering an odd number of angle brackets
will be frivolous.

Extensible Stylesheet Language Transformation (XSLT) is an
XML document type that is used to transform other XML docu-
ments into another form. XSLT has a notorious history of inducing
bugs; as such it was a good starting point for our bug search. The
documents in Table 2 are the first XML documents with which we
were able to reproduce errors in Mozilla. The Mozilla bugzilla
database (http://bugzilla.mozilla.org/) gives such an ex-
ample. It contains a bug entry for ms-tour.xsl (id 248258), a com-
plex transformation that attempts to generate a knights tour of a
chess board. The Mozilla web browser crashes with a segmenta-
tion fault upon processing this document. The file is comprised of
16500 characters and 433 lines of XML. Table 2 summarizes our
results. In particular, we performed the following tests on this file:

ddmin: The ddmin algorithm failed to minimize this program. At
larger granularities, ddmin did not remove significant por-
tions of the document aside from those inside large com-
ments. At smaller granularities, ddmin’s cache of tested con-
figurations ended up exhausting memory on a system with
4GB of RAM. With the cache disabled, ddmin retests du-
plicate configurations. Based on ddmin’s diagnostic output,
it was clear after one day of testing that we had not com-
pleted a significant percentage of total testing. We concluded
that ddmin could not simplify this data under normal circum-
stances.

ddmin-line: To simplify the matter, we ended up minimizing the
document on a line-by-line basis instead. Tags were gen-
erally isolated on individual lines. Accordingly, all possi-
ble boundaries respect angle bracket openings and closings,
though they may not respect open and close tags. By treating
lines or tags atomically, ddmin will not process tag attributes,
but since we evaluate ddmin’s performance by the number of
lines it produces, this is not necessary.

As expected, ddmin had trouble significantly reducing the
file. The output was 92 lines long and took 1092 tests to pro-
duce. On examination, the output seems unsatisfactory: it is
still quite complex and includes many consecutive open and
close tags that are irrelevant to inducing the failure. It may
seem strange that ddmin was unable to remove them, but one
must remember that the output is indeed 1-minimal since re-
moving any one tag will not produce a parseable document.
These tag pairs were not removed because they either con-
tained tags that were not removed until later granularities, or
they were on an odd-numbered line.

HDD and HDD*: Table 2 shows that HDD was more successful
than ddmin in minimizing this input file. The output is only
8 lines and took 129 tests to produce. We observe again that
HDD takes an order of magnitude fewer tests, and manages
to simplify the failure-inducing configuration to a concise
one. The difference in output size for ddmin and HDD is
very significant, with a factor of ten. Repeated application of
HDD did not yield a smaller configuration. Still, HDD* did
not incur a significant cost in terms of number of additional
test cases.

We found another file that is small enough for ddmin to process
at the character level. The XSLT file uiwrapperauto.xsl proved
small enough for a direct comparison. Since ddmin was able to
simplify the file successfully, we separated the tags from ddmin’s
output onto separate lines, to facilitate comparison. Our experi-
ment showed that ddmin executed a factor of 30 more tests than
ddmin-line, and nearly equivalent output. It was, however, able to
shorten a few of the actual tag attributes. HDD also attempted to
exclude attributes, though ddmin-line did not. Because this file is
smaller, the overall results of this experiment are less drastic than
ms-tour.xsl.

size bug ddmin ddmin-line HDD HDD* ddmin ddmin-line HDD HDD*
File (lines) (id) (# tests) (# tests) (# tests) (# tests) (lines) (lines) (lines) (lines)

ms-tour.xsl 433 248258 failed 1092 124 167 failed 92 8 8
uiwrapperauto.xsl 66 207358 5757 277 105 143 46 43 15 15

Table 2: Experimental results for the XML study.

Almost paradoxically, we are unable to say HDD produces 1-
minimal inputs, but HDD in our experience seems to be more ef-
fective than ddmin. The reason for HDD’s success is quite simple:
HDD can intelligently handle input languages which are context-
free, while ddmin is suited for regular languages.

5. RELATED WORK
The most relevant work to our own is Zeller’s seminal work

on Delta Debugging [19, 20]. Zeller hints at intelligent partition
choices in [19]. The idea would significantly reduce the number
of test cases run by the algorithm, though it falls short of realiz-
ing our motivational insight. Partition boundaries should be chosen
with respect to a specific granularity of the input. It follows intu-
itively that we should start with the coarsest granularity and move
towards the finest. Zeller and Hildebrandt briefly mention applying
Delta Debugging to specific domains including a short reference
to context-free grammars [20]. Sterling and Olsson’s recent work
on “program chipping” [14] is also related, and addresses a simi-
lar problem for Java. It uses simple tree manipulation techniques
to produce test cases, while ours is based directly on Delta Debug-
ging. The relative strength of both approaches is yet to be explored.

Rather than examining the input to a program, program slic-
ing [15, 16] can be used to isolate relevant portions of a program
that are necessary to yield some result. Program slicing can be per-
formed either statically or dynamically (with respect to one con-
crete run) [2]. These techniques ease debugging by removing irrel-
evant portions of the failing program [1,17]. It is worth noting that
both Delta Debugging and program slicing can be used coopera-
tively. By first minimizing the input, we may significantly simplify
the program slice and trace. These two techniques are not neces-
sarily competitors; they can be complementary.

PSE [12] is a static analysis technique for diagnosing program
failures. It can be viewed as a program slicing technique, however
it is more precise because of its consideration of error conditions.
A motivating example is dereferencing a NULL value. It is similar
to Das’s earlier work, ESP, a symbolic dataflow analysis engine [6].

Bug isolation is related to simplifying failure-inducing input.
Rather than focusing on minimizing the input, it focuses on find-
ing the cause underlying the failure. Delta Debugging the program
state space is used as the mechanism for this technique [5,19]. The
algorithm attempts to locate the state differences between passing
and failing runs. This determines the relevant variables and values
that infect the program to failure. A similar technique is applied
to multi-threaded applications [4]. Instead of focusing on state, the
technique examines the thread schedule differences of passing and
failing runs.

Whalley’s work on isolating failure-inducing optimizations is
also related to our work [18]. His approach automatically isolates
errors in the vpo compiler system. The search is performed on the
sequence of optimizations performed by vpo to find the first im-
proving optimization that causes incorrect output. The approach is
fairly domain specific.

Liblit et al. use a sampling technique to reduce the runtime over-
head of collecting successful and failing runs [9]. They also pro-

pose to use statistical learning techniques to infer the failures from
many sampled runs [9,10].

Work in error explanation for static analysis relates to our ap-
proach. Many tools produce error traces when a program violates
its specification. However, understanding the error and locating the
cause is usually left to the user. Several techniques have been de-
veloped to address this problem. Ball et al. suggest an approach to
localize error causes [3]. Their idea is to find transitions in the error
trace that do not appear in correct traces. Groce and Visser suggest
a different approach for the same problem [7]. Given an error trace,
they compute other error traces leading to the same assertion viola-
tion to compare with traces preserving the assertion.

6. FUTURE WORK
In this section, we discuss limitations on our current implemen-

tation and interesting directions for improving the algorithm.
First, our Elsa extension is limited in a number of ways. Certain

list types are immutable, hampering simplification of expressions
such as arguments to functions. When multiple variables are de-
clared in the same declaration statement, Elsa splits the declaration
into multiple statements.

Our approach works best if there are few dependencies between
data at different levels of the input. An excessive amount of depen-
dence yields output that is not minimized adequately. The program
input domain and minimization requirements should be evaluated
to determine if HDD* should be used.

Another limitation of our work is that the programmer must pro-
vide infrastructure for tree processing. This infrastructure is re-
sponsible for parsing the input, unparsing a configuration, and prun-
ing nodes from the input tree. This turned out to be non-trivial,
even when implementing over the Elsa C/C++ parser. XML has a
simpler syntax, and though it is more general, implementation was
easier.

Ideally a Hierarchical Delta Debugging implementation would
automate tree processing by using only a context-free grammar that
describes the input syntax. From the CFG, a parser would be gen-
erated that directly creates the input tree as well as the rudimen-
tary tree processing routines. There are already several tools that
generate AST-like tree builders from context-free grammars. With
these, we could then provide generic implementations for tree ma-
nipulation. Tagging, printing, and pruning are very similar in all
cases. Each node would contain one list of its children for simplic-
ity, treating each symmetrically. This approach still presents a few
problems.

Context-free grammars use recursion to deal with lists of data. If
the generated tree mirrored this exactly, the tree would not be ideal
for our algorithm. This kind of unbalanced trees would increase
the number of iterations that our algorithm takes. We could solve
this problem by augmenting the context-free grammar with simple
annotations for each non-terminal that we desire to be flattened.
The tree builder would simply flatten all non-terminals of this type,
so that the the entire list remains on the same level.

Another problem with automated tree processing is that the syn-
tactic validity of the output from a particular configuration cannot
always be guaranteed when given an arbitrary context-free gram-

mar. As a simple example, consider arithmetic expressions from
the C programming language. The addition expression can be rep-
resented as an expression followed by the terminal ‘+’ followed
by another expression. If either the right or left subexpression is
removed, the terminal ‘+’ must also be removed. For simplicity,
we could treat the ‘+’ operator like any other removable node in
the tree. The Delta Debugging algorithm would thus attempt con-
figurations with or without the ‘+’ operator, sometimes producing
syntactically invalid test-cases.

From a practical point of view, producing some invalid config-
urations is not a significant loss considering the added generality.
We may perform more tests than absolutely necessary, but we still
gain over the original Delta Debugger from trying configurations in
a hierarchical manner. This algorithm would remove subtrees from
the input as early as possible, much like our original algorithm.

Finally, for some input types, executing ddmin over all nodes
at the same level is not necessary. If this is the case, we may be
able to call ddmin on only the children of a parent. By making the
individual calls to ddmin smaller, we limit its worst-case behavior.
The algorithm would mirror a breadth-first search.

7. CONCLUSIONS
In this paper, we have presented HDD, a Hierarchical Delta De-

bugging algorithm that exploits input structure to minimize failure-
inducing inputs. We have evaluated the algorithm on some real-
world examples. Our empirical evaluation confirms that Hierarchi-
cal Delta Debugging can reduce the number of generated tests and
at the same time produce smaller output than the original Delta de-
bugging algorithm. Although some simplicity is lost, if projects
have many non-trivial bug reports, the required work to implement
the necessary tree manipulating routines is worthwhile. In these
scenarios, input minimization without structural knowledge of the
data does not scale. Here are a few interesting directions for future
work: (1) We plan to examine alternate techniques of optimizing
simplification by exploiting node independence. One possible ap-
proach is the aforementioned branch containment technique to limit
ddmin to children of a particular parent node. We believe this yields
significant speedups for certain inputs; and (2) it is also interesting
to provide a general context-free grammar framework to facilitate
the adoption of this technique.

Acknowledgments
We are grateful to Prem Devanbu for his suggestions on conducting
an evaluation and his feedback on drafts of this paper, and to Earl
Barr, Christian Bird, Ron Olsson, Chad Stirling, Gary Wassermann,
and Andreas Zeller for feedback on drafts of this paper and for their
encouragement of this work. We would also like to thank the ICSE
anonymous reviewers for their valuable comments.

8. REFERENCES
[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debugging

with dynamic slicing and backtracking. Software - Practice
and Experience, 23(6):589–616, 1993.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN ’90 Conference on
Programming Language Design and Implementation, pages
246–256, June 1990.

[3] T. Ball, M. Naik, and S. K. Rajamani. From symptom to
cause: Localizing errors in counterexample traces. In
Proceedings of 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2003), pages
97–105, 2003.

[4] J.-D. Choi and A. Zeller. Isolating failure-inducing thread
schedules. In ISSTA ’02: Proceedings of the 2002 ACM
SIGSOFT international symposium on Software testing and
analysis, pages 210–220, 2002.

[5] H. Cleve and A. Zeller. Locating causes of program failures.
In Proceedings of the 27th International Conference on
Software Engineering, May 2005. to appear.

[6] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive
program verification in polynomial time. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, pages 57–68, 2002.

[7] A. Groce and W. Visser. What went wrong: Explaining
counterexamples. In SPIN 2003, pages 121–135, 2003.

[8] R. M. Karp. Reducibility among combinatorial problems. In
Complexity of Computer Computations, pages 85–103.
Plenum Press, NY, 1972.

[9] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In Proceedings of the
ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, San Diego,
California, June 9–11 2003.

[10] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language
Design and Implementation, pages 15–26, June 2005.

[11] B. P. Lientz, E. B. Swanson, and G. E. Tompkins.
Characteristics of application software maintenance.
Commun. ACM, 21(6):466–471, 1978.

[12] R. Manevich, M. Sridharan, and S. Adams. PSE: explaining
program failures via postmortem static analysis. In SIGSOFT
’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software
engineering, pages 63–72, 2004.

[13] S. McPeak. Elsa: The Elkhound-based C/C++ parser.
http://www.cs.berkeley.edu/~smcpeak/elkhound/

sources/elsa/index.html.
[14] C. Sterling and R. A. Olsson. Automated bug isolation via

program chipping. In Sixth International Symposium on
Automated Debugging and Analysis-Deiven Debugging
(AADEBUG’05), 2005. To appear.

[15] F. Tip. A survey of program slicing techniques. Journal of
programming languages, 3:121–189, 1995.

[16] M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering, pages
439–449, 1981.

[17] M. Weiser. Programmers use slicing when debugging.
Communications of the ACM, 25(7):446–452, 1982.

[18] D. B. Whalley. Automatic isolation of compiler errors. ACM
Trans. Program. Lang. Syst., 16(5):1648–1659, 1994.

[19] A. Zeller. Isolating cause-effect chains from computer
programs. In Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages
1–10, 2002.

[20] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Software Engineering,
28(2), Febuary 2002.

