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Abstract
When programmers encounter an unfamiliar API library, they often
need to refer to its documentations, tutorials, or discussions on de-
velopment forums to learn its proper usage. These API documents
contain valuable information, but may also mislead programmers
as they may contain errors (e.g., broken code names and obsolete
code samples). Although most API documents are actively main-
tained and updated, studies show that many new and latent errors
do exist. It is tedious and error-prone to find such errors manually as
API documents can be enormous with thousands of pages. Existing
tools are ineffective in locating documentation errors because tra-
ditional natural language (NL) tools do not understand code names
and code samples, and traditional code analysis tools do not under-
stand NL sentences. In this paper, we propose the first approach,
DOCREF, specifically designed and developed to detect API doc-
umentation errors. We formulate a class of inconsistencies to in-
dicate potential documentation errors, and combine NL and code
analysis techniques to detect and report such inconsistencies. We
have implemented DOCREF and evaluated its effectiveness on the
latest documentations of five widely-used API libraries. DOCREF
has detected more than 1,000 new documentation errors, which we
have reported to the authors. Many of the errors have already been
confirmed and fixed, after we reported them.

Categories and Subject Descriptors D.2.2 [Design Tools and
Techniques]: Software libraries; D.2.7 [Distribution, Maintenance,
and Enhancement]: Documentation; I.7.2 [Document Prepara-
tion]: Hypertext/hypermedia

General Terms Documentation, Experimentation, Reliability

Keywords API documentation error, Outdated documentation

1. Introduction
Programmers increasingly rely on Application Programming Inter-
face (API) libraries to speed up development [29]. However, stud-
ies [12, 31] show that it is difficult to learn and use unfamiliar APIs,
partly due to poorly designed or poorly documented API libraries.
To learn unfamiliar APIs, programmers often read various API doc-
umentations such as API references, tutorials, wikis, and forum dis-
cussions [26]. API documentations are useful for programmers to
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understand API usage, but may mislead programmers, because they
can also contain various documentation errors [22, 35].

There are a few typical types of documentation errors. First, API
documentations may have grammatical errors, placing unnecessary
barriers on programmers to learn API usage [35]. Second, API doc-
umentations may describe out-of-date API usage, likely confusing
and misleading programmers. For example, the API reference for
Lucene 3.5 includes the following code snippet:

This can be done with something like:

public TokenStream tokenStream(...) {
final TokenStream ts =
someAnalyzer.tokenStream(fieldName, reader);

TokenStream res = new TokenStream(){
TermAttribute termAtt = addAttribute(...);

...
}

This code sample uses a TermAttribute class, which is dep-
recated. A programmer reported this error and submitted a patch
for the code sample.1 The patch was accepted, and the correct code
sample from Lucene 3.6 is:

This can be done with something like the following (note,
however, that StopFilter natively includes this capability
by subclassing FilteringTokenFilter):

public TokenStream tokenStream(...) {
final TokenStream ts =
someAnalyzer.tokenStream(fieldName, reader);

TokenStream res = new TokenStream(){
CharTermAttribute termAtt = addAttribute(...);

...
}

In particular, the deprecated class is replaced with an up-to-date
CharTermAttribute class.

Third, API documentations can even describe illegal API usage.
For example, J2SE’s latest API reference2 contains the following
code sample:

if (ss.isComplete() && status == SUCCESS){
...
ldap.in = new SecureInputStream(ss, ldap.in);
ldap.out = new SecureOutputStream(ss, ldap.out);
...

}

The above code sample uses SecureInputStream and Secure-
OutputStream. We examined all the releases of J2SE, but did not
find the two classes. Such illegal code samples can easily confuse
and frustrate programmers. For this example, on the discussion of a

1 https://issues.apache.org/jira/browse/
LUCENE-3666
2 http://docs.oracle.com/javase/7/docs/api/javax/
security/sasl/SaslServer.html



reported bug,3 a programmer, Philip Zeyliger, complained to other
programmers about the above code sample: “Isn’t it totally bizarre
that the SaslServer javaDoc talks about “SecureInputStream”, and
there doesn’t seem to be such a thin(g)? I think they must have
meant com.sun.jndi.ldap.sasl.SaslInputStream, which seems to be
part of OpenJDK...”

1.1 The Problem
To describe API usage, an API documentation consists of (1) natu-
ral language sentences, (2) sentences with code names (Er), and (3)
blocks of code samples. Here, code names refer to names of code
elements such as classes, methods, variables, and fields. Code sam-
ples refer to code names (Er) and declare new code names (Ed).
For example, Figure 1 shows two paragraphs from Lucene’s API
reference.4 The two paragraphs have natural language sentences,
sentences with code names, and a code sample. Typically, an API
document can have two types of documentation errors:

Natural language errors. In API documentations, natural lan-
guage sentences and sentences with code names can contain syn-
tax errors. Existing natural language tools can produce false errors
for these sentences, since they do not understand code names. For
example, the first sentence in Figure 1 has a code name, Filter-
AtomicReader. Existing document checkers typically identify it
as a typo, since it is unlikely that the class name exists in the dic-
tionary of a spell checker.

Broken code names. In API documentations, sentences with
code names and code samples can have broken code names. If we
use EAPI to denote all the API elements of the latest API library,
an API documentation should satisfy the following criterion:

Er ⊆ EAPI

∪
Ed (1)

The sample page of API reference in Figure 1 violates this criterion.
In particular, the code sample in Figure 1 includes an invocation
to the DirectoryTaxonomyWriter.addTaxonomies() method.
After checking the method, we have found that the API method is
a broken code name, since it does not appear in Ed of the page or
EAPI of the Lucene’s latest API reference.

In an API document, documentation errors confuse program-
mers and can even lead to defects in developed code. It is thus
desirable to detect documentation errors and fix them. To help
fix documentation errors, programmers continually submit found
issues as defects to authors of those documents. On the other
hand, the authors also take much effort to improve document qual-
ity [10, 33, 35]. However, in their daily programming tasks, pro-
grammers still frequently encounter API documentation errors, due
to the following challenges:

Challenge 1. It takes great effort to detect API documentation
errors manually. For example, to determine whether the API refer-
ence in Figure 1 contains out-of-date code names, authors should
examine all the code names in the sentences and the code sample.
They should refer to the latest API reference of lucene constantly
to determine whether the code name is outdated or not. To make
things more difficult, authors often have to maintain a large num-
ber of documents. For example, the API reference of J2SE contains
thousands of pages. It is challenging to detect documentation errors
for all the pages manually.

3 https://issues.apache.org/jira/browse/
HADOOP-6419
4 http://lucene.apache.org/core/4 1 0/
facet/org/apache/lucene/facet/index/
OrdinalMappingAtomicReader.html

Challenge 2. To describe API usage, API documentations typ-
ically consist of both sentences in NLs and code names/samples
in programming languages. To detect API documentation errors, a
tool needs to distinguish and understand NL words, code names,
and code samples. State-of-the-art natural-language tools such as
Standford NLP Parser [19] do not understand code names and code
samples, while code analysis tools such as Polyglot [27] do not un-
derstand NL sentences. Although work exists to analyze API doc-
umentations (see Section 6 for details), the proposed approaches
address different research problems and cannot effectively detect
API documentation errors.

1.2 Contributions
In this paper, we propose the first automatic approach, called
DOCREF, for detecting errors in API documentations. To address
the aforementioned challenges, DOCREF combines natural lan-
guage processing (NLP) [25] with island parsing [7]. This paper
makes the following main contributions:
• The first approach, called DOCREF, that combines NLP tech-

niques with island parsing to automatically detect errors in API
documentations.
• A tool implementation and an extensive evaluation on API

references of five real-world API libraries (e.g., J2SE). Our
results show that DOCREF detects more than one thousand
detected real bugs that are previously unknown. In particular,
48 reported bugs were confirmed and fixed by developers of
API libraries within two weeks after we reported.
The rest of the paper is structured as follows. Section 2 illus-

trates our high-level approach with an example, while Section 3
presents our detailed approach. We present our evaluation in Sec-
tion 4, and discuss limitations of our approach in Section 5. Sec-
tion 6 surveys related work, and Section 7 concludes.

2. Example
This section illustrates major steps of our approach with the API
reference in Figure 1, and explains the technical difficulties to
detect API documentation errors.

Step 1. Extracting code samples. NL sentences and code samples
follow different grammars, and different techniques are needed to
extract Er and Ed from code samples and NL sentences. Thus, we
need to extract code samples from documents first. It is relatively
simple to extract code samples from NL sentences, since code sam-
ples have many code names while NL sentences do not. However,
since API documentations have many sentences with code names,
the difference between code samples and NL sentences sometime
may not be apparent. In particular, Bacchelli et al. [3] show that
it is inefficient to classify source code from other email contents
by traditional text classification techniques [34]. In addition, some
code samples have introductory sentences in natural languages. For
example, the code sample in Figure 1 consists of the introductory
sentence, “For re-mapping the ordinals during index merge, do the
following:”. It is relatively straightforward to distinguish the in-
troductory sentence from the code sample, since they are tagged
differently. However, there is no guarantee that authors do tag them
differently, and Table 1 illustrates some exceptions. A code pars-
er cannot understand NL sentences, and can extract incorrect Ed

and Er from introductory sentences. These introductory sentences
need to be removed from code samples. To address these difficul-
ties, DOCREF extracts code samples according to tags and charac-
teristic differences between NLs and programming languages (see
Section 3.1 for details).

Step 2. Extracting Er and Ed. Next, we need to extract Er and
Ed from documents. For sentences with code names, the difficul-
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Figure 1. A page of API reference for Lucene.

ty lies in extracting and identifying code names from NL words
correctly. Typically, spell checkers report code names in sentences
as typos, since code names unlikely appear in their dictionaries.
We classify reported typos into packages, types, methods, and vari-
ables, according to their context words and the naming convention
of Java (see Section 3.2 for details). For example, based on the first
paragraph in Figure 1, we add to Er two types FilterAtomic-
Reader and DirectoryTaxonomyWriter.OrdinalMap.

For code samples, the main difficulty is in constructing the code
to be parsed. In API documentations, most code samples are code
fragments that do not have any enclosure statements or import
statements. As a result, even an island parser (e.g., PPA [7]) cannot
parse many code samples, and we cannot accurately extract Er

and Ed from these code samples. For example, the code sample
in Figure 1 does not have enclosure statements such as method
or class bodies. The code sample neither has import statements.
We fed the code sample to PPA, but it failed to parse the code. To
address this difficulty, we add enclosure statements and synthesize
import statements for code samples, before we leverage island
parsing to build Abstract Syntax Trees (see Section 3.3 for details).
From a code sample, we extract both Er and Ed. For example,
based on the second statement of the example in Figure 1, we add
map to Ed, and add OrdinalMap and DirectoryTaxonomyWri-
ter.addTaxonomies to Er .

Step 3. Detecting mismatches. Finally, we add all API classes,
interfaces, enums, methods, fields, and parameters of the latest
Lucene to EAPI , and examine code names with Equation 1. There
are two difficulties in this step. First, there are typically many code
names. For example, the API reference of J2SE has thousands of
pages, and each page can have hundreds of sentences with code
names and complicated code samples. Second, API libraries pro-
vide a large number of API elements. For example, J2SE alone
provides thousands of classes, and even more methods and fields.
As a result, Er and EAPI can both be large, and it can take effort to
examine the two sets. To speed up the process, we localize search
scopes and cache already found code names (see Section 3.4 for de-
tails). A mismatch may indicate a real typo or a broken code name.
For example, in Figure 1, we examined the latest API reference of
lucene, and did find the DirectoryTaxonomyWriter.addTaxo-
nomies() method. We reported this issue as an out-of-date error

in API reference, and the developers of Lucene have already fixed
the reported error.

3. Approach
API documentations, such as API references, wiki pages, tutorials,
and forum discussions, are typically in the form of HTML pages.
DOCREF takes HTML documentations and the latest API reference
as inputs, and detects mismatches that indicate errors or smells.
Furthermore, our approach can be easily adapted to analyze other
forms of documentations such as PDF, since DOCREF uses only
one HTML tag and our approach includes an alternative technique
when such a tag is not available.

3.1 Extracting Code Samples
First, as code samples and sentences need to be treated different-
ly, DOCREF extracts code samples from API documentations. Al-
though code samples in different documents have different styles,
we find that many of them follow the W3C guideline5 to place each
block of code inside a pre element. For example, the source file of
Figures 1 is:

...
<p>For re-mapping the ordinals...</p>
<pre...>...// merge the old taxonomy...</pre>

Table 1 shows additional examples of API documentations. Col-
umn “API documentation” lists five typical types of API docu-
mentations, such as API references, wiki pages, tutorials, forum
discussions, and development emails. Column “Code” lists their
source code in HTML. We find that the top four examples all fol-
low the W3C guideline. For API documentations that follow the
W3C guideline, DOCREF extracts code samples by matching the
pre tags in HTML files. In these HTML documents, introducto-
ry sentences and code samples are under different tags. When ex-
tracting code samples by tags, DOCREF separates introductory sen-
tences from code samples by their tags.

API documentations such as development emails are informal.
These documentations often do not follow the W3C guideline, and
tags of code samples are quite ad hoc. For example, the develop-

5 http://www.w3.org/TR/2011/WD-html5-author-20110809/
the-code-element.html
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(a) An API reference of J2SE
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<p>As another example, this code... </p>...
<pre> Scanner sc = new Scanner(new File("myNumbers"));
...</pre>

(b) A page of Wikipedia
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<p>Here is an example in...</p>...
<pre...> <span...>import</span>

<span...>java.util.HashMap</span>
...</pre>

(c) A tutorial of Eclipse
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<p>The <code...>Viewer</code> also allow ...</p>...
<pre...> viewer.addDoubleClickListener(...</pre>

(d) A discussion of StackOverflow
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<p>Server connection handler code:</p>
<pre><code>public void run()
...</code></pre>

(e) A development email of AspectJ
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<p><font...>If I write the advice as follows:</font></p>
<p><b><font...>public</font></b><b><font...>aspect...</p>

Table 1. Additional API documentation examples.

ment email in Table 1 does not follow the W3C guideline. Fur-
thermore, API documentations may be in other forms than HTML
(e.g., PDF), and these documents may not have any tags for code
samples. As a result, we cannot rely on tags to extract code sam-
ples from these documents. Existing approaches use island parsing
to extract code samples from plain texts (see Section 6 for details).
These approaches need to implement an island parser for each pro-
gramming language and may fail to extract code samples, if their
island parsers fail to process some code elements correctly [30].
Instead of island parsing, DOCREF relies on certain characteristics
of plain texts to extract code samples. The insight of DOCREF to
extract code samples is:

NL sentences follow grammars of NL, and code samples follow
grammars of programming languages. As the two types of gram-
mars are different, code samples have different punctuation fre-
quencies from NL sentences, and code samples are ungrammatical
with respect to standard NL grammars.

For each paragraph, DOCREF identifies it as a code sample, if it
satisfies the following two criteria:

1. Punctuation criterion. A code sample should have all the
punctuation marks such as “;”, “(”, “)” and “=”. An existing em-
pirical study [6] shows that the frequencies of the preceding punc-
tuation marks are typically quite low in NL corpora (e.g., English
newspapers). In programming languages, such as Java, C#, and
C++, the preceding punctuation marks are quite common. As a re-
sult, we use these punctuation marks for extracting code samples.

2. NL-error criterion. In linguistics, Fraser et al. [14] define
the grammar of a language as the systematic ways of the lan-
guage through which words and sentences are assembled to convey
meaning. Code samples follow the grammars of programming lan-
guages, which are typically different from NL grammars. As a re-
sult, code samples should have more NL errors than NL sentences.
An NL checker [25] examines four categories of NL errors, such as
spelling errors, grammar errors, style errors, and semantic errors.
Based on the reported NL errors, DOCREF defines an NL-error ra-
tio as follows:

error ratio =
|NL errors|

|words| (2)

When calculating the number of NL errors, DOCREF does not
count typos. The NL checker reports many code names as typos,
since code names are unlikely to appear in its dictionary. If we
calculate typos as NL errors, we cannot distinguish code samples
from sentences with code names.

An alternative way to extract code samples is to calculate the
number of compilation errors that are reported by an island parser.
We find that island parsers (e.g., PPA [7]) typically stop reporting
further compilation errors, after it encounters a critical error. As a
result, an island parser often reports few compilation errors for NL
sentences, since NL sentences are different from code samples in
their grammars, and these differences are often critical errors to an
island parser. On the other hand, an island parser can report many
compilation errors for code samples, since code samples often do



not have a complete compilation unit and corresponding import
statements. It may still be feasible to adapt an island parser for
code extraction, but it is more general to calculate the number of
documentation errors that are reported by an NL checker, since we
do not need to adapt individual parsers to extract code samples in
different programming languages.

As Table 1 shows, some paragraphs may include introducto-
ry sentences before code samples. It is desirable to remove these
sentences, but we cannot find reliable identifiers for the beginning
of code samples, since code samples are typically code fragments.
To remove these introductory sentences, DOCREF first splits each
code sample into two parts by “:”. If the first part does not sat-
isfy our criteria for code samples, and the second part satisfies,
DOCREF removes the first part from the code sample. For example,
DOCREF splits the development email in Table 1 into two parts:

Part 1:
If I write the advice as follows

Part 2:
public aspect SysOutLoggAspect{
...

DOCREF removes the first part, since it does not satisfy our
punctuation criterion and the second part satisfies our criteria for
code samples.

3.2 Extracting Er from Sentences
W3C recommends the use of code tags to represent code names.6

However, we find that many documents do not follow this recom-
mendation. For example, a sentence of Batik’s reference7 is “Cre-
ates a new CombinatorCondition object.”, and its HTML source file
is as follows:

<span...>Creates a new CombinatorCondition object.</span>

Here, CombinatorCondition is a code name, but it does not have
any code tags. As a result, it is unreliable to extract code names
using tags.

As code names are typically abbreviations and camel-case terms
that are unlikely to appear in existing dictionaries, Our underlying
NL checker [25] reports them as typos. However, in practice, we
notice that dictionaries in existing NL checkers are often limited,
and do not cover many computer science abbreviations and terms
(e.g., API, IO, and localhost). To address this limitation, we add
a customized dictionary to our underlying NL checker, so it does
not report those computer science terms and abbreviations as typos.
DOCREF further classifies typos into variables, methods, types, or
packages, with the following two strategies:

1. Context strategy. We call the two words before and after a code
name as the context words of the code name. Context words pro-
vide valuable hints to identify types of code names. For example, a
sentence from the documentation of J2SE is “Retrieves whether or
not a visible row insert can be detected by calling the method Re-
sultSet.rowInserted.” From the context word, “method”, we under-
stand that ResultSet.rowInserted is a method. DOCREF uses
context words to identify types of code names, and the general s-
trategy is as follows:

field, value, parameter, or variable → variable
method, function, or operation → method
class, interface, enum, exception, or object → type
package or subpackage → package

6 http://dev.w3.org/html5/html-author/
7 http://xmlgraphics.apache.org/batik/
javadoc/org/apache/batik/css/engine/sac/
AbstractCombinatorCondition.html

Algorithm 1: parseCodeReference (Recursive)
Input: c is a code name
Output: t is the type of the code name

1 begin
2 if c.indexOf(“(”) > 0 and c.indexOf(“)”) > 0 then
3 t← method

4 else if c.indexOf(“.”) > 0 then
5 if c.toLowerCase() = c then
6 t← package

7 else
8 index← c.indexOf(“.”)
9 c← c.subString(index+1)

10 t← parseCodeReference(c)

11 else if c.indexOf(“ ”) > 0 or c.toUpperCase() = c or
c.toLowerCase() = c then

12 t← variable

13 else if c.charAt(0).isUpperCase() then
14 t← type

15 else
16 words← split c by upper case characters
17 if words start with a verb then
18 t← method

19 else
20 t← variable

21 return t

2. Naming conventions. DOCREF then classifies the remain-
ing code names by their naming conventions [15]. In particular,
DOCREF uses Algorithm 1 to identify types of code names, and on
Line 17, it leverages LingPipe [5] as the underlying part-of-speech
(POS) tagger to determine whether split words start with a verb.

Although it identifies real typos as code names, DOCREF re-
ports most of the real typos as mismatches, since Ed and EAPI

unlikely contain those typos. Authors of API documentations of-
ten ignore reported typos, since many reported typos are actually
valid code names. DOCREF does not report valid code names as
mismatches, thus reducing the manual effort to identify real typos.

3.3 Extracting Er and Ed from code samples
DOCREF leverages island parsing to build Abstract Syntax Trees
(ASTs) for code samples. In API documentations, code samples are
often code fragments, and do not have a complete compilation unit
or import statements. As a result, even an island parser [7] fails
to build ASTs for many code samples. Before DOCREF leverages
island parsing, it constructs code for parsing from code samples.

1. Constructing code for parsing. DOCREF constructs code
based on the compilation result of island parsers. In particular, if is-
land parsers fail to build an AST for a code sample, DOCREF adds
type-declaration statements to the code sample. If island parsers
still fail to build a valid AST, DOCREF then adds both method-
declaration and type-declaration statements to the code sample. If
a valid AST is built, DOCREF visits all SimpleName nodes and
queues EAPI for their fully qualified names (see Section 3.4 for
details of extracting EAPI ). Based on these names, DOCREF adds
import statements to the corresponding code sample. For instance,
DOCREF adds type-declaration and method-declaration statements
to the code sample in Table 1a, and adds two import statements,
based on the queried fully qualified names for Scanner and File.
The constructed code of the code sample is:

import java.util.Scanner;



import java.io.File;
public class EnclosureClass{

public void enclosureMethod(){
Scanner sc = new Scanner(new File("myNumbers"));
while (sc.hasNextLong()){

long aLong = sc.nextLong();
}

}
}

2. Analyzing parsed ASTs for Er and Ed. Code samples have
references to existing code elements (Er), and declare new code
elements (Ed). For example, the “Scanner sc” expression has a
code reference to the Scanner class and declares a new sc vari-
able. Latter sentences may refer to sc, when explaining its usage.
To be consistent with the code names in Section 3.2, DOCREF ex-
tracts three types of code names such as, types (classes, interfaces,
enums, and exceptions), methods (constructors and methods), and
variables (parameters, local variables, and fields), from code sam-
ples. DOCREF does not extract packages from import statements,
since these statements are added by itself. In particular, DOCREF
uses the following rules to extract Er:
1. For each a.f expression where a is a variable and f is a field,

DOCREF adds both a and f to Er .
2. For each T.f expression where T is a type and f is a field,

DOCREF adds f to Er . Here, DOCREF does not add T to Er ,
since island parsers add T to the fully qualified name of f.

3. For each a.m(p, ...) expression where a is a variable, m is a
method, and p is a parameter, DOCREF adds a, m, and {p,...}
to Er .

4. For each T.m(p, ...) expression where T is a type, m is a
method, and p is a parameter, DOCREF adds m and {p,...} to
Er .

5. For each m(p,...) expression where m is a method and p is a
parameter, DOCREF adds m and {p,...} to Er .

6. For each (T)a cast expression where T is a type and a is a
variable, DOCREF adds both T and a to Er .

7. For each T a declaration expression where T is a type and a is
a variable, DOCREF adds T to Er .

8. For each T m(T1 p1,...) throws E1... expression where
T is a return type, m is a method, p1 is a parameter, T1 is the
type of p1, and E1 is a thrown exception, DOCREF adds T,
{T1,...} and {E1,...} to Er .

9. For each class|interface|enum T extends T1... imp-
lements I1 ... expression where T is a declared class, in-
terface, or enum, T1 is a type, and I1 is an interface, DOCREF
adds {T1,...} and {I1,...} to Er .
DOCREF uses the following rules to extract Ed:

1. For each T a declaration expression where T is a type and a is
a variable, DOCREF adds a to Ed.

2. For each T m(T1 p1,...) throws E1... expression where
T is a return type, m is a method, p1 is a parameter, T1 is the
type of p1, and E1 is a thrown exception, DOCREF adds m and
{p1,...} to Ed.

3. For each class|interface|enum T extends T1... imp-
lements I1 ... expression where T is a declared class, in-
terface, or enum, T1 is a type, and I1 is an interface, DOCREF
adds T to Ed.
For example, Er extracted from the code sample in Table 1a

contains the following code names:
type - java.util.Scanner
method - java.util.Scanner.Scanner

java.io.File.File
java.util.Scanner.hasNextLong
java.util.Scanner.nextLong

Ed extracted from the code sample in Table 1a contains the follow-
ing code names:
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Figure 2. A paragraph of Lucene’s API reference.

variable - sc, myNumbers, and aLong

Here, when extracting fully qualified names, DOCREF ignores the
names of enclosure methods and types that are added by itself. In
addition, some resolved fully qualified names may be incorrect. For
example, the API reference8 of Lucene contains the following code
sample:
public TokenStream tokenStream(...){

final TokenStream ts = someAnalyzer.tokenStream(...);
...

}

In this example, someAnalyzer refers to analyzers that are
implemented by programmers, but an island parser considers it as
a class name. As a result, the resolved fully qualified name of the
method in the second line is someAnalyzer.tokenStream. For
extracted fully qualified names of variables and methods, DOCREF
uses Algorithm 1 to check whether the extracted class names are
valid and removes those invalid names. As someAnalyzer is not
a valid class name, DOCREF removes the name, and the extracted
method name becomes tokenStream.

3.4 Checking code names
DOCREF extracts EAPI from API references, which define API el-
ements of an API library in a semi-structured form. In particular,
DOCREF extracts four types of API elements, such as types (class-
es, enums, interfaces, and exceptions), variables (parameters and
fields), packages, and methods (constructors and methods). After
that, DOCREF checks code names of each document with the fol-
lowing steps.

Step 1. Removing invalid code names from Er . Some code
names refer to code elements that should be implemented by pro-
grammers. For example, the API reference of J2SE9 contains the
following code sample:
EventListenerList listenerList = new EventListenerList();
FooEvent fooEvent = null;
public void addFooListener(FooListener l){

listenerList.add(FooListener.class, l);
}...

Here, FooEvent and FooListener are two classes that are sup-
posed to be implemented by programmers. DOCREF uses the char-
acteristics of names to filter these code names. For each code name
in Er , DOCREF splits the name into words delimited by uppercase
letters. If the split words of a name contain words such as “foo”,
“my”, “something”, “somewhere”, or “some”, DOCREF removes
the code name from Er .

Some code names refer to primitive types (e.g., int). DOCREF
filters these types, since API libraries do not provide definitions for
primitive types.

Step 2. Resolving attached URLs. Code names can have at-
tached URLs to their API references. For example, Figure 2 shows
some sentences with code names. In these sentences, Position-
IncrementAttribute.setPositionIncrement(int) has an
attached URL, while StopFilter does not. For those code names
with attached URLs, we could resolve whether such URLs are valid

8 http://lucene.apache.org/core/4 1 0/core/org/
apache/lucene/analysis/package-summary.html
9 http://docs.oracle.com/javase/7/docs/api/javax/
swing/event/EventListenerList.html



Name Version P N R C
Lucene 4.1.0 2,157 24,354 19,632 365
Batik 1.7 1,876 26,531 22,409 75

Hadoop 2.0.3alpha 734 12,132 7,359 93
Uimaj 2.4.0 433 7,970 7,246 4
J2SE 7.0 4,723 157,045 112,503 2,214

Total 9,923 228,032 169,149 2,751

Table 2. API references.

to save the matching effort. If an attached URL is valid, DOCRE-
F puts its corresponding code name into the matched category to
reduce the matching effort.

Step 3. Matching code names. For the remaining code names,
DOCREF searches Ed of the document. After that, for those code
names that are not found, DOCREF further searches EAPI in a
conservative manner. First, if a method or variable does not con-
tain the name of its declared type, DOCREF searches all the types
for the method or variable. Second, document authors can use plu-
ral forms, since code names are nouns in sentences. If DOCREF
cannot find a code name, it resolves the stem of the code name
and searches the stem. Finally, document authors may use sim-
ple regular expressions to denote multiple code names. For ex-
ample, the J2SE’s API reference10 contains the sentence: “Extra
buttons have no assigned BUTTONx constants as well as their
button masks have no assigned BUTTONx DOWN MASK con-
stants.” In this sentence, BUTTONx DOWN MASK denotes the three
fields, such as BUTTON1 DOWN MASK, BUTTON2 DOWN MASK, and
BUTTON1 DOWN MASK, declared in InputEvent.11 If DOCREF can-
not find a code name, it tries to search it as a regular expression.
For this example, DOCREF searches variables that start with “BUT-
TON” and end with “ DOWN MASK”, and thus finds the preced-
ing three API fields.

When describing API usage, a document typically does not refer
to Ed in other documents, so that programmers do not need to read
multiple documents to understand API usage. This characteristic
allows DOCREF to check documents in parallel. Among all the
search threads, DOCREF maintains a found list and a not found
list. When locating a code name, each thread checks the two lists.
If found, the code name is put into the corresponding category. If
not found, DOCREFs tries to locate the code name, and updates the
two lists accordingly.

4. Evaluation
We implemented DOCREF and conducted an extensive evaluation
using the tool. In our evaluation, we address the following two main
research questions:

(RQ1) How effectively does DOCREF detect unknown errors in
API documentations (Section 4.1)?

(RQ2) How accurate is DOCREF (Section 4.2)?

RQ1 mainly concerns the effectiveness of DOCREF for detect-
ing real errors, while RQ2 mainly concerns the effectiveness of
DOCREF’s internal techniques.

Our result shows that DOCREF detects more than one thousand
documentation errors and bad smells with reasonable high preci-
sion and recall. In particular, 48 reported errors were fixed within
two weeks after we reported them.

10 http://docs.oracle.com/javase/7/docs/api/java/
awt/event/MouseEvent.html
11 http://docs.oracle.com/javase/7/docs/api/java/
awt/event/InputEvent.html

4.1 RQ1: Detecting Unknown Errors
4.1.1 Study Setup
We choose API references as evaluation subjects to investigate the
first research question for the following considerations. First, ex-
isting studies [35] show that developers of API libraries constantly
fix errors in API references, and programmers who read API ref-
erences also often report found errors through bug-report systems.
As other types of API documentations, such as forum discussions
and tutorials, are not revised as frequently as API references are,
it is more challenging to detect unknown errors in API references
than in other types of API documentations. Second, API references
typically contain thousands of pages, while other types of API doc-
umentations may not have as many pages. For example, an API li-
brary may have only several pages of tutorials. As a result, it could
take much more efforts to detect errors in API references. Final-
ly, other studies [26] also show that programmers of client code
frequently refer to API references when they encounter unfamiliar
API usage. Thus, it is important to detect errors in API references.

Table 2 shows the API references used as subjects in our evalua-
tion. Column “Name” lists the names of API libraries, and column
“Version” lists their versions. All the API libraries are the latest re-
leases at the time when we conducted the evaluation. Column “P”
lists the number of pages in these API references. In an API refer-
ence, each type (class, interface, enum, and exception) has a page,
and each package also has one. In total, our subject API references
contain thousands of pages. DOCREF classified contents of pages
into NL sentences, sentences with code names, and code samples.
Column “N” lists the number of NL sentences. Column “R” lists
the number of sentences with code names. The results highlight the
importance of our approach, since about half of the sentences have
code names. Column “C” lists the number of code samples. Com-
pared with number of pages, we find that API references do not
contain many code samples. However, as code samples are quite
important for programmers to understand API usage [18], it is es-
sential to present correct code samples.

4.1.2 Empirical Results
Table 3 shows our overall results. Column “Mismatch” shows the
number of detected unique mismatches. Different pages may have
the same mismatch, and we count them as a single one. For ex-
ample, DOCREF detected that the API references of UIManager,12

MetalLookAndFeel,13 and DefaultMetalTheme14 have the same
typo, “sytem”. Table 3 counts it as a single mismatch. We inspect-
ed the mismatches and classified them into three major categories:
errors, smells, and false alarms.

Documentation errors. Column “Error” lists the detected docu-
mentation errors. Subcolumn “T” lists the number of NL words
with spelling errors. We see that all the API references have no-
table numbers of typos. Their authors may have ignored warnings
from spell checkers, because too many reported warnings are actu-
ally valid code names. Subcolumn “C” lists the number of broken
code names. To better present the broken code names, we break
them down into four categories, and Table 4 shows the results.
1. Outdated code names. In Table 4, column “Outdated” lists the
number of outdated code names. In earlier versions, developers re-
fer to some API elements in sentences or code samples, but later
forget to revise these sentences or code samples accordingly when

12 http://docs.oracle.com/javase/7/docs/api/javax/
swing/UIManager.html
13 http://docs.oracle.com/javase/7/docs/api/javax/
swing/plaf/metal/MetalLookAndFeel.html
14 http://docs.oracle.com/javase/7/docs/api/javax/
swing/plaf/metal/DefaultMetalTheme.html



Name Mismatch
Error Smell False alarm

T C % I W % Er Ed Dic EAPI %
Lucene 512 58 96 30.1% 42 18 11.7% 37 23 3 235 58.2%
Batik 460 198 52 54.3% 33 7 8.7% 18 5 144 3 37.0%

Hadoop 284 59 144 71.5% 4 0 1.4% 21 13 3 40 27.1%
Uimaj 222 104 49 68.9% 9 7 7.2% 18 6 2 27 23.9%
J2SE 2086 463 432 42.9% 92 240 15.9% 226 134 127 372 41.2%
Total 3564 882 773 46.4% 180 272 12.7% 320 181 279 677 40.9%

T: typos. C: broken code names; I: private code names; W: incorrectly classified code names; Er : false alarms that are
related to false Er ; Ed, Dic, EAPI : false alarms that are related to incomplete Ed, dictionary, or EAPI , respectively.

Table 3. Overall result.

they delete these API elements. For example, Figure 1 shows a de-
tected outdated code name that was confirmed by the developers of
Lucene. In Lucene’s reference of the same version, our tool detect-
ed that the API references of DateTools15 and QueryParser-
Base16 talk about RangeQuery. According to Lucene’s change
log,17 RangeQuery is already deleted in its latest version. As an-
other example, the API reference of DocumentAnnotation18 con-
tains the sentence: “created and made accessable via a call to
the JCasImpl.getDocumentAnnotationFs() method.” Although an
earlier version has the JCasImpl.getDocumentAnnotationFs
method,19 it was deleted from the latest version.

Sometimes, an API element is not deleted, but moved to other
libraries in the latest version. For example, the API reference of
Configuration20 contains the code sample:
Login {

com.sun.security.auth.module.UnixLoginModule required;
com.sun.security.auth.module.Krb5LoginModule optional
...

};

The API reference of J2SE 6.0 contains the two classes Unix-
LoginModule and Krb5LoginModule. In J2SE 7.0, both classes
are moved from J2SE to an external module.

When Lethbridge et al. [22] enumerate the characteristics of bad
software documentations, the authors list “out of date” as the first
characteristic. Our results confirm that poor API documentations
also have such characteristics. Developers of API libraries may
forget to update corresponding contents after they have deleted API
elements. These contents describe out-of-date API usage that can
mislead programmers. Using our tool, API library developers can
revise such out-of-date contents to improve documentation quality.
2. Bizarre code names. We have noticed that some code names
cannot be found in any releases of API libraries. In Table 4,
column “Bizarre” lists the number of these bizarre code names.
One such example is the SecureInputStream class that we
discussed in Section 1. For another example, the API reference
of TextAttribute21 refers to a bizarre field, “An intermediate

15 http://lucene.apache.org/core/4 1 0/core/org/
apache/lucene/document/DateTools.html
16 http://lucene.apache.org/core/4 1 0/queryparser/
org/apache/lucene/queryparser/classic/
QueryParserBase.html
17 http://lucene.apache.org/core/4 1 0/changes/
Changes.html
18 http://uima.apache.org/d/uimaj-2.4.0/apidocs/
org/apache/uima/jcas/tcas/DocumentAnnotation.html
19 http://javasourcecode.org/html/open-source/uima/
uima-2.3.1/org/apache/uima/jcas/impl/JCasImpl.
html
20 http://docs.oracle.com/javase/7/docs/api/javax/
security/auth/login/Configuration.html
21 http://docs.oracle.com/javase/7/docs/api/java/
awt/font/TextAttribute.html

weight between WEIGHT LIGHT and WEIGHT STANDARD.”
We examined all the released versions of J2SE, but did not find
WEIGHT STANDARD.

When programmers encounter bizarre code names, they have to
guest what these names actually refer to. For example, in Section 1,
the programmer guessed that SecureInputStream actually refers
to SaslInputStream. However, if the guess is wrong, program-
mers can easily introduce defects into their developed code.

In some cases, we can find an API element with a similar name.
For example, the API reference of ReentrantLock22 contains the
sentence: “this class defines methods isLocked and getLockQueue-
Length...”. We examined all the released versions of J2SE, but
did not find the latter method. Instead, we found a method with
a similar name, getQueueLength. When developers wrote the
above sentence, there may have existed the getLockQueueLength
method. However, later, the method might have been renamed as
getQueueLength, but the above sentence was not updated accord-
ingly. Existing tools provide strong support for code refactoring
(e.g., renaming method names in this example), but these refactor-
ing tools typically do not update code names in NL documents [24].
We suggest that tool designers and developers should take code
names in NL documents into consideration to complement existing
refactoring tools.
3. Incorrect camel names. Most code names are camel names,
and we find that some camel code names have incorrect uppercase
characters. In Table 4, column “Camel” lists the number of camel
code names with incorrect uppercase characters. For example, the
API reference of SQLPermission23 contains the sentence: “The
permission for which...Connection.setNetworktimeout method...”
The Connection interface does not have such a method, but a
setNetworkTimeout method instead. We classified this type of
mismatches as broken code names since Java is case-sensitive.
4. Code names with typos. Code names can have typos. In Table 4,
column “Typo” lists the number of typos. For example, the API ref-
erence of CancelablePrintJob24 contains the sentence: “Service
implementors are encouraged to implement this optional interface
and to deliver a javax.print.event.PrintJobEvent.JOB CANCELLED.”
The correct name of the above field is JOB CANCELED.

From a programmer’s viewpoint, broken code names are harm-
ful, since they describe obsolete or even incorrect API usage. Pro-
grammers can get frustrated, when they try to check those code
names, but fail to find them. Subcolumn “%” lists the ratio of de-
tected documentation errors to mismatches. In total, about half of
the detected mismatches are documentation errors. We reported the

22 http://docs.oracle.com/javase/7/docs/api/java/
util/concurrent/locks/ReentrantLock.html
23 http://docs.oracle.com/javase/7/docs/api/java/
sql/SQLPermission.html
24 http://docs.oracle.com/javase/7/docs/api/javax/
print/CancelablePrintJob.html



detected documentation errors to API library developers, and 48
reported errors have already been fixed by their developers.

Smells. In Table 3, column “Smell” lists detected smells. In par-
ticular, subcolumn “I” lists the number of private code names in
API implementations. These code names are not API elements, and
should be invisible to programmers. For example, the API reference
of the KEY PAGE HEIGHT field25 is “The pageHeight key” and does
not explain what pageHeight is. We examined the source files of
Batik and found the following related lines of code:
public static final String KEY PAGE HEIGHT STR

= "pageHeight";
...
setTranscoderFloatHint(transcoder, KEY_PAGE_HEIGHT_STR,

KEY_PAGE_HEIGHT);
...
public static void setTranscoderFloatHint(Transcoder

transcoder, String property, TranscodingHints.Key key){
...

In the above code, pageHeight is a the value of KEY PAGE-
HEIGHT STR, and KEY PAGE HEIGHT is the key of the correspond-

ing transcoder. We understand that it is straightforward for API
library developers to use private code names of their API imple-
mentations to explain API usage. However, programmers typically
have no or little knowledge of API library implementations, and
may not understand what these code names are. For this reason, we
consider such practices as bad smells.

Subcolumn “W” lists the number of code names that are incor-
rectly classified, and thus cannot be found. For example, the API
reference of CharStream contains the sentence: “...being matched
after the last call to BeginTOken.” Here, BeginTOken is a method,
but Algorithm 1 classifies it as a type. The number from J2SE is
much higher than the other API libraries. We checked the J2SE’s
API reference, and we found that some packages follow quite dif-
ferent naming conventions. For example, we find that many types
of the org.omg packages follow the C naming convention, and in
these packages, ARG IN is an interface, instead of a field. Høst and
Østvold [17] show that naming conventions can be used to detected
bugs in method names. We consider code names that violate nam-
ing conventions as bad smells in API libraries, since these names
are misleading.

False alarms. In Table 3, column “False alarm” lists false alarms.
Subcolumn “Er” lists the number of false alarms that are related to
false Er . These code names contain the following types:
1. User code elements. When describing API usage, developers
of API libraries may introduce code elements that should be im-
plemented by programmers. As described in Section 3.4, DOCREF
filters this type of code elements by specific words of their names.
However, in some cases, such code names do not contain our de-
fined words, and thus are not filtered. For example, the API refer-
ence of RecursiveAction26 contains the following code sample:
class SortTask extends RecursiveAction{

...
protected void compute() {

sequentiallySort(array, lo, hi);
...

}
}

In the above code, sequentiallySort is a method that should
be implemented by programmers. Our approach fails to filter the
these code names with the technique described in Section 3.4.

25 http://xmlgraphics.apache.org/batik/javadoc/org/
apache/batik/transcoder/print/PrintTranscoder.
html
26 http://docs.oracle.com/javase/7/docs/api/java/
util/concurrent/RecursiveAction.html

Name Outdated Bizarre Camel Typo
Lucene 54 22 15 5
Batik 18 14 16 4

Hadoop 118 5 15 6
Uimaj 12 14 12 11
J2SE 160 119 91 62
Total 362 174 149 88

Table 4. Broken code names.

2. Unavailable code names. To reminder themselves, developers
of API libraries may mention API elements that are unavailable or
under implementation in API references. For example, the API ref-
erence of FacetRequest27 contains the sentence: “TODO (Facet):
add AUTO EXPAND option.” Here, AUTO EXPAND is not imple-
mented yet, and thus cannot be found.

Both types of code names should be filtered from Er , since
programmers do not need any references for them.

Subcolumn “Ed” list the number of false alarms that are related
to incomplete Ed. We find that some code samples are in languages
other than Java:
1. Mathematic equations. Developers of API libraries may use
equations to explain their algorithms. For example, the API refer-
ence of NumericRangeQuery28 contains the mathematic equation:
indexedTermsPerValue = ceil(bitsPerValue / precisionStep)

2. Regular expressions. Developers of API libraries may use regu-
lar expressions to explains syntaxes or grammars. For example, the
API reference of RegExp29 contains the following regular expres-
sions to explain the Automaton:
regexp ::= unionexp

|
unionexp ::= interexp | unionexp (union)
...

3. SQL. Some API libraries are related to databases, and their de-
velopers may use SQL to explain database related usage. For exam-
ple, the API reference of CachedRowSet30 contains the sentence:
“Column numbers are generally used when the RowSet object’s
command is of the form SELECT * FROM TABLENAME...”
4. XML. Developers may use XML to present sample files. For
example, the API reference of WebRowSet31 contains the following
code sample in XML:
<properties>

<command>select co1, col2 from test_table</command>
<concurrency>1</concurrency>
<datasource/>

...

5. C++. Some API libraries support multiprogramming, and their
API references may contain code samples in multiple programming
languages. For example, we find that the API reference of the org.
apache.hadoop.record package32 contains the following code
sample in C++:

27 http://lucene.apache.org/core/4 1 0/facet/org/
apache/lucene/facet/search/params/FacetRequest.
html
28 http://lucene.apache.org/core/4 1 0/core/org/
apache/lucene/search/NumericRangeQuery.html
29 http://lucene.apache.org/core/4 1 0/core/org/
apache/lucene/util/automaton/RegExp.html
30 http://docs.oracle.com/javase/7/docs/api/javax/
sql/rowset/CachedRowSet.html
31 http://docs.oracle.com/javase/7/docs/api/javax/
sql/rowset/WebRowSet.html
32 http://hadoop.apache.org/docs/current/api/org/
apache/hadoop/record/package-summary.html



namespace hadoop {
enum RecFormat{ kBinary, kXML, kCSV };
class InStream {

public:
virtual ssize_t read(void *buf, size_t n) = 0;

...

Our underlying island parser analyzes only Java code. As a
result, our tool fails to extract Ed from code samples in the above
languages and incorrectly reports the corresponding code names as
mismatches.

Subcolumn “Dic” lists the number of false alarms that are relat-
ed to incomplete dictionaries. The corresponding code names con-
tain the following types:
1. Existing standards or specifications. Developers of API li-
braries may refer to specifications. For example, the API reference
of LinearTransfer33 contains the sentence: “This class defines
the Linear type transfer function for the feComponentTransfer fil-
ter, as defined in chapter 15, section 11 of the SVG specification.”
As explained in the sentence, feComponentTransfer is defined
in an external specification.

Developers of API libraries may also refer to existing inter-
national standards. For example, the API reference of ICC Pro-
fileGray34 contains a sentence, “...and the profile contains the
grayTRCTag and mediaWhitePointTag tags”. Here, grayTRCTag
and mediaWhitePointTag are defined by the International Color
Consortium (ICC).35

2. Tool or company names. Developers may describe an external
tool or a company in API references. For example, the API refer-
ence of RecordStore contains the sentence: “A Wmf file can be
produced using the GConvert utility...” Here, GConvert is the name
of an external tool.

We did not add the above names to the customized dictionary of
our tool. As a result, our tool adds these names to Er , and fails to
find them in Ed or EAPI .

Subcolumn “EAPI ” lists the number of false alarms that are re-
lated to incomplete EAPI . Our tool adds packages, types, variables,
and methods to EAPI . However, API libraries provide more names
that should be added to EAPI :
1. Definitions of files or objects. Developers of API libraries may
define formats of files in API references. The definitions of files can
be formal. For example, the API reference of BlockTreeTerms-
Writer36 defines .tim files as follows:

TermsDict(.tim)--> Header, Postings Metadata...
Block--> SuffixBlock, StatsBlock, MetadataBlock
...

Here, the preceding names (e.g., Header) explain the structure of
.tim files.

The definitions of files can also be informal. For example, the
API reference of Marshaller37 enumerates its supported system
properties (e.g., jaxb.encoding).

API library Developers may define the formats of objects in API
references. For example, the API reference of Configuration38

defines the following object:

33 http://xmlgraphics.apache.org/batik/javadoc/org/
apache/batik/ext/awt/image/LinearTransfer.html
34 http://docs.oracle.com/javase/7/docs/api/java/
awt/color/ICC ProfileGray.html
35 http://www.color.org/index.xalter
36 http://lucene.apache.org/core/4 1 0/core/org/
apache/lucene/codecs/BlockTreeTermsWriter.html
37 http://docs.oracle.com/javase/7/docs/api/javax/
xml/bind/Marshaller.html
38 http://docs.oracle.com/javase/7/docs/api/javax/
security/auth/login/Configuration.html

Name{
ModuleClass Flag ModuleOptions;
ModuleClass Flag ModuleOptions;
ModuleClass Flag ModuleOptions;

};

Sometimes, such definitions are quite short. For example, the
API reference of Date39 defines a Date object: “Converts this
Date object to a String of the form: dow mon dd hh:mm:ss zzz
yyyy...” The latter sentences explain the definition: “dow is the day
of the week (Sun, Mon, Tue, Wed, Thu, Fri, Sat)...”

API library developers may even define valid values for parame-
ters or properties in API references. For example, the API reference
of AWTPermission40 defines all the valid inputs for its constructor
(e.g., accessClipboard).
2. File names. Developers of API libraries may introduce related
files names. For example, the API reference of SystemFlavorMap41

contains the sentence: “...the default SystemFlavorMap is initial-
ized by the file jre/lib/flavormap.properties...” Here, flavormap.
properties is a file shipped with J2SE.
3. Incomplete or abbreviation names. Developers of API libraries
may use incomplete code names, if they do not introduce any
ambiguities. For example, the API reference of the Rendering-
Hints field42 contains the sentence: “ALPHA INTERPOLATION
hint is a general hint that provides...” The following sentence
explains the code name: “The allowable values for this hint are
VALUE ALPHA INTERPOLATION SPEED, ...”

Developers may also use abbreviated names of API elements.
For example, the API reference of RenderableImageOp43 con-
tains the sentence: “...then the CRIF.create() method is called...”.
We found that another sentence44 explains CRIF: “The name Con-
textualRenderedImageFactory is commonly shortened to CRIF.”

Our tool did not add these names to EAPI , so it reported their
references as mismatches.

4.1.3 Summary
In summary, our evaluation results show that DOCREF detects more
than 1,000 documentation errors and smells from the latest API
references of five popular API libraries. The results demonstrate
the effectiveness of our approach, since all the detected errors and
smells are previously unknown, and some of them have already
been confirmed and fixed immediately after we reported them. Due
to the complexity of its research problem, DOCREF also reports
some false alarms, which we discuss in more details in Section 5.

4.2 RQ2: Accuracies of DOCREF

4.2.1 Study Setup
We selected the API reference of the analysis45 package as the
subject to investigate the second research question. In total, the
subject contains one package page, one interface page, and 16

39 http://docs.oracle.com/javase/7/docs/api/java/
util/Date.html
40 http://docs.oracle.com/javase/7/docs/api/java/
awt/AWTPermission.html
41 http://docs.oracle.com/javase/7/docs/api/java/
awt/datatransfer/SystemFlavorMap.html
42 http://docs.oracle.com/javase/7/docs/api/java/
awt/RenderingHints.html
43 http://docs.oracle.com/javase/7/docs/api/java/
awt/image/renderable/RenderableImageOp.html
44 http://docs.oracle.com/javase/7/
docs/api/java/awt/image/renderable/
ContextualRenderedImageFactory.html
45 http://lucene.apache.org/core/4 1 0/core/org/
apache/lucene/analysis/package-summary.html



Name
Code sample Code name Mismatch

P R F P R F P R F
analysis 78.9% 100.0% 88.2% 99.7% 89.1% 94.1% 50.0% 100.0% 66.7%
Analyzer 100.0% 100.0% 100.0% 100.0% 80.5% 89.2% 66.7% 100.0% 80.0%

GlobalReuseStrategy n/a n/a n/a 100.0% 93.8% 96.8% n/a n/a n/a
PerFieldReuseStrategy n/a n/a n/a 100.0% 88.9% 94.1% 100.0% 100.0% 100.0%

ReuseStrategy n/a n/a n/a 100.0% 95.2% 97.6% n/a n/a n/a
TokenStreamComponents n/a n/a n/a 100.0% 95.0% 97.4% 100.0% 100.0% 100.0%

AnalyzerWrapper n/a n/a n/a 100.0% 65.6% 79.2% 100.0% 100.0% 100.0%
CachingTokenFilter n/a n/a n/a 100.0% 89.7% 94.5% 100.0% 100.0% 100.0%

CharFilter n/a n/a n/a 100.0% 44.0% 61.1% n/a 0.0% n/a
NumericTokenStream 100.0% 100.0% 100.0% 100.0% 88.0% 93.6% n/a n/a n/a

NumericTermAttributeImpl 100.0% 100.0% 100.0% 100.0% 95.2% 97.5% n/a n/a n/a
Token 100.0% 100.0% 100.0% 100.0% 73.6% 84.8% 100.0% 100.0% 100.0%

TokenAttributeFactory n/a n/a n/a 100.0% 66.7% 80.0% n/a n/a n/a
TokenFilter n/a n/a n/a 100.0% 83.3% 90.9% n/a n/a n/a
Tokenizer n/a n/a n/a 100.0% 91.3% 95.5% 100.0% 100.0% 100.0%

TokenStream n/a n/a n/a 100.0% 77.9% 87.6% n/a n/a n/a
TokenStreamToAutomaton n/a n/a n/a 100.0% 87.5% 93.3% n/a n/a n/a

NumericTermAttribute n/a n/a n/a n/a 0.0% n/a n/a n/a n/a
Total 86.7% 100.0% 92.9% 99.9% 82.9% 90.6% 85.7% 96.0% 90.6%

Table 5. Precision (P), recall (R), and F-score (F) of DOCREF.

class pages. We manually examined these pages and compared the
manual results with DOCREF’s results with the following metrics:

1. True positive (TP). An item that is correctly identified by DOC-
REF.

2. False positive (FP). An item that is not a code name/code
sample/mismatch, but is misidentified by DOCREF.

3. False negative (FN). An item that is a code name/code sam-
ple/mismatch, but was not identified by DOCREF.

Based on these measures, we calculate standard precision, re-
call, and F-score of DOCREF:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F−score =
2× Precision×Recall

Precision+Recall
(5)

4.2.2 Results
Table 5 shows our results. Column “name” lists the short names of
the package, the interface, and the classes. Column “Code sample”
lists the result of identifying code samples. DOCREF achieves high
recall, but relatively low precision, since it may incorrectly identify
outputs as code samples. For example, an output is as follows:

Here is the new output:
This: Noun
demo: Unknown
...

DOCREF identifies it as a code sample, since it is within a pre
tag. If we treat the above output as a plain text, DOCREF will not
identify the output as a code sample, since the output does not
satisfy our punctuation criterion for code samples.

Column “Code name” lists the result of identifying code names.
DOCREF achieves high precision, but relatively low recall. Names
of some API elements are natural words, and our spell checker does
not identify them as typos. For example, the API reference of the
analysis package contains the sentence: “Covers Analyzer and
related classes.” Here, DOCREF fails to identify Analyzer as a
class name. The recall can be improved, if we define more strict

rules for spell checking. For example, it is odd in NL to capitalize
the first character of a noun in the middle of a sentence. If we define
a rule for the above odd usage, DOCREF can identify Analyzer as
a code name correctly.

Column “Mismatch” list the result of identifying mismatches. In
the subject package, DOCREF identifies code elements that should
be implemented by programmers as mismatches, which reduces the
precisions. DOCREF fails to identify code elements whose names
are natural words. As a result, it fails to identify some mismatches,
which reduces its recall. We further discuss this issue in Section 5.

Our approach achieves similar precision and recall for most doc-
uments. However, we also observe that a few documents are quite
different from the others, and our approach achieves much lower
precision and recall on these documents. For example, as shown in
Maalej and Robillard [23], only about 1% API documents describe
the concepts of API libraries. In these documents, authors can in-
troduce definitions of files or objects, and our approach cannot cor-
rectly analyze these definitions as we discussed in Section 4.1.2.
There are also a few documents that contain code samples in lan-
guages other than Java, and our approach cannot extract Ed for
these code samples. Thus, most of the false alarms in Table 3 were
introduced by a small set of documents.

In summary, the results show that our approach achieves rea-
sonably high precision, recall, and F-score.

4.3 Threats to Validity
The threat to external validity concerns the representativeness of
the evaluation subjects. Although we applied our approach on five
popular libraries, our approach is evaluated only on their API ref-
erences. The threat could be mitigated in future work by adddi-
toinal evaluations on more subjects such as tutorials, wiki pages,
and forum discussions. The threat to internal validity concerns hu-
man factors for determining the types of detected mismatches. To
reduce this threat, we inspected mismatches carefully and contact-
ed the developers to confirm bugs. The threat could be reduced by
confirming more bugs with developers in future evaluations.

5. Discussions and Future Work
In this section, we discuss limitations of our approach and avenues
for future work.



Reducing false alarms. The false alarm rate of our approach is
about 40%. It is reasonable, but it can be further reduced. Sec-
tion 4.1.2 provides many concrete examples of false alarms, which
provide valuable hints to reduce false alarms. For example, Sec-
tion 4.1.2 shows that many code samples are in languages other
than Java. Synytskyy et al. [36] propose an island parser for multi-
ple programming languages. In future work, we plan to adapt their
parser to analyze more languages, to help reduce false alarms. As
another example, Section 4.1.2 shows that many terms are defined
in existing standards or specifications. In future work, we also plan
to extract and add these terms to our underlying dictionary, to help
further reduce false alarms.

Classifying reported mismatches. Our current implementation
does not classify mismatches, and we have to manually classify
them. It is desirable to classify them automatically. Our evaluation
results provide valuable hints for classification. For example, if a
mismatch can be found in EAPI of previous versions, it should
be an out-of-date code name. As another example, if a mismatch
can be found in private code names of API implementations, it
should be a bad smell. In future work, we plan to work towards
this direction, so that we can reduce the manual effort to identify
them.

Analyzing API documentations in other formats and program-
ming languages. Some API documentations are using formats
other than HTML (e.g., PDF and CHM). To analyze such docu-
mentations, we can extract and feed plain text to DOCREF, since
DOCREF includes a code-extraction technique for plain text (Sec-
tion 3.1). Many API documentations are for programming lan-
guages other than Java. To analyze such documentations, we need
to extend DOCREF in three aspects. First, we need to revise Algo-
rithm 1, since other programming languages may follow naming
conventions that are different from Java. Second, we need different
strategies to construct complete code from code fragments, since
other programming languages may have different code construc-
tors. Third, we need corresponding island parsers to extract Er and
Ed from the constructed code.

6. Related Work
This section discusses related work and how they differ from our
approach.

Analyzing API documentations. Dagenais and Robillard [8] an-
alyze the production model of writing open source API documenta-
tions. Maalej and Robillard [23] analyze natures of API references.
Buse and Weimer [4] propose an approach to generate comments
for exception clauses via code analysis. Dekel and Herbsleb [11]
propose eMoose that pushes and highlights those rule-containing
sentences from API documentation for developers. Kim et al. [18]
propose an approach that enriches API documents with code sam-
ples mined from code repository. Zhong et al. [40] mine API usage
as patterns, and use patterns as documentations to aid program-
ming. Our approach addresses a different research question from
the previous work.

Zhong et al. [41] propose an approach that infers resource spec-
ifications from API references. Pandita et al. [28] propose an ap-
proach that infers pre-conditions and post-conditions from code
comments. Tan et al. [37] propose an approach that infers rules
(e.g., call sequences between two methods) from code comments.
Tan et al. [38] propose an approach that infers pre-conditions of
exceptions from code comments. The inferred rules are effective to
detect defects in client code, but are not as effective to detect errors
in documentations, since most documents describe correct rules.
Our approach is effective to detect many errors in API documenta-
tions, complementing the previous work.

Extracting code samples from informal documents. Dagenais
and Robillard [9] propose an approach that recovers links between
an API and its learning resources. One step of their approach ex-
tracts code from learning resources. Bacchelli et al. [1, 2] propose
approaches that extract code from emails and recover links between
emails and source code artifacts. Bacchelli et al. [3] propose an ap-
proach that classifies development emails into source code, junk,
patch, stack trace, and natural language text. Rigby and Robil-
lard [30] propose an approach that extracts code samples from in-
formal documents. Our approach also includes an underlying tech-
nique that extracts code samples and code names from informal
documents. The main difference between our approach and previ-
ous approaches lies in that our approach relies on the punctuation
frequency and the NL-error ratio, whereas the previous approaches
rely on island parsing. Our approach is more general, since it does
not need to implement multiple island parsers to extract code in
different programming languages.

Analyzing requirement documents. Kof [20] propose an ap-
proach that uses part-of-speech (POS) tagging to identify missing
objects and actions in requirement documents. Sawyer et al. [32]
propose an approach that uses POS and semantic tagging to support
requirement synthesis. Fantechi et al. [13] propose an approach that
extracts uses cases from requirement documents. Xiao et al. [39]
infers security policies from functional requirements. Le et al. [21]
propose an approach that infers mobile scripts from natural lan-
guage descriptions. Hindle et al. [16] conducted an empirical study
that uses statistical language models to analyze the naturalness of
software. Our approach uses NLP techniques to detect out-of-date
code name in API usage documents, and our documents are quite
different in contents and structures from documents analyzed in
previous work (e.g., requirement documents).

7. Conclusion
API documentations such as API references, tutorials, forum dis-
cussions, and development emails are an essential channel for pro-
grammers to learn unfamiliar API usage. However, these API doc-
umentations can also contain errors or smells that may mislead or
frustrate programmers. In this paper, we have proposed the first
approach that detects errors for API documentations. We conduct-
ed an extensive evaluation on Javadocs of five widely used API li-
braries. The results show that our approach detects more than 1,000
previously unknown errors with relatively high precision and recall.
We have reported detected errors to the developers of API libraries.
Some of the reported errors were confirmed and fixed shortly after
we reported them.
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