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Abstract. In this paper, we study the state equivalences related to stut-
tering and how they relate to various temporal logics without the next-
time operator. We first show that stutter closure of bisimilarity is not
an abstract semantics for STL¥. Then we suggest a new logic STLA¥,
which is a restricted subset of the logic STLY. We show that stutter
closure of bisimilarity is a full abstract semantics for STLA¥. Next, we
suggest a new state equivalence until-bisimilarity and show that it is a
full abstract semantics for STLY. Finally we extend the results to other
logics without the next-time operator.

1 Introduction

In formal verification, property preserving abstractions are very important for
combating the state-space explosion problem. Thus, it is important to study
when two states of an observation structure satisfy the same set of properties
specifiable by logics [1].

A state equivalence ~ is a family of relations such that for each observa-
tion structure, it induces a equivalence relation on the states of that structure.
A few common state equivalences are the observational equivalence =, which
distinguishes any two states with different observations, the state equivalence
=, which distinguishes any two different states, and the universal equivalence,
which does not distinguish between any two states.

Bisimilarity is an important and well-studied state equivalence. It is fully
characterized by a few state logics including STL, CTL, and CT,,. It is usually
the most stringent state equivalence one will consider. Properties specified by
these temporal logics can be checked on the quotient structure with respect to
bisimilarity.

In some systems, especially asynchronous systems, the system may stay in
the same observable state for many rounds. This is called stuttering. For this
kind of systems, sometimes we do not care how many rounds the system stays
in the same observable state before making a transition to a state with different
observable behavior. In this case, instead of considering the original transition
system, it makes sense to consider its stutter closure, in which we add a transition
that bypasses all these states with the same observations. We thus have a notion
of the stutter closure of state equivalences, that is two states are stutter closed
X equivalent if they are X equivalent in the stutter closure, where X stands for
any state equivalence.



With this notion of stutter closure of state equivalences, it is natural for one
to conjecture that the stutter closure of bisimilarity might be a full characteri-
zation of state logics without the next operator such as STLY and CTL_p. The
objective of this paper is to study this notion. It is quite counter-intuitive for
us to find out that the stutter closure of bisimilarity is not an abstract seman-
tics for STL, and thus not an abstract semantics for CTL_c either. However,
we are able to show that the stutter closure of bisimilarity is a full abstraction
of restricted subsets of STLY and CTL_(. The restriction is somewhat natu-
ral since it is not difficult to show that the stutter closure of bisimilarity is an
abstract semantics for LTL without the next-time operator, and the restriction
in a sense mimics that LTL considers linear trajectories instead of branching
trees. Another aspect of this work is the suggestion of a new state equivalence
until-bisimilarity and proving that it is a full abstraction of STL¥ and CTL_(.

The rest of the paper is structured as follows. We first provide some def-
initions. In particular, we define what are state equivalences and the stutter
closure of state equivalences (Section 2). Next, we establish the relationship be-
tween stutter closure of bisimilarity and the logic STL¥ (Section 3). We show
that stutter closure of bisimilarity is not an abstract semantics of STL¥, and
suggest a subset of STLY for which the stutter closure of bisimilarity is its full
abstraction. We then define a new state equivalence and show that it is a full
abstract semantics for STLY (Section 4). Next, we consider the other logics with-
out the next time operator and study their relations with stutter closure of state
equivalences (Sections 5, 6, 7, and 8). Finally we conclude (Section 9).

2 State Equivalences and Their Stutter Closures

In this section, we define state equivalences and the stutter closures of them.
These definitions are taken from [1].

Let ~; and ~, be two state equivalences, we say that they ~; is as distin-
guishing as the state equivalence ~5, written as ~s C ~, if for all observation
structures K, the equivalence ~¥ refines the equivalence ~¥ i.e., each ~X&
equivalence class is a union of ~¥ equivalence classes. We say that ~; and ~
are equally distinguishing if ~; C ~5 and ~9 C ~;. The state equivalences ~;
and ~9 are incomparable if ~; £ ~5 and ~5 [Z ~;. The state equivalence ~4
is more distinguishing than the state equivalence ~ if ~y C ~; and ~; [Z ~5.

A very important state equivalence is called bisimilarity. It is less distinguish-
ing than state equivalence, but more distinguishing than observation equivalence.
Bisimilarity is the state equivalence induced by the coarsest stable refinement of
observation equivalence. Below we give an alternative definition of bisimilarity.

Definition 1 (Bisimilarity). Let K = (X,0!,—,A,{-)) be an observation
structure. The state equivalence m on the states of K is a bisimulation of K if
(1) the partition X' /7 is o stable partition of K and (2) 7 refines the observational
equivalence. Thus, for all states s and t of K, if swt then

(1) {s) = (t);



(2) if s — s, then there is a state t' such that t — t' and s'nt';
(3) if t = t', then there is a state s' such that s — s' and s'wt’.

Two states s and t of K are bisimilar iff there is a bisimulation = of K such
that smt.

Alternatively, bisimilarity can be characterized by the so-called i-step bisim-
ilarity when we view it as games between two players [1].

Definition 2 (i-step bisimilarity). The state equivalences ~*, called i-step
bisimilarity for each natural number i, are defined inductively. The state equiv-
alence =0 coincides with observational equivalence; that is, ~x°=~. For each
natural number i, for every observation structure K = (X,0%,—, A, (), and
for all states s and t of K, let s z?l t iff

(1) {s) = (t); ,
(2) if s — s, then there is a state t' such thatt — t' and s' =% t';
(3) if t — t', then there is a state s’ such that s — s’ and s' =% t'.

Intuitively, two states are bisimilar iff for all natural number 4, the two states
are i-step bisimilar. The following proposition makes the intuition precise.

Proposition 1. Bisimilarity ~P equals the intersection Uien =% of the i-step
bisimilarity equivalences.

A reactive module stutters when its observable states stays unchanged for
some number of update rounds. An asynchronous module may stutter in every
update round. For many of the properties the number of rounds for which a
module stutters before updating its observation is irrelevant, we can combine
many of these rounds into a single rounds. This suggests that we add a transition
from state s to state t if there is a trajectory from s to ¢ on which the observation
stays unchanged.

Definition 3 (Stutter Closure). Let K = (X,0f,—, A, {(-))) be an observa-
tion structure. For two states s and t of K, let s =5 t if there is an source-s
K -trajectory So...m such that (1) for all 0 <i <m, {s;) = (s), and (2) s;m =t.
The relation —° is called the stutter-closed transition relation of K. The stutter
closure K° is the observation structure (X,of,—5 A, {-)).

Remark 1. Notice that it is not necessarily the case that the stutter closure
of an observation structure K is again an observation structure. Thus, when
we discuss properties about stutter closures, it only makes sense to work with
structures whose stutter closure is again an observation structure. In the rest of
the discussion, we consider only observations structures whose stutter closure is
again an observation structure.

Definition 4 (Stutter Closure of State Equivalences). Let ~ be a state
equivalence, and let K be an observation structure. For two states s and t of K,
s 2k t, for the stutter closure = of ~, if s ~gs t. The induced state equivalence
= s called the stutter closure of ~. The state equivalence ~ is stutter-insensitive
if 2=~
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Fig.1. An observation structure.
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Fig. 2. The stutter closure of the observation structure in Figure 1.

We denote by =P the stutter closure of bisimilarity (SB).

Definition 5 (i-step Stutter-closed Bisimilarity). Let K be an observation
structure, two states s and t are i-step stutter-closed bisimilar iff they are i-step
bisimilar in K°, the stutter closure of K.

3 8B and STLY

In this section, we study the relation between the stutter closure of bisimilarity
and the state logic STLY.

3.1 SB is not an Abstract Semantics of STLY

It is very tempting to think that the stutter closure of bisimilarity is an abstract
semantics for STLY. However this is not the case.

Consider the observation structure in Figure 1 and its stutter closure in
Figure 2. Notice that the states s and ¢ are stutter-closed bisimilar. However
for the STL¥ formula ¢ = (p3Uq)IUr, we have t =k ¢, but s Ex ¢. Thus, the
stutter closure of bisimilarity is not an abstract semantics for STLY.



3.2 8B is a Full Abstraction of STLAY

In this part, we define a temporal logic STLA” which is a restricted subset of
STLY and show that SB is a full abstract semantics for this logic.

Definition 6 (STLAY). The logic STLAY is a subset of STLY. Formulas of the
logic are described by the grammar

pu=pl o1V | ¢ |pIUUep
where p ranges over atomic formulas over observations.

Proposition 2. The state equivalence stutter-closed bisimilarity is a full ab-
stract semantics for STLAY.

Proposition 2 follows from Lemma 1 and 2.

Lemma 1. Stutter-closed bisimilarity is an abstract semantics for STLAY.

Proof. Let K be an observation structure. We wish to show that for any STLA
formula ¢ for any two states s and ¢ with s =8 ¢ s =k ¢ iff t Ex ¢. We prove
the statement by an induction on the structure of ¢.

¢ = p for some atomic formula p.
Since ((s) = (8), s x p iff ¢ =i p.

¢=¢1V o
S |:K¢iﬁ$ ':K ¢1 or s |:K¢2 iff ¢ IZK ¢1 OrtIZK ¢2 iff ¢ ':K ¢

¢ = o1
s |=K oiff sEg ¢ iff t B ¢y iff |=K @.

¢ =pIUUe.
Assume s =P t. Suppose s =k ¢. Then there exists a source s trajectory
S0 =85,...,5 such that s; Fx p for 0 <i < k and s;, =i ¢1. Since s =B ¢,
there exists a source t trajectory to = t,...,tr in Kg, the stutter closure
of K, with s; =P t; for 0 < i < k. Thus there exists a source ¢ trajectory
ug =t,...,u =ty in K such that u; Ex p and u; Ek ¢1. Hence ¢t =g ¢.
Symmetrically, we can show that if ¢t =k ¢ then s =k ¢. Thus, s Ex ¢ iff
tEx ¢

Lemma 2. For any observation structure K, any two non SB states can be
distinguished by a STLAY formula.

Proof. Let K be an observation structure. We show that for any natural number
i, any two states s and ¢ which are not i-step stutter-closed bisimilar can be
distinguished by a STLA formula ¢, i.e., s Ex ¢ but t #x ¢. The proof is by
induction on 1.

1. Base case: i = 0. We can simply let ¢ = {(s)) since O-step stutter-closed
bisimilarity coincides with the observational equivalence .



2. Inductive case: ¢ = k + 1. Assume s and t are not (k + 1)-step stutter-
closed bisimilar. Further we can assume that s and t are k-step stutter-
closed bisimilar, otherwise, by induction, there is a STLA” formula ¢ such
that s |=K ¢ but tij ¢
Since s and t are not (k + 1)-step stutter-closed bisimilar, then either (1)
there exists a state s’ with s —x s’ and for all # with ¢ — s ', we have
s’ and t' are not k-step stutter-closed bisimilar; or (2) there exists a state
t' with ¢ =g t' and for all s’ with s = gs s, we have t' and s’ are not k-
step stutter-closed bisimilar. W.L.O.G., assume (1) holds. Notice that there
are only finitely many ¢ with t — s ' and (') = ((s'), since K is an
observation structure. Denote the set of such ¢'’s by S, i.e., S ={t' |t = ks
' A (t') = (s')}. Consider the following STLA¥ formula

¢ = (NIUKD AN\ (s51)
tes
where (s',#') is any STLAY such that s' =g (s',t') but t' Ex ¢(s',t).
Such formulas exist by induction.
Clearly s |Ex ¢. However, t i ¢. Since if it were, then there exists a
source-t trajectory to = t,...,t; such that {(¢;)) = (s) for 0 < i < k and

tr Ex (') A Npes¥(s',t')). Thus t, € S since (tx)) = ((s'). Hence we
have t;, Ex 1¥(s',tr), a contradiction.

4 A Full Abstraction of STLY

In this section, we introduce a new state equivalence until-bisimilarity. It is
denoted by ~“B. We show that ~“B is a full abstract semantics of STL¥.

Definition 7 (Until-Bisimilar). Let K be an observation structure, two states
s and t are until-bisimilar, denoted by s ~%P t, iff

(1) () = ()

(2) for every states s' with s — s', there exists a source t trajectory

to =1t,... ,tg, such that t; ~4B s for 0 <i <k and t, ~%P §';
(8) for every states t' with t — t', there exists a source s trajectory
80 = 8,... 8k, such that s; ~%P t for 0 <i < k and sy ~4B t'.

As in the case of bisimilarity, we can have a similar notion of i-step until-
bisimilarity.

Definition 8. We define i-step until-bisimilarity denoted by ~* inductively. The
state equivalence ~° is the same as the observational equivalence, i.e., ~° = ~.
For any observation structure K and natural number i, two states s and t of K
are (i + 1)-step until bisimilar, that is s ~*1 t iff

(1) (s) = (t);



(2) for every state s' such that s — s', there exists a source t trajectory
to=t,...,t such thatt; ~* s for 0 <i < k and t ~* s';

(8) for every state t' such that t — t', there exists a source s trajectory
80 =8,...,8, such that s; ~*t for 0 < i < k and s, ~* t'.

Proposition 3. Until-Bisimilarity ~YB equals the intersection Nien ~ of the
i-step until-bisimilarity. In other words, for any observation structure K, for any
states s and t of K, s ~4B t iff s ~' t for all i.

In the rest of the section, we show that until-bisimilarity is a fully abstract
semantics of STLY.

Proposition 4. The state equivalence until-bisimilarity ~“P is a fully abstract
semantics for STLY.

Proposition 4 follows from Lemma 3 and 4.
Lemma 3. Until-bisimilarity is an abstract semantics for STLY

Proof. Let K be an observation structure. We wish to show that for any two
states s and t with s ~4P t, for any STLY formula ¢, s =x ¢ iff t Fx ¢. We
prove the statement by an induction on the structure of ¢.

¢ = p for some atomic formula p.
Since (s) = (), 5 Exc p iff t =x p.

¢=¢1V o
S |=K¢iffs 'ZK ¢1 or s |=K¢2 iff ¢ |=K ¢1 OI‘tIZK ¢2 iff ¢ 'ZK ¢
= ¢1.
S IZK (]5 iﬂ‘S#K ¢1 iﬁ.tJ’-‘K (]51 iff ¢ IZK (]5

¢ = grIUps.
Assume s ~“B t. Suppose s =k ¢. Then there exists a source s trajectory
S0 = S,...,8 such that s; Fg ¢1 for 0 < i < k and s FExg ¢2. Since
s ~“B t for each transition s; — s;y1 with 0 < i < k there exists a
source t; trajectory uo = ti,...,u with u; ~“B s, for 0 < j < I and
uw; ~“B 5;.1. Thus by conjoining all these trajectories, we get a source ¢
trajectory to = t,...,tm,. By induction, we have t; Ex ¢1 for 0 < i < m
and t,, Fxr ¢2. Thus, t Eg ¢. Symmetrically, we can show that if ¢t =g ¢
then s Ex ¢. Thus, s Ex ¢ iff t Ex ¢

Lemma 4. Let K be an observation structure. Any two non-until-bisimilar states
s andt of K can be distinguished by an STLY formula ¢, i.e., s Er ¢ butt Ex ¢.

Proof. Let K be an observation structure. We show that for any natural number
i, any two states s and ¢ which are not i-step until-bisimilar can be distinguished
by an STL¥ formula ¢, i.e., s Ex ¢ but t g ¢. The proof is by induction on 3.

1. Base case: i = 0. We can simply let ¢ = {(s)) since 0-step until-bisimilarity
coincides with the observational equivalence =.



2. Inductive case: i = k+ 1. Assume s and t are not (k+ 1)-step until-bisimilar.
Further we assume that s and ¢ are k-step until-bisimilar, otherwise, by
induction, there is a STLY formula ¢ such that s |Ex ¢ but t Ex ¢.

Since s and t are not (k + 1)-step until-bisimilar, then either (1) there exists
a state s’ with s - s’ and for all source ¢ trajectory to = t,... ,t; with
{(#:) = () for 0 < i < k and {(tz)) = {s')) either one of the following holds
(a) tr, and s’ are not i-step until-bisimilar;
(b) there exists 0 < ¢ < k such that ¢; and s are not i-step until-
bisimilar.
or (2) there exists a state ' with ¢ -k ¢’ and for all source s trajectory
S0 =8,...,8 with {s;)) = (t)) for 0 <i < k and {(sg)) = (t')) either one of
the following holds
(a) si and t' are not i-step until-bisimilar;
(b) there exists 0 < ¢ < k such that s; and ¢ are not i-step until-
bisimilar.
W.L.O.G., assume (1) holds. Notice that there are only finitely many such
trajectories since K is an observation structure itself. Denote by S; the set
of states on the trajectories for which (a) is violated, and by S for which (b)
is violated. Let ¢1 = A ,cg, ¥(s,u) and 2 = A g, ¥(s',u), where ¢(u,v) is
any STL¥ formula such that u =g % (u,v) but v ¥x ¢(u,v). Such formulas
exist by induction. Now consider the formula ¢ = ({s) A ¢1)IU{(s') A ¢2).
Clearly s Ex ¢ and t Bk ¢.

Remark 2. In both of the proofs of Proposition 2 and Proposition 4, we assumed
that K5 to be an observation structure. For STLA¥ this is a natural assumption.
For STLY, it is also a natural and not very strong assumption. Since when we use
STL¥ formulas to describe system properties, we do not care how many rounds
the system stutters. Thus it is natural to require the stutter closure again an
observation structure.

5 CTL without the Next-Time Operator

In this section, we extend the results from previous sections to two subsets of
CTL without the next-time operator. One is analogous to STLA and the other
is analogous to STLY.

The logic CTLfO is defined by the grammar

pu=p|-¢|oVe|pIUs|3I0p

where p ranges over atomic formulas on observations.
The logic CTL_( is defined by the grammar

¢pu=p|-¢|oVe|eaUs |0

where p ranges over atomic formulas on observations.

We can show that the stutter closure of bisimilarity is also a full abstract
semantics of CTLéO, and the until-bisimilarity is a full abstract semantics of
CTL_o.



Proposition 5. The stutter closure of bisimilarity is a full abstract semantics
for CTL‘EO.

Proposition 6. The state equivalence until-bisimilarity is a full abstract seman-
tics for CTL_¢.

The proofs for the above two propositions are straight forward, with only
simple applications of Konig’s Lemma, thus omitted from the paper.

6 LTL without the Next-Time Operator

In this section, we study the relationship between stutter closure of bisimilarity
and LTL without the next time operator. We denote the logic LTL without the
next-time operator by LTL_. It is defined by the grammar

pu=ploVo|-¢|dUUs
where p ranges over atomic formulas on observations.

Proposition 7. The state equivalence stutter closure of bisimilarity is an ab-
stract semantics for LTL_o.

Definition 9 (Stutter Trace Equivalence). Let a and b be two w-trajectories.
We say that a and b are stutter trace equivalent, iff

(1) {ao)) = {(bo)); and
(2) For i such that {ax)) = (ao)) for 0 < k < i and (a;)) # (ao)), there
exists a j such that (b)) = (bo)) for 0 < k < j and (b;)) # {(bo).

Also a; ., and b, . are stutter trace equivalent; and

(8) For i such that {by)) = {bo)) for 0 < k < i and {(b;)) # {bo)), there
ezists a j such that {ar) = (ao) for 0 <k < j and {(a;)) # (ao)).

Also a; o, and b; ., are stutter trace equivalent.

Proposition 8. Two stutter equivalent w trajectories satisfy the same set of
LTL_o formulas.

Proof. The proof is a simple induction on the structure of the formula.

From Proposition 8 it follows immediately that any two stutter closed bisim-
ilar states satisfy the same set of LTL_ formulas. Hence the stutter closure of
bisimilarity is an abstract semantics for LTL_q.

7 CTL* without the Next-Time Operator

In this section, we study the relationship between stutter closure of bisimilarity
and CTL* without the next time operator. Let denote the logic by CTL* 5.
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Fig. 8. An observation structure.

It is defined by the following two-sorted grammar with state formulas ¢ and
trajectory formulas v

pu=pl-ploVe|I
Yu=0¢ ||V | PUy

where p ranges over atomic formulas on observations.

Proposition 9. The stutter closure of bisimilarity is a full abstract semantics
for CTL’E“O which restricts the first part of U to be an atomic formula.

Proposition 10. The state equivalence until-bisimilarity is a full abstract se-
mantics for CTLZ .

8 SAL and w-Automata

In this section, we study the distinguishing powers of stutter closure of bisimi-
larity and that induced by SAL which is trace equivalence.

Proposition 11. The state equivalence trace equivalence induced by SAL and
stutter closure of bisimilarity are incomparable.

Proof. Consider the observation structure of Figure 3 and its stutter closure in
Figure 4. The states s and ¢ are trace equivalent, however not stutter-closed
bisimilar.

Now consider the observation structure of Figure 1 and its stutter closure
in Figure 2. The states s and t are stutter-closed bisimilar, however not trace
equivalent.

However, if we restrict SAL to trace automata which are stutter closed, i.e.,
we only consider automata A with A5 = A, where A° is the stutter closure
of A. Actually it is sufficient to consider reflexive trace automata, that is trace

10
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Fig. 4. The stutter closure of the observation structure in Figure 3.

automata with self loops on every state. With this restriction, we can easily show
that stutter closure of bisimilarity is an abstract semantics for this restricted
version of SAL. Let denote this restricted version of SAL by SALE.

Proposition 12. Stutter closure of bisimilarity is an abstract semantics for
SAL restricted to reflexive trace automaton.

From the examples in Figure 1, we observe that the stutter closure of bisim-
ilarity is more distinguishing than the state equivalence induced by SALE.

Proposition 13. Stutter closure of bisimilarity is more distinguishing than the
state equivalence induced SALY.

The results also hold for w-automata. We have the following.

Proposition 14. Stutter closure of bisimilarity is an abstract semantics for w-
automata restricted to reflerive w-trace automata.

Proposition 15. Stutter closure of bisimilarity is more distinguishing than the
state equivalence induced reflexive w-trace automata.

9 Conclusions

In this paper, we have studied the relation between stutter closure and various
temporal logics. We have given a full logical characterization of the distinguishing
power of the stutter closure of bisimilarity and suggested a new state equivalence,
i.e., the notion of until-bisimilarity. In particular, we have shown that (1) the
stutter closure of bisimilarity is a full abstract semantics for a restricted subset of
STLY called STL4Y; (2) until-bisimilarity is a full abstract semantics for STLY.
Finally we have extended the results to more standard logics such as CTL and
LTL without the next operator.
There are some possible extensions to this work.

11



— First it would be interesting to consider state preorders instead of state
equivalences and to see how stutter closure and the state equivalences in-
duced by these state preorders relate. Similarly, we can define the notion of
stutter closure of similarity. The results in the paper should carry naturally
to this new notion.

— Second, it would be interesting to study algorithms for and the complexity of
computing the until-bisimilarity. Many of the properties we are interested can
be specified and probably are naturally specified in either STLY or CTL_o.
Since until-bisimilarity is less distinguishing than bisimilarity, the quotient
state space is potentially smaller than that of bisimilarity.

— Third, in the paper, we did not consider fairness. It would be interesting
to incorporate fairness constraints into the definitions of state equivalences
and study properties of these notions. Notice however, if we only consider
region constraints, such as Biichi or Streett constraints, the definitions of
the stutter closure of bisimilarity and until-bisimilarity do have these kind
of fairness incorporated.
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