Announcements

• **HW3**: Compiling LLVMlite

• **Goal**
 – Familiarize yourself with (a subset of) the LLVM IR
 – Implement a translation down to (inefficient) X86lite

• **Due**: Tuesday, October 29th at 23:59
Creating an abstract representation of program syntax
Today: Parsing

Source Code
(Character stream)
if (b == 0) { a = 1; }

Token stream:
if (b == 0) { a = 1; }

Abstract Syntax Tree:

```
If
  Eq
    b
  None
  Assn
    0
  a
  1
```

Intermediate code:
```assembly
l1:
  %cnd = icmp eq i64 %b, 0
  br i1 %cnd, label %l2, label %l3
l2:
  store i64* %a, 1
  br label %l3
l3:
```

Assembly Code
```assembly
l1:
  cmpq %eax, $0
  jeq 12
  jmp 13
l2:
  ...
{ if (b == 0) a = b;
  while (a != 1) {
    print_int(a);
    a = a - 1;
  }
}

Source input

Abstract Syntax Tree (AST)
Syntactic Analysis (Parsing): Overview

• Input: stream of tokens (generated by lexer)
• Output: abstract syntax tree

• Strategy
  – Parse the token stream to traverse the “concrete” syntax
  – During traversal, build a tree representing the “abstract” syntax

• Why abstract? Consider these three different concrete inputs

  a + b
  (a + ((b)))
  ((a) + (b))

  Same abstract syntax tree

• Note: parsing doesn’t check many things
  – Variable scoping, type agreement, initialization, etc.
First question: how to describe language syntax precisely and conveniently?
Last time: we described tokens using regular expressions
  – Easy to implement, efficient DFA representation
  – Why not use regular expressions on tokens to specify programming language syntax?

Limits of regular expressions
  – DFA’s have only finite # of states (i.e., finite memory)
  – So, DFA’s can’t “count”
  – For example, consider the language of all strings that contain balanced parentheses – easier than most programming languages, but not regular

So: we need more expressive power than DFA’s
Context-free Grammars

• Here is a specification of the language of balanced parens

\[
S \rightarrow (S)S \\
S \rightarrow \epsilon
\]

• The definition is recursive – S mentions itself

• Idea: “derive” a string in the language by starting with S and rewriting according to the rules
  – Example: \( S \rightarrow (S)S \rightarrow ((S)S)S \rightarrow ((\epsilon)S)S \rightarrow ((\epsilon)S)\epsilon \rightarrow ((\epsilon)\epsilon)\epsilon = (()) \)

• You can replace the “nonterminal” S by its definition anywhere
• A context-free grammar accepts a string iff there is a derivation from the start symbol

Note: Once again we have to take care to distinguish meta-language elements (e.g. “S” and “\( \rightarrow \)”) from object-language elements (e.g. “(”) .* And, since we’re writing this description in English, we are careful to distinguish the meta-meta-language (e.g. words) from the meta-language and object-language (e.g. symbols) by using quotes.
A Context-free Grammar (CFG) consists of

- A set of *terminals* (e.g., a lexical token, but *how about* $\varepsilon$?)
- A set of *nonterminals* (e.g., $S$ and other syntactic variables)
- A designated nonterminal called the *start symbol*
- A set of productions: $LHS \rightarrow RHS$
  - $LHS$ is a nonterminal
  - $RHS$ is a *string* of terminals and nonterminals

Example: The balanced parentheses language

$$S \rightarrow (S)S$$

$$S \rightarrow \varepsilon$$

How many terminals? How many nonterminals? Productions?
Another Example: Sum Grammar

• A grammar that accepts parenthesized sums of numbers:

\[
\begin{align*}
S & \rightarrow E + S \mid E \\
E & \rightarrow \text{number} \mid (S)
\end{align*}
\]

e.g.: \((1 + 2 + (3 + 4)) + 5\)

• Note the vertical bar ‘\(|\)’ is shorthand for multiple productions

\[
\begin{align*}
S & \rightarrow E + S & \text{4 productions} \\
S & \rightarrow E & \text{2 nonterminals: } S, E \\
E & \rightarrow \text{number} & \text{4 terminals: (, ), +, number} \\
E & \rightarrow (S) & \text{Start symbol: } S
\end{align*}
\]
Derivations in CFGs

• Example: derive \((1 + 2 + (3 + 4)) + 5\)
  \[
  S \rightarrow E + S \\
  \downarrow \quad \downarrow \\
  (S) + S \\
  \downarrow \quad \downarrow \\
  (E + S) + S \\
  \downarrow \quad \downarrow \\
  (1 + S) + S \\
  \downarrow \quad \downarrow \\
  (1 + E + S) + S \\
  \downarrow \quad \downarrow \\
  (1 + 2 + S) + S \\
  \downarrow \quad \downarrow \\
  (1 + 2 + E) + S \\
  \downarrow \quad \downarrow \\
  (1 + 2 + (S)) + S \\
  \downarrow \quad \downarrow \\
  (1 + 2 + (E + S)) + S \\
  \downarrow \quad \downarrow \\
  (1 + 2 + (3 + S)) + S \\
  \downarrow \quad \downarrow \\
  (1 + 2 + (3 + E)) + S \\
  \downarrow \quad \downarrow \\
  (1 + 2 + (3 + 4)) + S \\
  \downarrow \quad \downarrow \\
  (1 + 2 + (3 + 4)) + E \\
  \downarrow \quad \downarrow \\
  (1 + 2 + (3 + 4)) + 5
  \]

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]

For arbitrary strings \(\alpha, \beta, \gamma\) and production rule \(A \rightarrow \beta\)
a single step of the derivation is:
\[
\alpha A \gamma \rightarrow \alpha \beta \gamma
\]

(\textit{substitute} \(\beta\) for an occurrence of \(A\))

In general, there are many possible derivations for a given string

Note: underline indicates symbol being expanded
From Derivations to Parse Trees

• Tree representation of the derivation

• Leaves of the tree are terminals
  – In-order traversal yields the input sequence of tokens

• Internal nodes: nonterminals

• No information about the order of the derivation steps

• \((1 + 2 + (3 + 4)) + 5\)

**Grammar Rules**

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]
From Parse Trees to Abstract Syntax

- **Parse tree:**
  “concrete syntax”

```
S
 / \
E + S
 | |
 (S) E
 | |
 E + S 5
 | |
 1 E + S
 | |
 2 E
 | |
 (S)
 | |
 E + S
 | |
 E
 | |
 3 E
 | |
 4
```

- **Abstract syntax tree (AST):**

```
 +
 |
 + 5
 |
 1 +
 |
 2 +
 |
 3 4
```

- **Hides, or abstracts, unneeded information**
Derivation Orders

• Productions of the grammar can be applied in any order
• There are two standard orders
  – *Leftmost derivation*: Find the left-most nonterminal and apply a production to it.
  – *Rightmost derivation*: Find the right-most nonterminal and apply a production there.

• Note that both strategies (and any other) yield the same parse tree!
  – Parse tree doesn’t contain the information about what order the productions were applied
Example: Left- and rightmost derivations

- Leftmost derivation
  \[ S \rightarrow E + S \]
  \[ \rightarrow (S) + S \]
  \[ \rightarrow (E + S) + S \]
  \[ \rightarrow (1 + S) + S \]
  \[ \rightarrow (1 + E + S) + S \]
  \[ \rightarrow (1 + 2 + S) + S \]
  \[ \rightarrow (1 + 2 + E) + S \]
  \[ \rightarrow (1 + 2 + (S)) + S \]
  \[ \rightarrow (1 + 2 + (E + S)) + S \]
  \[ \rightarrow (1 + 2 + (3 + S)) + S \]
  \[ \rightarrow (1 + 2 + (3 + E)) + S \]
  \[ \rightarrow (1 + 2 + (3 + 4)) + S \]
  \[ \rightarrow (1 + 2 + (3 + 4)) + E \]
  \[ \rightarrow (1 + 2 + (3 + 4)) + 5 \]

- Rightmost derivation
  \[ S \rightarrow E + S \]
  \[ \rightarrow (S) + E \]
  \[ \rightarrow (E + S) + E \]
  \[ \rightarrow (1 + E + S) + E \]
  \[ \rightarrow (1 + 2 + S) + E \]
  \[ \rightarrow (1 + 2 + E) + S \]
  \[ \rightarrow (1 + 2 + (S)) + E \]
  \[ \rightarrow (1 + 2 + (E + S)) + E \]
  \[ \rightarrow (1 + 2 + (3 + S)) + E \]
  \[ \rightarrow (1 + 2 + (3 + E)) + S \]
  \[ \rightarrow (1 + 2 + (3 + 4)) + S \]
  \[ \rightarrow (1 + 2 + (3 + 4)) + E \]
  \[ \rightarrow (1 + 2 + (3 + 4)) + 5 \]
Loops and Termination

• Some care is needed when defining CFGs
• Consider:
  
  \[
  S \Rightarrow E \\
  E \Rightarrow S
  \]
  
  – This grammar has nonterminal definitions that are “nonproductive”. (i.e. they don’t mention any terminal symbols)
  – There is no finite derivation starting from S, so the language is empty.

• Consider:
  
  \[ S \Rightarrow ( S ) \]
  
  – This grammar is productive, but again there is no finite derivation starting from S, so the language is empty.

• Easily generalize these examples to a “chain” of many nonterminals, which can be harder to find in a large grammar.

• Upshot: be aware of “vacuously empty” CFG grammars.
  – Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.
Associativity, ambiguity, and precedence.
Consider the input: $1 + 2 + 3$

Leftmost derivation:

- $S \rightarrow E + S$
- $\rightarrow 1 + S$
- $\rightarrow 1 + E + S$
- $\rightarrow 1 + 2 + S$
- $\rightarrow 1 + 2 + E$
- $\rightarrow 1 + 2 + 3$

Rightmost derivation:

- $S \rightarrow E + S$
- $\rightarrow E + E + S$
- $\rightarrow E + E + E$
- $\rightarrow E + E$
- $\rightarrow E + 2 + 3$
- $\rightarrow 1 + 2 + 3$

Parse Tree:

```
S
 / \ \
E + S
 / \ \
1 E + S
 / \ \
 2 E 3
```

AST:

```
+ \
 / \
1 + 3 2
```
• This grammar makes ‘+’ right associative…
• The abstract syntax tree is the same for both 1 + 2 + 3 and 1 + (2 + 3)
• Note that the grammar is right recursive…

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]

• How would you make ‘+’ left associative?
• What are the trees for “1 + 2 + 3”?
Ambiguity

- Consider this grammar:
  \[ S \rightarrow S + S \mid (S) \mid \text{number} \]

- Claim: it accepts the \textit{same} set of strings as the previous one.
- What’s the difference?
- Consider these \textit{two} leftmost derivations:
  - \[ S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3 \]
  - \[ S \rightarrow S + S \rightarrow S + S + S \rightarrow 1 + S + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3 \]

- One derivation gives left associativity, the other gives right associativity to ‘+’
  - Which is which?
Why do we care about ambiguity?

- The ‘+’ operation is associative, so it doesn’t matter which tree we pick. Mathematically, \( x + (y + z) = (x + y) + z \)
  - But, some operations are non-associative. Examples?
  - Some operations are only left (or right) associative. Examples?

- Moreover, if there are multiple operations, ambiguity in the grammar leads to ambiguity in their precedence

- Consider:

\[
S \rightarrow S + S \mid S * S \mid (S) \mid \text{number}
\]

- Input: 1 + 2 * 3
  - One parse = \((1 + 2) * 3 = 9\)
  - The other = \(1 + (2 * 3) = 7\)
Eliminating Ambiguity

• We can often eliminate ambiguity by adding nonterminals and allowing recursion only on the left (or right).
• Higher-precedence operators go farther from the start symbol.
• Example:

\[
S \rightarrow S + S \mid S * S \mid (S) \mid \text{number}
\]

• To disambiguate:
  – Decide (following math) to make ‘*’ higher precedence than ‘+’
  – Make ‘+’ left associative
  – Make ‘*’ right associative (fix?)
• Note:
  – \(S_2\) corresponds to ‘atomic’ expressions

\[
\begin{align*}
S_0 &\rightarrow S_0 + S_1 \mid S_1 \\
S_1 &\rightarrow S_2 * S_1 \mid S_2 \\
S_2 &\rightarrow \text{number} \mid (S_0)
\end{align*}
\]
Context Free Grammars: Summary

- Context-free grammars allow concise specifications of programming languages.
  - An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)
  - Ambiguity can (often) be removed by encoding precedence and associativity in the grammar.

- Even with an unambiguous CFG, there may be more than one derivation
  - Though all derivations correspond to the same abstract syntax tree.

- Still to come: finding a derivation
  - But first: menhir
DEMO: BOOLEAN LOGIC

parser.mly, lexer.mll, range.ml, ast.ml, main.ml