Announcements

• **HW 3**: Compiling LLVMlite
 • **Due**: Tuesday, October 29\(^{th}\) at 23:59

• **HW 4**: Building a Frontend
 • **Goal**
 – Work with lexer and parser (generators)
 – Compile a C-like source language to LLVM
 • **Available soon on Moodle (i.e., by next Tuesday)**
 • **Due**: Tuesday, November 12\(^{th}\) at 23:59
How to Remove Left Recursion?

• In general

\[S \rightarrow S \alpha_1 | \ldots | S \alpha_n | \beta_1 | \ldots | \beta_m \]

• Rewrite as

\[S \rightarrow \beta_1 S' | \ldots | \beta_m S' \]

\[S' \rightarrow \alpha_1 S' | \ldots | \alpha_n S' | \varepsilon \]
Bottom-up Parsing (LR Parsers)

• LR(k) parser:
 – Left-to-right scanning
 – Rightmost derivation
 – k lookahead symbols

• LR grammars are more expressive than LL
 – Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 – Easier to express programming language syntax (no left factoring)

• Technique: “Shift-Reduce” parsers
 – Work bottom up instead of top down
 – Construct right-most derivation of a program in the grammar
 – Used by many parser generators (e.g. yacc, CUP, ocamlyacc, menhir, etc.)
 – Better error detection/recovery
Top-down vs. Bottom-up

- Consider the left-recursive grammar:

 \[
 S \rightarrow S + E \mid E \\
 E \rightarrow \text{number} \mid (S)
 \]

- \((1 + 2 + (3 + 4)) + 5\)

- What part of the tree must we know after scanning just \((1 + 2\)

- In top-down, must be able to guess which productions to use…

<table>
<thead>
<tr>
<th>S</th>
<th>S + E</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>S + E</td>
</tr>
<tr>
<td>((S))</td>
<td>S + E</td>
</tr>
<tr>
<td>E</td>
<td>S + E</td>
</tr>
<tr>
<td>1</td>
<td>E + 4</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Top-down

<table>
<thead>
<tr>
<th>S</th>
<th>S + E</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>S + E</td>
</tr>
<tr>
<td>((S))</td>
<td>S + E</td>
</tr>
<tr>
<td>E</td>
<td>S + E</td>
</tr>
<tr>
<td>((S))</td>
<td>S + E</td>
</tr>
<tr>
<td>E</td>
<td>S + E</td>
</tr>
<tr>
<td>1</td>
<td>E + 4</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Bottom-up

Note: ‘(’ has been scanned but not consumed. Processing it is still pending.
Progress of Bottom-up Parsing

Reductions	Scanned	Input Remaining
(1 + 2 + (3 + 4)) + 5 | (1 + 2) | (1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 | (1) | 1 + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 | (1 + 2) | + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 | (1 + 2 + (3 + 4)) | + (3 + 4)) + 5
(S + (3 + 4)) + 5 | (1 + 2 + (3 + 4)) | + (3 + 4)) + 5
(S + (E + 4)) + 5 | (1 + 2 + (3 + 4)) | + (3 + 4)) + 5
(S + (S + 4)) + 5 | (1 + 2 + (3 + 4)) | + (3 + 4)) + 5
(S + (S + E)) + 5 | (1 + 2 + (3 + 4)) | + (3 + 4)) + 5
(S + (S)) + 5 | (1 + 2 + (3 + 4)) | + (3 + 4)) + 5
(S + E) + 5 | (1 + 2 + (3 + 4)) | + (3 + 4)) + 5
(S) + 5 | (1 + 2 + (3 + 4)) | + (3 + 4)) + 5
E + 5 | (1 + 2 + (3 + 4)) | + 5
S + 5 | (1 + 2 + (3 + 4)) | + 5
S + E | (1 + 2 + (3 + 4)) + 5
S

S \rightarrow S + E \mid E
E \rightarrow \text{number} \mid (\ S \)
Shift/Reduce Parsing

• Parser state
 – Stack of terminals and nonterminals
 – Unconsumed input is a string of terminals
 – Current derivation step is stack + input

• Parsing is a sequence of \textit{shift} and \textit{reduce} operations
 – \textbf{Shift}: Move look-ahead token to the stack
 – \textbf{Reduce}: Replace symbols γ at top of stack with nonterminal X s.t. $X \rightarrow \gamma$ is a production, i.e., $\text{pop } \gamma$, $\text{push } X$

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 + 2 + (3 + 4)) + 5</td>
<td>shift (</td>
<td></td>
</tr>
<tr>
<td>(1 + 2 + (3 + 4)) + 5</td>
<td>shift 1</td>
<td></td>
</tr>
<tr>
<td>(S + 2 + (3 + 4)) + 5</td>
<td>reduce: $E \rightarrow \text{number}$</td>
<td></td>
</tr>
<tr>
<td>(2 + (3 + 4)) + 5</td>
<td>reduce: $S \rightarrow E$</td>
<td></td>
</tr>
<tr>
<td>(S + 2)</td>
<td>shift +</td>
<td></td>
</tr>
<tr>
<td>(S + 2 + (3 + 4)) + 5</td>
<td>shift 2</td>
<td></td>
</tr>
<tr>
<td>(1 + 2 + (3 + 4)) + 5</td>
<td>reduce: $E \rightarrow \text{number}$</td>
<td></td>
</tr>
</tbody>
</table>

$S \rightarrow S + E \mid E$

$E \rightarrow \text{number} \mid (S)$
Simple LR parsing with no look ahead

LR(0) GRAMMARS
LR Parser States

• Goal: Know what set of reductions are legal at any given point
• Idea: Summarize all possible stack prefixes α as a finite parser state
 – Parser state is computed by a DFA that reads the stack σ
 – Accept states of the DFA correspond to unique reductions that apply

• Example: LR(0) parsing
 – **Left-to-right scanning**, **Right-most derivation**, **zero** look-ahead tokens
 – Too weak to handle many language grammars (e.g. the “sum” grammar)
 – But, helpful for understanding how shift-reduce parsers work
Example LR(0) Grammar: Tuples

- Example grammar for non-empty tuples and identifiers

\[
\begin{align*}
S & \rightarrow (L) \mid \text{id} \\
L & \rightarrow S \mid L , S
\end{align*}
\]

- Example strings
 - x
 - (x, y)
 - (((x))))
 - (x, (y, z), w)
 - (x, (y, (z, w)))

Parse tree for: (x, (y, z), w)
Shift/Reduce Parsing

• Parser state
 – Stack of terminals and nonterminals
 – Unconsumed input is a string of terminals
 – Current derivation step is stack + input

• Parsing is a sequence of shift and reduce operations

• **Shift**: Move look-ahead token to the stack

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, (y, z), w)</td>
<td>(x, (y, z), w)</td>
<td>shift (</td>
</tr>
<tr>
<td>(</td>
<td>x, (y, z), w)</td>
<td>shift x</td>
</tr>
</tbody>
</table>

• **Reduce**: Replace symbols γ at top of stack with nonterminal X s.t.
 \(X \rightarrow \gamma \) is a production, i.e., pop γ, push X

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x</td>
<td>, (y, z), w)</td>
<td>reduce S \rightarrow id</td>
</tr>
<tr>
<td>(S</td>
<td>, (y, z), w)</td>
<td>reduce L \rightarrow S</td>
</tr>
</tbody>
</table>
Example Run

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x, (y, z), w)</td>
<td>shift (</td>
</tr>
<tr>
<td>(</td>
<td>x, (y, z), w)</td>
<td>shift x</td>
</tr>
<tr>
<td>(x</td>
<td>, (y, z), w)</td>
<td>reduce S ⟷ id</td>
</tr>
<tr>
<td>(S</td>
<td>, (y, z), w)</td>
<td>reduce L ⟷ S</td>
</tr>
<tr>
<td>(L</td>
<td>, (y, z), w)</td>
<td>shift ,</td>
</tr>
<tr>
<td>(L,</td>
<td>(y, z), w)</td>
<td>shift (</td>
</tr>
<tr>
<td>(L,</td>
<td>y, z), w)</td>
<td>shift y</td>
</tr>
<tr>
<td>(L, y</td>
<td>, z), w)</td>
<td>reduce S ⟷ id</td>
</tr>
<tr>
<td>(L, S</td>
<td>, z), w)</td>
<td>reduce L ⟷ S</td>
</tr>
<tr>
<td>(L,</td>
<td>(L, z), w)</td>
<td>shift ,</td>
</tr>
<tr>
<td>(L,</td>
<td>L, z), w)</td>
<td>shift z</td>
</tr>
<tr>
<td>(L,</td>
<td>L, z), w)</td>
<td>reduce S ⟷ id</td>
</tr>
<tr>
<td>(L,</td>
<td>S), w)</td>
<td>reduce L ⟷ L, S</td>
</tr>
<tr>
<td>(L,</td>
<td>L), w)</td>
<td>shift)</td>
</tr>
<tr>
<td>(L,</td>
<td>L), w)</td>
<td>reduce S ⟷ (L)</td>
</tr>
<tr>
<td>(L,</td>
<td>S), w)</td>
<td>reduce L ⟷ L, S</td>
</tr>
<tr>
<td>(L</td>
<td>, w)</td>
<td>shift ,</td>
</tr>
<tr>
<td>(L,</td>
<td>w)</td>
<td>shift w</td>
</tr>
<tr>
<td>(L, w</td>
<td>)</td>
<td>reduce S ⟷ id</td>
</tr>
<tr>
<td>(L, S</td>
<td>)</td>
<td>reduce L ⟷ L, S</td>
</tr>
<tr>
<td>(L</td>
<td>)</td>
<td>shift)</td>
</tr>
<tr>
<td>(L)</td>
<td>)</td>
<td>reduce S ⟷ (L)</td>
</tr>
</tbody>
</table>

S ⟷ (L) | id
L ⟷ S | L , S
Action Selection Problem

• Given a stack σ and a look-ahead symbol b, should the parser
 – Shift b onto the stack (new stack is σb), or
 – Reduce a production $X \rightarrow \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?

• Sometimes the parser can reduce but should not
 – For example, $X \rightarrow \varepsilon$ can always be reduced

• Sometimes the stack can be reduced in different ways

• Main idea: Decide based on a prefix α of the stack plus look-ahead
 – The prefix α is different for different possible reductions since in
 productions $X \rightarrow \gamma$ and $Y \rightarrow \beta$, γ and β might have different lengths

• Main goal: Know what set of reductions are legal at any point
 – How do we keep track?
LR(0) States

• An LR(0) state is a set of items keeping track of progress on possible upcoming reductions
• An LR(0) item is a production from the language with an extra separator “.” somewhere in the right-hand-side

\[
\begin{align*}
S & \rightarrow (L) \mid id \\
L & \rightarrow S \mid L , S
\end{align*}
\]

• Example items: \(S \rightarrow .(L) \) or \(S \rightarrow (. L) \) or \(L \rightarrow S. \)
• Intuition
 – Stuff before the ‘.’ is already on the stack (beginnings of possible γ’s to be reduced)
 – Stuff after the ‘.’ is what might be seen next
 – The prefixes α are represented by the state itself
Constructing the DFA: Start state & Closure

- First step: Add a new production $S' \rightarrow S\$ to the grammar
- Start state of the DFA = empty stack, so it contains the item: $S' \rightarrow .S\$
- Closure of a state
 - Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the ‘.’
 - The added items have the ‘.’ located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state… keep iterating until a fixed point is reached
- Example: $\text{CLOSURE}\{ S' \rightarrow .S\$ \} = \{ S' \rightarrow .S\$, $S \rightarrow .(L), S \rightarrow .id \}$
- Resulting “closed state” contains the set of all possible productions that might be reduced next
Example: Constructing the DFA

- First, we construct a state with the initial item $S' \rightarrow .S$
Example: Constructing the DFA

- Next, we take the closure of that state
 \[\text{CLOSURE}\{ S' \mapsto .S$ \} = \{ S' \mapsto .S$, S \mapsto .(L), S \mapsto .id \} \]

- In the set of items, the nonterminal S appears after the ‘.’
- So we add items for each S production in the grammar
Example: Constructing the DFA

Next we add the transitions:

- First, we see what terminals and nonterminals can appear after the ‘.’ in the source state.
 - Outgoing edges have those labels.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the ‘.’, but we advance the ‘.’ (to simulate shifting the item onto the stack).

S' \rightarrow S$
S \rightarrow (L) | id
L \rightarrow S | L, S
Example: Constructing the DFA

\[S' \rightarrow .S$ \]
\[S \rightarrow .(L) \]
\[S \rightarrow .id \]

\[S' \rightarrow S.$ \]
\[S \rightarrow .(L) \]
\[L \rightarrow .S \]
\[L \rightarrow .L, S \]
\[S \rightarrow .(L) \]
\[S \rightarrow .id \]

- Finally, for each new state, we take the closure
- Note that we have to perform two iterations to compute CLOSURE({S \rightarrow (. L))
 - First iteration adds L \rightarrow .S and L \rightarrow .L, S
 - Second iteration adds S \rightarrow .(L) and S \rightarrow .id
Full DFA for the Example

- Current state: run the DFA on the stack
- If a reduce state is reached, reduce
- Otherwise, if the next token matches an outgoing edge, shift
- If no such transition, it is a parse error

Reduce state: ‘.’ at the end of the production
Using the DFA

• Run the parser stack through the DFA
• The resulting state tells us which productions might be reduced next
 – If not in a reduce state, then shift the next symbol and transition according to DFA
 – If in a reduce state, $X \xrightarrow{\gamma}$ with stack $\alpha\gamma$, pop γ and push X

• Optimization: No need to re-run the DFA from beginning every step
 – Store the state with each symbol on the stack: e.g. $1(3(3L5)_6$
 – On a reduction $X \xrightarrow{\gamma}$, pop stack to reveal the state too e.g., from stack $1(3(3L5)_6$ reduce $S \xrightarrow{(L)}$ to reach stack $1(3$
 – Next, push the reduction symbol: e.g. to reach stack $1(3S$
 – Then take just one step in the DFA to find next state: $1(3S_7$
Implementing the Parsing Table

Represent the DFA as a table of shape
\[\text{state} \times (\text{terminals} + \text{nonterminals}) \]

- Entries for the “action table” specify two kinds of actions
 - Shift and go to state \(n \)
 - Reduce using reduction \(X \rightarrow \gamma \)
 - First pop \(\gamma \) off the stack to reveal the state
 - Look up \(X \) in the “goto table” and go to that state

<table>
<thead>
<tr>
<th>State</th>
<th>Terminal Symbols</th>
<th>Nonterminal Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Action table</td>
<td>Goto table</td>
</tr>
</tbody>
</table>
Example Parse Table

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s3</td>
<td></td>
<td>s2</td>
<td></td>
<td></td>
<td>g4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S→id</td>
<td>S→id</td>
<td>S→id</td>
<td>S→id</td>
<td>S→id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s3</td>
<td></td>
<td>s2</td>
<td></td>
<td></td>
<td>g7</td>
<td>g5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>s6</td>
<td></td>
<td>s8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S → (L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L → S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>s3</td>
<td></td>
<td>s2</td>
<td></td>
<td></td>
<td>g9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>L → L,S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sx = shift and go to state x
gx = go to state x
Example

- Parse the token stream: $(x, (y, z), w)$

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action (according to table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_1</td>
<td>$(x, (y, z), w)$</td>
<td>s3</td>
</tr>
<tr>
<td>$\varepsilon_1(3$</td>
<td>$x, (y, z), w)$</td>
<td>s2</td>
</tr>
<tr>
<td>$\varepsilon_1(3x_2$</td>
<td>$, (y, z), w)$</td>
<td>Reduce: $S \rightarrow id$</td>
</tr>
<tr>
<td>$\varepsilon_1(3S$</td>
<td>$, (y, z), w)$</td>
<td>g7 (from state 3 follow S)</td>
</tr>
<tr>
<td>$\varepsilon_1(3S_7$</td>
<td>$, (y, z), w)$</td>
<td>Reduce: $L \rightarrow S$</td>
</tr>
<tr>
<td>$\varepsilon_1(3L$</td>
<td>$, (y, z), w)$</td>
<td>g5 (from state 3 follow L)</td>
</tr>
<tr>
<td>$\varepsilon_1(3L_5$</td>
<td>$, (y, z), w)$</td>
<td>s8</td>
</tr>
<tr>
<td>$\varepsilon_1(3L_5,8$</td>
<td>$(y, z), w)$</td>
<td>s3</td>
</tr>
<tr>
<td>$\varepsilon_1(3L_5,8(3$</td>
<td>$y, z), w)$</td>
<td>s2</td>
</tr>
</tbody>
</table>
LR(0) Limitations

• An LR(0) machine only works if states with reduce actions have a *single* reduce action
 – In such states, the machine *always* reduces (ignoring lookahead)

• With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts

<table>
<thead>
<tr>
<th>OK</th>
<th>shift/reduce</th>
<th>reduce/reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → (L).</td>
<td>S → (L).</td>
<td>S → L ,S.</td>
</tr>
<tr>
<td>L → .L , S</td>
<td>S → ,S.</td>
<td></td>
</tr>
</tbody>
</table>

• Such conflicts can often be resolved by using a single look-ahead symbol: LR(1)
Examples

- Consider the left associative and right associative “sum” grammars

 left
 \[
 S \rightarrow S + E \mid E \\
 E \rightarrow \text{number} \mid (S)
 \]

 right
 \[
 S \rightarrow E + S \mid E \\
 E \rightarrow \text{number} \mid (S)
 \]

- One is LR(0) the other is not. Which is which, and why?
- What kind of conflict do we get?
 - shift/reduce, or
 - reduce/reduce?

- Ambiguities in associativity/precedence often lead to shift/reduce conflicts
LR(1) Parsing

- Algorithm is similar to LR(0) DFA construction
 - LR(1) state = set of LR(1) items
 - An LR(1) item is an LR(0) item + a set of look-ahead symbols
 \[A \rightarrow \alpha \beta \cdot \mathcal{L} \]

- LR(1) closure is a little more complex
- Form the set of items just as for LR(0) algorithm
- Whenever a new item \(C \rightarrow \cdot \gamma \) is added because \(A \rightarrow \beta \cdot C \delta \cdot \mathcal{L} \) is already in the set, we need to compute its look-ahead set \(\mathcal{M} \)
 1. The look-ahead set \(\mathcal{M} \) includes FIRST(\(\delta \))
 (the set of terminals that may start strings derived from \(\delta \))
 2. If \(\delta \) is or can derive \(\epsilon \), then the look-ahead \(\mathcal{M} \) also contains \(\mathcal{L} \)
Example Closure

\[
\begin{align*}
S' & \rightarrow S$ \\
S & \rightarrow E + S \mid E \\
E & \rightarrow \text{number} \mid (S)
\end{align*}
\]

- Start item: \(S' \rightarrow .S$ \ , {} \)
- Since \(S \) is to the right of a '..', add
 \[
 \begin{align*}
 S & \rightarrow .E + S \ , \ {$} \quad \text{Note: \{${}\} \text{ is FIRST($)} \\
 S & \rightarrow .E \ , \ {$}
 \end{align*}
 \]
- Need to keep closing, since \(E \) appears to the right of a '..' in '.E + S':
 \[
 \begin{align*}
 E & \rightarrow .\text{number} \ , \ {+} \quad \text{Note: + added for reason 1} \\
 E & \rightarrow .(S) \ , \ {+} \quad \text{FIRST(+ S) = \{+\}}
 \end{align*}
 \]
- Because \(E \) also appears to the right of '..' in '.E' we get:
 \[
 \begin{align*}
 E & \rightarrow .\text{number} \ , \ {$} \quad \text{Note: $ added for reason 2} \\
 E & \rightarrow .(S) \ , \ {$}
 \end{align*}
 \]
- All items are distinct, so we're done
The behavior is determined if:
- There is no overlap among the look-ahead sets for each reduce item, and
- None of the look-ahead symbols appear to the right of a ‘.’
LR(1) issues

• LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
 – DFA + stack is a push-down automaton

• In practice, LR(1) tables are big
 – Modern implementations (e.g. menhir) directly generate code
LR Variants: LALR(1) & GLR

• Consider for example the LR(1) states
 \{[X \rightarrow \alpha \bullet, a], [Y \rightarrow \beta \bullet, c]\}
 \{[X \rightarrow \alpha \bullet, b], [Y \rightarrow \beta \bullet, d]\}
• They have the same core and can be merged
• And the merged state contains
 \{[X \rightarrow \alpha \bullet, a/b], [Y \rightarrow \beta \bullet, c/d]\}
• These are called LALR(1) states
 – Stands for LookAhead LR
 – Typically 10 times fewer LALR(1) states than LR(1)
• Compared to LR(1), LALR(1) may introduce new reduce/reduce conflicts, but not new shift/reduce conflicts. Why?

• GLR = “Generalized LR” parsing
 – Efficiently compute the set of all parses for a given input
 – Later passes should disambiguate based on other context
Classification of Grammars

LR(1)
LALR(1)
LL(1)
SLR
LR(0)
DEBUGGING PARSER CONFLICTS.
DISAMBIGUATING GRAMMARS.

MENHIR IN PRACTICE
Practical Issues

• Dealing with source file location information
 – In the lexer and parser
 – In the abstract syntax
 – See range.ml, ast.ml

• Lexing comments / strings
Menhir output

• You can get verbose ocamlyacc debugging information by doing:
 – menhir --explain …
 – or, if using ocamlbuild:
 ocamlbuild -use-menhir -yaccflag --explain …

• The result is a <basename>.conflicts file that contains a description of the error
 – The parser items of each state use the ‘.’ just as described above

• The flag --dump generates a full description of the automaton

• Example: see start-parser.mly
Precedence and Associativity Declarations

- Parser generators, like menhir often support precedence and associativity declarations
 - Hints to the parser about how to resolve conflicts
 - See: good-parser.mly

- Pros
 - Avoids having to manually resolve those ambiguities by manually introducing extra nonterminals (as seen in parser.mly)
 - Easier to maintain the grammar

- Cons
 - Can’t as easily re-use the same terminal (if associativity differs)
 - Introduces another level of debugging

- Limits
 - Not always easy to disambiguate the grammar based on just precedence and associativity
Example Ambiguity in Real Languages

• Consider this grammar
 \[S \rightarrow \text{if } (E) \text{ S} \]
 \[S \rightarrow \text{if } (E) \text{ S else } S \]
 \[S \rightarrow \text{X } = \text{ E} \]
 \[E \rightarrow \ldots \]

• Is this grammar OK?

• Consider how to parse
 \[\text{if } (E_1) \text{ if } (E_2) S_1 \]
 \[\text{else } S_2 \]

• This is known as the “dangling else” problem.
• What should the “right” answer be?

• How do we change the grammar?
How to Disambiguate if-then-else

• Want to rule out

\[
\text{if } (E_1) \begin{cases} \text{if } (E_2) \ S_1 \end{cases} \ \text{else} \ S_2
\]

• Observation: An un-matched ‘if’ should not appear as the ‘then’ clause of a containing ‘if’

\[
S \rightarrow M \mid U \quad \text{// } M = \text{“matched”}, \ U = \text{“unmatched”}
\]
\[
U \rightarrow \text{if } (E) \ S \quad \text{// Unmatched ‘if’}
\]
\[
U \rightarrow \text{if } (E) \ M \text{ else } U \quad \text{// Nested if is matched}
\]
\[
M \rightarrow \text{if } (E) \ M \text{ else } M \quad \text{// Matched ‘if’}
\]
\[
M \rightarrow X = E \quad \text{// Other statements}
\]

• See: else-resolved-parser.mly
Alternative: Use { }

• Ambiguity arises because the ‘then’ branch is not well bracketed

\[
\begin{align*}
&\text{if } (E_1) \{ \text{if } (E_2) \{ S_1 \} \} \text{ else } S_2 \quad \text{ // unambiguous} \\
&\text{if } (E_1) \{ \text{if } (E_2) \{ S_1 \} \text{ else } S_2 \} \quad \text{ // unambiguous}
\end{align*}
\]

• So, one could just require brackets
 – But requiring them for the else clause too leads to ugly code for chained if-statements

```c
if (c1) {
  ...
} else {
  if (c2) {
    }
  } else {
    if (c3) {
    } else {
    }
}
```

So, compromise? Allow unbracketed else block only if the body is ‘if’

```c
if (c1) {
  ...
} else if (c2) {
    } else if (c3) {
  } else {
  }
```

Benefits
 • Less ambiguous
 • Easy to parse
 • Enforces good style