Lecture 21

COMPILER DESIGN
Announcements

• HW6: Analysis & Optimizations
 – Alias analysis, constant propagation, dead code elimination, register allocation
 – **Due**: Tuesday, December 17th at 23:59
 – *May submit by Thursday, December 19th at 23:59 with penalty*

• Final Exam
 – Scheduled for Friday, January 31st, 9-11 AM
One Cut at the Dataflow Design Space

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>
“Classic” Constant Propagation

• Constant propagation can be formulated as a dataflow analysis

• Idea: propagate and fold integer constants in one pass
 \[x = 1; \quad x = 1; \]
 \[y = 5 + x; \quad y = 6; \]
 \[z = y \times y; \quad z = 36; \]

• Information about a single variable
 – Variable is never defined
 – Variable has a single, constant value
 – Variable is assigned multiple values
Domains for Constant Propagation

• We can make a constant propagation lattice \mathcal{L} for one variable like

$$T = \text{multiple values}$$

$$\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots$$

$$\bot = \text{never defined}$$

• To accommodate multiple variables, we take the product lattice, with one element per variable
 – Assuming there are three variables, x, y, and z, the elements of the product lattice are of the form (ℓ_x, ℓ_y, ℓ_z)
 – Alternatively, think of the product domain as a context that maps variable names to their “abstract interpretations”

• What are “meet” and “join” in this product lattice?

• What is the height of the product lattice?
Flow Functions

• Consider the node \(x = y \text{ op } z \)
• \(F(\ell_x, \ell_y, \ell_z) = ? \)

\[
\begin{align*}
F(\ell_x, T, \ell_z) &= (T, T, \ell_z) \\
F(\ell_x, \ell_y, T) &= (T, \ell_y, T)
\end{align*}
\]

“If either input might have multiple values
the result of the operation might too.”

\[
\begin{align*}
F(\ell_x, \bot, \ell_z) &= (\bot, \bot, \ell_z) \\
F(\ell_x, \ell_y, \bot) &= (\bot, \ell_y, \bot)
\end{align*}
\]

“If either input is undefined
the result of the operation is too.”

\[
F(\ell_x, i, j) = (i \text{ op } j, i, j)
\]

“If the inputs are known constants,
calculate the output statically.”

• Flow functions for the other nodes are easy...
• Monotonic?
• Distributes over meets?
QUALITY OF DATAFLOW ANALYSIS SOLUTIONS
Best Possible Solution

• Suppose we have a control-flow graph

• If there is a path p_1 starting from the root node (entry point of the function) traversing the nodes $n_0, n_1, n_2, ..., n_k$

• The best possible information along the path p_1 is
 \[\ell_{p_1} = F_{n_k}(...F_{n_2}(F_{n_1}(F_{n_0}(T)))...) \]

• Best solution at the output is some $\ell \subseteq \ell_p$ for all paths p

• Meet-over-paths (MOP) solution
 \[\prod_{p \in \text{paths to } n} \ell_p \]

Best answer here is:

\[F_5(F_3(F_2(F_1(T)))) \prod F_5(F_4(F_2(F_1(T)))) \]
What about quality of iterative solutions?

• Does the iterative solution $\text{out}[n] = F_n(\prod_{n' \in \text{pred}[n]} \text{out}[n'])$ compute the MOP solution?

• MOP solution: $\prod_{p \in \text{paths}_t} \ell_p$

• Answer: Yes, if the flow functions distribute over \prod
 – Distributive means: $\prod_i F_n(\ell_i) = F_n(\prod_i \ell_i)$
 – Proof is a bit tricky & beyond the scope of this class
 – Difficulty: loops in the control-flow graph may mean that there are infinitely many paths

• Not all analyses give MOP solution
 – They are more conservative
• $F_n[x] = \text{gen}[n] \cup (x - \text{kill}[n])$

• Does F_n distribute over meet $\prod = \cup$?

• $F_n[x \prod y]$
 $= \text{gen}[n] \cup ((x \cup y) - \text{kill}[n])$
 $= \text{gen}[n] \cup ((x - \text{kill}[n]) \cup (y - \text{kill}[n]))$
 $= (\text{gen}[n] \cup (x - \text{kill}[n])) \cup (\text{gen}[n] \cup (y - \text{kill}[n]))$
 $= F_n[x] \cup F_n[y]$
 $= F_n[x] \prod F_n[y]$

• Therefore, Reaching Definitions with iterative analysis always terminates with the MOP (i.e., best) solution

• In fact, the other three analyses (i.e., liveness, available expressions, & very busy expressions) are all MOP
Constprop Iterative Solution

\[
\begin{align*}
\text{if } x > 0 & \\
\text{y} = 1 & \quad \text{y} = 2 \\
\text{z} = 2 & \quad \text{z} = 1 \\
\text{iterate solution} & = \{1, 1, 2\} \land \{1, 2, 1\} = \{1, 1, 2\}
\end{align*}
\]
MOP Solution \neq Iterative Solution

MOP solution $\ (3, 1, 2) \sqcap (3, 2, 1) = (3, T, T)$.
What Problems are Distributive?

• Many analyses of program structure are distributive
 – Liveness Analysis
 – Available Expressions
 – Reaching Definitions
 – Very Busy Expressions

• These express properties on how the program computes
What Problems are Not Distributive?

• Analyses of what the program computes
 – The output is a constant, positive, and so on
 – Constprop is an example as we have just seen
Why not compute MOP Solution?

- If MOP is better than the iterative analysis, why not compute it instead?
 - ANS: exponentially many paths (even in graphs without loops)

- $O(n)$ nodes
- $O(n)$ edges
- $O(2^n)$ paths*
 - At each branch there is a choice of 2 directions

* Incidentally, a similar idea can be used to force ML / Haskell type inference to need to construct a type that is exponentially big in the size of the program!
Review of (& Additional) Terminology

Review
• Must vs. May
• Forward vs. Backward
• Distributive vs. non-Distributive

Additional
• Flow-sensitive vs. Flow-insensitive
• Context-sensitive vs. Context-insensitive
• Path-sensitive vs. Path-insensitive
Dataflow Analysis: Summary

• Many dataflow analyses fit into a common framework
• Key idea: Iterative solution of a system of equations over a lattice of constraints
 – Iteration terminates if flow functions are monotonic
 – Solution is equivalent to meet-over-paths answer if the flow functions distribute over meet (⊔)

• Dataflow analyses as presented work for an “imperative” IR
 – Values of temporary variables are updated (“mutated”) during evaluation
 – Such mutation complicates calculations
 – SSA = “Single Static Assignment” eliminates this problem
 • By introducing more temporaries --- each one assigned to only once
 – Next up: Converting to SSA, finding loops and dominators in CFGs
Loops in Control-flow Graphs

• Taking into account loops is important for optimizations
 – The 90/10 rule applies, so optimizing loop bodies is important

• Should we apply loop optimizations at the AST level or at a lower representation?
 – Loop optimizations benefit from other IR-level optimizations and vice-versa, so it is good to interleave them

• Loops may be hard to recognize at the quadruple / LLVM IR level
 – Many kinds of loops: while, do/while, for, continue, goto, …

• Problem: How do we identify loops in the control-flow graph?
Definition of a Loop

- A loop is a set of nodes in the control flow graph
 - One distinguished entry point called the header

- Every node is reachable from the header & the header is reachable from every node
 - A loop is a strongly connected component

- No edges enter the loop except to the header
- Nodes with outgoing edges are called loop exit nodes
Nested Loops

- Control-flow graphs may contain many loops
- Loops may contain other loops

Control Tree

The control tree depicts the nesting structure of the program
Control-flow Analysis

• Goal: Identify the loops and nesting structure of the CFG

• Control flow analysis is based on the idea of *dominators*:

 Node A *dominates* node B if the only way to reach B from the start node is through node A

• An edge in the graph is a *back edge* if the target node dominates the source node

• A loop contains at least one back edge
Dominator Trees

- Domination is transitive

 If A dominates B and B dominates C, then A dominates C

- Domination is anti-symmetric

 If A dominates B and B dominates A, then A = B

- Every flow graph has a dominator tree

 – The Hasse diagram of the dominates relation
Dominator Dataflow Analysis

• We can define Dom[n] as a forward dataflow analysis
 – Using the framework that we saw earlier: Dom[n] = out[n] where

• “A node B is dominated by another node A if A dominates all of the predecessors of B.”
 – in[n] := \bigcap_{n' \in \text{pred}[n]} \text{out}[n']

• “Every node dominates itself.”
 – out[n] := in[n] \cup \{n\}

• Formally: \mathcal{L} = \text{set of nodes ordered by} \subseteq
 – T = \{\text{all nodes}\}
 – F_n(x) = x \cup \{n\}
 – \bigcap \text{ is } \cap

• Easy to show monotonicity and that F_n distributes over meet
 – So algorithm terminates and is MOP
Improving the Algorithm

• Dom[b] contains just those nodes along the path in the dominator tree from the root to b:
 – e.g. Dom[8] = {1, 2, 4, 8}, Dom[7] = {1, 2, 4, 5, 7}
 – There is a lot of sharing among the nodes

• More efficient way to represent Dom sets is to store the dominator tree
 – doms[b] = immediate dominator of b

• To compute Dom[b] walk through doms[b]
• Need to efficiently compute intersections of Dom[a] and Dom[b]
 – Traverse up tree & look for least common ancestor

• See “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy
Completing Control-flow Analysis

- Dominator analysis identifies *back edges*
 - Edge \(n \rightarrow h \) where \(h \) dominates \(n \)
- Each back edge has a *natural loop*
 - \(h \) is the header
 - All nodes reachable from \(h \) that also reach \(n \) without going through \(h \)
- For each back edge \(n \rightarrow h \), find the natural loop
 - \(\{n' \mid n \text{ is reachable from } n' \text{ in } G \setminus \{h\}\} \cup \{h\} \)

- Two loops may share the same header: merge them

- Nesting structure of loops is determined by set inclusion
 - Can be used to build the control tree
Example Natural Loops

Natural Loops

Control Tree:

The control tree depicts the nesting structure of the program.
Uses of Control-flow Information

- Loop nesting depth plays an important role in optimization heuristics
 - Deeply nested loops pay off the most for optimization

- Need to know loop headers / back edges for doing
 - Loop invariant code motion
 - Loop unrolling

- Dominance information also plays a role in converting to SSA form
 - Used internally by LLVM to do register allocation
Phi nodes
Alloc "promotion"
Register allocation

REVISITING SSA
Single Static Assignment (SSA)

- LLVM IR names (via %uids) all intermediate values a program computes
- It makes the order of evaluation explicit
- Each %uid is assigned to only once
 - Contrast with the mutable quadruple form
 - Note dataflow analyses had these kill[n] sets because of updates to variables
- Naïve implementation of backend: map %uids to stack slots
- Better implementation: map %uids to registers (as much as possible)

- Question: How to convert a source program to make maximal use of %uids, rather than alloca-created storage?
 - Two problems: control flow & location in memory

- Then, how to convert SSA code to x86, mapping %uids to registers?
 - Register allocation
Alloca vs. %UID

- **Current compilation strategy:**

```
int x = 3;
int y = 0;
x = x + 1;
y = x + 2;
```

```
%x = alloca i64
%y = alloca i64
store i64* %x, 3
store i64* %y, 0
%x1 = load %i64* %x
%tmp1 = add i64 %x1, 1
store i64* %x, %tmp1
%x2 = load %i64* %x
%tmp2 = add i64 %x2, 2
store i64* %y, %tmp2
```

- **Directly map source variables into %uids?**

```
int x = 3;
int y = 0;
x = x + 1;
y = x + 2;
```

```
int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;
```

```
%x1 = add i64 3, 0
%y1 = add i64 0, 0
%x2 = add i64 %x1, 1
%y2 = add i64 %x2, 2
```

- **Does this always work?**
What about If-then-else?

- How do we translate this into SSA?

```c
int y = ...
int x = ...
int z = ...
if (p) {
    x = y + 1;
} else {
    x = y * 2;
}
z = x + 3;
```

```c
entry:
    %y1 = ...
    %x1 = ...
    %z1 = ...
    %p = icmp ...
    br i1 %p, label %then, label %else
then:
    %x2 = add i64 %y1, 1
    br label %merge
else:
    %x3 = mult i64 %y1, 2
merge:
    %z2 = %add i64 ???, 3
```

- What do we put for ???
Phi Functions

• Solution: φ functions
 – Fictitious operator, used only for analysis
 • Implemented by Mov at x86 level
 – Chooses among different versions of a variable based on the path by which control enters the phi node

\[
\%\text{uid} = \phi \text{ty} <v_1>, <\text{label}_1>, \ldots, v_n, <\text{label}_n>
\]

```c
int y = ...
int x = ...
int z = ...
if (p) {
    x = y + 1;
} else {
    x = y * 2;
}
z = x + 3;
```

```assembly
entry:
  %y1 = ...
  %x1 = ...
  %z1 = ...
  %p = icmp ...
  br i1 %p, label %then, label %else
then:
  %x2 = add i64 %y1, 1
  br label %merge
else:
  %x3 = mult i64 %y1, 2
merge:
  %x4 = phi i64 %x2, %then, %x3, %else
  %z2 = %add i64 %x4, 3
```
Phi Nodes and Loops

• Importantly, the %uids on the right-hand side of a phi node can be defined “later” in the control-flow graph
 – Means that %uids can hold values “around a loop”
 – Scope of %uids is defined by dominance

```plaintext
entry:
  %y1 = ...
  %x1 = ...
  br label %body

body:
  %x2 = phi i64 %x1, %entry, %x3, %body
  %x3 = add i64 %x2, %y1
  %p = icmp slt i64, %x3, 10
  br i1 %p, label %body, label %after

after:
  ...
```
• Not all source variables can be allocated to registers
 – If the address of the variable is taken (as permitted in C, for example)
 – If the address of the variable “escapes” (by being passed to a function)
• An alloca inst. is promotable if neither of the two above conditions holds

entry:
 %x = alloca i64 // %x cannot be promoted
 %y = call malloc(i64 8)
 %ptr = bitcast i8* %y to i64**
 store i64** %ptr, %x // store the pointer into the heap

entry:
 %x = alloca i64 // %x cannot be promoted
 %y = call foo(i64* %x) // foo may store the pointer into the heap

• Happily, most local variables declared in source programs are promotable
 – That means they can be register allocated
Converting to SSA: Overview

- Start with the ordinary control flow graph that uses allocas
 - Identify “promotable” allocas
- Compute dominator tree information
- Calculate def/use information for each such allocated variable
- Insert ϕ functions for each variable at necessary “join points”

- Replace loads/stores to alloc’ed variables with freshly-generated %uids

- Eliminate the now unneeded load/store/alloca instructions
Where to Place ϕ functions?

- Need to calculate the “Dominance Frontier”

- Node A strictly dominates node B if A dominates B and $A \neq B$
 - Note: A does not strictly dominate B if A does not dominate B or $A = B$

- The dominance frontier of a node B is the set of all CFG nodes y such that B dominates a predecessor of y but does not strictly dominate y
 - Intuitively: starting at B, there is a path to y, but there is another route to y that does not go through B

- Write $DF[n]$ for the dominance frontier of node n
Dominance Frontiers

- Example of a dominance frontier calculation results
- \(\text{DF}[1] = \{1\}, \text{DF}[2] = \{1,2\}, \text{DF}[3] = \{2\}, \text{DF}[4] = \{1\}, \text{DF}[5] = \{8,0\}, \text{DF}[6] = \{8\}, \text{DF}[7] = \{7,0\}, \text{DF}[8] = \{0\}, \text{DF}[9] = \{7,0\}, \text{DF}[0] = \{\}\)
Algorithm For Computing DF[n]

- Assume that $\text{doms}[n]$ stores the dominator tree (so that $\text{doms}[n]$ is the immediate dominator of n in the tree)

- Adds each B to the DF sets to which it belongs

for all nodes B

if #(pred[B]) \(\geq 2\) \hspace{1cm} // (just an optimization)

for each $p \in \text{pred}[B]$ {

runner := p \hspace{1cm} // start at the predecessor of B

while (runner \(\neq\) doms[B]) \hspace{1cm} // walk up the tree adding B

\hspace{1cm} $\text{DF}[runner] := \text{DF}[runner] \cup \{B\}$

\hspace{1cm} runner := doms[runner]

}
Insert ϕ at Join Points

• Lift the $DF[n]$ to a set of nodes N in the obvious way:
 \[DF[N] = \bigcup_{n \in N} DF[n] \]

• Suppose that at variable x is defined at a set of nodes N.

\[
\begin{align*}
DF_0[N] &= DF[N] \\
DF_{i+1}[N] &= DF[DF_i[N] \cup N]
\end{align*}
\]

Let $J[N]$ be the least fixed point of the sequence:
\[DF_0[N] \subseteq DF_1[N] \subseteq DF_2[N] \subseteq DF_3[N] \subseteq \ldots \]
That is, $J[N] = DF_k[N]$ for some k such that $DF_k[N] = DF_{k+1}[N]$

– $J[N]$ is called the “join points” for the set N

• We insert ϕ functions for the variable x at each node in $J[N]$.
 – $x = \phi(x, x, \ldots, x)$; (one “$x$” argument for each predecessor of the node)
 – In practice, $J[N]$ is never directly computed, instead you use a worklist
 algorithm that keeps adding nodes for $DF_k[N]$ until there are no changes, just
 as in the dataflow solver.

• Intuition:
 – If N is the set of places where x is modified, then $DF[N]$ is the places where
 phi nodes need to be added, but those also “count” as modifications of x, so
 we need to insert the phi nodes to capture those modifications too…
Example Join-point Calculation

• Suppose the variable x is modified at nodes 3 and 6
 – Where would we need to add phi nodes?

• \(DF_0[\{3,6\}] = DF[\{3,6\}] = DF[3] \cup DF[6] = \{2,8\} \)
• \(DF_1[\{3,6\}] \)
 = \(DF[DF_0[\{3,6\}] \cup \{3,6\}] \)
 = \(DF[\{2,3,6,8\}] \)
 = \(\{1,2\} \cup \{2\} \cup \{8\} \cup \{0\} = \{1,2,8,0\} \)
• \(DF_2[\{3,6\}] \)
 = ...
 = \(\{1,2,8,0\} \)

• So \(J[\{3,6\}] = \{1,2,8,0\} \), and we need to add phi nodes at those 4 spots
Phi Placement Alternative

- Less efficient, but easier to understand

- Place phi nodes "maximally" (i.e. at every node with > 2 predecessors)

- If all values flowing into phi node are the same, then eliminate it:
 \[
 \%x = \text{phi} \ t \ \%y, \ %\text{pred1} \ t \ %y \ %\text{pred2} \ ... \ t \ %y \ %\text{predK}
 \]

 // code that uses \%x

 ⇒

 // code with \%x replaced by \%y

- Interleave with other optimizations
 - copy propagation
 - constant propagation
 - etc.
Example SSA Optimizations

- How to place phi nodes without breaking SSA?

- Note: the “real” implementation combines many of these steps into one pass.
 - Places phis directly at the dominance frontier

- This example also illustrates other common optimizations:
 - Load after store/alloca
 - Dead store/alloca elimination

\[
\begin{align*}
l_1: \ & \%p = \text{alloca i64} \\
& \text{store } 0, \ %p \\
& \%b = \%y > 0 \\
& \text{br } \%b, \ %l_2, \ %l_3 \\
\end{align*}
\]

\[
\begin{align*}
l_2: \ & \text{store } 1, \ %p \\
& \text{br } \%l_3 \\
\end{align*}
\]

\[
\begin{align*}
l_3: \ & \%x = \text{load } \%p \\
& \text{ret } \%x \\
\end{align*}
\]
Example SSA Optimizations

l₁: %p = alloca i64
 store 0, %p
 %b = %y > 0
 %x₁ = load %p
 br %b, %l₂, %l₃

l₂:
 store 1, %p
 %x₂ = load %p
 br %l₃

l₃:
 %x = load %p
 ret %x

- How to place phi nodes without breaking SSA?
- Insert
 - Loads at the end of each block

Find alloca
→ max φs
→ LAS/LA
→ DSE
→ DAE
→ elim φs
Example SSA Optimizations

- How to place phi nodes without breaking SSA?

- Insert
 - Loads at the end of each block
 - Insert φ-nodes at each block

\[
\begin{align*}
l_1 &: \%p = \text{alloca i64 } \\
& \text{store 0, } \%p \\
& \%b = \%y > 0 \\
& \%x_1 = \text{load } \%p \\
& \text{br } \%b, \%l_2, \%l_3 \\

l_2 &: \%x_3 = \phi[\%x_1, \%l_1] \\
& \text{store 1, } \%p \\
& \%x_2 = \text{load } \%p \\
& \text{br } \%l_3 \\

l_3 &: \%x_4 = \phi[\%x_1; \%l_1, \%x_2; \%l_2] \\
& \%x = \text{load } \%p \\
& \text{ret } \%x
\end{align*}
\]
Example SSA Optimizations

- How to place phi nodes without breaking SSA?
- Insert
 - Loads at the end of each block
 - Insert φ-nodes at each block
 - Insert stores after φ-nodes

```
\begin{verbatim}
l_1: \%p = alloca i64
    store 0, %p
    \%b = \%y > 0
    \%x_1 = load \%p
    br \%b, \%l_2, \%l_3

l_2: \%x_3 = \phi[\%x_1, \%l_1]
    store \%x_3, \%p
    store 1, \%p
    \%x_2 = load \%p
    br \%l_3

l_3: \%x_4 = \phi[\%x_1; \%l_1, \%x_2; \%l_2]
    store \%x_4, \%p
    \%x = load \%p
    ret \%x
\end{verbatim}
```
Example SSA Optimizations

For loads after stores (LAS):
- Substitute all uses of the load by the value being stored
- Remove the load

```
Example SSA Optimizations

l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    %x1 = load %p
    br %b, %l2, %l3

l2: %x3 = phi[%x1, %l1]
    store %x3, %p
    store 1, %p
    %x2 = load %p
    br %l3

l3: %x4 = phi[%x1, %l1, %x2, %l2]
    store %x4, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

```
l1: %p = alloca i64
    store 0, %p
%b = %y > 0
%x1 = load %p
br %b, %l2, %l3
l2: %x3 = φ[%x1, %l1]
    store %x3, %p
    store 1, %p
%x2 = load %p
    br %l3
l3: %x4 = φ[%x1, %l1, %x2:%l2]
    store %x4, %p
%x = load %p
    ret %x
```
Example SSA Optimizations

l₁: %p = alloca i64

store 0, %p
%b = %b > 0
%x₁ = load %p
br %b, %l₂, %l₃

l₂: %x₃ = φ[0,%l₁]
 store %x₃, %p
 store 1 %p
 %x₂ = load %p
 br %l₃

l₃: %x₄ = φ[0;%l₁, %x₂;%l₂]
 store %x₄, %p
 %x = load %p
 ret %x

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

Find alloca
max φs
LAS/LA
A
DSE
DAE
elim φs
Example SSA Optimizations

For loads after stores (LAS):
- Substitute all uses of the load by the value being stored
- Remove the load

l₁: %p = alloca i64
store 0, %p
%b = %y > 0
br %b, %l₂, %l₃

l₂: %x₃ = φ[0,%l₁]
store %x₃, %p
store 1, %p
%x₂ = load %p
br %l₃

l₃: %x₄ = φ[0,%l₁,%l₂]
store %x₄, %p
%x = load %p
ret %x
Example SSA Optimizations

For loads after stores (LAS):
- Substitute all uses of the load by the value being stored
- Remove the load

\[
\begin{align*}
l_1: \quad & \%p = \text{alloca } \text{i64} \\
& \text{store } 0, \%p \\
& \%b = \%y > 0 \\
& \text{br } \%b, \%l_2, \%l_3 \\
\end{align*}
\]

\[
\begin{align*}
l_2: \quad & \%x_3 = \phi[0,\%l_1] \\
& \text{store } \%x_3, \%p \\
& \text{store } 1, \%p \\
& \%x_2 = \text{load } \%p \\
& \text{br } \%l_3 \\
\end{align*}
\]

\[
\begin{align*}
l_3: \quad & \%x_4 = \phi[0;\%l_1, 1;\%l_2] \\
& \text{store } \%x_4, \%p \\
& \%x = \text{load } \%p \\
& \text{ret } \%x \\
\end{align*}
\]
Example SSA Optimizations

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

```plaintext
l1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
    store %x3, %p
    store 1, %p
    br %l3

l3: %x4 = φ[0;%l1, 1;%l2]
    store %x4, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

• For loads after stores (LAS):
 – Substitute all uses of the load by the value being stored
 – Remove the load

l₁: %p = alloca i64
 store 0, %p
 %b = %y > 0
 br %b, %l₂, %l₃

l₂: %x₃ = φ[0, %l₁]
 store %x₃, %p
 store 1, %p
 br %l₃

l₃: %x₄ = φ[0:%l₁, 1:%l₂]
 store %x₄, %p
 %x = load %p
 ret %x₄
Example SSA Optimizations

- **Dead Store Elimination (DSE)**
 - Eliminate all stores with no subsequent loads.

- **Dead Alloca Elimination (DAE)**
 - Eliminate all allocas with no subsequent loads/stores.

```
l_1: \%p = alloca i64
     store 0, \%p
     \%b = \%y > 0
     br \%b, \%l_2, \%l_3

l_2: \%x_3 = \phi[0,\%l_1]
     store \%x_3, \%p
     store 1, \%p
     br \%l_3

l_3: \%x_4 = \phi[0;\%l_1, 1:\%l_2]
     store \%x_4, \%p
     ret \%x_4
```
Example SSA Optimizations

- **Dead Store Elimination (DSE)**
 - Eliminate all stores with no subsequent loads.

- **Dead Alloca Elimination (DAE)**
 - Eliminate all allocas with no subsequent loads/stores.

```
l_1:  %p = alloca i64
     store 0, %p
     %b = %y > 0
     br %b, %l_2, %l_3

l_2:  %x_3 = φ[0,%l_1]
     store %x_3, %p
     store 1, %p
     br %l_3

l_3:  %x_4 = φ[0;%l_1, 1;%l_2]
     store %x_4, %p
     ret %x_4
```
Example SSA Optimizations

\[
\begin{align*}
&l_1: \quad \% b = \% y > 0 \\
&\quad \text{br} \% b, \% l_2, \% l_3

&l_2: \quad \% x_3 = \phi[0, \% l_1] \\
&\quad \text{br} \% l_3

&l_3: \quad \% x_4 = \phi[0; \% l_1, 1: \% l_2] \\
&\quad \text{ret} \% x_4
\end{align*}
\]

- Eliminate \(\phi \) nodes:
 - Singletons
 - With identical values from each predecessor
 - See Aycock & Horspool, 2002
Example SSA Optimizations

\[l_1: \]
\[b = y > 0 \]
\[b, l_2, l_3 \]

\[l_2: x_3 = \phi[0, l_1] \]
\[l_3: x_4 = \phi[0; l_1, 1; l_2] \]
\[l_4: ret x_4 \]

- Eliminate \(\phi \) nodes:
 - Singletons
 - With identical values from each predecessor
Example SSA Optimizations

l₁:
\%
b = \%y > 0
br %b, %l₂, %l₃

l₂:
br %l₃

l₃: \%x₄ = φ[0;%l₁, 1:%l₂]
ret \%x₄

- Done!
LLVM Phi Placement

• This transformation is also sometimes called register promotion
 – older versions of LLVM called this “mem2reg” memory to register promotion

• In practice, LLVM combines this transformation with scalar replacement of aggregates (SROA)
 – i.e. transforming loads/stores of structured data into loads/stores on register-sized data

• These algorithms are (one reason) why LLVM IR allows annotation of predecessor information in the .ll files
 – Simplifies computing the DF