Lecture 10

COMPILER DESIGN
Announcements

• **HW2:** due soon

• **HW3:** Compiling LLVMlite
 – Familiarize yourself with (a subset of) the LLVM IR
 – Implement a translation down to (inefficient) X86lite
Creating an abstract representation of program syntax
(Simplified) Compiler Structure

Source Code (character stream)
if (b == 0) a = 0;

Lexical Analysis
Token Stream
Parsing
Abstract Syntax Tree
Intermediate Code Generation
Intermediate Code
Code Generation

Assembly Code
CMP ECX, 0
SETBZ EAX

Front End (machine independent)

Middle End (compiler dependent)

Back End (machine dependent)
Today: Parsing

Source Code
(Character stream)
if (b == 0) { a = 1; }

Token stream:
if (b == 0) { a = 1; }

Abstract Syntax Tree:
If
 Eq
 b
 Assn
 0
 a
 1
 None

Intermediate code:
l1:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2, label %l3
l2:
 store i64* %a, 1
 br label %l3
l3:

Assembly Code
l1:
 cmpq %eax, $0
 jeq l2
 jmp l3
l2:
 ...

Lexical Analysis

Parsing

Analysis & Transformation

Backend
{
 if (b == 0) a = b;
 while (a != 1) {
 print_int(a);
 a = a - 1;
 }
}
Syntactic Analysis (Parsing): Overview

• Input: stream of tokens (generated by lexer)
• Output: abstract syntax tree

• Strategy
 – Parse the token stream to traverse the “concrete” syntax
 – During traversal, build a tree representing the “abstract” syntax

• Why abstract?
 Consider these three different concrete inputs
 \[
 a + b \\
 (a + ((b))) \\
 ((a) + (b))
 \]

• Note: parsing doesn’t check many things
 – Variable scoping, type agreement, initialization, etc.
Specifying Language Syntax

• First question:
 How to describe language syntax precisely and conveniently?

• Last time: we described tokens using regular expressions
 – Easy to implement, efficient DFA representation
 – So, why not use regular expressions over tokens to specify syntax?

• Limits of regular expressions
 – DFA’s have only finite # of states (i.e., finite memory)
 – So, DFA’s can’t “count”
 – E.g., consider the language of strings with balanced parentheses
 $$(k)^k$$

• So, we need more expressive power than DFA’s
CONTEXT FREE GRAMMARS
Chomsky Hierarchy

- Regular
- Context-Free
- Context-Sensitive
- Recursively Enumerable
Context-free Grammars (CFG)

• Here is a specification of the language of balanced parens

\[
S \rightarrow (S)S \\
S \rightarrow \varepsilon
\]

• The definition is recursive: S mentions itself

• Idea: “derive” a string in the language starting from S and rewriting according to the rules
 – Example: \[S \rightarrow (S)S \rightarrow ((S)S)S \rightarrow ((\varepsilon)S)S \rightarrow ((\varepsilon)S)\varepsilon \rightarrow ((\varepsilon)\varepsilon)\varepsilon = (()) \]

• We can replace the “nonterminal” S by its definition anywhere
• A CFG accepts a string iff there is a derivation from the start symbol
A Context-free Grammar (CFG) consists of
- A set of *terminals* (e.g., a lexical token, but how about ε?)
- A set of *nonterminals* (e.g., S and other syntactic variables)
- A designated nonterminal called the *start symbol*
- A set of productions: $LHS \rightarrow RHS$
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals

Example: The balanced parentheses language

$$S \rightarrow (S)S$$
$$S \rightarrow \varepsilon$$

How many terminals? How many nonterminals? Productions?
Another Example: Sum Grammar

• A grammar that accepts parenthesized sums of numbers

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]

e.g.: \((1 + 2 + (3 + 4)) + 5\)

• Note the vertical bar ‘|’ is shorthand for multiple productions

\[
\begin{align*}
S & \rightarrow E + S & \text{4 productions} \\
S & \rightarrow E & \text{2 nonterminals: } S, E \\
E & \rightarrow \text{number} & \text{4 terminals: (,), +, number} \\
E & \rightarrow (S) & \text{Start symbol: } S
\end{align*}
\]
Derivations in CFGs

- Example: derive \((1 + 2 + (3 + 4)) + 5\)
- \[S \rightarrow E + S \]
 \[\rightarrow (S) + S \]
 \[\rightarrow (E + S) + S \]
 \[\rightarrow (1 + S) + S \]
 \[\rightarrow (1 + E + S) + S \]
 \[\rightarrow (1 + 2 + S) + S \]
 \[\rightarrow (1 + 2 + E) + S \]
 \[\rightarrow (1 + 2 + (S)) + S \]
 \[\rightarrow (1 + 2 + (E + S)) + S \]
 \[\rightarrow (1 + 2 + (3 + S)) + S \]
 \[\rightarrow (1 + 2 + (3 + E)) + S \]
 \[\rightarrow (1 + 2 + (3 + 4)) + S \]
 \[\rightarrow (1 + 2 + (3 + 4)) + E \]
 \[\rightarrow (1 + 2 + (3 + 4)) + 5 \]

For arbitrary strings \(\alpha, \beta, \gamma \) and production rule \(A \rightarrow \beta \)

A single step of the derivation is

\[\alpha A \gamma \rightarrow \alpha \beta \gamma \]

(substitute \(\beta \) for an occurrence of \(A \))

In general, there are many possible derivations for a given string

Note: underline indicates symbol being expanded
From Derivations to Parse Trees

- Tree representation of a derivation
 - **Leaves**: terminals
 - In-order traversal yields the input token sequence
 - **Internal nodes**: nonterminals

- No info. on the order of the derivation steps

\[(1 + 2 + (3 + 4)) + 5\]

Parse Tree

- **S**
 - **E + S**
 - **(S)**
 - **E + S**
 - **1 E + S**
 - **2 E**
 - **3 E**
 - **4**
 - **5**
 - **(S)**
 - **E + S**
 - **number | (S)**
From Parse Trees to Abstract Syntax

- **Parse tree**

 "concrete syntax"

- **Abstract syntax tree (AST)**

- **Hides, or abstracts, unneeded information**
Derivation Orders

• Productions of the grammar can be applied in any order
• There are two standard orders
 – *Leftmost derivation*
 Find the left-most nonterminal and apply a production to it
 – *Rightmost derivation*
 Find the right-most nonterminal and apply a production there

• Both strategies (and any other) yield the same parse tree!
 – Parse tree doesn’t contain the information about what order the productions were applied
Example: Left- and rightmost derivations

- **Leftmost derivation**
 - $S \rightarrow E + S$
 - $\rightarrow (S) + S$
 - $\rightarrow (E + S) + S$
 - $\rightarrow (1 + S) + S$
 - $\rightarrow (1 + E + S) + S$
 - $\rightarrow (1 + 2 + S) + S$
 - $\rightarrow (1 + 2 + E) + S$
 - $\rightarrow (1 + 2 + (S)) + S$
 - $\rightarrow (1 + 2 + (E + S)) + S$
 - $\rightarrow (1 + 2 + (3 + S)) + S$
 - $\rightarrow (1 + 2 + (3 + E)) + S$
 - $\rightarrow (1 + 2 + (3 + 4)) + S$
 - $\rightarrow (1 + 2 + (3 + 4)) + E$
 - $\rightarrow (1 + 2 + (3 + 4)) + 5$

- **Rightmost derivation**
 - $S \rightarrow E + S$
 - $\rightarrow E + E$
 - $\rightarrow E + 5$
 - $\rightarrow (S) + 5$
 - $\rightarrow (E + S) + 5$
 - $\rightarrow (E + E + S) + 5$
 - $\rightarrow (E + E + E) + 5$
 - $\rightarrow (E + E + (S)) + 5$
 - $\rightarrow (E + E + (E + S)) + 5$
 - $\rightarrow (E + E + (E + S)) + 5$
 - $\rightarrow (E + E + (E + E)) + 5$
 - $\rightarrow (E + E + (E + 4)) + 5$
 - $\rightarrow (E + E + (3 + 4)) + 5$
 - $\rightarrow (E + E + (3 + 4)) + 5$
 - $\rightarrow (E + 2 + (3 + 4)) + 5$
 - $\rightarrow (1 + 2 + (3 + 4)) + 5$
 - $\rightarrow (1 + 2 + (3 + 4)) + 5$

Notes:
- $E \rightarrow$ number $| (S)$
- $S \rightarrow E + S | E$

Symbols:
- S: Start symbol
- E: Expression
- $+$: Addition
- $($: Left parenthesis
- $)$: Right parenthesis
- 5: Constant
Loops and Termination

• Some care is needed when defining CFGs …

• Consider

 \[
 S \rightarrow E \\
 E \rightarrow S
 \]

 – This grammar has nonterminal definitions that are “nonproductive” (i.e. they don’t mention any terminal symbols)
 – There is no finite derivation starting from S, so the language is empty
Loops and Termination

• Some care is needed when defining CFGs …

• Consider

\[S \rightarrow (S) \]

– This grammar is productive, but again there is no finite derivation starting from S, so the language is empty
Loops and Termination

• Some care is needed when defining CFGs …

• Easily generalize these examples to a “chain” of many nonterminals, which can be harder to find in a large grammar

• Upshot: be aware of “vacuously empty” CFG grammars
 – Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols
Associativity, ambiguity, and precedence.
Consider the input: \(1 + 2 + 3 \)

Leftmost derivation

\[
S \rightarrow E + S \\
\rightarrow 1 + S \\
\rightarrow 1 + E + S \\
\rightarrow 1 + 2 + S \\
\rightarrow 1 + 2 + E \\
\rightarrow 1 + 2 + 3
\]

Rightmost derivation

\[
S \rightarrow E + S \\
\rightarrow E + E + S \\
\rightarrow E + E + E \\
\rightarrow E + E \\
\rightarrow E + 2 + 3 \\
\rightarrow 1 + 2 + 3
\]

Parse Tree
• This grammar makes ‘+’ right associative
 – AST is the same for both 1 + 2 + 3 and 1 + (2 + 3)

• Note that the grammar is right recursive

\[
\begin{align*}
 S & \rightarrow E + S \mid E \\
 E & \rightarrow \text{number} \mid (S)
\end{align*}
\]

• How would you make ‘+’ left associative?
• What are the trees for “1 + 2 + 3”?
Ambiguity

• Consider this grammar

\[
S \rightarrow S + S \mid (S) \mid \text{number}
\]

• Claim: It accepts the same set of strings as the previous one
• What’s the difference?

• Consider these two leftmost derivations

\[
S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + 1 + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3 \\
S \rightarrow S + S \rightarrow S + S + S \rightarrow 1 + S + S \rightarrow 1 + 2 + S \rightarrow 1 + 2 + 3
\]

• One derivation gives left associativity, the other gives right associativity to ‘+’
 – Which is which?

AST 1

\[
+ \\
\mid + \\
1 \quad 2
\]

AST 2

\[
+ \\
\mid + \\
2 \quad 3
\]
Why do we care about ambiguity?

• The ‘+’ operation is associative, so it doesn’t matter which tree we pick. Mathematically, \(x + (y + z) = (x + y) + z \)
 – But, some operations are non-associative. Examples?
 – Some operations are only left (or right) associative. Examples?

• Moreover, if there are multiple operations, ambiguity in the grammar leads to ambiguity in their precedence

• Consider

\[
S \rightarrow S + S \mid S * S \mid (S) \mid \text{number}
\]

• Input: \(1 + 2 \times 3\)
 – One parse = \((1 + 2) \times 3 = 9\)
 – The other = \(1 + (2 \times 3) = 7\)
Eliminating Ambiguity

• We can often eliminate ambiguity by adding nonterminals and allowing recursion only on the left (or right)
• Higher-precedence operators go *farther* from the start symbol
• Example

\[
S \rightarrow S + S \mid S * S \mid (S) \mid \text{number}
\]

• To disambiguate
 – Decide (following math) to make ‘*’ higher precedence than ‘+’
 – Make ‘+’ left associative
 – Make ‘*’ right associative (fix?)
• Note: \(S_2 \) corresponds to ‘atomic’ expressions

\[
\begin{align*}
S_0 & \rightarrow S_0 + S_1 \mid S_1 \\
S_1 & \rightarrow S_2 * S_1 \mid S_2 \\
S_2 & \rightarrow \text{number} \mid (S_0)
\end{align*}
\]
Context Free Grammars: Summary

• CFGs allow concise specifications of prog. languages
 – An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)
 – Ambiguity can (often) be removed by encoding precedence and associativity in the grammar

• Even with an unambiguous CFG, there may be more than one derivation
 – Though all derivations correspond to the same abstract syntax tree

• Still to come: finding a derivation
 – But first: menhir
parser.mly, lexer.mll, range.ml, ast.ml, main.ml

DEMO: BOOLEAN LOGIC