Announcements

• **HW 3:** Compiling LLVMlite
 – Familiarize yourself with (a subset of) the LLVM IR
 – Implement a translation down to (inefficient) X86lite
LR GRAMMARS
Bottom-up Parsing (LR Parsers)

- LR(k) parser
 - Left-to-right scanning
 - Rightmost derivation
 - k lookahead symbols

- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars
 - Virtually all programming languages
 - Easier to express programming language syntax (no left factoring)

- Technique: “Shift-Reduce” parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, CUP, ocamlyacc, menhir, etc.)
 - Better error detection/recovery (poor error reporting)
Top-down vs. Bottom up

- Consider the left-recursive grammar

\[
S \rightarrow S + E \ | \ E \\
E \rightarrow \text{number} \ | \ (S)
\]

- \((1 + 2 + (3 + 4)) + 5\)

- What part of the tree must we know after scanning just \((1 + 2\)

- In top-down, must be able to guess which productions to use

Note: '(' has been scanned but not consumed. Processing it is still pending.
Progress of Bottom-up Parsing

<table>
<thead>
<tr>
<th>Reductions</th>
<th>Scanned</th>
<th>Input Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 + 2 + (3 + 4)) + 5 ⟷</td>
<td>()</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>(E + 2 + (3 + 4)) + 5 ⟷</td>
<td>(1)</td>
<td>1 + 2 + (3 + 4) + 5</td>
</tr>
<tr>
<td>(S + 2 + (3 + 4)) + 5 ⟷</td>
<td>(1 + 2)</td>
<td>+ 2 + (3 + 4) + 5</td>
</tr>
<tr>
<td>(S + E + (3 + 4)) + 5 ⟷</td>
<td>(1 + 2)</td>
<td>+ (3 + 4) + 5</td>
</tr>
<tr>
<td>(S + (3 + 4)) + 5 ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>+ 4) + 5</td>
</tr>
<tr>
<td>(S + (E + 4)) + 5 ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>+ 4) + 5</td>
</tr>
<tr>
<td>(S + (S + 4)) + 5 ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>) + 5</td>
</tr>
<tr>
<td>(S + (S + E)) + 5 ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>) + 5</td>
</tr>
<tr>
<td>(S + E) + 5 ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>) + 5</td>
</tr>
<tr>
<td>(S) + 5 ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>) + 5</td>
</tr>
<tr>
<td>E + 5 ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>+ 5</td>
</tr>
<tr>
<td>S + 5 ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>+ 5</td>
</tr>
<tr>
<td>S + E ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>+ 5</td>
</tr>
<tr>
<td>S ⟷</td>
<td>(1 + 2 + (3 + 4))</td>
<td>+ 5</td>
</tr>
</tbody>
</table>

Rightmost derivation

\[S \rightarrow S + E \mid E \]

\[E \rightarrow \text{number} \mid (S) \]
Shift/Reduce Parsing

- **Parser state**
 - Stack of terminals and nonterminals
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input

- **Parsing is a sequence of shift and reduce operations**
 - **Shift**: Move look-ahead token to the stack
 - **Reduce**: Replace symbols γ at top of stack with nonterminal X s.t. \(X \rightarrow \gamma \) is a production, i.e., pop γ, push X

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1 + 2 + (3 + 4)) + 5)</td>
<td>shift (</td>
<td></td>
</tr>
<tr>
<td>((1 + 2 + (3 + 4)) + 5)</td>
<td>shift 1</td>
<td></td>
</tr>
<tr>
<td>((1 + 2 + (3 + 4)) + 5)</td>
<td>reduce: E (\rightarrow) number</td>
<td></td>
</tr>
<tr>
<td>((1 + 2 + (3 + 4)) + 5)</td>
<td>reduce: S (\rightarrow) E</td>
<td></td>
</tr>
<tr>
<td>((S + 2) + (3 + 4) + 5)</td>
<td>shift +</td>
<td></td>
</tr>
<tr>
<td>((S + 2) + (3 + 4) + 5)</td>
<td>shift 2</td>
<td></td>
</tr>
<tr>
<td>((S + 2) + (3 + 4) + 5)</td>
<td>reduce: E (\rightarrow) number</td>
<td></td>
</tr>
</tbody>
</table>
Simple LR parsing with no look ahead

LR(0) GRAMMARS
• **Goal:** Know *what set of reductions are legal* at any given point

• **Idea:** Summarize all possible stack prefixes α as a finite parser state
 – Parser state is computed by a DFA that reads the stack σ
 – Accept states of the DFA correspond to unique reductions that apply

• **Example:** LR(0) parsing
 – *Left-to-right scanning, Right-most derivation, zero* look-ahead tokens
 – Too weak to handle many language grammars (e.g. the “sum” grammar)
 – But, helpful for understanding how shift-reduce parsers work
Example LR(0) Grammar: Tuples

- Example grammar for non-empty tuples and identifiers

 \[
 \begin{align*}
 S & \rightarrow (L) \mid \text{id} \\
 L & \rightarrow S \mid L , S
 \end{align*}
 \]

- Example strings
 - x
 - (x, y)
 - (((x)))
 - (x, (y, z), w)
 - (x, (y, (z, w)))

 Parse tree for \((x, (y, z), w)\)
Shift/Reduce Parsing

- **Parser state**
 - Stack of terminals and nonterminals
 - Unconsumed input is a string of terminals
 - Current derivation step is **stack + input**

- Parsing is a sequence of *shift* and *reduce* operations

- **Shift**: Move look-ahead token to the stack

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, (y, z), w)</td>
<td>shift (</td>
<td></td>
</tr>
<tr>
<td>(x, (y, z), w)</td>
<td>shift x</td>
<td></td>
</tr>
</tbody>
</table>

- **Reduce**: Replace symbols γ at top of stack with nonterminal X s.t. $X \rightarrow \gamma$ is a production, i.e., pop γ, push X

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, (y, z), w)</td>
<td>reduce S \rightarrow id</td>
<td></td>
</tr>
<tr>
<td>(S, (y, z), w)</td>
<td>reduce L \rightarrow S</td>
<td></td>
</tr>
</tbody>
</table>
Example Run

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(x, (y, z), w)</td>
<td>shift (</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>shift x</td>
</tr>
<tr>
<td></td>
<td>x, (y, z), w)</td>
<td>reduce S ⟷ id</td>
</tr>
<tr>
<td></td>
<td>(x</td>
<td>reduce L ⟷ S</td>
</tr>
<tr>
<td></td>
<td>(y, z), w)</td>
<td>shift ,</td>
</tr>
<tr>
<td></td>
<td>(S</td>
<td>shift (</td>
</tr>
<tr>
<td></td>
<td>(y, z), w)</td>
<td>shift y</td>
</tr>
<tr>
<td></td>
<td>(L</td>
<td>reduce S ⟷ id</td>
</tr>
<tr>
<td></td>
<td>(y, z), w)</td>
<td>reduce L ⟷ S</td>
</tr>
<tr>
<td></td>
<td>(L,</td>
<td>shift ,</td>
</tr>
<tr>
<td></td>
<td>(y, z), w)</td>
<td>shift z</td>
</tr>
<tr>
<td></td>
<td>(L, (y</td>
<td>reduce S ⟷ id</td>
</tr>
<tr>
<td></td>
<td>y, z), w)</td>
<td>reduce L ⟷ L, S</td>
</tr>
<tr>
<td></td>
<td>(L, (S</td>
<td>reduce L ⟷ L, S</td>
</tr>
<tr>
<td></td>
<td>z), w)</td>
<td>shift)</td>
</tr>
<tr>
<td></td>
<td>(L, (S</td>
<td>reduce S ⟷ (L)</td>
</tr>
<tr>
<td></td>
<td>z), w)</td>
<td>reduce L ⟷ L, S</td>
</tr>
<tr>
<td></td>
<td>(L, z</td>
<td>shift ,</td>
</tr>
<tr>
<td></td>
<td>, w)</td>
<td>shift w</td>
</tr>
<tr>
<td></td>
<td>(L, z</td>
<td>reduce S ⟷ id</td>
</tr>
<tr>
<td></td>
<td>, w)</td>
<td>reduce L ⟷ L, S</td>
</tr>
<tr>
<td></td>
<td>(L, w</td>
<td>shift)</td>
</tr>
<tr>
<td></td>
<td>w)</td>
<td>reduce S ⟷ L, S</td>
</tr>
<tr>
<td></td>
<td>(L, w</td>
<td>shift)</td>
</tr>
<tr>
<td></td>
<td>w)</td>
<td>reduce S ⟷ L, S</td>
</tr>
<tr>
<td></td>
<td>(L,</td>
<td>shift)</td>
</tr>
<tr>
<td></td>
<td>(L)</td>
<td>reduce S ⟷ L, S</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>reduce S ⟷ (L)</td>
</tr>
</tbody>
</table>

Productions:

- **$S ⟷ (L)$** | **id**
- **$L ⟷ S$** | **L , S**
Action Selection Problem

• Given a stack σ and a look-ahead symbol b, should the parser
 – Shift b onto the stack (new stack is σb), or
 – Reduce a production $X \rightarrow \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?

• Sometimes the parser can reduce, but should not
 – For example, $X \rightarrow \varepsilon$ can *always* be reduced

• Sometimes the stack can be reduced in different ways

• Main idea: Decide based on a *prefix* α of the stack plus *look-ahead*
 – The prefix α is different for different possible reductions since in
 productions $X \rightarrow \gamma$ and $Y \rightarrow \beta$, γ and β might have different lengths

• Main goal: Know what set of reductions are legal at any point
 – How do we keep track?
LR(0) States

- LR(0) state: items to track progress on possible upcoming reductions
- LR(0) item: a production with an extra separator “." in the RHS

\[
\begin{align*}
S & \rightarrow (L) \mid \text{id} \\
L & \rightarrow S \mid L, S
\end{align*}
\]

- Example items: \(S \rightarrow (.L) \) or \(S \rightarrow (.L) \) or \(L \rightarrow S \).
- Intuition
 - Stuff before the ‘.’ is already on the stack (beginnings of possible \(\gamma \)'s to be reduced)
 - Stuff after the ‘.’ is what might be seen next
 - The prefixes \(\alpha \) are represented by the state itself
Constructing the DFA: Start state & Closure

- First step: Add a new production
 \[S' \rightarrow S\$ \] to the grammar
- Start state of the DFA = empty stack, so it contains the item
 \[S' \rightarrow .S\$ \]
- Closure of a state
 - Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the ‘.’
 - The added items have the ‘.’ located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state… keep iterating until a fixed point is reached
- Example

 \[\text{CLOSURE}\{S' \rightarrow .S\$\} = \{ S' \rightarrow .S\$, S \rightarrow .(L), S \rightarrow .id \} \]

- Resulting “closed state” contains the set of all possible productions that might be reduced next
Example: Constructing the DFA

- First, we construct a state with the initial item $S' \rightarrow .S$

\[\begin{align*}
S' & \rightarrow S$
S & \rightarrow (L) \mid \text{id}
L & \rightarrow S \mid L, S
\end{align*} \]
Next, we take the closure of that state
CLOSURE(\{ S' \mapsto .S$ \}) = \{ S' \mapsto .S$, S \mapsto .(L), S \mapsto .id \}

In the set of items, the nonterminal S appears after the ‘.’
So we add items for each S production in the grammar
Example: Constructing the DFA

- Next we add the transitions
- First, we see what terminals and nonterminals can appear after the ‘.’ in the source state
 - Outgoing edges have those label
- The target state (initially) includes all items from the source state that have the edge-label symbol after the ‘.’, but we advance the ‘.’ (to simulate shifting the item onto the stack)
Example: Constructing the DFA

- Finally, for each new state, we take the closure
- Note that we have to perform two iterations to compute CLOSURE({S \mapsto (. L)})
 - First iteration adds L \mapsto .S and L \mapsto .L, S
 - Second iteration adds S \mapsto .(L) and S \mapsto .id
Full DFA for the Example

1. $S' \rightarrow .S$
2. $S \rightarrow \text{id}$
3. $S \rightarrow (. \text{ L })$
4. $S \rightarrow \text{id}$
5. $S \rightarrow (\text{ L })$
6. $L \rightarrow \text{L}.$
7. $S \rightarrow \text{S}$
8. $L \rightarrow .S$
9. $S \rightarrow \text{id}$

Done!

$S' \rightarrow SS$
$S \rightarrow (\text{ L }) \mid \text{ id}$
$L \rightarrow \text{S} \mid \text{ L} , S$

Reduce state: ‘.’ at the end of the production

Current state: run the DFA on the stack
If a reduce state is reached, reduce
Otherwise, if the next token matches an outgoing edge, shift
If no such transition, it is a parse error
Using the DFA

• Run parser stack through the DFA

• Resulting state tells what productions may be reduced next
 – If not in a reduce state, shift the next symbol & transition wrt DFA
 – If in a reduce state, \(X \rightarrow \gamma \) with stack \(\alpha \gamma \), pop \(\gamma \) and push \(X \)

• Optimization: No need to rerun DFA from beginning each step
 – Store the state with each symbol on the stack: e.g. \(1(3(3L_5)_6 \)
 – On a reduction \(X \rightarrow \gamma \), pop stack to reveal the state too
 e.g., from stack \(1(3(3L_5)_6 \) reduce \(S \rightarrow (L) \) to reach stack \(1(3 \)
 – Next, push the reduction symbol: e.g. to reach stack \(1(3S \)
 – Then take just one step in the DFA to find next state: \(1(3S_7 \)
Implementing the Parsing Table

Represent the DFA as a table of shape
state * \((\text{terminals} + \text{nonterminals})\)

- Entries for the “action table” specify two kinds of actions
 - Shift and go to state \(n\)
 - Reduce using reduction \(X \rightarrow \gamma\)
 - First pop \(\gamma\) off the stack to reveal the state
 - Look up \(X\) in the “goto table” and go to that state

<table>
<thead>
<tr>
<th>State</th>
<th>Terminal Symbols</th>
<th>Nonterminal Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Action table</td>
<td>Goto table</td>
</tr>
</tbody>
</table>

Zhendong Su Compiler Design
Example Parse Table

<table>
<thead>
<tr>
<th></th>
<th>()</th>
<th>id</th>
<th>,</th>
<th>$</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s3</td>
<td>s2</td>
<td></td>
<td></td>
<td>g4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S→id</td>
<td>S→id</td>
<td>S→id</td>
<td>S→id</td>
<td>S→id</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s3</td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
<td>g7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DONE</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>s6</td>
<td>s8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S → (L)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L → S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>s3</td>
<td>s2</td>
<td></td>
<td>g9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>L → L,S</td>
<td></td>
</tr>
</tbody>
</table>

sx = shift and go to state x
gx = go to state x
- Parse the token stream: \((x, (y, z), w)\)$

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action (according to table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_1)</td>
<td>((x, (y, z), w))$</td>
<td>s3</td>
</tr>
<tr>
<td>(\varepsilon_1(3))</td>
<td>x, (y, z), w)$</td>
<td>s2</td>
</tr>
<tr>
<td>(\varepsilon_1(3x_2))</td>
<td>, (y, z), w)$</td>
<td>Reduce: (S \rightarrow \text{id})</td>
</tr>
<tr>
<td>(\varepsilon_1(3S))</td>
<td>, (y, z), w)$</td>
<td>g7 (from state 3 follow S)</td>
</tr>
<tr>
<td>(\varepsilon_1(3S_7))</td>
<td>, (y, z), w)$</td>
<td>Reduce: (L \rightarrow S)</td>
</tr>
<tr>
<td>(\varepsilon_1(3L))</td>
<td>, (y, z), w)$</td>
<td>g5 (from state 3 follow L)</td>
</tr>
<tr>
<td>(\varepsilon_1(3L_5))</td>
<td>, (y, z), w)$</td>
<td>s8</td>
</tr>
<tr>
<td>(\varepsilon_1(3L_5,8))</td>
<td>(y, z), w)$</td>
<td>s3</td>
</tr>
<tr>
<td>(\varepsilon_1(3L_5,8(3)</td>
<td>y, z), w)$</td>
<td>s2</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>id</th>
<th>,</th>
<th>$</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s3</td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
<td>g4</td>
</tr>
<tr>
<td>2</td>
<td>s→id</td>
<td>s→id</td>
<td>s→id</td>
<td>s→id</td>
<td>s→id</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s3</td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
<td>g7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DONE</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>s6</td>
<td>s8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>s→(L)</td>
<td>s→(L)</td>
<td>s→(L)</td>
<td>s→(L)</td>
<td>s→(L)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L→S</td>
<td>L→S</td>
<td>L→S</td>
<td>L→S</td>
<td>L→S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>s3</td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
<td>g9</td>
</tr>
<tr>
<td>9</td>
<td>L→L,S</td>
<td>L→L,S</td>
<td>L→L,S</td>
<td>L→L,S</td>
<td>L→L,S</td>
<td>L→L,S</td>
</tr>
</tbody>
</table>
LR(0) Limitations

• An LR(0) machine only works if states with reduce actions have a single reduce action
 – In such states, the machine always reduces (ignoring lookahead)

• With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts

 OK
 shift/reduce
 reduce/reduce

 ![Example States](image)

• LR(1) to the rescue
 – Such conflicts can often be resolved using a single look-ahead
• Consider the left associative and right associative “sum” grammars

left

\[S \rightarrow S + E \mid E \]
\[E \rightarrow \text{number} \mid (S) \]

right

\[S \rightarrow E + S \mid E \]
\[E \rightarrow \text{number} \mid (S) \]

• One is LR(0) the other is not. Which is which, and why?
• What kind of conflict do we get?
 – shift/reduce, or
 – reduce/reduce?

• Ambiguities in associativity/precedence often lead to shift/reduce conflicts
LR(1) Parsing

• Algorithm is similar to LR(0) DFA construction
 – LR(1) state = set of LR(1) items
 – An LR(1) item is an LR(0) item + a set of look-ahead symbols
 \[A \rightarrow \alpha.\beta, L \]

• LR(1) closure is a little more complex
• Form the set of items just as for LR(0) algorithm
• Whenever a new item \(C \rightarrow \gamma \) is added because \(A \rightarrow \beta.C\delta, L \) is already in the set, we need to compute its look-ahead set \(M \)
 1. The look-ahead set \(M \) includes FIRST(\(\delta \))
 (the set of terminals that may start strings derived from \(\delta \))
 2. If \(\delta \) is or can derive \(\varepsilon \), then the look-ahead \(M \) also contains \(L \)
Example Closure

\[
S' \mapsto S$
\]
\[
S \mapsto E + S \mid E
\]
\[
E \mapsto \text{number} \mid (S)
\]

• Start item: \(S' \mapsto .S$ \ , \ {} \)

• Since \(S \) is to the right of a ‘.’, add
 \[
 S \mapsto .E + S \ , \ \{\}$ \]
 Note: \(\{\}$ is \(\text{FIRST}(\}$ \)
 \[
 S \mapsto .E \ , \ \{\}$ \]

• Need to keep closing, since \(E \) appears to the right of a ‘.’ in ‘.E + S’
 \[
 E \mapsto \text{number} \ , \ \{+\} \]
 Note: + added for reason 1
 \[
 E \mapsto .(S) \ , \ \{+\} \]
 \(\text{FIRST}(+ S) = \{+\} \)

• Because \(E \) also appears to the right of ‘.’ in ‘.E’ we get:
 \[
 E \mapsto .\text{number} \ , \ \{$} \]
 Note: $ added for reason 2
 \[
 E \mapsto .(S) \ , \ \{$} \]
 \(\delta \) is \(\varepsilon \)

• All items are distinct, so we’re done
The behavior is determined if

- There is no overlap among the look-ahead sets for each reduce item, and
- None of the look-ahead symbols appear to the right of a ‘.’
LR(1) issues

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
 - DFA + stack is a push-down automaton

- In practice, LR(1) tables are big
 - Modern implementations (e.g. menhir) directly generate code
LR Variants: LALR(1) & GLR

- Consider for example the LR(1) states

 $$\{[X \rightarrow \alpha\bullet, a], [Y \rightarrow \beta\bullet, c]\}$$

 $$\{[X \rightarrow \alpha\bullet, b], [Y \rightarrow \beta\bullet, d]\}$$

- They have the same core and can be merged
- And the merged state contains

 $$\{[X \rightarrow \alpha\bullet, a/b], [Y \rightarrow \beta\bullet, c/d]\}$$

- These are called LALR(1) states

 - Stands for LookAhead LR
 - Typically 10 times fewer LALR(1) states than LR(1)

- Compared to LR(1), LALR(1) may introduce new reduce/reduce conflicts, but not new shift/reduce conflicts. Why?

 $$\{[X \rightarrow \alpha\bullet, a/_], [Y \rightarrow \beta\bullet a, _]\}$$

- SLR(1) = “Simple” LR (like LR(0), but use the FOLLOW information)
- GLR = “Generalized LR” parsing

 - Efficiently compute the set of all parses for a given input
 - Later passes should disambiguate based on other context
Classification of Grammars

- LR(1)
- LALR(1)
- SLR
- LL(1)
- LR(0)
Debugging parser conflicts.
Disambiguating grammars.

MENHIR IN PRACTICE
Practical Issues

• Dealing with source file location information
 – In the lexer and parser
 – In the abstract syntax

 – See range.ml, ast.ml

• Lexing comments/strings
Menhir output

• You can get verbose ocamlyacc debugging information by doing
 – `menhir --explain` ...
 – or, if using ocamlbuild:
 `ocamlbuild --use-menhir --yaccflag --explain` ...

• The result is a `<basename>.conflicts` file describing the error
 – The parser items of each state use the ‘.’ just as described above

• The flag `--dump` generates a full description of the automaton

• Example: `start-parser.mly`
Precedence and Associativity Declarations

• Parser generators often support precedence/associativity declarations
 – Hints to the parser about how to resolve conflicts
 – See good-parser.mly

• Pros
 – Avoids having to manually resolve those ambiguities by manually introducing extra nonterminals (as seen in hand-parser.mly)
 – Easier to maintain the grammar

• Cons
 – Can’t as easily re-use the same terminal (if associativity differs)
 – Introduces another level of debugging

• Limits
 – Not always easy to disambiguate just with precedence/associativity
Example Ambiguity in Real Languages

• Consider this grammar
 \[
 S \rightarrow \text{if } (E) \ S \\
 S \rightarrow \text{if } (E) \ S \text{ else } S \\
 S \rightarrow X = E \\
 E \rightarrow ... \\
 \]

• Is this grammar OK?

• Consider how to parse
 \[
 \text{if } (E_1) \ \text{if } (E_2) \ S_1 \\
 \text{else } S_2 \\
 \]

• This is known as the “dangling else” problem.

• What should the “right” answer be?

• How do we change the grammar?

Zhendong Su Compiler Design
How to disambiguate if-then-else

- Want to rule out

\[
\text{if (E}_1) \begin{cases} \text{if (E}_2) \text{ S}_1 \end{cases} \text{ else S}_2
\]

- Observation: An un-matched ‘if’ should not appear as the ‘then’ clause of a containing ‘if’

\[
\begin{align*}
S & \rightarrow M | U & \quad & \text{M = “matched”, U = “unmatched”} \\
U & \rightarrow \text{if (E) S} & \quad & \text{Unmatched ‘if’} \\
U & \rightarrow \text{if (E) M else U} & \quad & \text{Nested if is matched} \\
M & \rightarrow \text{if (E) M else M} & \quad & \text{Matched ‘if’} \\
M & \rightarrow X = E & \quad & \text{Other statements}
\end{align*}
\]

- See \texttt{else-resolved-parser.mly}
• Ambiguity arises because the ‘then’ branch is not well bracketed

```java
if (E_1) { if (E_2) { S_1 } } else S_2  // unambiguous
if (E_1) { if (E_2) { S_1 } else S_2 }  // unambiguous
```

• So, one could just require brackets
 – But requiring them for the else clause too leads to ugly code for chained if-statements

```
if (c1) {
    ...
} else {
    if (c2) {
    } else {
        if (c3) {
        } else {
            ...
        }
    }
}
```

So, compromise? Allow unbracketed else block only if the body is ‘if’

```
if (c1) {
    ...
} else if (c2) {
    } else if (c3) {
    } else {
    }
}
```

Benefits
• Less ambiguous
• Easy to parse
• Enforces good style