Lecture 21

COMPILER DESIGN
Announcements

- **HW5**: OAT v. 2.0
 - Records, function pointers, type checking, array-bounds checks, etc.

- **HW6**: Analysis & Optimizations *(the final homework)*
 - Alias analysis, constant propagation, dead code elimination, register allocation
Plan

• Next: Register allocation

• Upcoming
 – Dataflow analysis (part 2)
 – Control-flow analysis & SSA
 – Garbage collection (GC)
 – Compiler testing & validation
 • How to find thousands of bugs in GCC & LLVM?
 – Compiler verification
 • How to build a fully verified realistic compiler?
 – MLIR
 – Guest lecture on GraalVM, PGQL & Green-Marl
 – Summary
LOOPS AND DOMINATORS
Loops in Control-flow Graphs

• Taking into account loops is important for optimizations
 – The 90/10 rule applies, so optimizing loop bodies is important

• Should we apply loop optimizations at AST level or at a lower level?
 – Loop optimizations benefit from other IR-level optimizations & vice-versa
 – Thus, it’s good to interleave them

• Loops may be hard to recognize at the quadruple / LLVM IR level
 – Many kinds of loops: while, do/while, for, continue, goto, …

• Problem: How do we identify loops in the control-flow graph?
Definition of a Loop

- A **loop** is a set of nodes in the CFG
 - One distinguished entry: the **header**

- Each node reachable from header
- Header reachable from each node

- No edges enter a loop except to header
- **Exit nodes**: nodes with outgoing edges

Loop is a strongly connected component (SCC)
Nested Loops

- A CFG may contain many loops
- Loops may contain other loops

Control Tree

Control tree depicts nesting structure
Control-flow Analysis

- **Goal**: Identify loops & nesting structure in a CFG

- Control flow analysis is based on the idea of *dominators*

 A dominates B: if the only way to reach B from start node is via A

- An edge in the CFG is a *back edge* if its target dominates the source

- A loop contains >= 1 back edge
Dominator Trees

- Domination is transitive: \(A \text{ dom } B, B \text{ dom } C \implies A \text{ dom } C \)
- Domination is anti-symmetric: \(A \text{ dom } B, B \text{ dom } A \implies A = B \)

- Every flow graph has a dominator tree
 - The Hasse diagram of the dominates relation

![Dominator Tree Diagram](image-url)
Dominator Dataflow Analysis

• We can define \textbf{Dom}[n] as a forward dataflow analysis
 – Using the framework we saw earlier: \textbf{Dom}[n] = \text{out}[n] where
 – B is dominated by A if A dominates all B’s predecessors

\[
in[n] := \bigcap_{n' \in \text{pred}[n]} \text{out}[n']
\]
 – Every node dominates itself

\[
\text{out}[n] := \text{in}[n] \cup \{n\}
\]

• Formally: \(\mathcal{L} = \) set of nodes ordered by \(\subseteq \)
 – \(T = \) \{all nodes\}
 – \(F_n(x) = x \cup \{n\} \)
 – \(\bigcap \) is \(\cap \)

• Easy to show monotonicity and that \(F_n \) distributes over meet
 – So algorithm terminates and is MOP
Improving the Algorithm

• **Dom[b]:** just those nodes along the path in dominator tree from root to b
 – e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
 – There is a lot of sharing among the nodes

• More efficient to represent Dom sets by storing dominator tree
 – **doms[b]** = immediate dominator of b

• To compute Dom[b] walk through doms[b]

• Need to efficiently compute **Dom[a] ∩ Dom[b]**
 – Traverse up tree & look for least common ancestor

• See “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy
Completing Control-flow Analysis

- Dominator analysis identifies back edges
 - Edge $n \rightarrow h$ where h dominates n
- Each back edge has a natural loop
 - h is the header
 - All nodes reachable from h that also reach n without going through h
- For each back edge $n \rightarrow h$, find the natural loop
 - $\{n' \mid n \text{ is reachable from } n' \text{ in } G \setminus \{h\}\} \cup \{h\}$
- Two loops may share the same header: merge them
- Nesting structure of loops is determined by set inclusion
 - Can be used to build the control tree
Example Natural Loops

Natural Loops

Control Tree

Control tree depicts nesting structure
Uses of Control-flow Information

- Loop nesting depth plays an important role in optimization heuristics
 - Deeply nested loops pay off the most for optimization

- Need to know loop headers / back edges for doing
 - loop invariant code motion
 - loop unrolling

- Dominance information also plays a role in converting to SSA form
 - Used internally by LLVM to do register allocation
Phi nodes
Alloc “promotion”
Register allocation

REVISITING SSA
Single Static Assignment (SSA)

- LLVM IR names (via %uids) all intermediate values
- It makes order of evaluation explicit
- Each %uid is assigned only once
 - Contrast with the mutable quadruple form
 - Dataflow analyses had kill[n] sets due to variable updates

- Naïve backup implementation: map %uids to stack slots
- Better: map %uids to registers (as much as possible)

- Question: How to convert a source to maximally use %uids (vs. alloca’s)?
 - Two problems: control flow & location in memory

- Then, how to convert SSA code to x86, mapping %uids to registers?
 - Register allocation
• Current compilation strategy

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%\texttt{x} = \texttt{alloca i64}
%\texttt{y} = \texttt{alloca i64}
\texttt{store i64* } %\texttt{x}, 3
\texttt{store i64* } %\texttt{y}, 0
%\texttt{x1} = \texttt{load i64* } %\texttt{x}
%\texttt{tmp1} = \texttt{add i64 } %\texttt{x1}, 1
\texttt{store i64* } %\texttt{x}, %\texttt{tmp1}
%\texttt{x2} = \texttt{load i64* } %\texttt{x}
%\texttt{tmp2} = \texttt{add i64 } %\texttt{x2}, 2
\texttt{store i64* } %\texttt{y}, %\texttt{tmp2}

• Directly map source variables into %\texttt{uids}?

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%\texttt{x1} = \texttt{add i64 3, 0}
%\texttt{y1} = \texttt{add i64 0, 0}
%\texttt{x2} = \texttt{add i64 } %\texttt{x1}, 1
%\texttt{y2} = \texttt{add i64 } %\texttt{x2}, 2

• Q: Does this always work?
What about If-then-else?

- How do we translate this into SSA?

```c
int y = ...
int x = ...
int z = ...
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;
```

```c
entry:
%y1 = ...
%x1 = ...
%z1 = ...
%p = icmp ...
br i1 %p, label %then, label %else
then:
  %x2 = add i64 %y1, 1
  br label %merge
else:
  %x3 = mult i64 %y1, 2
merge:
  %z2 = %add i64 ???, 3
```

- What do we put for ???
Phi Functions

- **Solution:** \(\phi \) functions
 - Fictitious operator, used only for analysis
 - Implemented by Mov at x86 level
 - Chooses versions of a variable by the path how control enters phi node

\[
\text{%uid} = \phi <\text{ty}> v_1, <\text{label}_1>, \ldots, v_n, <\text{label}_n>
\]

```plaintext
int y = ...
int x = ...
int z = ...
if (p) {
  x = y + 1;
} else {
  x = y * 2;
}
z = x + 3;
```

```plaintext
entry:
  %y1 = ...
  %x1 = ...
  %z1 = ...
  %p = icmp ...
  br i1 %p, label %then, label %else
then:
  %x2 = add i64 %y1, 1
  br label %merge
else:
  %x3 = mult i64 %y1, 2
merge:
  %x4 = phi i64 %x2, %then, %x3, %else
  %z2 = %add i64 %x4, 3
```
Phi Nodes and Loops

- Importantly, `%uids` on RHS of phi nodes can be defined “later” in CFG
 - Meaning that `%uids` can hold values “around a loop”
 - Scope of `%uids` is defined by dominance

```c
entry:
  %y1 = ...
  %x1 = ...
  br label %body

body:
  %x2 = phi i64 %x1, %entry, %x3, %body
  %x3 = add i64 %x2, %y1
  %p = icmp slt i64, %x3, 10
  br i1 %p, label %body, label %after

after:
  ...
```
Alloca Promotion

- Not all source variables can be allocated to registers
 - If the address of the variable is taken (as permitted in C, for example)

```assembly
entry:
  %x = alloca i64          // %x cannot be promoted
  %y = call malloc(i64 8)
  %ptr = bitcast i8* %y to i64**
  store i64** %ptr, %x     // store the pointer into the heap
```

 - If the address of the variable “escapes” (by being passed to a function)

```assembly
entry:
  %x = alloca i64          // %x cannot be promoted
  %y = call foo(i64* %x)   // foo may store the pointer into the heap
```

- An alloca inst. is **promotable** if neither of the above conditions holds

- Happily, most local variables declared in source programs are promotable
 - That means they can be register allocated
Converting to SSA: Overview

• Start with the ordinary CFG that uses allocas
 – Identify “promotable” allocas

• Compute dominator tree information

• Calculate def/use information for each such allocated variable

• Insert \(\phi \) functions for each variable at necessary “join points”

• Replace loads/stores to alloc’ed variables with freshly-generated \(\% \)uids

• Eliminate the now unneeded load/store/alloca instructions
Where to Place ϕ functions?

• Need to calculate the “Dominance Frontier”

• Node A strictly dominates B if $A \text{ dom } B \land A \neq B$
 – Note: A does not strictly dominate B if A does not dominate B or $A = B$

• The dominance frontier of a node B is the set of all CFG nodes y such that B dominates a predecessor of y, but does not strictly dominate y
 – Intuitively: starting at B, there is a path to y, but there is another route to y that does not go through B

• Write $DF[n]$ for the dominance frontier of node n
Dominance Frontiers

- Example of a dominance frontier calculation results
- \(\text{DF}[1] = \{1\}, \quad \text{DF}[2] = \{1,2\}, \quad \text{DF}[3] = \{2\}, \quad \text{DF}[4] = \{1\}, \quad \text{DF}[5] = \{8,0\}, \quad \text{DF}[6] = \{8\}, \quad \text{DF}[7] = \{7,0\}, \quad \text{DF}[8] = \{0\}, \quad \text{DF}[9] = \{7,0\}, \quad \text{DF}[0] = \{\} \)

Control-flow Graph

Dominator Tree
Dominance Frontiers

- Example of a dominance frontier calculation results
- $DF[1] = \{1\}$ because
 - $1 \text{ dom } 4$ (4 is a predecessor of 1)
 - 1 doesn’t strictly dominate 1

Control-flow Graph

Dominator Tree
Example of a dominance frontier calculation results

- $DF[2] = \{1,2\}$ because
 - $2 \text{ dom } 4$ (a predecessor of 1), 2 doesn’t strictly dominate 1
 - $2 \text{ dom } 3$ (a predecessor of 2), 2 doesn’t strictly dominate 2
Dominance Frontiers

- Example of a dominance frontier calculation results
- $DF[5] = \{8,0\}$ because
 - For 0, 5 dom 9 (a predecessor of 0), but 5 doesn’t dominate 0
Algorithm For Computing DF[n]

• Assume doms[n] stores the dominator tree
 – doms[n] is the immediate dominator of n in the tree

• Adds each B to the DF sets to which it belongs

for all nodes B
 if #(pred[B]) ≥ 2 // (just an optimization)
 for each p ∈ pred[B] {
 runner := p // start at the predecessor of B
 while (runner ≠ doms[B]) // walk up the tree adding B
 DF[runner] := DF[runner] U \{B\}
 runner := doms[runner]
 }

Dominance Frontiers

- Example of a dominance frontier calculation results
- $\text{DF}[1] = \{1\}$, $\text{DF}[2] = \{1,2\}$, $\text{DF}[3] = \{2\}$, $\text{DF}[4] = \{1\}$, $\text{DF}[5] = \{8,0\}$, $\text{DF}[6] = \{8\}$, $\text{DF}[7] = \{7,0\}$, $\text{DF}[8] = \{0\}$, $\text{DF}[9] = \{7,0\}$, $\text{DF}[0] = \{

Insert ϕ at Join Points

- Lift the $DF[n]$ to a set of nodes N in the obvious way
 $$DF[N] = \bigcup_{n \in N} DF[n]$$
- Suppose variable x is defined at a set of nodes N
 $$DF_0[N] = DF[N]$$
 $$DF_{i+1}[N] = DF[DF_i[N] \cup N]$$

Let $J[N]$ be the least fixed point of the sequence
 $$DF_0[N] \subseteq DF_1[N] \subseteq DF_2[N] \subseteq DF_3[N] \subseteq \ldots$$
That is, $J[N] = DF_k[N]$ for some k such that $DF_k[N] = DF_{k+1}[N]$
 - $J[N]$ is called the “join points” for the set N

- We insert ϕ functions for the variable x at each node in $J[N]$
 - $x = \phi(x, x, \ldots, x)$; (one “$x$” argument for each predecessor of the node)
 - In practice, $J[N]$ is never directly computed, instead use a worklist algorithm
 that keeps adding nodes for $DF_k[N]$ until there are no changes, just as in the
 dataflow solver

- Intuition
 - If N is the set of places where x is modified, then $DF[N]$ is the places where
 phi nodes need to be added, but those also “count” as modifications of x, so
 we need to insert the phi nodes to capture those modifications too
Example Join-point Calculation

• Suppose the variable x is modified at nodes 3 and 6
 – Where would we need to add phi nodes?
Example Join-point Calculation

- Suppose the variable x is modified at nodes 3 and 6
 - Where would we need to add phi nodes?

- $DF_0[\{3,6\}] = DF[\{3,6\}] = DF[3] \cup DF[6] = \{2,8\}$
- $DF_1[\{3,6\}]$
 - $= DF[DF_0[\{3,6\}] \cup \{3,6\}]$
 - $= DF[\{2,3,6,8\}]$
 - $= \{1,2\} \cup \{2\} \cup \{8\} \cup \{0\} = \{1,2,8,0\}$
- $DF_2[\{3,6\}]$
 - $= \ldots$
 - $= \{1,2,8,0\}$

- So $J[\{3,6\}] = \{1,2,8,0\}$, and we need to add phi nodes at those 4 spots
Phi Placement Alternative

• Less efficient, but easier to understand

• Place phi nodes "maximally" (i.e. at every node with >= 2 predecessors)

• If all values flowing into phi node are the same, then eliminate it
 \[
 \%x = \text{phi} \ t \ \%y, \ %\text{pred1} \ t \ \%y \ %\text{pred2} \ldots \ t \ %y \ %\text{predK}
 \]

 // code that uses \%x

 ⇒

 // code with \%x replaced by \%y

• Interleave with other optimizations
 – copy propagation
 – constant propagation
 – etc.
Example SSA Optimizations

• How to place phi nodes without breaking SSA?

• Note: the “real” implementation combines many of these steps into one pass
 – Places phis directly at the dominance frontier

• This example also illustrates other common optimizations
 – Load after store/alloca
 – Dead store/alloca elimination
Example SSA Optimizations

- How to place phi nodes without breaking SSA?

 - Insert
 - Loads at the end of each block

```
\text{l_1}: \text{%p} = \text{alloca i64}
\text{store 0, %p}
\text{%b} = \text{%y > 0}
\text{\%x_1 = load %p}
\text{br %b, \%l_2, \%l_3}

\text{l_2}: \text{store 1, %p}
\text{\%x_2 = load \%p}
\text{br \%l_3}

\text{l_3}: \text{\%x = load \%p}
\text{ret \%x}
```
Example SSA Optimizations

- How to place phi nodes without breaking SSA?
- Insert
 - Loads at the end of each block
 - Insert φ-nodes at each block
Example SSA Optimizations

- How to place phi nodes without breaking SSA?

- Insert
 - Loads at the end of each block
 - Insert φ-nodes at each block
 - Insert stores after φ-nodes

```
l₁:  %p = alloca i64
    store 0, %p
    %b = %y > 0
    %x₁ = load %p
    br %b, %l₂, %l₃

l₂:  %x₃ = φ[%x₁, %l₁]
    store %x₃, %p
    store 1, %p
    %x₂ = load %p
    br %l₃

l₃:  %x₄ = φ[%x₁, %l₁, %x₂, %l₂]
    store %x₄, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

• For loads after stores (LAS):
 – Substitute all uses of the load by the value being stored
 – Remove the load

\[l_1: \%p = \text{alloca i64} \]
\[\text{store 0, } \%p \]
\[\%b = \%y > 0 \]
\[\%x_1 = \text{load } \%p \]
\[\text{br } \%b, \%l_2, \%l_3 \]

\[l_2: \%x_3 = \phi[\%x_1, \%l_1] \]
\[\text{store } \%x_3, \%p \]
\[\text{store 1, } \%p \]
\[\%x_2 = \text{load } \%p \]
\[\text{br } \%l_3 \]

\[l_3: \%x_4 = \phi[\%x_1, \%l_1, \%x_2, \%l_2] \]
\[\text{store } \%x_4, \%p \]
\[\%x = \text{load } \%p \]
\[\text{ret } \%x \]
Example SSA Optimizations

For loads after stores (LAS):

- Substitute all uses of the load by the value being stored
- Remove the load

```c
l_1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    %x_1 = load %p
    br %b, %l_2, %l_3

l_2: %x_3 = phi[ %x_1, %l_1]
    store %x_3, %p
    store 1, %p
    %x_2 = load %p
    br %l_3

l_3: %x_4 = phi[ %x_1, %l_1, %x_2:%l_2]
    store %x_4, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

For loads after stores (LAS):
- Substitute all uses of the load by the value being stored
- Remove the load

```c
l_1: %p = allocas i64
    store 0, %p
    %b = %p > 0
    %x_1 = load %p
    br %b, %l_2, %l_3

l_2: %x_3 = phi[0, %l_1]
    store %x_3, %p
    store 1, %p
    %x_2 = load %p
    br %l_3

l_3: %x_4 = phi[0, %l_1, %x_2:%l_2]
    store %x_4, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

```
l_1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    br %b, %l_2, %l_3

l_2: %x_3 = φ[0, %l_1]
    store %x_3, %p
    store 1, %p
    %x_2 = load %p
    br %l_3

l_3: %x_4 = φ[0; %l_1, %x_2 %l_2]
    store %x_4, %p
    %x = load %p
    ret %x
```
Example SSA Optimizations

- For loads after stores (LAS):
 - Substitute all uses of the load by the value being stored
 - Remove the load

\[l_1: \%p = \text{alloca i64} \]
\[\text{store 0, } \%p \]
\[\%b = \%y > 0 \]
\[\text{br } \%b, \%l_2, \%l_3 \]

\[l_2: \%x_3 = \phi[0, \%l_1] \]
\[\text{store } \%x_3, \%p \]
\[\text{store 1, } \%p \]
\[\%x_2 = \text{load } \%p \]
\[\text{br } \%l_3 \]

\[l_3: \%x_4 = \phi[0; \%l_1, 1; \%l_2] \]
\[\text{store } \%x_4, \%p \]
\[\%x = \text{load } \%p \]
\[\text{ret } \%x \]
Example SSA Optimizations

For loads after stores (LAS):
- Substitute all uses of the load by the value being stored
- Remove the load

l₁: %p = alloca i64
 store 0, %p
 %b = %y > 0
 br %b, %l₂, %l₃

l₂: %x₃ = \phi[0;%l₁]
 store %x₃, %p
 store 1, %p
 br %l₃

l₃: %x₄ = \phi[0;%l₁, 1;%l₂]
 store %x₄, %p
 %x = load %p
 ret %x
Example SSA Optimizations

For loads after stores (LAS):

- Substitute all uses of the load by the value being stored
- Remove the load

```
l_1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    br %b, %l_2, %l_3

l_2: %x_3 = phi[0, %l_1]
    store %x_3, %p
    store 1, %p
    br %l_3

l_3: %x_4 = phi[0; %l_1, 1; %l_2]
    store %x_4, %p
    %x = load %p
    ret %x_4
```
Example SSA Optimizations

- **Dead Store Elimination (DSE)**
 - Eliminate all stores with no subsequent loads.

- **Dead Alloca Elimination (DAE)**
 - Eliminate all allocas with no subsequent loads/stores.

```
l_1: %p = alloca i64
    store 0, %p
    %b = %y > 0
    br %b, %l_2, %l_3

l_2: %x_3 = φ[0,%l_1]
    store %x_3, %p
    store 1, %p
    br %l_3

l_3: %x_4 = φ[0;%l_1, 1;%l_2]
    store %x_4, %p
    ret %x_4
```
Example SSA Optimizations

- Dead Store Elimination (DSE)
 - Eliminate all stores with no subsequent loads.

- Dead Alloca Elimination (DAE)
 - Eliminate all allocas with no subsequent loads/stores.
Example SSA Optimizations

\[\text{l}_1: \]
\[\%b = \%y > 0 \]
\[\text{br } \%b, \%l_2, \%l_3 \]

\[\text{l}_2: \%x_3 = \phi[0,\%l_1] \]
\[\text{br } \%l_3 \]

\[\text{l}_3: \%x_4 = \phi[0;\%l_1, 1:\%l_2] \]
\[\text{ret } \%x_4 \]

- Eliminate \(\phi \) nodes:
 - Singletons
 - With identical values from each predecessor
 - See Aycock & Horspool, 2002

Find alloca
max \(\phi \)s
LAS/LAA
DSE
DAE
elim \(\phi \)s
Example SSA Optimizations

1:
\%
\texttt{b} = \%y > 0
\texttt{br} \%\texttt{b}, \%\texttt{l}_2, \%\texttt{l}_3

2:
\%\texttt{x}_3 = \varphi[0,\%\texttt{l}_4]
\texttt{br} \%\texttt{l}_3

3:
\%\texttt{x}_4 = \varphi[0;\%\texttt{l}_1, 1:\%\texttt{l}_2]
\texttt{ret} \%\texttt{x}_4

- Eliminate \(\varphi \) nodes:
 - Singletons
 - With identical values from each predecessor
Example SSA Optimizations

\[l_1: \]

\[b = y > 0 \]

\[\text{br } b, l_2, l_3 \]

\[l_2: \]

\[\text{br } l_3 \]

\[l_3: x_4 = \phi[0;l_1, 1;l_2] \]

\[\text{ret } x_4 \]

- Done!

Find alloca

max \(\phi \)s

LAS/LAA

DSE

DAE

elim \(\phi \)
LLVM Phi Placement

- This transformation is also sometimes called register promotion
 - older versions of LLVM called it “mem2reg” memory to register promotion

- LLVM combines it with \textit{scalar replacement of aggregates} (SROA)
 - i.e. transforming loads/stores of structured data into loads/stores on register-sized data

- These algorithms are (one reason) why LLVM IR allows annotation of predecessor information in the .ll files
 - Simplifies computing the DF