
Rigorous Software Engineering
Introduction

Spring 2019

Prof. Zhendong Su

(based on slides from Prof. Peter Müller)

2

苏振东 (Su Zhen Dong)

§  How to pronounce “Zhendong”?
-  Try “Jendong” (close enough)

§  Places lived
-  Hebei, Shanghai, Wisconsin, Texas, California, Zurich

§  Places studied/worked
-  Fudan, UT Austin, UC Berkeley, UC Davis, ETH Zurich

§  Research interests (AST Lab @ ETH)
-  Methodologies & techniques for reliable/secure software
-  EdTech for K-12 and CS education
-  AI reliability, security, performance, usability

Zhendong Su – Rigorous Software Engineering

3

Zhendong Su – Rigorous Software Engineering

1. Introduction

1.1 Software Failures
1.2 Challenges
1.3 Solution Approaches (Course Outline)

1. Introduction – Software Failures

4

Software is Everywhere (and Eating the World)

Zhendong Su – Rigorous Software Engineering

1. Introduction – Software Failures

5

Bad Software is Everywhere

Zhendong Su – Rigorous Software Engineering

1. Introduction – Software Failures

6

The Patriot Accident

§  The Patriot missile defense system
tracks & intercepts incoming
missiles

§  On Feb. 25, 1991, a Patriot system
ignored an incoming Scud missile

§  Aftermath
-  28 soldiers died
-  98 injured

Zhendong Su – Rigorous Software Engineering

1. Introduction – Software Failures

7

Patriot Bug – Rounding Error

§  The tracking algorithm measures time in 1/10s (tick)
§  Time is stored in a 24-bit fixed-point register

-  Precise binary representation of 1/10 (infinite):
0.00011001100110011001100110011001…

-  Truncated value in 24-bit fixed-point register:
0.00011001100110011001100

-  Rounding error: ~0.000000095s every 1/10s

§  After 100 hours of operation error is
0.000000095s × 10 × 3600 × 100 = 0.34s

§  A Scud travels at about 1.7km/s, and so travels
more than 0.5km in this time

Zhendong Su – Rigorous Software Engineering

1. Introduction – Software Failures

8

Analysis of the Patriot Accident

§  Changed requirements were not considered
-  System was originally designed for much slower missiles

(MACH 2 instead of MACH 5)
-  System was designed to be mobile (to avoid detection)

and to operate only for a few hours at a time

§  Maintenance was inadequate
-  A conversion routine with 48-bit precision was defined to

cope with faster missiles, but was not called in all
necessary places

Zhendong Su – Rigorous Software Engineering

1. Introduction – Software Failures

9

Zhendong Su – Rigorous Software Engineering

The Therac-25 Accident

§  Therac-25 is a medical linear accelerator

§  High-energy
X-ray & electron
beams destroy
tumors

§  6 people died or
were seriously
injured during
1985-1987

1. Introduction – Software Failures

10

Zhendong Su – Rigorous Software Engineering

Therac-25 System Design

§  Therac-25 is completely computer-controlled
-  Software written in assembly code
-  Therac-25 has its own real-time operating system

§  Software partly taken from ancestor machines
-  Software functionality limited
-  Hardware safety features and interlocks

§  Hazard analysis
-  Extensive testing on hardware simulator
-  Program software does not degrade due to wear, fatigue,

or reproduction process
-  Computer errors are due to hardware or alpha particles

1. Introduction – Software Failures

11

Zhendong Su – Rigorous Software Engineering

Therac-25 Software Design

Keyboard
Controller

Treatment
Controller

Mode and
Energy

Data Entry
Complete

Mode and energy
level stored in

shared variable

Beamer set to
energy level

(takes 8 secs)

Cursor in lower
right corner of

screen

Proceed if data
entry complete

Check for changes

1. Introduction – Software Failures

12

Zhendong Su – Rigorous Software Engineering

Accident

Keyboard
Controller

Treatment
Controller

Mode and
Energy

Data Entry
Complete

X-Ray mode
entered (sets

default energy)

Beamer set to
high energy level

(takes 8 secs)

Cursor in lower
right corner of

screen

Overdose (100x)
Patient dies

Mode switched
to electron

Check for changes
contains bug

1. Introduction – Software Failures

13

Zhendong Su – Rigorous Software Engineering

Analysis of the Therac-25 Accident

§  Changed requirements were not considered
-  In Therac-25, software is safety-critical

§  Design is too complex
-  Concurrent system, shared variables (race conditions)

§  Code is buggy
-  Check for changes done at wrong place

§  Testing was insufficient
-  System test only, almost no separate software test

§  Maintenance was poor
-  Correction of bug instead of re-design (root cause)

1. Introduction – Software Failures

14

Zhendong Su – Rigorous Software Engineering

The Windows 98 Accident
1. Introduction – Software Failures

15

14 Years Later

Zhendong Su – Rigorous Software Engineering

1. Introduction – Software Failures

16

Google Translate Mistranslation

Zhendong Su – Rigorous Software Engineering

17

Google Translate Mistranslation

Zhendong Su – Rigorous Software Engineering

18

Google Translate Mistranslation

Zhendong Su – Rigorous Software Engineering

19

Compiler Bug

Zhendong Su – Rigorous Software Engineering

20

Zhendong Su – Rigorous Software Engineering

Software – a Poor Track Record

§  Software bugs cost the U.S. economy an estimated
$59.5 billion annually, or about 0.6 percent of the
gross domestic product [NIST, 2002]

§  68% of all software projects are
unsuccessful [Standish, 2008]
-  Late, over budget, less features than

specified (44%); cancelled (24%)
§  The average unsuccessful project

-  179% longer than planned
-  154% over budget
-  67% of originally specified features

1. Introduction – Software Failures

21

Zhendong Su – Rigorous Software Engineering

1. Introduction

1.1 Software Failures
1.2 Challenges
1.3 Solution Approaches (Course Outline)

1. Introduction – Challenges

22

Why is Software so Difficult to Get Right?

Zhendong Su – Rigorous Software Engineering

Complexity

Constraints Competing
Objectives

Change

1. Introduction – Challenges

23

Complexity

§  Modern software is
huge --- created by
many developers
over several years

Zhendong Su – Rigorous Software Engineering

0
10
20
30
40
50
60
70
80
90

100

Size of software systems in MLOC

§  They have a very high number of
-  Discrete states (infinite if the memory is unbounded)
-  Execution paths (infinite if the system may not terminate)

1. Introduction – Challenges

24

Complexity (cont’d)
E

ffo
rt

in
 th

ou
sa

nd
 p

er
so

n
ye

ar
s

1. Introduction – Challenges

Zhendong Su – Rigorous Software Engineering

25

Complexity (cont’d)

§  Small programs tend to
be simple

§  Big ones tend to be
complex (complexity
grows worse than
linearly with size)

Zhendong Su – Rigorous Software Engineering

1. Introduction – Challenges

26

Change

§  Since software is (perceived as being) easy to
change, software systems often deviate from their
initial design

§  Typical changes include
-  New features (requested by customers or management)
-  New interfaces (new hardware, new or changed

interfaces to other software systems)
-  Bug fixing, performance tuning

§  Changes often erode the structure of the system

Zhendong Su – Rigorous Software Engineering

1. Introduction – Challenges

27

Zhendong Su – Rigorous Software Engineering

Competing Objectives: Design Goals

Scalability

Repairability

Portability

Reusability

Understandability

Maintainability

Security

Usability

Reliability

Robustness

Performance

Correctness

Interoperability

Verifiability

Evolvability

1. Introduction – Challenges

Backward Comp.

28

Zhendong Su – Rigorous Software Engineering

Competing Objectives: Typical Trade-Offs

Portability

Understandability

Usability

Robustness

Performance

Reusability Cost

Functionality

Cost

Backward Compatibility

1. Introduction – Challenges

29

Constraints

§  Software development (like all
projects) is constrained by
limited resources

§  Budget
-  Marketing/management priorities

§  Time
-  Market opportunities
-  External deadlines

§  Staff
-  Available skills

Zhendong Su – Rigorous Software Engineering

1. Introduction – Challenges

30

Software Engineering

§  A collection of techniques,
methodologies & tools
that help produce
-  high-quality software
-  within a given budget
-  before a given deadline
-  while change occurs

 [Brügge]

Zhendong Su – Rigorous Software Engineering

Complexity

Constraints Competing
Objectives

Change

1. Introduction – Challenges

31

Zhendong Su – Rigorous Software Engineering

1. Introduction

1.1 Software Failures
1.2 Challenges
1.3 Solution Approaches (Course Outline)

1. Introduction – Solution Approaches (Course Outline)

32

Course Outline (tentative)

§  Study SE principles

§  Cover established

practices & recent
innovations

§  Emphasize software

reliability

Zhendong Su – Rigorous Software Engineering

Part II: Testing
§  Functional and structural testing
§  Automatic test case generation
§  Dynamic program analysis

Part III: Static Analysis
§  Mathematical foundations
§  Abstract interpretation
§  Practical applications

Part I: Software Design
§  Modeling
§  Design principles
§  Architectural & design patterns

1. Introduction – Solution Approaches (Course Outline)

33

Lecturers

§  First half of the course is taught by Zhendong Su
-  Design & modeling
-  Functional & structural testing

§  Second half is taught by Martin Vechev
-  Automated test generation
-  Static & dynamic analysis

Zhendong Su – Rigorous Software Engineering

1. Introduction – Solution Approaches (Course Outline)

34

Zhendong Su – Rigorous Software Engineering

Projects

§  There will be two projects to help you learn the
techniques introduced in the lectures

§  Done in groups, never solo

-  Select your team soon (watch for announcement)

§  Details will be explained later

1. Introduction – Solution Approaches (Course Outline)

35

Organization of the Course

§  Prerequisites
-  Course is self-contained
-  But it combines well with other courses:

•  Formal Methods and Functional Programming
•  Compiler Design
•  Software Engineering Seminar

§  Grading
-  30% project
-  70% final exam

1. Introduction – Solution Approaches (Course Outline)

Zhendong Su – Rigorous Software Engineering

36

Zhendong Su – Rigorous Software Engineering

Course Infrastructure

§  Web page
https://people.inf.ethz.ch/suz/teaching/252-0216.html
-  Slides will be available on the webpage before the lecture
-  Check regularly for announcements

§  Mailing list
 rse-students@lists.inf.ethz.ch (tentative)

-  We will sign you up
-  Ask general questions on the mailing list

1. Introduction – Solution Approaches (Course Outline)

37

Zhendong Su – Rigorous Software Engineering

Exercise Sessions

§  Monday, 13:00-16:00, CHN D 44
§  Tuesday, 15:00-18:00, CHN D 48
§  Tuesday, 15:00-18:00, HG D 3.1
§  Tuesday, 15:00-18:00, ML E 12
§  Thursday, 15:00-18:00, ETZ F 91

§  We will sign you up, based on your input

§  Exercises start next week

1. Introduction – Solution Approaches (Course Outline)

38

Overview: Modeling

§  Code of nontrivial
systems is too complex
to reason about

§  Abstract models may
simplify communication
and reasoning

Zhendong Su – Rigorous Software Engineering

ListNode
next prev

LinkedList

head

1. Introduction – Solution Approaches (Course Outline)

39

Overview: Formal Modeling

§  In contrast to informal models, formal models
enable precision and better tool support

Zhendong Su – Rigorous Software Engineering

ListNode
next prev

LinkedList

head

sig LinkedList {
 head: ListNode
}

sig ListNode {
 next: ListNode,
 prev: ListNode
}

fact { all n: ListNode | n.next.prev = n }

pred show { }

run show for 5 but 2 LinkedList

1. Introduction – Solution Approaches (Course Outline)

40

Overview: Patterns

§  Design problem:
How to fit a reused class into a class hierarchy?

§  Patterns are general, reusable solutions to
commonly occurring design problems

Zhendong Su – Rigorous Software Engineering

Line
BoundingBox()

DrawingEditor

TextShape
BoundingBox()

Shape
BoundingBox()

TextEditor
GetExtent()

Legacy
code

Reused
code

return text.GetExtent()

text

1. Introduction – Solution Approaches (Course Outline)

41

Overview: Functional Testing

§  Functional testing focuses on input/output behavior
§  Given the desired functionality of a program, how to

select input values to test it?

§  Try at least:
-  Arrays with one, more than one, and no matching strings
-  Corner cases: null, arrays containing null, “Foo=”

Zhendong Su – Rigorous Software Engineering

public static string ParseLines(string[] lines)

Specification:
Search for the first occurrence of
"Foo=VALUE" in lines and return VALUE.

1. Introduction – Solution Approaches (Course Outline)

42

Overview: Structural Testing

§  Use design knowledge about algorithms and data
structures to determine test cases that exercise a
large portion of the code

Zhendong Su – Rigorous Software Engineering

public static string ParseLines(string[] lines) {
 for(int i = 0; i < lines.Length; i++) {
 string line = lines[i];
 int index = line.IndexOf('=‘);
 string key = line.Substring(0, index);
 if(key.Equals("Foo")) {
 return line.Substring(index + 1);
 }
 }
 return "??";
}

Test this
case

and this
case

Test 0, 1, and
more iterations

1. Introduction – Solution Approaches (Course Outline)

43

Overview: Automatic Test Case Generation

§  Automatically determine inputs that execute a given
path through the program

§  Suitable test input: [“Bar=XX”, null]
Zhendong Su – Rigorous Software Engineering

public static string ParseLines(string[] lines) {
 for(int i = 0; i < lines.Length; i++) {
 string line = lines[i];
 int index = line.IndexOf('=‘);
 string key = line.Substring(0, index);
 if(key.Equals("Foo")) {
 return line.Substring(index + 1);
 }
 }
 return "??";
}

1. Introduction – Solution Approaches (Course Outline)

44

Overview: Dynamic Program Analysis

§  Dynamic analyses focus on a subset of program
behaviors and prove they are correct

§  Testing is a special case of dynamic analysis
§  Other applications include data race detection,

memory safety, and API usage rules
Zhendong Su – Rigorous Software Engineering

All behaviors in the universe

Possible
Program

Behaviors

Under-
approximation

1. Introduction – Solution Approaches (Course Outline)

45

Overview: Static Program Analysis

§  Static analyses capture all possible program
behaviors in a mathematical model and prove
properties of this model

Zhendong Su – Rigorous Software Engineering

All behaviors in the universe

Possible
Program

Behaviors

Over-
approximation

1. Introduction – Solution Approaches (Course Outline)

