Rigorous Software Engineering
Requirements

Prof. Zhendong Su

(based on slides from Prof. Peter Muller)

Spring 2019 ETHzurich

Exercise Groups

* Please enter preferences & group information at
https://goo.gl/forms/N8NpaeifFsumnSZp2
by , Feb. 20th ()

= Exercise groups will be announced on Feb. 22nd

= EXxercise sessions start next week

Zhendong Su — Rigorous Software Engineering ETH-urich

What is the mission of CS?

Develop &
for building reliable & performant
software

ETH:zurich

Procedural Modularity Design
Abstraction Patterns

Object Algorithms

Refactorin
Orientation J

Software “Big Code”
Analytics

ETH:zurich

Will -
Programming E"’@

Jobs Be e
Replaced By AI?

iR

Fred Brooks: (Stlll) “No Silver Bullet”

m “"No Sllver Bullet” '85, Refired

* Software is Essentially hard to buuld
* Complexity is inherent
* Conformity to hardware and world
* Changeability (looks easy to change)
* Invisibility

e * “There is no single development in
2018 technology or management which
icse2018.0rg alone promises a 10X gain in 10
years” is again true 30 years later

Zhendong Su — Rigorous Software Engineering

1 #include <stdio.h>

2 #include <string.h>

3 v

4 int main()}

5 char *word = "everest':

6 char reverseword|strlen(word)+1];

7 unsigned int letters_remaining = strlen(word);
8 char *wordpointer = &word|[strlen(word)-1];
9

int 1 = 0;
10 while(letters_remaining > 0)1
11 reverseword[i++] = *wordpointer--;
12 letters_remaining--;
13}
14 reverseword|strlen(word)] = '\0';
15 printf("So the reversed word is %s\n",reverseword);
16 return 0;
17 §

__ASM_ALPHA_FPU_H
__ASM_ALPHA_FPU_H

<asm/special_insns.h>
<uapi/asm/fpu.h>

static inline unsigned long
ifpcr(void)

unsigned long tmp, ret;

Fined (CONFIG_ALPHA_EV6) || defined(CONFIG_ALPHA_EV67)
__asm__ _ _volatile__ (

"ftoit $fo,xXe\n\t"

"mf_fpcr $fo\n\t"”

"ftoit $fo,X1\n\t"

"itoft xXo,$f0"

"=r*"(tmp), "=r"(ret));

_—asm__ _ _volatile__ (
"stt $fo,xXe\n\t"
"mf_fpcr $fo\n\t"”
"stt $fo,X1\n\t"
"1dt $fe,xe"
"=m" (tmp), "=m"(ret));

return ret;

3
5

static inline void
wrfpcr(unsigned long val)

unsigned long tmp;

ined (CONFIG_ALPHA_EV6) || defined(CONFIG_ALPHA_EV67)
__asm__ __volatile (

"ftoit $fo,xXe\n\t"

LB S = 3 L& SEAN A"
linux/arch/alpha/include/asm

Eval: START|]

Workspace ~ Project Edit Assistant ~ Run Git Profile , ® EXEC dev-machine: clean install

r
Projects Explorer © Pet x @ Owner © PetType © Vet

v I web-java-spring-petclinic [spring-petclinic] Owner getOwner () {
v Misrc . ;

v [l main

= Projects
1senbay |Ind

v Ml java setVisitsInternal (Set<Visit> visits) {
v &% org.springframework.samples : = visits;

v &% model

© BaseEntity.java Set<Visit> getVisitsInternal() {

© NamedEntity.java - ==) {
= HashSet<Visit>();

Proposals:
birthDate : DateTime
O id: Integer
© PetType java List<y [owner:Owner
© Specialtyjava List<Visi O type: PetType xrnal());
© Vetjava ‘ visits : Set<org.springframework.samples.petclinic.model.Visi
') addVisit(Visit visit) : void
O clone(): Object
v B Owsmachine SSH % B ws-machine [Terminal x B buildanc o equals(Object arg0) : boolean
‘ Terminal X drwxr-xr-x root root 6 Jan 19 16: < finalize(): void

drwxr-xr-x root root 6 Jan 19 16: A : . '
E3 build and run drwxr-xr-x root root 6 Jan 19 16:.. LG E R REGT
dr-xr-xr-x root root 0 Mar 8 08:51 proc
drwxr-xr-x user root 4096 Mar 6 18:07 projects
root root 37 Jan 19 16:33 root
drwxr-xr-x root root 127 Mar 8 08:52 run

n
ke
=
0
S
£
(¢]
v
)
A

© Owner.java
© Person,java
© Pet,java

Processes

19 fvents B8 Processes

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help 2 W) 5 Q Mon17:19

2000) B veraaabc) W iPhone X aaabc | Bulld aaabc: Succeeded | Today at 14:52 {} E @ &

B
|

o & & & Simulator - 0S 12.0) [Frameworks) 888 Uit) [UlDevice.h) (T) UlUserinterfaceldiom

v B saabe #1f USE_UIKIT_PUBLIC_HEADERS || !__has_include(<UIKitCore/UIL QuickHelp
v [l aaabe Summary
. AppDelegate.swift : - An interface designed for an in-car
B ViewController.swift : sl
B Main.storyboard

Bl Assets.xcassets

Declaration

B LaunchScreen.storyboard UlUserInterfaceldiomCarPlay

B Info.plist
» Ml Products

#import
#import <UIKi

NS_ASSUME_NONNULL_BEGIN

" NS_ENUM(NSInteger, UIDeviceOrientation) {
UIDeviceOrientationUnknown,
UIDeviceOrientationPortrait,
UIDeviceOrientationPortraitUpsideDown,
UIDeviceOrientationLandscapeleft,
UIDeviceOrientationLandscapeRight,
UIDeviceOrientationFaceUp,
UIDeviceOrientationFaceDown

_TVOS_PROHIBITED;

NQ ENIIMINQTn+anay [ITNaviraRat++arultatal

pd CompilationAndLinking - Microsoft Visual Studic Y Quick Launch (Ctrl+Q
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM INCREDIBUILD TOOLS TEST ARCHITECTURE RESHARPER ANALYZE WINDOW HELP
e - Br-rold 9 - P Local Windows Debugger ~ Debug ~ M RE _ o y &

foo.cpp foo.h main.cpp® # X ¥ Solution Explorer v X
(Global Scope) + @ main() - N -2l © K=
e#include <iostream>
[#inc]ude <cassert> S——— — _
usi ng namespace std ; +fa] Solution 'CompilationAndLinking' (2 projects)
4 [%] HelloCpp
- - P #5 External Dependencies
foo.h 4] Header Files
o p foo.h
e#if ABC 53 Resource Files
{ fool(2] Source Files
#endif ‘ b ++ foo.cpp
I_ P *+ main.cpp
4 +[%] StaticLib
5 External Dependencies
Zal Header Files
P +B foo.h
"3 Resource Files
Zal Source Files
P +++ foo.cpp

Search Solution Explorer (Ctrl+; P~

1R10|dx3 1335

X0Qq|oo|

#include

#define MuL(a,b) a*b

gint main()

?I cout << "2+3=

cout << "Hello, C++" << endl;
getchar();

return 0;

100% ~ Properties Team Expl...

'

Error List Output Find Results 1 Find Symbol Results IncrediBuild

Ready

13

ETH:zurich

14

Can we move beyond “coding”™?
P 'g‘\\

ETH:zurich

15

ETH:zurich

16

ETH:zurich

17

Communicating the wish the hardest

ETH:zurich

function drawTree () {
var blossomPoints = [];

resetRandom!();
drawBranches(@, -Math.PI/2, canvasWidth/2, canvasHeight, 30,

resetRandom() ;
drawBlossoms (blossomPoints) ;
function drawBranches (i,angle,x,y,width,blossomPoints) {

ctx.savel();

var length = tween(i, 1, 62, 12, 3) % random(0.7, 1.3);
if (i == 0) { length = 107; }

ctx.translate(x,y);
ctx.rotate(angle);
ctx. fillStyle = "#000";

ctx. fillRect (0, -width/2, length, width);

ctx.restore();

var tipX = x + (length - width/2) * Math.cos(angle);
var tipY =y + (length - width/2) * Math.sin(angle);

if (i > 4) {

blossomPoints.push([x,y, tipX,tipY]);
1
!

if (1 <6) {
drawBranches(i + 1, angle + random(-0.15, -0.05)
drawBranches(i + 1, angle + random(0.15, 0.05)

]
¢

else if (i < 12) {

drawBranches(i + 1, angle + random(0.25, -0.05)
1
/

var Length » tween(y, 1, 62, 12, 3) » randoal(0.7, 1.3);

A1 (5 == 0) (length » 107,

Cttranslatein,yl;

—-

CUL TIUIReC (1S3, width/2, Length, vld’.l :

Cle.restore

1pX » X + (Llength « width/2) » Math.cos mgle);
igY = y + (length « width/2) » Math.sinlangle);

4
BlossomPolnts. pushl [x,y, tipX, tipY

f«6
denBranches i + 1, amgle » randonl .15,
denBranches i + 1, amle » randoal 0,15,

else &f (L« 12
denBranches i + 1, amgle » randoal 0.25,

function drawBlossoms (blossosPoints
var colors “PrSceed”, “seddied”, “erlciry,
CtglobalAlpha « 0.60;

for (var 1 » 0; § « BlossomPoints. Length;
var p » BlossomPolints i),
for (Var | = 0; § < 16; s
var x » lerpipl0], pi2l, randond,
var y » lerplpll], pi3], randonld,

CU FALISTyle » colors Math. floor
AL rchelx, y, randon(2.5

20

Bret Victor: Inventing on Principle

21

function drawTree () {

!
!

var blossomPoints = [];

resetRandom() ;
drawBranches(0, -Math.PI/2, canvasWidth/2, canvasHeight, 30,

resetRandom() ;
drawBlossoms (blossomPoints);

function drawBranches (i,angle,x,y,width,blossonPoints) {

ctx.save();

var length = tween(i, 1, 62, 12, 3) * random(0.7, 1.3)
if (1 ==0) { length = 107; }

ctx.translate(x,y);

ctx.rotate(angle);

ctx. fillStyle = "#000";

ctx.fillRect(0, -width/2, length, width);

ctx.restore();

var tipX = x + (length - width/2) * Math.cos(angle)
var tipY =y + (length - width/2) * Math.sin(angle)

if (i > 4) {
blossomPoints.push([x,y, tipX, tipY]);

if (1 <6) {
drawBranches(i + 1, angle + random(-0.15, -0.05) *
drawBranches(i + 1, angle + random(0.15, 0.05)

1
7
else if (i < 12) {
drawBranches(i + 1, angle + random(0.25, -0.05) *

ETH:zurich

22

Goal is the object, not the code

ETH:zurich

23

Can we directly
manipulate & explore the object
to express the “wish™?

ETH:zurich

24

Can we directly
manipulate & explore the object
to express the “wish”?

Perhaps via visualization & virtual reality?

ETH:zurich

2. Requirements Elicitation 25

Main Activities of Software Development

[Requirements J
Elicitation
v
[Design These activities may
; overlap and are typically
executed iteratively
{Implementation}

v

{ Validation }

Zhendong Su — Rigorous Software Engineering ETH-urich

26

p——
e}
b4
e
——
P
—"

Zhendong Su — Rigorous Software Engineering E'HZUI"IC

2. Requirements Elicitation 27

Software — a Poor Track Record

* 68% of all software projects are unsuccessful
- Cancelled
- Late, over budget, fewer features than specified

* The average unsuccessful project

- 179% longer than planned
- 154% over budget
- 67% of originally specified features

Zhendong Su — Rigorous Software Engineering ETH-Zurich

2. Requirements Elicitation 28

Why IT-Projects Fail

» Top 5 reasons measured by frequency of responses by IT
executive management

= Failure profiles of yellow projects (44%)

1. Lack of User Input 1 2.80%

2. Incomplete Requirements N 12.30%

3. Changing Requirements T 11.80%

4. Lack of Executive Support I 7.50%
I 7%

5. Technology Incompetence

= Failure profiles of red projects (24%)
Incomplete Requirements I NG 3-107%

Lack of User Involvement [12.40%
Lack of Resources T 10.60%
Unrealistic Expectations b 19.90%

Lack of Executive Support I 2%

bk owh =

Zhendong Su — Rigorous Software Engineering ETH-Zurich

2. Requirements Elicitation — Requirements 29

2. Requirements Elicitation

2.1 Requirements
2.2 Activities

Zhendong Su — Rigorous Software Engineering ETH-Zurich

2. Requirements Elicitation — Requirements 30

Requirements

= Definition
A feature that the system must have or a constraint
it must satisfy to be accepted by the client

[Brugge, Dutoit]

= Requirements engineering (RE) defines the
requirements of the system under construction

Zhendong Su — Rigorous Software Engineering ETH-Zurich

2. Requirements Elicitation — Requirements 31

Requirements

» Describe the user’s view of the system
* |dentify the what of the system, not the how

= Part of requirements = Not part of requirements
- Functionality - System structure
- User interaction - Implementation
- Error handling technology
- Environmental - System design
conditions (interfaces) - Development
methodology

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Requirements 32

Types of Requirements ;
F

) : unctional
* Functionality @irements

- What is the software supposed to do?
= External interfaces
- Interaction with people, hardware, other software

[Nonfunctional }
Requirements
= Performance V

- Speed, availability, response time, recovery time

= Attributes (quality requirements)
- Portabillity, correctness, maintainability, security

* Design constraints
- Required standards, operating environment, etc.

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Requirements 33

Functionality

= Relationship of outputs to inputs
= Response to abnormal situations
= Exact sequence of operations

= Validity checks on the inputs

= Effect of parameters

Zhendong Su — Rigorous Software Engineering ETH-Zurich

2. Requirements Elicitation — Requirements 34

External Interfaces

iv¢ Users
= Detailed description of all \g WN
inputs and outputs E\%ﬂr‘@

Description of purpose

Source of input

Destination of output Software |, @ﬂ
. System

Valid range, accuracy, Other

tolerance software
Units of measure

Relationships to other
inputs/outputs

Screen & window formats
Data and command formats

Networks
Hardware

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Requirements 35

Performance

» Static numerical requirements
- Number of terminals supported
- Number of simultaneous users supported
- Amount of information handled

= Dynamic numerical requirements

- Number of transactions processed within certain time
periods (average and peak workload)

- Example: 95% of the transactions shall be processed in
less than 1 second

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Requirements 36

Constraints (Pseudo Requirements)

= Standard compliance
- Report format, audit tracing, etc.

* Implementation requirements
- Tools, programming languages, etc.

- Development technology and methodology should not be
constrained by the client. Fight for it!

» QOperations requirements
- Administration and management of the system

» | egal requirements
- Licensing, regulation, certification

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Requirements

37

Quality Criteria for Requirements

-

Zhendong Su — Rigorous Software Engineering

ETH:zurich

2. Requirements Elicitation — Requirements 38

Quality Criteria for Requirements (cont’'d)

Zhendong Su — Rigorous Software Engineering ETH-Zurich

2. Requirements Elicitation — Requirements 39

Quality Criteria: Examples

» “System shall be usable by elderly people’
- Not verifiable, unclear
- Solution: “Text shall appear in letters at least 1cm high”

= “The product shall be error-free”
- Not verifiable (in practice), not realistic
- Solution: Specify test criteria

» “The system shall provide real-time response”

- Unclear
- Solution: “The system shall respond in less than 20ms”

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Requirements 40

Relative Cost to Fix an Error

= The sooner a defect is found, the cheaper it is to fix

200

180 /
160 /
140
120 /
100 /
80 /

60 /

40

20 //

O _—47
Requirements Design Coding Development Acceptance Operation
Testing Testing

[Boehm 1981]

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Requirements 41

Requirements Validation

= A quality assurance step, usually after requirements
elicitation or analysis
= Reviews by clients and developers
- Check all quality criteria
- Future validations (testing)
= Prototyping
- Throw-away or evolutionary prototypes
- Study feasibility
Give clients an impression of the future system
Typical example: user interfaces

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Activities 42

2. Requirements Elicitation

2.1 Requirements
2.2 Activities

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Activities 43

Requirements Elicitation Activities

|dentifying Actors

|dentifying Scenarios

|ldentifying Use Cases

|dentifying Nonfunctional
Requirements

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Activities 44

|dentifying Actors

= Actors represent roles
- Kind of user
- External system
- Physical environment

= Questions to ask
Which user groups are supported by the system?
Which user groups execute the system’s main functions?

Which user groups perform secondary functions
(maintenance, administration)?

With what external hardware and software will the system
interact?

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Activities 45

Scenarios and Use Cases

* Document the behavior of the system from the
users’ point of view

= Can be understood by customer and users

Scenario Use Case
= Describes common cases = (Generalizes scenarios to
describe all possible cases

= Focus on understandability | | Focus on completeness

= A scenario is an instance of a use case

Zhendong Su — Rigorous Software Engineering ETH-Zurich

2. Requirements Elicitation — Activities 46

Scenarios

= Definition:
A narrative description of what people do and

experience as they try to make use of computer
systems and applications

[M. Carroll, 1995]

= Different Applications during the software lifecycle
- Requirements Elicitation

- Client Acceptance Test
- System Deployment

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Activities 47

Scenario Example

When Alice wants to borrow a book, she takes it to
the checkout station. There she first scans her
personal library card. Then she scans the barcode
label of the book. If she has no borrowed books that
are overdue and the book is not reserved for another
person, the systems registers the book as being
borrowed by her and turns off the electronic safety
device of that book. Several books can be checked
out together. The checkout procedure is terminated
by pressing a ‘Finished’ key. The system produces a
loan slip for the books that have been borrowed.

[Adapted from Glinz 2000]

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Activities 48

ldentifying Scenarios: Questions to Ask

= \What are the tasks the actor wants the system to
perform?

= \What information does the actor access?

= Which external changes does the actor need to
inform the system about?

= Which events does the system need to inform the
actor about?

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Activities 49
Sources of Information
/ﬁfx Speak to the

~ end user, not
just to the client

Client
-

= User manuals
= Procedure manuals
» Company standards

% /

Existing | Task observation
documentation

Zhendong Su — Rigorous Software Engineering ETH-Zurich

2. Requirements Elicitation — Activities S0

Use Cases

= A list of steps describing the interaction between an
actor and the system, to achieve a goal

= A use case consists of
- Unique name
- Initiating and participating actors
- Flow of events
- Entry conditions
- Exit conditions
- EXxceptions
- Special requirements

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Activities o1

Use Case Example: Event Flow

Actor steps System Steps

1. Scans library card 2. validates the card; returns
the card; displays user
data; displays ‘Select
function’ dialog

3. selects ‘Borrow’ function 4. displays ‘Borrow’ dialog
5. scans label of book to be 6. identifies book; records
borrowed book as borrowed, unlocks
safety label; displays book
data
/. presses ‘Finish’ key 8. prints loan slip; displays
Also specify alternative flows ‘Finished” message

and exceptional cases

Zhendong Su — Rigorous Software Engineering ETH-urich

2. Requirements Elicitation — Activities 52

ldentifying Nonfunctional Requirements

= Nonfunctional requirements are defined together
with functional requirements because of
dependencies
- Example: Support for novice users requires help
functionality
= Elicitation is typically done with check lists

» Resulting set of nonfunctional requirements
typically contains conflicts

- Real-time requirement suggests C or assembler
Implementation

- Maintainability suggests OO-implementation

Zhendong Su — Rigorous Software Engineering ETH-urich

