
Rigorous Software Engineering
Requirements

Spring 2019

Prof. Zhendong Su

(based on slides from Prof. Peter Müller)

2

Exercise Groups

§  Please enter preferences & group information at

 https://goo.gl/forms/N8NpaeifFsumnSZp2

 by 11:59 PM, Feb. 20th (Wed)

§  Exercise groups will be announced on Feb. 22nd

§  Exercise sessions start next week

Zhendong Su – Rigorous Software Engineering

3

Develop methodologies & techniques
for building reliable & performant

software

What is the mission of CS?

4

Algorithms

Design
Patterns

Object
Orientation

Modularity Procedural
Abstraction

Refactoring

“Big Code” Software
Analytics

5

Zhendong Su – Rigorous Software Engineering

6

7

Fred Brooks: (Still) “No Silver Bullet”

Zhendong Su – Rigorous Software Engineering

8

9

10

11

12

13

14

Can we move beyond “coding”?

15

your wish?

16

17

Communicating the wish the hardest

18

19

20

Bret Victor: Inventing on Principle

21

22

Goal is the object, not the code

23

Can we directly
manipulate & explore the object

to express the “wish”?

24

Can we directly
manipulate & explore the object

to express the “wish”?

Perhaps via visualization & virtual reality?

25

Main Activities of Software Development

These activities may
overlap and are typically
executed iteratively

Zhendong Su – Rigorous Software Engineering

Validation

Requirements
Elicitation

Implementation

Design

2. Requirements Elicitation

26

Zhendong Su – Rigorous Software Engineering

27

Software – a Poor Track Record

Zhendong Su – Rigorous Software Engineering

§  68% of all software projects are unsuccessful
-  Cancelled
-  Late, over budget, fewer features than specified

§  The average unsuccessful project
-  179% longer than planned
-  154% over budget
-  67% of originally specified features

2. Requirements Elicitation

28

Zhendong Su – Rigorous Software Engineering

Why IT-Projects Fail
§  Top 5 reasons measured by frequency of responses by IT

executive management
§  Failure profiles of yellow projects (44%)

1.  Lack of User Input
2.  Incomplete Requirements
3.  Changing Requirements
4.  Lack of Executive Support
5.  Technology Incompetence

§  Failure profiles of red projects (24%)
1.  Incomplete Requirements
2.  Lack of User Involvement
3.  Lack of Resources
4.  Unrealistic Expectations
5.  Lack of Executive Support

7%
7.50%

11.80%
12.30%

12.80%

9%
9.90%

10.60%
12.40%

13.10%

2. Requirements Elicitation

29

Zhendong Su – Rigorous Software Engineering

2. Requirements Elicitation

 2.1 Requirements
 2.2 Activities

2. Requirements Elicitation – Requirements

30

Zhendong Su – Rigorous Software Engineering

Requirements

§  Definition
A feature that the system must have or a constraint
it must satisfy to be accepted by the client

 [Brügge, Dutoit]

§  Requirements engineering (RE) defines the
requirements of the system under construction

2. Requirements Elicitation – Requirements

31

Zhendong Su – Rigorous Software Engineering

Requirements

§  Describe the user’s view of the system
§  Identify the what of the system, not the how

§  Part of requirements
-  Functionality
-  User interaction
-  Error handling
-  Environmental

conditions (interfaces)

§  Not part of requirements
-  System structure
-  Implementation

technology
-  System design
-  Development

methodology

2. Requirements Elicitation – Requirements

32

Zhendong Su – Rigorous Software Engineering

§  Functionality
-  What is the software supposed to do?

§  External interfaces
-  Interaction with people, hardware, other software

§  Performance
-  Speed, availability, response time, recovery time

§  Attributes (quality requirements)
-  Portability, correctness, maintainability, security

§  Design constraints
-  Required standards, operating environment, etc.

Types of Requirements
Functional

Requirements

Nonfunctional
Requirements

2. Requirements Elicitation – Requirements

33

Zhendong Su – Rigorous Software Engineering

Functionality

§  Relationship of outputs to inputs

§  Response to abnormal situations

§  Exact sequence of operations

§  Validity checks on the inputs

§  Effect of parameters

2. Requirements Elicitation – Requirements

34

Zhendong Su – Rigorous Software Engineering

External Interfaces

§  Detailed description of all
inputs and outputs
-  Description of purpose
-  Source of input
-  Destination of output
-  Valid range, accuracy,

tolerance
-  Units of measure
-  Relationships to other

inputs/outputs
-  Screen & window formats
-  Data and command formats

Software
System

Other
software

Users

Networks
Hardware

2. Requirements Elicitation – Requirements

35

Zhendong Su – Rigorous Software Engineering

Performance

§  Static numerical requirements
-  Number of terminals supported
-  Number of simultaneous users supported
-  Amount of information handled

§  Dynamic numerical requirements
-  Number of transactions processed within certain time

periods (average and peak workload)
-  Example: 95% of the transactions shall be processed in

less than 1 second

2. Requirements Elicitation – Requirements

36

Zhendong Su – Rigorous Software Engineering

Constraints (Pseudo Requirements)

§  Standard compliance
-  Report format, audit tracing, etc.

§  Implementation requirements
-  Tools, programming languages, etc.
-  Development technology and methodology should not be

constrained by the client. Fight for it!
§  Operations requirements

-  Administration and management of the system

§  Legal requirements
-  Licensing, regulation, certification

2. Requirements Elicitation – Requirements

37

Zhendong Su – Rigorous Software Engineering

Quality Criteria for Requirements

Correctness
Requirements

represent the client’s
view

Clarity
(Un-ambiguity)

Requirements can be
interpreted in only

one way

Consistency
Requirements do not

contradict each
other

Completeness
All possible scenarios

are described,
including exceptional

behavior

2. Requirements Elicitation – Requirements

38

Zhendong Su – Rigorous Software Engineering

Quality Criteria for Requirements (cont’d)

Realism
Requirements can be

implemented and
delivered

Traceability
Each feature can be

traced to a set of
functional

requirements

Verifiability
Repeatable tests can
be designed to show
that the system fulfills

the requirements

2. Requirements Elicitation – Requirements

39

Zhendong Su – Rigorous Software Engineering

Quality Criteria: Examples

§  “System shall be usable by elderly people”
-  Not verifiable, unclear
-  Solution: “Text shall appear in letters at least 1cm high”

§  “The product shall be error-free”
-  Not verifiable (in practice), not realistic
-  Solution: Specify test criteria

§  “The system shall provide real-time response”
-  Unclear
-  Solution: “The system shall respond in less than 20ms”

2. Requirements Elicitation – Requirements

40

Zhendong Su – Rigorous Software Engineering

[Boehm 1981]

Relative Cost to Fix an Error

§  The sooner a defect is found, the cheaper it is to fix

0

20

40

60

80

100

120

140

160

180

200

Requirements Design Coding Development
Testing

Acceptance
Testing

Operation

2. Requirements Elicitation – Requirements

41

Zhendong Su – Rigorous Software Engineering

Requirements Validation

§  A quality assurance step, usually after requirements
elicitation or analysis

§  Reviews by clients and developers
-  Check all quality criteria
-  Future validations (testing)

§  Prototyping
-  Throw-away or evolutionary prototypes
-  Study feasibility
-  Give clients an impression of the future system
-  Typical example: user interfaces

2. Requirements Elicitation – Requirements

42

Zhendong Su – Rigorous Software Engineering

2. Requirements Elicitation

 2.1 Requirements
 2.2 Activities

2. Requirements Elicitation – Activities

43

Zhendong Su – Rigorous Software Engineering

Requirements Elicitation Activities

Identifying Actors

Identifying Use Cases

Identifying Nonfunctional
Requirements

Identifying Scenarios

2. Requirements Elicitation – Activities

44

Zhendong Su – Rigorous Software Engineering

Identifying Actors

§  Actors represent roles
-  Kind of user
-  External system
-  Physical environment

§  Questions to ask
-  Which user groups are supported by the system?
-  Which user groups execute the system’s main functions?
-  Which user groups perform secondary functions

(maintenance, administration)?
-  With what external hardware and software will the system

interact?

2. Requirements Elicitation – Activities

45

Zhendong Su – Rigorous Software Engineering

Scenarios and Use Cases

§  Document the behavior of the system from the
users’ point of view

§  Can be understood by customer and users

§  A scenario is an instance of a use case

Scenario
§  Describes common cases

§  Focus on understandability

Use Case
§  Generalizes scenarios to

describe all possible cases
§  Focus on completeness

2. Requirements Elicitation – Activities

46

Zhendong Su – Rigorous Software Engineering

Scenarios

§  Definition:
A narrative description of what people do and
experience as they try to make use of computer
systems and applications

 [M. Carroll, 1995]

§  Different Applications during the software lifecycle
-  Requirements Elicitation
-  Client Acceptance Test
-  System Deployment

2. Requirements Elicitation – Activities

47

Scenario Example

When Alice wants to borrow a book, she takes it to
the checkout station. There she first scans her
personal library card. Then she scans the barcode
label of the book. If she has no borrowed books that
are overdue and the book is not reserved for another
person, the systems registers the book as being
borrowed by her and turns off the electronic safety
device of that book. Several books can be checked
out together. The checkout procedure is terminated
by pressing a ‘Finished’ key. The system produces a
loan slip for the books that have been borrowed.

Zhendong Su – Rigorous Software Engineering

[Adapted from Glinz 2000]

2. Requirements Elicitation – Activities

48

Zhendong Su – Rigorous Software Engineering

Identifying Scenarios: Questions to Ask

§  What are the tasks the actor wants the system to
perform?

§  What information does the actor access?

§  Which external changes does the actor need to
inform the system about?

§  Which events does the system need to inform the
actor about?

2. Requirements Elicitation – Activities

49

Zhendong Su – Rigorous Software Engineering

Sources of Information

Client
Users

Elicitation

Existing
documentation

Task observation

Speak to the
end user, not

just to the client

§ User manuals
§ Procedure manuals
§ Company standards
§ etc.

2. Requirements Elicitation – Activities

50

Zhendong Su – Rigorous Software Engineering

Use Cases

§  A list of steps describing the interaction between an
actor and the system, to achieve a goal

§  A use case consists of
-  Unique name
-  Initiating and participating actors
-  Flow of events
-  Entry conditions
-  Exit conditions
-  Exceptions
-  Special requirements

2. Requirements Elicitation – Activities

51

Zhendong Su – Rigorous Software Engineering

Use Case Example: Event Flow

Actor steps
1. Scans library card

3. selects ‘Borrow’ function
5. scans label of book to be

borrowed

7. presses ‘Finish’ key

System Steps
2. validates the card; returns

the card; displays user
data; displays ‘Select
function’ dialog

4. displays ‘Borrow’ dialog
6. identifies book; records

book as borrowed, unlocks
safety label; displays book
data

8. prints loan slip; displays
‘Finished’ message Also specify alternative flows

and exceptional cases

2. Requirements Elicitation – Activities

52

Zhendong Su – Rigorous Software Engineering

Identifying Nonfunctional Requirements

§  Nonfunctional requirements are defined together
with functional requirements because of
dependencies
-  Example: Support for novice users requires help

functionality
§  Elicitation is typically done with check lists
§  Resulting set of nonfunctional requirements

typically contains conflicts
-  Real-time requirement suggests C or assembler

implementation
-  Maintainability suggests OO-implementation

2. Requirements Elicitation – Activities

