
Assignment 2 - Specifications and Modeling

Exercise 1
A way to document the code is to use contracts. For this exercise, you will
have to consider:

• preconditions: the conditions the caller of a method has to fulfill to
be able to perform the call (e.g., to call the sqrt(x) method, which
computes the square root of its argument, the caller has to provide a
value x>=0).

• postconditions: the guarantees the caller gets after the method is
executed (e.g., the method sqrt(x) will return a result such that
result*result == x).

• invariants: the conditions that all the instances of a class have to sat-
isfy while they can be observed by the clients (e.g., for a BankAccount
the balance >= 0, after every deposit and withdraw operation).

Contracts are part of the specification, not of the implementation, so
they cannot modify the program state. Therefore, only pure expressions
can be used in preconditions, postconditions and invariants.

Consider a simple game, in which a player can move left, right, up and
down on a n*n board and a partial Java implementation:

public class Player {
private int x, y;
public final int n;

public Player(int x, int y, int n) {
this.x = x;
this.y = y;
this.n = n;

}

public int getX() {
return x;

}

1



public int getY() {
return y;

}

public void moveLeft() {
x = x - 1;
if (x < 0) {

x = n - 1;
}

}
...

}

Write a suitable invariant for the class Player, a precondition for the
constructor and a postcondition for the method moveLeft.

Exercise 2
Consider the following C# code:

public class Bag
{

private int[] elems;
private int count;

public Bag(int[] initialElements) {
this.count = initialElements.Length;
int[] e = new int[initialElements.Length];
initialElements.CopyTo(e, 0);
this.elems = e;

}

public Bag(int[] initialElements, int start, int howMany) {
this.count = howMany;
int[] e = new int[howMany];
Array.Copy(initialElements, start, e, 0, howMany);
this.elems = e;

}

public int Count() {
return count;

}

public int[] GetElements() {
return elems;

}

public int RemoveMin() {
int m = System.Int32.MaxValue;

2



int mindex = 0;
for (int i = 0; i < count; i++) {

if (elems[i] < m) {
mindex = i;
m = elems[i];

}
}
count--;
elems[mindex] = elems[count];
return m;

}

public void Add(int x) {
if (count == elems.Length) {

int[] b = new int[2*elems.Length];
Array.Copy(elems, 0, b, 0, elems.Length);
elems = b;

}
elems[count] = x;
count++;

}

}

Find class invariants and preconditions for all the methods of the class
Bag, and postconditions for the method Add. Express them using the syntax
of C#’s Code Contracts:

• At the beginning of each method, Contract.Requires(expr); can be
used to denote a precondition. Here, expr should be a pure boolean
C# expression referring only to fields and pure methods with greater
or equal visibility than the method. For example, in the precondition
of a public method, we are not allowed to mention private fields.

• Similarly, Contract.Ensures(expr); can be used to denote a post-
condition.

• If needed, Contract.ForAll(lower, upper, pred) can be used to
express that the predicate pred holds for all integers from lower (in-
clusive) to upper (exclusive). For example, the predicate is_digit
holds for all integers from 0 to 10.

• Contract.OldValue(expr) can be used in a postcondition to refer to
the value of the expr before the execution of the method.

• Class invariants are denoted in a special contract invariant method.
Again, the visibility of all referred fields must be greater or equal to
the visibility of the contract invariant method.

3



[ContractInvariantMethod]
private void ObjectInvariant() {

Contract.Invariant(expr);
...

}

• Methods which have no side effects can be marked with the [Pure]
attribute (in the line before the method declaration). Only pure meth-
ods can be used in contract expressions. For example, getters are pure
methods, because they do not modify the state.

Exercise 3
1. Draw a UML class diagram for the system described below:

(a) every student is either undergraduate or graduate (no student can
be in both categories at the same time);

(b) a student should register at a university, and only registered stu-
dents are legal students;

(c) every student has a unique student ID, and he or she has only one
major;

(d) students with the same major are regarded as classmates; students
can have several classmates.

2. Which properties of the system above cannot be captured using UML
class diagrams?

Exercise 4
UML allows some properties of a generalization (such as relations) to be
redefined, instead of being inherited. The purpose of redefinition is to add
more specific constraints, which are particular to the specialized instances,
but which do not contradict the existing constraints (the new constraints
must be stronger than the old ones).

1. Use redefinition (marked in UML as {redefines property_name}) to
create the UML class diagram for the following system:

(a) a company has one or more employees and each employee works
for exactly one company.

(b) each employee can work on one or more projects at the same time.
(c) junior employees cannot be assigned to more than two projects.

4



(d) summer interns (which are employed for 1 or 2 months) can work
on only one development project.

2. Discuss different ways of implementing the UML diagram in Java.

5


