Assignment 4: Solution

Exercise 1
See the file counter.als.

Exercise 2
See the files imagefile_eager.als and imagefile_lazy.als.

Exercise 3
The model defines a set of objects Node and one relation $\text{next} \subseteq \text{Node} \times \text{Node}$.

The given model has one constraint c: for every node n there is exactly one node m such that $(n, m) \in \text{next}$. The assertion a checks whether for every node n there exists a node m with $(m, n) \in \text{next}$.

Given two nodes n and m, we will write $x_{n,m}$ to denote $(n, m) \in \text{next}$.

1. For the scope with one object, we have $\text{Node} = \{0\}$.
 We encode the constraint c as $x_{0,0}$.
 We encode the assertion a as $x_{0,0}$.
 The resulting boolean formula is $x_{0,0} \land \neg x_{0,0}$. This formula is not satisfiable. Therefore, for the given scope there is no counter-example for the assertion.

2. For the scope with two objects, we have $\text{Node} = \{0, 1\}$.
 We encode the constraint as
 \[
 c := ((x_{0,0} \land \neg x_{0,1}) \lor (\neg x_{0,0} \land x_{0,1})) \land ((x_{1,0} \land \neg x_{1,1}) \lor (\neg x_{1,0} \land x_{1,1})) .
 \]
 We encode the assertion as $a := (x_{0,0} \lor x_{1,0}) \land (x_{0,1} \lor x_{1,1})$.
 The resulting boolean formula is

 $c \land \neg a$.
The boolean formula is satisfied when

\[x_{0,0} = T \quad x_{0,1} = F \quad x_{1,0} = T \quad x_{1,1} = F. \]

The counter-example can be visualized as \(\circ \).

3. The new field and fact result in two additional constraints: (\(c_1\)) every node has exactly one previous node, and (\(c_2\)) for every node \(n\), there exists a node \(m\) such that \((n, m) \in next, (m, n) \in prev\). We will write \(p_{n,m}\) to denote \((n, m) \in prev\).

Scope 1: For checking check demo for 1 we encode the constraints as:

\[
\begin{align*}
x_{0,0} & \quad (Constraint \; c) \\
p_{0,0} & \quad (Constraint \; c_1) \\
x_{0,0} \land p_{0,0} & \quad (Constraint \; c_2)
\end{align*}
\]

and the assertion is encoded as before:

\[x_{0,0} \quad (Assertion \; a) \]

The resulting boolean formula is

\[(x_{0,0} \land p_{0,0} \land (x_{0,0} \land p_{0,0})) \land \neg x_{0,0}\]

This formula is not satisfiable. Therefore, there is no counter-example for the given scope.

Scope 2: For checking check demo for 2 we encode the constraints as:

\[
\begin{align*}
c & := ((x_{0,0} \land \neg x_{0,1}) \lor (\neg x_{0,0} \land x_{0,1})) \land ((x_{1,0} \land \neg x_{1,1}) \lor (\neg x_{1,0} \land x_{1,1})) \\
c_1 & := ((p_{0,0} \land \neg p_{0,1}) \lor (\neg p_{0,0} \land p_{0,1})) \land ((p_{1,0} \land \neg p_{1,1}) \lor (\neg p_{1,0} \land p_{1,1})) \\
c_2 & := ((x_{0,0} \land p_{0,0}) \lor (x_{0,1} \land p_{0,1})) \land ((x_{1,0} \land p_{0,1}) \lor (x_{1,1} \land p_{1,1}))
\end{align*}
\]

and the assertion is encoded as before

\[a := (x_{0,0} \lor x_{1,0}) \land (x_{0,1} \lor x_{1,1}) \]

The resulting boolean formula is

\[c \land c_1 \land c_2 \land \neg a \]
This formula is not satisfiable. Therefore, there is no counter-example for the given scope.

Larger Scopes: From the new fact we conclude that no node is the next of two other nodes. Therefore, we will not find a counter-example to the assertion for larger scopes.