Research Topics In
Software Engineering

Zhendong Su

Autumn Semester 2018 ETHzurich

(based on Prof. Peter Muller’s slides)

Objectives

» Learn to present technical work
» | earn to understand & evaluate research papers

»= | earn several key research directions in the area

Zhendong Su — Research Topics in Software Engineering E'HZUI’/Ch

Objectives

» Learn to present technical work
» | earn to understand & evaluate research papers
»= | earn several key research directions in the area

* Have a good deal of fun doing so

Zhendong Su — Research Topics in Software Engineering E'HZU[’/C/’)

Preparing a Talk

Check your
presentation date

'

N Study your
paper(s)

!

N Create draft
presentation

'

Meet advisor,
get feedback

Zhendong Su — Research Topics in Software Engineering

ETH:zurich

Preparing a Talk: Start Early

Check your
presentation date

| = Preparing a good

.| Study your presentation takes time
paper(s)

' " S0, please start early!
L Create draft
presentation

!

| Meet advisor,
get feedback

Zhendong Su — Research Topics in Software Engineering

ETH:zurich

Preparing a Talk: Study Paper

= 3 °C’s of reading

Check your - Carefully: look up terms,
presentation date : .
[possibly read cited papers
- Critically: find limitations, flaws
N Study your . _
paper(s) - Creatively: think of
1 Improvements
N Create draft
Presei‘tatlon = Try examples by hand
_ . .
[Meet advisor Try tools if available
get feedback

= Consult with TA if questions

Zhendong Su — Research Topics in Software Engineering E'HZU[’/C/’)

Preparing a Talk: Create Draft

= Explain the work’s motivation

G il = Clearly present the technical
presentation date :
I solution and results
| Study your - Use own examples, not the
paper(s) ones in the paper
l - Include a demo if appropriate
N Clee el = Discuss limitations or
presentation _
I Improvements
| Meet advisor, = Focus on key concepts
JEUEIPE LS - Do not present all the details

Zhendong Su — Research Topics in Software Engineering E'HZUI’/C/’)

Preparing a Talk: Get Feedback

= Prepare for the meeting

Check yOUJ - Schedule early
resentation date . :
P 1 - Send slides in advance
R ST YU - Write down questions
paper(s) = Do address feedback
1 - Take notes
N Create draft
presentation _ _
I = Meeting is mandatory!
Meet advisor, - At least 1 week before the talk
get feedback

Zhendong Su — Research Topics in Software Engineering

ETH:zurich

Grading

= Quality of your presentation
- How well did you understand the material?
- How well did you present it?
- How well did you answer the questions?

» Participation
- Did you ask good questions?
- Did you attend all sessions?
= We will take into account

- the difficulty of the paper
- suggestions you received from your TA advisor
- time you had to prepare

Zhendong Su — Research Topics in Software Engineering E'HZU[’/C/’)

10

Feedback

» Discuss your talk’'s strengths/weaknesses in-class
- Let us know upfront if you prefer us not to

= Arrange a meeting with your TA to get feedback

Zhendong Su — Research Topics in Software Engineering E'HZU[’/C/’)

11

Schedule

* Meet once per week with ~2 presentations each time
- Next meeting on October 11

» Detailed schedule will be published online shortly
- https://people.inf.ethz.ch/suz/teaching/263-2100.html
- Including names of TA advisors

Zhendong Su — Research Topics in Software Engineering E'HZUI’/C/’)

WorkShop On Dependdble Gnd /?Iffwr:]iz;?wl(ljo'n.zgjfstrasse131,ETHZLLrich
Secure Software Systems ETH zirich

v' Big Data Program Analysis

v SMT Solver Tactics

v' Machine Learning for Analysis

] b -
Marc Brockschmidt Matt Fredrikson Chris Hawblitzel Mike Hicks
MIT MSR Cambridge Carnegie Mellon MSR Redmond University of Maryland v Compllers for Analog Hardware

v’ Practical Verification for Systems

v’ Safety of Deep Learning

v Abstract Interpretation

i l a
Il “

ukyoung Ryu Yannis Smaragdakis Nikhil Swami Andreas Zeller
KAIST University of Athens MSR Redmond Saarland University

v" Security Analysis

v" Blockchain Semantics

eter Mu:! Zhendong Su Martin Vechev

Xiangyu Zhang) Harry Xu r
Purdue University UCLA ETH, co-organizer ETH, co-organizer ETH, co-organizer

More information and registration: http://www.sri.inf.ethz.ch/workshop2018

13

Your Talk: Timing

= 30 min for talk
- 1.5 ~ 2 min per slide

= 15 min for Q&A and discussion

* The pace of talk is important
- Too fast, the audience cannot follow
- Too slow, people can get bored

* Practice your talk
- Checkpoint after ~10 minutes

Zhendong Su — Research Topics in Software Engineering

ETH:zurich

14

Your Talk: Structure

Ownership

Ownership Transfer

= Establish
! A - R ownership
in Universe Types hierarchy
Peter Miiller Arsenii Rudich = Enforce
Microsoft Research ETH Zurich X N
USA Switzerland % % 3

restrictions

Title slide Motivation,

background

External Uniqueness Related Work
= Partition context into e e hoad p— * External Uniqueness |
unique Node head; - Type safe ownership transfer
clusters free Node getNodes() { Ezﬁz::,z - Destructive reads and borrowing
- Clusters can be unique or not _ free Node res = release(this.head)

= AliasJava [Aldrich et al., O
llegal: head is return res; - Type safe ownership transfer
reference into a unique unusable } - Lent variables break encapsulation

upon i i niis transferred to . :
cluster termination ";’r':emNe’Qf‘n"ff;;';‘n'{f; . "nead duser o = Alias burying
- Arbitrary aliasing within cluster d> Node Ih this and becomes
- any references not restricted

unusable
= Unique clusters are
transferred as a whole

Clarke and \

o A ek G MRk this.head = new rep<head> Node()

[Boyland E 01

- Static analysis to track temporary aliases

- High annotation overhead, limited by static analysis
= Object invariants [Miller et al., S

- Similar to enforcement of uniqueness invariant

Ih = capture(n, rep<héa
I/ connect node structures;

Solution Evaluation, Related work
experiments,
demo

Remaining
stack and heap
references are

ill-typed

Required:
unique
references

Summary
= External uniqueness enables transfer

- Temporary aliases permitted

- Call-backs: restrictions of Universes + static analysis

- Capturing: external uniqueness + viewpoint adaptation

- No destructive reads, no global analysis

- Owner-as-modifier property enforced
Implementation in JML

- More expressive

- Inference of transfer operations and annotations for locals
Meet me at the Microsoft booth

- Also to get a Spec# demo

Peter Miller — 2007

Summary,
conclusion

Zhendong Su — Research Topics in Software Engineering

ETH:zurich

15

Your Talk: Examples

= Examples are crucial for understanding
- Both yours and the audience’s
- Prepare your own examples

= Try to find a running example
- For motivation, problem, solution

- Explain in detail (takes time) llvm bug autopsy
= Reduce code example i e | g—
to the absolute necessary T e
- Most people hate reading code | 1_hdfddd
- Use visualizations e

Zhendong Su — Research Topics in Software Engineering E'HZU[’/C/’)

16

Your Talk: Design

llvm b t don
descriptive nvm Ug all opsy overload
title R ,_ L slide
i foo(iny %) {
if (x = 1) abort(); o GVN: load struct
if (x.e '= 1) abort(); using 32-bit load
} /
nt main() { SRoOA: read past
ll: lll"; — ;l themend
foo(s) > .
return | ; ‘remove undefined % VISUG'S
: behavior
large font
$ cl -m32 -00 test.c ; ./a.out
(> 20pt) $ clang -m32 -01 test.c ; ./a.out
Aborted (core dumped)

Zhendong Su — Research Topics in Software Engineering E'HZUF/C/’)

17

Powerpoint vs. Latex

u P OWG rp O | nt Creating Animations is Fun

- Visualizations and
animations are easy

- Don’t over-do it!

- Latex What Is Beamer?
- VIS u a I Izatl O n S a n d @ Beamer is a flexible IATEX class for making slides and

[. _ presentations.
a n I m atl O n S a re a I nfu I @ It supports functionality for making PDF slides complete with
colors, overlays, environments, themes, transitions, etc.
@ Adds a couple new features to the commands you've been
working with.

) - '
= D O n t u n d e r—d O It_ @ As you probably guessed, this presentation was made using
the Beamer class.

Zhendong Su — Research Topics in Software Engineering E'HZUI’/C/’)

18

Your Talk: Avoid Frequent Mistakes

= Don't try to present all details

- Focus on the key messages:
motivation, problem, main idea, main result

* Don't stare at the screen or your laptop
- Look at the audience

= Come prepared
- Study paper in depth
- Rehearse your talk

Zhendong Su — Research Topics in Software Engineering E'HZU[’/C/’)

19

References

Markus Puschel’s small guide on giving talks

http://www.inf.ethz.ch/personal/markusp/teaching/
guides/guide-presentations.pdf

Highly recommended!

Zhendong Su — Research Topics in Software Engineering E'HZUF/C/’)

20

Paper Pool for Fall 2018

DART: Directed Automated Random Testing. PLDI 2005.

Towards Optimal Concolic Testing. ICSE 2018.

Coverage-based Greybox Fuzzing as Markov Chain. CCS 2016.

PerfFuzz: Automatically Generating Pathological Inputs. ISSTA 2018.

Fairness testing: testing_software for discrimination. ESEC/FSE 2017.

Efficient Sampling_of SAT Solutions for Testing. ICSE 2018.

Compiler Validation via Equivalence Modulo Inputs. PLDI 2014.

Finding_missed compiler optimizations by differential testing. CC 2018.

Provably correct peephole optimizations with Alive. PLDI 2015.

10. Automatically improving_accuracy for floating point expressions. PLDI 2015.

11. Achieving_high coverage for floating-point code via unconstrained programming. PLDI 2017.
12. A Comprehensive Study of Real-World Numerical Bug Characteristics. ASE 2017.

13. Just-in-Time Static Analysis. ISSTA 2017.

14. Pinpoint: Fast and Precise Sparse Value Flow Analysis for Million Lines of Code. PLDI 2018.
15. Securify: Practical Security Analysis of Smart Contracts. CCS 2018.

16. DeepXplore: Automated Whitebox Testing of Deep Learning Systems. SOSP 2017.

17. Al2: Safety & Robustness Certification of Neural Networks with Abstract Interpretation. S&P 2018.
18. Formal Security Analysis of Neural Networks using Symbolic Intervals. USENIX Security 2018.
19. Programmatic and Direct Manipulation, Together at Last. PLDI 2016.

20. Automatic patch generation by learning_correct code. POPL 2016.

21. Neural Sketch Learning for Conditional Program Generation. ICLR 2018.

22. Debugging_reinvented. ICSE 2008.

23. COZ: Finding Code that Counts with Causal Profiling. SOSP 2015.

24. Towards optimization-safe systems: analyzing the impact of undefined behavior. SOSP 2013.
25. What You Get is What You C: Controlling Side Effects in Mainstream C Compilers. S&P 2018.
26. Into the Depths of C: Elaborating the De Facto Standards. PLDI 2016.

27. Bringing the web up to speed with WebAssembly. PLDI 2017.

CoNOO LN~

Zhendong Su — Research Topics in Software Engineering E'HZUFiCh

