Techniques and Tools for Analyzing and Understanding
Android Applications

By
LiaNG XU

B.S. (Wuhan University) 2005
M.S. (Wuhan University) 2007

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
COMPUTER SCIENCE
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Zhendong Su, Chair

Shyhtsun Felix Wu

Hao Chen

Committee in Charge

2013

Techniques and Tools for Analyzing and Understanding Android Applications

(© Liang Xu, 2013. All rights reserved.

Dedication

To my parents, for their eternal love and support.

ii

Contents

List of Figures v
List of Tables vi
1 Introduction 1
2 Background 5
2.1 APKFileFormat e 5
2.2 Android Manifest e 7
2.3 The Permission SYStem ittt e 7
2.4 Application COMPONENtS . . « . . v v v vttt e e et e e e e e 10
2.5 Dalvik Executable 11

3 A Systematic Study of Errors and Pitfalls in Android Applications 12
3.1 Introduction i e e 13
3.2 StudyDesignand Results neennee. 15
3.2.1 Application Collection 15

3.2.2 Methodology 17

3.2.3 General StatistiCS o i e e e e e 18

3.2.4 Manifest e 19

3.2.5 PermiSsions v v v vt i e e e e e e e e e e e e e e e 30

326 Code 35

3.3 Related Work 41
3.4 Conclusionand Future Work 43

4 Analyzing and Understanding Sensitive Information Flow in Android Applications 45

4.1 Introduction i e 46
4.2 Problem and Approach Formulation 49
4.3 Design and Implementation of Heimdall 52

iii

4.3.1 EntryPoints e 53

4.3.2 TaintSOUICES v v ittt et e e e e 56

4.3.3 TaintSinks. e 59

4.3.4 Dataflow Analysis e 61

4.3.5 Android-specific Flows 62

4.4 Empirical Study and Analysis e 65
4.4.1 Identifying Taint Sinks 65

4.4.2 Resultso e 68

4.4.3 In-depth Manual Analysis 72

444 CaseStudies. 73

4.4.5 DiSCUSSIONS . . .« vt vt i e e e e e e e 79

4.5 RelatedWork 80
4.6 ConcluSionot e e e 81

5 Conclusion 83
Appendix A List of Common External Libraries 86
Appendix B List of Sensitive Flows by Type 89
Appendix C List of Reviewed Android Applications 91
Bibliography 94

iv

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

APK file StIUCLUTIE. . .« v o o e e e e e e e e e e e e e e e e e e e

An example of Android manifest. L L.

Screenshots of requested permissions at install time in Google Play. 8
Size distribution of Android applications. 18
Screenshots of permissions for an application using sharedUserId. 27
Requested permissions in each group. 32
Heimdall system overview. i ittt e 53
Requesting location updates with asynchronous callback. 55
Obtaining device ID through direct APT access. 57
Retrieving call log data using a content provider. 58
An example of wrapped stream as a taintsink. 59
An example of wrapped stream as anon-sink. 60
Example code with AsyncTask. 63
Example code with Handler., 64

List of Tables

3.1 Applications retrieved from Google Play. 16
3.2 Common errors in AndroidManifest.xml. 19
3.3 Most commonly misspelled elementnames. 21
3.4 Most common illegal attributes. 22
3.5 Common misplaced elements., 23
3.6 Application component StatistiCs. 24
3.7 Common issues in AndroidManifest.xml. 28
3.8 Top 10 most requested system permissions. 31
3.9 Most requested non-system permissions. 31
3.10 Common permisSsion €IrrOTS. . . . ¢ .« v v v v v v vt ettt et e e e e 33
3.11 Most frequently used Android library APIs. 36
3.12 Most frequently used Java library APIs. 36
3.13 Most frequently used library classes., 37
3.14 Most commonly used external libraries. 40
4.1 Sensitive sources and guarding permissions. 56
4.2 Taint propagationrules. e e 61
4.3 Number of applications with permissions to access sensitive sources. 65
4.4 Number of flows and apps by sourcetype. 68
4.5 Number of flows and apps by sink type. 69
4.6 Breakdown of phone state and location flows. 69
4.7 Breakdown of log and network sinks. L ... 70
4.8 Top flows by source and sink types. e 71
4.9 Top advertising and analytics libraries., 72
4.10 Number of verified flows by sourcetype. 74
4.11 Number of verified flows by sink type. 74
4.12 Verified flows by source and sink types.. 75

vi

A1l Top 100 external libraries.
B.1 Flows by Source and Sink Types.

C.1 Manually reviewed Android applications.

vii

93

Abstract

With the rise of mobile technologies in recent years, smart mobile devices, such as smartphones
and tablet computers, have become an integral part of people’s daily lives. Like traditional
cell phones, smartphones can be used for phone calls and text messaging. Driven by recent
innovations, current smartphones have also become media players, GPS systems, digital cameras,
portable gaming consoles, and Web browsers. The capabilities and functionalities of smart mobile
devices have been significantly expanded by the large number of third-party applications. As
we witness a phenomenal growth in the number and variety of mobile applications, their usage
has become increasingly prevalent, yet we lack a systematic understanding of this emerging,
important software ecosystem.

This dissertation presents novel, general techniques and tools for analyzing and under-
standing mobile applications. It focuses on analyzing applications on the Android operating
system, which is currently the most popular mobile platform. This dissertation presents the
first large-scale, systematic study of third-party Android applications. By investigating unique
characteristics of Android applications, it uncovers and provides insights into common errors
and pitfalls during application development and provides actionable recommendations where
applicable. This dissertation also presents Heimdall, a static analysis framework that auto-
matically tracks the flow of sensitive information in Android applications. Heimdall has been
used to uncover potentially unsafe flows of sensitive information on a large scale, providing a
comprehensive understanding of privacy-sensitive information usage in Android applications.
The findings presented in this dissertation benefit the whole Android community, from platform

and tool developers to application developers and end-users.

viii

Acknowledgments

This dissertation would not have been possible without the assistance from many people. I
would like to express my gratitude and appreciation to my family, friends, and colleagues for
their support.

First and foremost, I am deeply grateful to my doctoral advisor Zhendong Su for his guidance
and support. He has always been a patient, supportive, and inspiring mentor, and I am influenced
by his passion, drive, and dedication to research. He has taught me how to do good research,
from problem formulation to critical thinking and paper presentation. He has always set high
standards of excellence and prompted me to pursue top-notch research. I am indebted to him
for everything he has done for me.

I would like to also thank my colleagues and fellow students: Mehrdad Afshari, Earl Barr,
Mark Gabel, Zhongxian Gu, Lingxiao Jiang, Taecho Kwon, Vu Minh Le, Andreas Sabjgrnsen,
Thanh Vo, and Gary Wassermann. They have been invaluable resources for both research and
everyday life. I appreciate their useful feedback and constructive comments on research ideas
and paper drafts, which help greatly improve my work.

Outside of UC Davis, I would like to thank Anders Mgller and Mathias Schwarz for their
collaborative research efforts. Our combined interests, expertise, and efforts have led to the
creation of Heimdall, which is an important piece of this dissertation. It has been a real pleasure
working with them.

Last but not least, special thanks to my partner both in life and in research, Fangqi, for
sharing the trying times as graduate students and for her constant love and support. My most
heartfelt thanks also go to my parents for their unconditional love, encouragement, and support

during my years in graduate school.

ix

Chapter 1

Introduction

Smart mobile devices, including smartphones and tablet computers (tablets), have led to a new,
popular digital platform for our daily activities. Their portability and rich functionalities have
attracted a large number of users. A recent study by comScore reports that there are over 130
million smartphone users in the U.S. and the number has been growing rapidly [34]. Globally,
smartphones are already outselling PCs [27]. Approximately two thirds of the consumers choose
smartphones when they purchase a new mobile phone [75], and it was estimated that there
would be one billion smartphone users worldwide by 2012 [35].

An appealing feature of smart mobile devices is their ability to run a wide selection of
applications (apps) covering various categories, from education and business to gaming and
entertainment. Mobile application usage is soaring [74] along with the success of digital
application distribution platforms. As of May 2013, Apple’s App Store hosts over 850K iOS
applications, passing 50 billion downloads since its launch in 2008 [20]. Growing at an even
faster rate, the Google Play Store hosts more than 700K Android applications [85], and it is
predicated to hit one million applications by June 2013 [70, 86]. Recent report indicates that
people on average spend more time using mobile applications than browsing the Web, and
mobile applications will soon challenge broadcast television as the dominant channel for media

consumption [63]. The term “app” was voted “Word of the Year” by the American Dialect Society

in 2010 [89], and smartphones are sometimes referred to as “app-phones” for their distinctive
capabilities of running third-party applications [87].

Google’s Android has become the most popular mobile platform [28, 34, 51, 60], and
it is still growing at a rapid pace. As of May 2013, over 900 million Android devices have
been activated worldwide, and the Google Play Store passed 48 billion application downloads,
with more than 2.5 billion downloads in a single month [79]. This tremendous growth has
created and shaped a large ecosystem of Android applications. However, we do not yet have
much in-depth understanding of the unique characteristics of this important, emerging software
ecosystem.

This problem — the general lack of understanding in mobile applications — is the focus
of this dissertation. It presents techniques, frameworks, and tools for automatically analyzing
third-party Android applications and aims to provide a systematic understanding of such mobile
applications.

This dissertation is organized into five chapters. Chapter 2 provides background information
on the Android platform, and each of the following two chapters forms a distinct set of

contributions:

Chapter 3 In contrast to traditional applications, mobile applications have appeared relatively
recently with a number of characteristics unique to the mobile paradigm; hence they present
a new domain with additional challenges for analysis techniques. Chapter 3 presents the first
large-scale, systematic study of third-party Android applications. Focusing on their unique
aspects, we have extensively examined the manifest files, permission usage, and application
bytecode. We have uncovered a large number of common errors and pitfalls, and provided
insights from the coding and development perspective. Our main findings are summarized

below:

e The majority of applications contain errors or suffer from structural issues in their manifest
files. Specifically, elements and attributes are misspelled, misplaced or misused, which

may lead to bugs, unexpected behavior or even security vulnerabilities.

2

e Application developers often request incorrect permissions (e.g., misspelled, non-existent,
deprecated, or protected ones). Such errors can be attributed to developer confusion or
lack of clear, detailed API documentation. Incorrect permission usage may lead to bugs or

even runtime crashes.

e We also identify and quantify a number of characteristics of application code. For example,
we reveal the most frequently used Java and Android-specific library APIs. We also found

that applications commonly use Java reflection and often contain obfuscated code.

The study also sheds light on the root cause of such errors, discusses their implications, and
provides actionable recommendations where applicable. Understanding Android applications on

such a large scale provides practical benefits for improving this large, new software ecosystem.

Chapter 4 As mobile devices collect and compile an increasing amount of private or
sensitive information about users, security and privacy issues have become an important
concern. Although the Android system uses coarse-grained permissions to warn about sensitive
information access by applications, users usually have little knowledge of or control over how
their privacy-sensitive data is used. There has been extensive research on the information
leakage problem, and nearly all prior work only considers the exfiltration of data through the
network. While the proposed tools are effective, they are limited in scope and little is known as
to where and how sensitive information flows in general. This motivated us to build Heimdall,
a static analysis framework that automatically tracks sensitive information flow in Android
applications.

As a new way of approaching the problem, we consider both malicious applications (with
intentional leaks) and vulnerable applications (with inadvertent leaks) and monitor multiple
taint sinks. Based on static taint analysis, Heimdall tracks the flow of sensitive information
and raises an alarm when such information flows to unsafe sinks that can be accessed without
the guarding permissions used to retrieve the information. To analyze real-world applications,

Heimdall performs analysis on bytecode.

Using Heimdall, we have analyzed a large number of applications and uncovered four
common types of unsafe sinks: log output, network connection, public files, and SMS messages.
The tool is practical — it found pervasive flows of phone state and location data, and frequent
flows to log and network sinks. Our extensive evaluation also shows that Heimdall is precise and
scalable for real-world deployment. We believe that the work also provides a much deeper and

more complete understanding of sensitive information usage in third-party Android applications.

Finally, Chapter 5 concludes and outlines a few interesting directions for future work in this

area.

Chapter 2

Background

This chapter provides background on the Android platform necessary to understand the
remaining chapters.

Android is an open-source Linux-based operating system designed for mobile devices,
including smartphones and tablets. It has recently been adopted for other embedded devices,
such as smart TVs and media streaming players. Android applications are typically written
in Java. They are first compiled to standard Java bytecode, which is then converted to the

customized Dalvik bytecode format, and packed into Application Package (APK) files.

2.1 APK File Format

Applications are distributed and installed on the Android platform as APK files. Each application
is compiled and packed into a single APK file that contains Dalvik bytecode, resources (e.g.,
images and language translations) and a manifest file. An APK file is essentially a compressed

ZIP archive. Figure 2.1 shows the structure of an APK file, which typically contains the following:

e assets: the directory containing raw resource assets that are not compiled.

e lib: the directory for native library binaries. Although Android applications are written

mostly in Java, some of their functionalities may be implemented in native code [12].

assets CERT.RSA p

lib CERT.SF

META-INF 4) MANIFEST.MF ™
APK \—]

res = drawable

) -

AndroidManifest.xml N layout

classes.dex 2 xml

resources.arsc 2

Figure 2.1: APK file structure.

This directory is optional as most Android applications do not contain native code.
e META-INF: the directory holding meta-data and certificate information.

e res: the directory for resources not compiled into resources.arsc (described below).

This directory contains a few subdirectories, such as drawable, layout, and xml.

e AndroidManifest.xml: the manifest file containing the essential information about an

Android application.

e classes.dex: classes compiled in the Dalvik Executable (DEX) format. This file contains
all the application code in the form of Dalvik bytecode and can be executed in the Dalvik

VM [3].

e resources.arsc: pre-compiled resources. This file contains a dump of the resource table,

which keeps track of the resources and their associated IDs and packages.

The manifest file is unique to the Android platform, and we describe it in more detail below.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http: //schemas.android.com /apk /res /android"
package="edu.ucdavis.cs.android" android:versionCode="1" android:versionName="1.0">
<uses-sdk android:minSdkVersion="15" android:targetSdkVersion="16" />
<permission android:name="edu.ucdavis.cs.android. PERMISSION" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-feature android:name="android.hardware.wifi" />
<application android:icon="@drawable /icon" android:label="@string /appname">
<activity android:name=".MainActivity" android:label="@string /main">
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
< /intent-filter>
< /activity>
< /application>
< /manifest>

Figure 2.2: An example of Android manifest.
2.2 Android Manifest

The Android manifest file provides important information to the system about various aspects of
an application [1]. A simple manifest file is given in Figure 2.2.

The manifest file defines the package name of the application, which serves as a unique
identifier. It also describes the components of the application. Each application must declare in
its manifest file the permissions required to access protected APIs and resources, and may
optionally define its own permissions that other applications can use to interact with its
components. The manifest also contains compatibility requirements of the application, such as
the minimum API level (i.e. platform version), supported screen features (e.g. size and density),
and hardware/software features (e.g. GPS and OpenGL version). Next, we describe Android’s

permission system and application components.

2.3 The Permission System

The Android system leverages Linux user-based protection and sandboxes applications at the

OS level. Each application is assigned a unique UID and runs in a separate process. The

o @ B 10:08

Lﬂ Apps

= Chrome
GOOGLE INC.

Your accounts

Add or remove accounts

Allows the app to perform operations
Storage like adding and removing accounts,
Modify or delete the contents of your USB and deleting their password.
storage >

Use accounts on the device
System tools

Allows the app to request

Install shortcuts > e
authentication tokens.

Bookmarks and History oK

Read your Web bookmarks and history, write web

bookmarks and history >

Microphone

Record audio >

p o) [—=!

(a) List of requested permissions (b) Descriptions of requested permissions

Figure 2.3: Screenshots of requested permissions at install time in Google Play.

Android application sandbox isolates data and code execution on a per-application basis, so that
buggy or malicious applications cannot adversely impact other applications or the system. As a
notable exception, the framework also supports the sharedUserld feature, which allows multiple
applications to run in the same process, provided that they are signed by the same certificate.
By default, Android applications are unprivileged and cannot perform sensitive operations
or access sensitive data, such as users’ address books and device identifiers. The Android
platform provides an extensive set of APIs that are guarded by permissions for granting accesses
to sensitive data and operations [13]. Each permission regulates the access to some specific
sensitive data or privileged operations. An application must explicitly request permissions that it
needs in its manifest. When installing an application, a user is presented with all the permissions
that are requested by the application (Figure 2.3a) along with brief descriptions of the requested

permissions (Figure 2.3b). To install the application, the user must explicitly accept all the

requested permissions. It is not allowed to grant a subset of the requested permissions. Once the
application is installed, it cannot request any additional permissions, nor can the user revoke any
already granted permissions, unless the application is updated or reinstalled. Since applications
using the sharedUserId feature run in the same sandbox, they share each other’s permissions.

Android 4.2, released in October 2012, defines 200 permissions, of which 130 have been
documented [11]. Each permission is assigned a protection level indicating the level of potential

risks associated with the permission. The platform defines these protection levels!:

e Normal permissions govern APIs that pose minimal risks to other applications, the system,
or users. For instance, VIBRATE and FLASHLIGHT allow applications to control certain
aspects of the hardware, which may be annoying but should not cause harm to users or
the system. Such permissions are automatically granted by the system when applications

are installed.

e Dangerous permissions regulate APIs that may be privacy-intrusive or impact the system
adversely. For instance, placing phone calls and sending text messages are high-risk
operations that may cost money, and require the CALL_PHONE and SEND_SMS permissions

respectively. Such permissions will only be granted upon user’s explicit approval.

e Signature /signatureOrSystem permissions protect the most sensitive APIs and resources. For
instance, INSTALL_PACKAGES and DELETE_PACKAGES are required to install and uninstall
applications. Signature permissions are only granted to applications signed with the device
manufacturer’s certificate. Similar to signature permissions, signatureOrSystem permissions
are also protected, but it can be granted to applications in the Android system image.
These permissions are intended for internal use by the system or system applications, and

are normally not granted to third-party applications.

Each application may also define its own permissions to protect itself from unauthorized

ITwo additional flags are introduced in Android 4.1: permissions with the system flag are only granted to
applications installed on the system image; permissions with the development flag can also be granted to development
applications.

access, but third-party applications are advised not to define permissions using the signature or

signatureOrSystem levels.

2.4 Application Components
The Android framework defines four types of components [2]:

e Activity provides a screen that users can interact with in order to perform certain actions.
An application usually consists of multiple activities, and each activity may start another

activity to perform different actions.

e Service runs in the background without any user interface. It is often used to perform

long-running tasks or work for remote processes.

e Content provider manages shared application data and provides standard interfaces to

transfer data among applications.

e Broadcast receiver listens and responds to broadcast announcements from other applica-

tions and the system.

An application may have multiple components of each type. Most application components,
such as activities, services, and broadcast receivers, can be activated using intents. An intent is
a message that holds abstract descriptions of operations to be performed. An intent provides
the runtime binding among components, and can be used for both intra- and inter- application
communications [8]. There are two types of intents: explicit intents and implicit intents. Explicit
intents designate target components by name and thus can be used to start a specific component.
They are mostly used for intra-application messaging. Implicit intents, on the other hand, do
not specify any designated components. When an implicit intent is received, the system tries to
resolve it and decide which components can carry out the desired task. They are often used for

inter-application communications.

10

To inform the system that it is only interested in certain implicit intent messages, a component
can use an intent filter. When a component is declared in the manifest, intent filters can affect
its visibility, either public or private. Public components can be accessed by other applications,
while private ones are only accessible from within the same application. Activities, services and
broadcast receivers are private by default, but the presence of intent filters may make them
public. Content providers do not support intent filters and are public by default?. Applications

can also limit access to its public components by imposing permission requirements.

2.5 Dalvik Executable

Although Android applications are written in Java, they are compiled and converted to Dalvik
executables [4] that run in the Dalvik VM. The compact Dalvik executable (DEX) file format
is designed specifically for systems with resource constraints. Unlike the stack-based Java VM,
Dalvik VM is register-based. It is optimized for low memory configurations and designed to
allow multiple VM instances to run efficiently. For reverse-engineering and analysis purposes,
various tools have been developed to convert Dalvik bytecode back to Java bytecode [17, 81],

or even to Java source code [77].

2Content providers are no longer exported by default if an application targets Android 4.2 or higher.

11

Chapter 3

A Systematic Study of Errors and

Pitfalls in Android Applications

Following the widespread adoption of smart mobile devices, recent years have witnessed an
explosion of mobile applications. However, we have yet to understand the unique characteristics
of this important, emerging software ecosystem. This chapter presents the first large-scale study
of third-party applications on Android, currently the most popular mobile platform. To this
end, we have gathered and studied over 120K unique applications from the Google Play Store.
We have systematically examined the manifest files, permission usage and bytecode of these
applications, focusing on uncovering and understanding common errors and pitfalls. Among
various findings, we have observed that 1) 50,785 applications contain potentially vulnerable
components, and 862 applications use an advanced security feature (sharedUserId) that can
mislead users and lead to security threats; 2) more than 14,600 applications use incorrect
permissions, such as misspelled, non-existent, protected or deprecated ones, likely resulting in
bugs or even crashes; and 3) more than 70% applications use Java reflection, and over 30%
applications contain obfuscated code, making automatic analysis challenging. Many of the
errors and pitfalls are also present in the most popular applications. The most notable example

is an error in a top 100 application that results in a serious, easily exploitable vulnerability.

12

This chapter presents our detailed findings and discusses their implications. We believe that
our study benefits the whole Android community, from improving platform and tool support to

building better applications and raising user awareness.

3.1 Introduction

Recent innovations in mobile technology has given rise to a whole new class of software —
applications created specifically for smart mobile devices. To gain insights into this emerging and
vibrant software ecosystem, this chapter presents the first large-scale, systematic study of third-
party Android applications. We have gathered a large corpus of 122,570 unique applications from
the Google Play Store. With this wide range of Android applications, we aim to systematically
investigate their characteristics by examining the manifest files, permission usage and application
bytecode. While recent studies focus only on specific aspects of Android applications, we
extensively analyze their unique characteristics from the coding and development perspective.
To our knowledge, this is the largest, most comprehensive study of Android applications from
Google’s Android application market. We seek to uncover and understand common errors and
pitfalls, and provide actionable recommendations where applicable. Our findings can benefit

the whole Android community, from platform and tool developers to application developers.

Platform Developers Platform developers may gain insights into the usage of their platform.
Our results may help Google prioritize development efforts, enhance the security of the Android
platform, improve frequently-used APIs, and provide better documentation. For instance, our
study has revealed that some applications use an advanced security feature called sharedUserId.
When these applications are installed from Google Play, they may be implicitly granted additional
permissions not presented to users. We believe that it is important for the platform to warn
users of such security concerns and provide accurate permission usage information to help users

make more informed decisions.

13

Tool Developers A comprehensive understanding of applications also enables tool developers
to build better tool support, such as testing, analysis, and development environments, to assist
application developers. Specifically, our analysis of the manifest files has uncovered many errors
resulting from typos, which can be easily avoided with a spell checker. We have also observed
heavy use of Java reflection and obfuscation in application bytecode, which indicates that it is

important to address such challenges when developing analysis tools for Android applications.

Application Developers Our findings provide application developers useful knowledge to
improve their applications. By studying the uncovered common programming errors and
pitfalls, application developers can avoid similar mistakes. For example, we have found that
many applications misuse permissions, such as non-existent or protected ones, due to scarce
documentation. Our findings can educate developers and help them avoid such errors during
development.

While we examine Android applications on a large scale and present qualitative and
quantitative results, we also break down the statistics to show the importance and relevance of
our findings on popular applications. In addition, we demonstrate the impact of reported errors
by manually analyzing and testing applications from Google Play. Specifically, we have found
that several errors lead to security vulnerabilities in top applications that have tens of millions of
downloads. As a notable example, we have detected and confirmed a serious, easily exploitable
vulnerability in the popular Handcent SMS application that allows attackers to retrieve users’
private messages without any permission (Section 3.2.4).

Understanding Android applications on a scale as large as ours is difficult, and we have
encountered a number of technical challenges during our study. For instance, we have detected
various structural and semantic issues in the manifest files. Since there is no central bug database
for all Android applications, we have manually identified and highlighted a few important
and prevalent classes of flaws by studying the official Android documentation. However, the
documentation lacks details, is inconsistent or outdated, a primary reason for many of the errors.

We have devoted much time exploring online resources, such as message boards and mailing

14

lists, when trying to understand the root causes of the common errors. Occasionally, we had
to examine the Android framework source code to understand implications of the detected
flaws. In the process, we have also developed a number of automated tools to aid our study and
analysis.

The remainder of this chapter is structured as follows. Section 3.2 describes our methodology,
outlines the design of this study, and presents our detailed findings. We reveal common errors
and pitfalls, and provide quantitative information to shed light on the prevalence of the detected
flaws. We also investigate root causes of these problems, discuss their implications, and present
recommendations for improving the platform and applications. Finally, we survey related work

in Section 3.3 and conclude in Section 3.4.

3.2 Study Design and Results

This section explains our data collection process, describes our methodology, and presents our

detailed study results.

3.2.1 Application Collection

A prerequisite for our study is a quality collection of real-world Android applications. To this
end, we have gathered a large number of third-party Android applications. To build this corpus,
we wrote a customized crawler that automatically downloads top and new applications in all
categories from the Google Play Store. We collected 122,570 unique applications (identified
by their package names) over a period of three months. Table 3.1 shows a summary of our
application collection. “Top Apps” refers to those applications considered popular by Google,
while “New Apps” refers to those just released or updated. Since the list of popular applications
do not change as frequently as new applications, we have a larger number of new applications
in our corpus.

Although we have only included free applications in our collection, we believe that they

are representative of all applications (including paid ones). First, many applications adopt

15

Type Category Top Apps New Apps

Books & Reference 660 5,235
Business 720 5,146
Comics 960 2,202
Communication 723 2,518
Education 691 4,667
Entertainment 687 11,025
Finance 661 2,212
Health & Fitness 662 2,038
Libraries & Demo 678 1,484
Lifestyle 715 5,368
Media & Video 681 3,482
Application Medical 671 827
Music & Audio 770 8,744
News & Magazines 647 3,811
Personalization 678 5,462
Photography 869 2,537
Productivity 672 2,303
Shopping 693 1,773
Social 700 3,283
Sports 722 3,885
Tools 656 5,341
Transportation 729 1,104
Travel & Local 698 2,987
Weather 662 481
Arcade & Action 710 3,544
Brain & Puzzle 745 4,162
Game Cards & Casino 691 997
Casual 710 2,988
Racing 780 617
Sports Games 761 945

Table 3.1: Applications retrieved from Google Play.

the freemium model for monetization, which means they are free to use but require in-app
purchases to unlock premium features or contents. Second, we observe that a number of paid
applications only serve as license keys while all the functionalities are already included in their
free versions. In both cases, the free applications can also be viewed as paid ones and do
not differ significantly in terms of quality. Popularity wise, we observe that free applications,

especially the top applications, have much larger user bases. All these suggest that our collection

16

of applications should be representative, and we believe that our findings should be applicable

in general.

3.2.2 Methodology

Our goal is to understand Android applications in a systematic way. We have designed our study

to focus on unique aspects of Android applications: manifest, permissions, and code.

Manifest The manifest file reveals important properties of an application. It also controls
how an application behaves and interacts with the system and other applications. First, we
extract the AndroidManifest.xml file from each application archive, i.e., each APK file. The
extracted XML file is in a binary format, so we decode it to its original form using existing
tools [14, 15] and feed it to the manifest parser we developed. The manifest file, which is
well documented [1], may contain a number of different elements organized in a well-defined
structure. We examine the use of various elements as well as the structures to identify common

€rrors.

Permissions The permission system is a unique and important feature of the Android platform.
Android applications request permissions and define their own permissions in manifest files. We
analyze how applications use permissions and discuss our detailed findings. We also uncover
permission errors and pitfalls that can be attributed to developer confusion and lack of proper

documentation.

Code The core of an Android application lies in its Dalvik executable. There exist tools that
convert Dalvik bytecode to Java bytecode [17, 78, 81], to assembly-like code [14, 80], or even
to Java source code [77]. In this study, we take a DEX file, convert it to Java bytecode, and then
feed it to an efficient analyzer we built using the Soot [92] library. Our analyzer extracts APIs
and other interesting code features. We examine the use of Java and Android library APIs, and

then report and discuss our findings.

17

1,000 -
1,000 -
<3 ’ <3
o o
© ©
H* H
10 - 10 -
——— — — T
T I N
) GEBENES S B ® 00 o® o
I I I I I I I I I I I
0 10 20 30 40 50 0 5 10 15 20
APK file size (MB) DEX file size (MB)
(a) APK file size distribution (b) DEX file size distribution

Figure 3.1: Size distribution of Android applications.

Since the manifest and permission system are important and unique to the Android platform,
our study focuses more on these aspects. Following the methodology described above, we
present our results in the following sections. We begin with some general descriptive statistics
on the applications studied. We then present our detailed findings on manifest files, permission
usage, and application code, highlighting the common errors and pitfalls. We also discuss

possible implications of our findings and provide actionable recommendations where applicable.

3.2.3 General Statistics

The 122,570 applications are published by 37,322 developers, with a maximum of 4,052
applications under a single developer, ReverbNation Artists, which is an application builder
platform that helps musicians and artists create and publish their own mobile applications. Each
developer has published around three applications on average.

Figure 3.1a shows the distribution of application package (APK) size. We can see that the
largest applications are 50MB in size. This is because Google imposes a limit of 50MB on the

size of APK files published on its Play Store [50]. Figure 3.1b shows the size distribution of

18

Top 100 Apps Top 1,000 Apps All Apps

Type of Error #errors #apps #devs #errors #apps #devs #errors #apps #devs
Element misuse 8 8 6 144 77 65 15,514 5,108 2,441
Illegal element 2 2 2 14 13 13 1,136 911 409
Illegal attribute 81 28 26 593 193 170 21,136 11,004 5,271
Wrong parent element 9 9 8 47 44 41 5,960 4,310 2,420

Table 3.2: Common errors in AndroidManifest.xml.

DEX files, which hold application code. The largest dex file is around 20MB. The rest of an

application’s space is mostly taken by resources in its APK file.

3.2.4 Manifest

Manifest files serve a key role in Android applications. We have extracted structural rules from
the official Android documentation and checked the manifest of each application for common

errors, security concerns, and pitfalls.

Developer Errors

The structure of the manifest file is well defined and documented [1]. This file is intended
primarily for internal use by the Android framework, and in some cases by Google Play for
filtering purposes [7]. Therefore, it should follow the standard structural rules. Developers
should not add their own elements or attributes in this file, as they will not be understood by the
framework. We have found that a large number of applications contain errors or do not strictly
follow the documented rules. Table 3.2 summarizes the common developer errors we found
in the manifest files. For each type of error, we list the number of instances of the error, the
number of applications having the error, and the number of developers involved. We also break
down the statistics to show the relevance of reported errors in top applications. It is interesting
to observe that the ratio of affected applications rises with their popularity. We speculate that

this is because top applications tend to be more complex, which makes them more error-prone.

19

Element Misuse The Android documentation describes how elements should be used. For
instance, each manifest file must contain exactly one manifest element and one application
element. While no application misses any of these two elements, we have found that two
applications contain duplicate manifest elements and 26 applications contain duplicate
application elements. A more frequently misused element is uses-sdk, which defines the
minimum API level (i.e., minSdkVersion) required for the application to run, as well as the
target API level (i.e., targetSdkVersion) for which the application is intended. We found
this element missing in 68 applications. When this happens, the system assumes a default
value of 1 for the minimum API level, which means that the application is compatible with all
Android versions. This leads to runtime crashes on an earlier version of the platform if the
application is incompatible with that version. The values of both API levels should be integers?,
but we found string values, e.g., “1.6” and “2.2”, in two applications. We also found that a
number of applications include multiple uses-sdk elements in their manifest files, and one of
them has as many as four uses-sdk elements. In these cases, the SDK tools will not merge
the attributes from different uses-sdk elements, which may lead to undefined behavior. We
discovered through testing that the Play Store uses the lowest defined API level as the minimum
API level for filtering, while the Android framework uses the last defined target API level on
devices. Among the 1,829 applications with multiple uses-sdk elements, 435 of them define
conflicting API levels while 655 split up the attributes across multiple elements. The latter case
is likely due to developer confusion and has been mitigated by improved documentation.
Another frequently misused element is intent-filter. Intent filters are commonly used
to advertise to the system the capabilities of application components. If an intent-filter
element is found inside the component declaration, it filters unwanted implicit intents so that
only those that pass through the filter are delivered to the component. The intent-filter
element usually contains a few sub-elements, such as action, category, and data, to specify

the filtering conditions. According to the documentation, at least one action must be present.

IProvisional API levels use strings, but applications with provisional API levels can only run in the emulator and
cannot be published on Google Play.

20

Element #typos #apps Example Typos

uses-permission 207 189 USES-PERMISSION, user-permission, uses_permission
uses-feature 183 93 users-feature, used-feature, use-feature
supports-screens 118 118 support-screens, supports-screen, supported-screens
receiver 111 111 Receiver, reciever, recevier

intent-filter 31 21 intent-filer, intent-fileter, itent-filter

Table 3.3: Most commonly misspelled element names.

Otherwise, no intent would be able to pass through the filter. We found 12,485 instances of
intent filters without actions in 3,286 applications. These errors are likely due to the developers’

lack of a clear understanding of intents and intent filters.

lllegal Element The manifest file should only contain supported elements, but we found 1,136
instances of illegal elements across 911 applications. After inspecting the illegal elements, we
discovered that 725 of them are typos, and 215 of the typos are case-sensitivity errors. While all
the element names should be spelled in lowercase, it is not stated clearly in the documentation.
Careless developers may spell element names in uppercase or mixed-case, and such errors can
be difficult to notice. The most commonly misspelled elements are listed in Table 3.3. Besides
the typos, 411 illegal elements remain. We noticed that the most commonly used illegal element
is original-package, which turns out to be an undocumented element. Some of the system
applications, such as Launcher and Camera, use this element to handle package name changes

across system updates. This element should not be used in third-party applications.

lllegal Attribute The manifest documentation defines a set of possible attributes for each
supported element. We found 21,136 instances of illegal attributes in 11,004 applications.
We divide these attributes into four categories: misplaced, missing prefix, undocumented, and
unknown. Misplaced attributes refer to those unsupported by the enclosing element but are
valid inside other elements. For instance, the android:debuggable attribute is only valid
inside the application element, so it is misplaced if found within the manifest element.

A total of 11,935 attributes belong to this category. Except some attributes of the manifest

21

Category Attribute #errors

android:screenOrientation 2,070
android:debuggable 1,857
Misplaced android:launchMode 1,744
android:configChanges 1,485
android:required 1,008
xlargeScreens 983
smallScreens 262
Missing Prefix =~ anyDensity 259
largeScreens 237
normalScreens 211
android:allowClearUserData 941
android:allowBackup 447
Undocumented android:testOnly 157
android:finishOnCloseSystemDialogs 132
android:restoreNeedsApplication 38
class 886
a:name 475
Unknown android:layout_width 195
android:layout_height 193
nsO:name 149

Table 3.4: Most common illegal attributes.

element, all attribute names begin with the “android:” namespace prefix. We found that
3,222 attributes miss this prefix and would otherwise be valid. In addition, we examined the
framework source code and found that some attributes are supported but undocumented or
only partially documented, which means that they are missing on the manifest documentation
page but are briefly referenced elsewhere. Some of these attributes are reserved for system
applications and should not be used in third-party applications. They account for 1,750 illegal
attributes. Finally, the remaining 4,229 are unknown attributes. Some of them may have been
defined by developers, and some are typos. In either case, they are not supported by any of the

legal elements. The most common illegal attributes are listed in Table 3.4.

Wrong Parent Element Some manifest elements may contain sub-elements as data. A

common error is to place an element inside a wrong parent element. We found 5,960 instances

22

Misplaced Element Wrong Parent Correct Parent #errors

uses-library activity application 845
action activity intent-filter 706
supports-screens application manifest 581
category activity intent-filter 389
meta-data manifest activity, etc. 381

Table 3.5: Common misplaced elements.

of such errors in 4,310 applications. Table 3.5 shows the most commonly misplaced elements,
where they are misplaced, and where they should belong. We can see that developers tend to
misplace sub-elements that contain global information about the application inside manifest

and application elements.

Security Concerns

This section highlights two security concerns that we have observed in our study. We start with
some general statistics of application components and continue to explain potentially vulnerable
components. We also describe in detail the issues of a security feature called sharedUserId
and discuss possible solutions.

The manifest file contains component declarations for applications, which is used by the
system to locate and launch components when necessary. While most applications contain one
or more components, we found that 250 applications in our corpus declare no components at all.
These applications may not offer any functionalities on their own, but could act as add-ons or
plug-ins that work with other applications. A common use case is resource packs (e.g., language
packs and theme packs) which contain only resources that can be loaded and used in other
applications. Table 3.6 shows the number of applications containing each type of components.
We also list the average number and the maximum number of components that each application
uses. Note that we eliminate duplicate components when calculating the statistics. We can see
that top applications generally contain more components. The statistics show that activity is

the most frequently used type of components. Over 99% of the applications have at least one

23

Top 100 Apps Top 1,000 Apps All Apps

Component #apps Avg. Max. Std. #apps Avg. Max. Std. #apps Avg. Max. Std.
activity 100 23.12 110 21.16 993 18.18 242 21.87 121,870 11.55 779 15.08

All service 73 244 17 3.12 584 1.44 26 228 45,217 0.57 40 1.00
provider 45 1.06 12 1.86 264 0.46 12 1.05 6,749 0.08 19 0.40

receiver 77 3.11 23 4.01 642 2.09 47 3.31 45,940 0.90 47 1.60

activity 100 4.52 29 5.36 991 3.81 98 6.89 121,572 1.94 444 4.55

Exported service 24 042 4 086 208 0.37 25 1.29 13,610 0.15 25 0.51
P provider 41 0.84 12 1.57 221 0.37 12 0.94 5,700 0.06 18 0.36
receiver 74 2.69 19 3.27 626 1.87 46 3.04 37,938 0.52 46 1.07

activity 100 4.30 29 4.86 991 3.74 98 6.80 121,561 1.94 444 4.55

Unprotected service 23 0.37 4 0.78 148 0.30 25 1.25 11,381 0.11 25 045
P provider 36 0.62 4 1.01 196 0.31 8 0.78 5,473 0.06 18 0.35
receiver 73 241 19 3.04 612 1.70 46 293 34,738 0.43 46 0.96

activity 68 3.13 28 4.72 505 2.67 97 6.70 32,931 0.93 443 4.50

Potentially service 14 0.17 2 045 108 0.19 25 1.01 10,326 0.10 25 0.40
Vulnerable provider 34 055 4 093 189 0.30 8 0.77 5,005 0.06 18 0.34
receiver 49 1.17 13 2.03 323 0.62 37 1.68 15,502 0.15 37 049

Table 3.6: Application component statistics.

activity, and applications have more than 11 activities on average. Content provider is the least
popular type of components only found in 5.5% of the applications.

We observe that application components are often exported and unprotected. In general,
application components can be either private or public (i.e., exported). Private components
are intended for internal use within the same application, while exported components can be
launched by other applications. Table 3.6 shows the number of applications with exported
components. We can see that over 99% of the applications have at least one public activity.
When a component is exported, the developer may protect it with a permission such that only
entities with that permission can access the component. The third section of Table 3.6 shows the
number of applications containing exported components that are not guarded by permissions.
We can see that the majority of the exported components are unprotected.

Now we take a closer look at unprotected components. In some cases, developers may
intentionally make a component publicly accessible. For instance, most applications have an
exported main activity that serves as an entry to the application. However, developers may
also inadvertently make components public. As described in Section 2.4, most components are
private by default, but they can be implicitly made public by including an intent filter. Developers

unaware of this implication may accidentally export a component and expose it to security

24

risks [33]. In general, we consider a component potentially vulnerable if it is implicitly exported
and unprotected, with a few exceptions for activity and receiver components. For activities, we
exclude applications’ main activities, as they are intended to be public and unprotected. We also
exclude two types of broadcast receivers: those that only receive protected system broadcast
messages and those that correspond to App Widget declarations. In both cases, the receivers
typically use intent filters to subscribe to specific broadcast messages sent by the system or the
App Widget host (i.e., the launcher). The statistics for potentially vulnerable components are
presented in the last section of Table 3.6. We found a total of 151,753 potentially vulnerable
components in 50,785 applications. We also observe that top applications have a higher number
of potentially vulnerable components, likely because they are more complex and contain more
components in general.

To understand the security impact on real-world applications, we manually analyzed a few
potentially vulnerable components in the top applications. We have identified and confirmed
a severe security vulnerability in the popular Handcent SMS application, which has 10 to 50
million downloads in Google Play. Among various features, it advertises additional security
options that allow users to password protect and hide messages in a privacy box. However,
our analysis reveals that the contents of this privacy box are exposed by a public unprotected
content provider. We believe that the developer intended to make this component private
by including the exported attribute and setting it to false in the component declaration.
Unfortunately, this attribute is not recognized by the platform as it is missing the namespace
prefix (i.e., android: exported), which we discussed in the previous section. This vulnerability
poses serious threats to user privacy as it exposes the information that users want to protect the
most. To make matters even worse, it is easily exploitable and we crafted a proof-of-concept
application that retrieves contents of the privacy box without a single permission. Similarly;,
we have also detected and manually confirmed vulnerabilities in public components from the
WeChat and Sina Weibo applications. Both services are very popular with over 300 million users
and their Android clients are also among the top applications. We have notified the developers

of these applications, but as of May 2013, the vulnerabilities still exist in their latest releases.

25

From our analysis of the manifest files, we observed that some applications use the
sharedUserId feature, which may cause security threats to users. The permission mechanism is
enforced at the process level, and each application runs in its own process by default. However,
the Android platform supports the sharedUserId feature to allow multiple applications to share
the same permissions by running in the same process. To take advantage of this feature, each of
these applications needs to specify the same user ID in its manifest file and they must also be
signed with the same signature to retain security. For instance, if two applications from the same
developer use this sharedUserId feature, any permission granted to one application is also
automatically granted to the other. However, most users do not know this feature or understand
its security implications. Worse even, when installing applications that use sharedUserId, the
Google Play Store does not provide any visual indication and fails to inform the user of potential
risks. Figure 3.2 illustrates this security concern using the Handcent Emoji Plugin application.
Figure 3.2a shows the screen presented to the user when he tries to install the application
from the Google Play Store, which indicates that it does not require any permissions. Since
this application uses sharedUserId, it is implicitly granted permissions requested by another
application, Handcent SMS in this case, which is already installed on the device. However, if the
user opens the application information page in system settings, all the granted permissions are
listed (Figure 3.2b). This constitutes a security concern because users are usually more cautious
with granting permissions before installing an application and less likely to check permissions
after the application has been installed.

We found that 862 applications use sharedUserId. To better understand how this feature
is used, we inspected all 862 identified applications. Among them, 297 applications do not
share the same user ID with any other application in our corpus, and the most commonly shared
user ID is found in 56 applications. In most cases, the applications having the same user ID are
published by the same developer. We notice that a common use case for this feature is for add-on
and plug-in applications that work with a main application. In this case, the add-on applications
typically require few or no permissions but would be granted a number of permissions if the

main application is installed.

26

-
ﬁ Apps

% Handcent Emoji Plugin

PERMISSIONS
HANDCENT_MARKET This app can access the following on your phone. In
order to improve performance and reduce memory
usage, some of these permissions are available to
Handcent Emoji Plugin because it runs in the same
process as Handcent SMS:

dennislxu@gmail.com

‘. directly call phone numbers
© this may cost you money
read phone status and identity

This app requires no special permissions to B edityour text messages (SMS or MMS)

run.
read your text messages (SMS or

VIVIS)
receive text messages (MMS)

receive text messages (SMS)

send SMS messages
© this may cost you money

modify your contacts

read call log

read your contacts

> (]

(a) Requested permissions presented on (b) Granted permissions listed in App info
Google Play

Figure 3.2: Screenshots of permissions for an application using sharedUserId.

We found an interesting case where two applications with the same sharedUserId are
signed with different signatures and published by different developers. One of the applications
is a popular Sudoku game with hundreds of positive user ratings while the other is a new
application that uses a similar name and has no user rating at all. A closer look reveals that
the latter application requests a number of suspicious permissions (e.g., READ_CONTACTS and
SEND_SMS) that the popular one does not. We speculate that it is very likely a malware; it is no

longer available on Google Play as of this writing.

Common Pitfalls

Besides developer errors and security concerns, we have observed a number of common pitfalls

while analyzing manifest files. These issues usually do not affect an application’s functionality

27

Top 100 Apps Top 1,000 Apps All Apps

Type of Issue #issues #apps #devs #issues #apps #devs #issues #apps #devs
Wrong element order 824 76 64 6,579 806 597 509,025 84,743 25,642
Duplicate activity 8 5 5 101 78 72 13,909 12,518 1,675
Hardcoded debug mode 5 5 5 57 57 56 8,662 8,662 3,655

Table 3.7: Common issues in AndroidManifest.xml.

but may lead to subtle bugs or undesired behavior. Table 3.7 summarizes the common pitfalls

found in the manifest files, with a breakdown on top applications.

Wrong Element Order While the order of elements at the same level does not matter in
general, it is suggested that the application tag should appear after the elements that declare
the requested API level, hardware/software features, permissions, etc. Subtle bugs may occur if
the logical dependency order is not respected. We found 509,025 instances of this issue across
84,743 applications, indicating that almost 70% of the applications violate this rule. This is by
far the most prevalent issue in the manifest files, which may be attributed to the fact that this
suggested order was not documented in the past and bugs are triggered rarely. However, we

believe application developers should follow this rule to avoid introducing bugs in the future.

Duplicate Activity We observed that some activity components are declared multiple times
in the manifest. Each activity component should be declared in the manifest only once. If
it is accidentally registered multiple times, the attributes are not merged, which can lead to
subtle errors. We found 13,909 duplicate activity declarations in 12,518 applications. In one
application, there are 779 activities, 316 of which are declared more than once in its manifest.
We investigated applications containing duplicate activity components and found that a majority
of such issues can be attributed to bugs in popular application builder tools. For instance, we
observed that 6,315 applications built with Appsbar declare StickersBackgrActivity twice

and ReverbNation is responsible for duplicate BlogActivity in 3,590 applications.

Hardcoded Debug Mode During application development and testing, developers can enable

debug mode on the applications by setting the value of the android:debuggable attribute

28

to true in the manifest. This is a useful feature, but developers may forget to turn it off
and accidentally publish their applications with debugging information. We found 8,662
published applications with the debug mode enabled. It is a recommended practice to omit the
android:debuggable attribute from the manifest, and the ADT plugin [6] will automatically

set its value according to the application’s build type — debug or release.

Implications and Recommendations

Our study uncovered common developer errors and pitfalls in manifest files from a large number
of applications. Many instances of these issues can be attributed to developer confusion and lack
of quality documentation. We have observed improved documentation in the past months, and
Google released Android Lint [9], a static analysis tool, to help application developers detect
errors, such as misused elements and duplicate activity components, in the manifest files. We
believe that this is a step in the right direction and recommend implementing additional checks
in Android Lint, such as those for misspellings and structural issues.

For developers, we suggest reading the documentation carefully to better understand the
platform and take advantage of the Lint tool to avoid common errors. It is also important
to keep security concerns in mind during application development and testing. For instance,
developers need to understand security implications of using intent filters, as inadvertently
exposing components may render the application vulnerable.

We found that the sharedUserId feature may lead to user confusion and security threats.
Specifically, users are not informed of additional permissions that applications may inherit from
other applications at the time of install. Similarly, when installing a new application, Google Play
fails to warn users that additional permissions may be granted retroactively to already installed
applications. As a first step to mitigate this issue, we recommend displaying warning messages
to users when they try to install any application that use sharedUserId. One possible solution
is to accurately display all permissions granted, both explicitly and implicitly, by scanning all

installed applications, whenever a new application using sharedUserId is being installed. To

29

avoid confusing users, the UI also needs to be better designed and organized to help users make

informed decisions.

3.2.5 Permissions

Applications need to request permissions to access protected APIs and resources. We have
observed that most applications require at least one permission, while only 7,784 applications
request no permission at all. On average, each application requests 5.75 permissions, with
a standard deviation of 4.37. We found that the most permission-hungry application, Brick
Breaking, uses as many as 122 permissions. Surprisingly, it requests almost all documented
permissions, including protected ones, in its manifest. This application implements a simple
live wallpaper and we found no sign of malicious behavior. We hypothesize that the developer
was either being lazy by declaring all the permissions or planning to turn it into malware later
through updates. This application has been removed from Google Play as of this writing. As
expected, we also observe that popular applications tend to use more permissions. The top 100
applications use 11 permissions on average, with a standard deviation of 8.43.

Table 3.8 shows the top 10 most requested system permissions defined by the Android
framework. We can see that most applications request network related permissions including
INTERNET and ACCESS_NETWORK_STATE. Table 3.9 lists the most commonly used non-system
permissions defined by applications. Among these permissions, RECEIVE and BILLING are
required to use “Google Cloud Messaging” (formerly “Cloud to Device Messaging”) and in-app
billing services respectively, both of which are extended Google APIs. Other popular non-system
permissions are defined by the launcher application to allow modifying shortcut icons on the
home screen (INSTALL_SHORTCUT and UNINSTALL_SHORTCUT) and regular access to launcher
settings (READ_SETTINGS).

The Android platform organizes permissions in groups. Related permissions that belong to
the same group are presented together in the UI. Figure 3.3 shows how frequent permissions

in each group are used in applications. We can see that NETWORK is the most frequently used

30

Permission® Protection Level %

INTERNET dangerous 90.25%
ACCESS_NETWORK _STATE normal 72.90%
WRITE_EXTERNAL STORAGE dangerous 51.44%
READ PHONE_ STATE dangerous 47.81%
ACCESS_FINE_LOCATION dangerous 32.48%
VIBRATE normal 28.23%
ACCESS_COARSE_LOCATION dangerous 28.12%
WAKE _LOCK dangerous 23.74%
RECEIVE_BOOT_COMPLETED normal 20.13%
CALL PHONE dangerous 13.65%

Table 3.8: Top 10 most requested system permissions.

*All listed system permissions share the android.permission. prefix, which is omitted in this table.

Permission #apps
com.google.android.c2dm.permission.RECEIVE 10,620
com.android.launcher.permission.INSTALL SHORTCUT 5,494
com.android.vending.BILLING 2,894
com.android.launcher.permission.UNINSTALL SHORTCUT 1,773
com.android.launcher.permission.READ_SETTINGS 467

Table 3.9: Most requested non-system permissions.

permission group, which is consistent with the top permission statistics presented in Table 3.8.
The two top permissions, INTERNET and ACCESS_NETWORK_STATE, both belong to the NETWORK
permission group. Our inspection of permission usage leads to a number of findings. In
particular, we have found that developers often misuse permissions, likely resulting in bugs or

even crashes.

Developer Errors

A common developer error is misspelling system-defined permissions. We found that 809
applications contain misspelled system permissions in their manifest files. Table 3.10 shows
the most commonly misspelled permissions. When requesting a permission, the name of the

permission must be exactly the same as defined by the platform. All predefined permission

31

permission group
S

%
1

I I I I
50,000 100,000 150,000 200,000
permissions used in apps

$
9,
o—

Figure 3.3: Requested permissions in each group.

names are case-sensitive and never contain spaces. Permission misspellings are sometimes subtle
to notice (e.g., case-sensitivity errors and superfluous whitespace), but such errors can be easily
avoided with the help of a spell checker.

Requesting non-existent permissions is another common permission-related developer error.
We have noticed that some applications request permissions that are likely non-existent. For
instance, we found that 390 applications request the RECORD_VIDEO permission, which is not
defined by the system and is also unlikely to be defined by third-party applications. The system
does define the RECORD_AUDIO permission, so developers might mistakenly assume that they
need a corresponding RECORD_VIDEO permission to capture video. Similarly, we found that
2,701 applications request the READ_EXTERNAL_STORAGE permission, which was introduced in

Android 4.1. All the applications in our collection that request this permission were published

Category Permission” #apps

RECEIVE_BOOT_COMPLETED 397
ACCESS_COARSE_LOCATION 250

Misspelled =~ CALL_PHONE 61
SET_WALLPAPER HINTS 30
ACCESS_FINE_LOCATION 27
READ_EXTERNAL_STORAGE 2,701
WRITE 2,060

Unknown PLUGIN' 933
RECORD_VIDEO 390
READ SETTINGS 349
READ_LOGS 3,320
INSTALL_PACKAGES 1,987

Protected DELETE_PACKAGES 787
MODIFY PHONE_STATE 608
INJECT _EVENTS 546
READ_OWNER_DATA 586
WRITE_OWNER_DATA 522

Deprecated ACCESS_GPS 518
ACCESS_LOCATION 426
RAISED THREAD PRIORITY 242

Table 3.10: Common permission errors.

*Permission prefixes are omitted. The PLUGIN permission has the android.webkit.permission. prefix and all
other permissions have the android.permission. prefix.

"The PLUGIN permission is defined by WebKit and is only meant to be used by the Adobe Flash browser plugin.
Third-party applications cannot use this permission.

before this permission is supported. There is a WRITE_EXTERNAL_STORAGE permission, which
was added in Android 1.6. Therefore, it is likely that developers mistakenly assumed that
they need the READ_EXTERNAL_STORAGE permission to read from external storage (e.g., the SD
card). In addition, we have observed that over 100 applications (including top ones) request
the ACCESS_COARSE_UPDATES permission, which is not defined by the Android platform but
referenced in the documentation. Our inspection of the platform source code and documentation
led us to believe that this is a documentation error. We have also found a bug report on this
issue filed in August 2011 in the public Android Open Source Project issue tracker [5]. However,

the documentation error remains to be fixed.

33

Our permission usage study also reveals that a number of applications request protected
permissions. As discussed in Section 2.3, permissions with the signature or signatureOrSystem
protection level are intended for system applications. We found that 8,457 applications request
at least one such permission. Table 3.10 also lists the most requested protected permissions.
When a third-party application tries to obtain such permissions, the system silently denies the
request, unless the application is signed by the device manufacturer. We believe that most of
these permissions are requested in error, and thus may lead to runtime crashes. We note that the
protection level for permissions may change across API levels. For instance, READ_LOGS used to
be a dangerous permission, but it has recently been promoted to the signatureOrSystem level in
Android 4.1 to address potential security risks [65]. This change broke some applications that

legitimately use the permission to collect and display system log data.

Common Pitfalls

Developers sometimes request deprecated permissions. We found that 2,578 applications
request system permissions that are deprecated. For instance, the READ_OWNER_DATA and
WRITE_OWNER_DATA permissions in Table 3.10 were defined in an earlier version of the SDK.
They were never used by the platform, and thus have been removed in recent versions
of the SDK. Other commonly used deprecated permissions include ACCESS_LOCATION and
ACCESS_GPS, which were defined in pre-release versions of the platform and were deprecated
in 2008. Developers likely included these deprecated permissions because they forgot to
remove them or they were misled by outdated materials. We observed that 580 of the
584 applications that use either ACCESS_LOCATION or ACCESS_GPS also request the updated

permissions, ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION.

Implications and Recommendations

We found that certain permissions (e.g., INTERNET) are requested by an overwhelming number

of applications. We hypothesize that many applications do not need such permissions for

34

their core functionalities. For instance, it is likely that many free applications request the
INTERNET permission with the sole purpose of serving ads, which is a strong indication that some
permissions are too coarse-grained. This finding is consistent with previous studies suggesting
that the current permission mechanism in Android should be more fine-grained [47, 61]. We
believe that it is worthwhile to split such permissions into multiple permissions to provide
stronger privacy and security guarantees.

Our study revealed common errors and issues on permission usage. We believe that
better tool support can help developers avoid many such errors. Developer confusion over
permission names, protected permissions, and deprecated permissions can be addressed by
improved API documentation. For instance, protection levels are currently undocumented
for system permissions, and developers need to examine the framework source code to find
out this information. To mitigate this issue, the latest version of Android Lint now checks for
protected permissions in manifest files. We recommend including a spell checker to detect
typos in permission names and implementing additional checks for non-existent and deprecated

permissions.

3.2.6 Code

Since Android applications are mostly written in Java, the SDK supports a fairly large subset
of the Java SE library. It also includes a large set of platform-specific APIs that expose various
functionalities of the system to third-party applications. Table 3.11 and Table 3.12 lists the most
popular Android and Java library APIs respectively, and Table 3.13 shows the most frequently
used library classes. We can see that the most frequently used Android APIs are related to
accessing Ul elements and logging, while the most popular Java APIs are for string and container
manipulation. We have also observed that many invocations of string related methods (e.g., in
the StringBuilder class) are likely generated by the compiler. We use bytecode analysis to
understand the characteristics of application code and present our findings next. In particular,

we have found that both Java reflection and obfuscation techniques are widely used among

35

API Signature # %
<android.app.Activity: android.view.View findViewByld (int) > 5,470,941 2.45%
<android.widget.TextView: void setText(java.lang.CharSequence) > 4,639,965 2.08%
<android.view.ViewGroup: void addView(android.view.View) > 3,807,229 1.71%
<android.view.View: void setVisibility(int) > 3,471,128 1.56%
<android.util.Log: int d(java.lang.String,java.lang.String) > 3,398,838 1.52%
<android.view.View: void setLayoutParams(android.view.ViewGroup$LayoutParams)> 3,232,688 1.45%
<android.view.View: void setOnClickListener(android.view.View$OnClickListener) > 2,948,891 1.32%
<android.content.Intent: android.content.Intent putExtra(java.lang.String,java.lang.String)> 2,866,169 1.29%
<android.view.View: android.view.View findViewByld (int) > 2,849,131 1.28%
<android.util.Log: int e(java.lang.String,java.lang.String) > 2,332,733 1.05%
<android.content.Context: java.lang.String getString(int)> 2,316,965 1.04%
<android.content.Intent: void <init>(android.content.Context,java.lang.Class)> 2,243,321 1.01%
<android.util.Log: int i(java.lang.String,java.lang.String) > 2,106,091 0.94%
<android.content.ContextWrapper: android.content.res.Resources getResources()> 2,064,183 0.93%
<android.app.Activity: void startActivity(android.content.Intent) > 2,017,514 0.91%
<android.view.View: android.content.Context getContext()> 1,875,192 0.84%
<android.content.Intent: java.lang.String getStringExtra(java.lang.String)> 1,788,578 0.80%
<android.content.ContextWrapper: android.content.Context getApplicationContext()> 1,707,885 0.77%
<android.app.Activity: void finish()> 1,701,531 0.76%
<android.widget.LinearLayout$LayoutParams: void <init>(int,int)> 1,699,667 0.76%
Table 3.11: Most frequently used Android library APIs.
API Signature # %
<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)> 72,908,694 12.51%
<java.lang.StringBuilder: java.lang.String toString()> 31,262,497 5.36%
<java.lang.StringBuffer: java.lang.StringBuffer append (java.lang.String) > 27,725,950 4.76%
<java.lang.Object: void <init>(> 24,023,819 4.12%
<java.lang.StringBuilder: void <init>()> 21,225,653 3.64%
<java.lang.String: boolean equals(java.lang.Object) > 18,609,356 3.19%
<java.lang.Integer: java.lang.Integer valueOf(int)> 10,611,595 1.82%
<java.lang.StringBuilder: void <init>(java.lang.String)> 9,411,002 1.61%
<java.lang.StringBuffer: java.lang.String toString()> 8,407,835 1.44%
<java.lang.StringBuffer: void <init>()> 7,637,498 1.31%
<java.lang.String: int length()> 7,468,616 1.28%
<java.util. HashMap: java.lang.Object put(java.lang.Object,java.lang.Object)> 7,002,028 1.20%
<java.util.Iterator: boolean hasNext()> 6,720,965 1.15%
<java.lang.StringBuilder: java.lang.StringBuilder append(int) > 6,714,107 1.15%
<java.util.Iterator: java.lang.Object next()> 6,666,693 1.14%
<java.lang.Throwable: void printStackTrace()> 6,378,071 1.09%
<java.util.Map: java.lang.Object put(java.lang.Object,java.lang.Object) > 5,514,263 0.95%
<java.lang.StringBuffer: java.lang.StringBuffer append(char)> 5,282,624 0.91%
<java.util.List: boolean add(java.lang.Object) > 4,803,839 0.82%
<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.Object) > 4,736,095 0.81%

Table 3.12: Most frequently used Java library APIs.

36

Rank

Android Class

Java Class

1 android.view.View java.lang.StringBuilder
2 android.app.Activity java.lang.String
3 android.content.Intent java.lang.StringBuffer
4 android.util.Log java.lang.Object
5 android.widget.TextView java.lang.Integer
6 android.content.Context java.util.ArrayList
7 android.view.ViewGroup java.util. HashMap
8 android.database.Cursor java.util.List
9 android.content.ContextWrapper java.util.Iterator
10 android.os.Bundle org.json.JSONObject
11 android.app.AlertDialog$Builder java.util. Map
12 android.widget.ImageView java.lang.Throwable
13 android.webkit.WebView java.lang.Class
14 android.os.Handler java.lang.Enum
15 android.content.res.Resources java.io.File
16 android.content.SharedPreferences java.lang.System
17 android.net.Uri java.lang.IllegalArgumentException
18 android.content.SharedPreferences$Editor org.json.JSONArray
19 android.content.ContentValues java.lang.Thread
20 android.app.Dialog java.lang.Long

Table 3.13: Most frequently used library classes.

Android applications, making it challenging to develop automated analysis tools.

Developer Errors

We observed that a large number of applications use API methods that are not supported in all
targeted API versions. In general, application developers would like to take advantage of APIs
introduced in newer versions of the system, while targeting the largest user base by making
their applications backward-compatible with earlier system versions. However, if the developer
makes a mistake and calls a new API that does not exist in an older system, the application
may crash. Ideally, an application should only access methods introduced in API levels no more
than the minimum API level declared in its manifest. To access new APIs, developers should use
Java reflection or conditional execution and lazy loading to ensure that each API call is only

executed on supported platforms [82]. To locate API calls that are not supported in all targeted

37

API versions, we extract all the API calls from each application, map each to its starting API
level, and compare it to the minimum API level declared in the manifest. We found that 48,366
applications (39.46%) contain API calls not available on their supported platform versions. This
may include cases where new APIs are guaranteed to be accessed only on supported platforms
through conditional execution. In either case, these applications should be carefully vetted to

ensure that they only execute supported API calls at run time.

Observations and Insights

Java Reflection New APIs are constantly added to each new Android SDK release. To use
the new APIs while staying backward-compatible, developers frequently use Java reflection to
target a wide range of platform versions. It is a common practice to invoke new APIs when
they are available and fall back to earlier alternatives (or disable the affected functionality
altogether) when necessary [71]. Reflection is also used to invoke hidden or private framework
APIs. By looking for reflection-related APIs like Class. forName and Method.invoke, we found
that 86,210 applications (70.34%) use Java reflection to make API calls. While reflection is a
powerful technique that provides the flexibility to inspect and determine API characteristics at
run time, it also incurs performance overhead. Therefore, developers should be judicious and

avoid using it in loops and Ul intensive tasks.

Obfuscated Code Obfuscation is often used in Android applications for two reasons: 1)
paid applications are usually obfuscated to help defend against cracking and piracy; and 2)
applications in general use obfuscation to protect intellectual property by making the code more
difficult to reverse engineer. The Android SDK ships with an obfuscation tool, ProGuard [16],
which Google encourages developers to use to obfuscate applications that integrate their
licensing service [62]. Under the default configuration, ProGuard shrinks an application by
removing unused code and obfuscates the code by renaming classes, fields and methods using
semantically obscure names. We found that 38,285 applications (31.24%) are obfuscated, and

many more applications contain obfuscated third-party library code. We have also observed that

38

top applications are more likely to be obfuscated. Specifically, 53 out of the top 100 applications

have been obfuscated.

Native Code With the help of the NDK toolset, developers may reuse existing code libraries
written in C or C++4. However, using native code is discouraged for most applications as it
brings no noticeable performance improvement but increases code complexity [12]. We found
that 6,365 applications (5.19%) include and load libraries written in native code. Among these,
2,301 are games. We suspect that these games are originally written in native code and ported

to the Android platform, or they take advantage of native code for better performance.

Root Access We have observed that applications occasionally request root access at run time
for additional functionalities such as overclocking the processor. Such functionalities only work
on devices that are hacked to allow superuser permissions [84]. Even a number of popular
applications published on Google Play request root access. We found that 2,945 applications
(2.40%) attempt to run the su command during execution. When this happens, the user is

prompted and needs to decide whether or not to grant root access.

External Libraries Many developers utilize external libraries to facilitate development and
enrich the functionalities of their applications. For instance, a lot of applications use ad libraries
to display advertisements for monetization. To integrate with popular social network services,
applications often include APIs from other platforms like Facebook and Twitter. In addition,
since Android applications are written in Java, developers may also take advantage of existing
open source Java libraries (e.g., Apache Commons) to ease development. We have used some
heuristics based on package names to detect external libraries and found that over 100,000
applications include at least one external library. Applications use 4.61 external libraries
on average, and some even include as many as 50 external libraries. Table 3.14 shows the
most commonly used external libraries, and more data on popular libraries can be found in

Appendix A.

39

Library Description #apps

com.google.ads AdSense/AdMob 39,462
com.google.android.maps Google Maps API 23,345
org.apache.commons.logging Apache Commons Logging 19,762
com.facebook.android Facebook API 19,730
org.slf4j SLF4J (logging) 17,718
twitter4;j Twitter API 17,020
org.apache.log4j Apache log4j 16,680
org.apache.commons.codec Apache Commons Codec 16,538
com.admob.android.ads AdMob 11,125
com.google.android.apps.analytics Google Analytics 10,762

Table 3.14: Most commonly used external libraries.

Implications and Recommendations

Our study identified frequently used library classes and methods. We believe that the API usage
findings provide important feedback to the platform provider, and can be used to prioritize
efforts on improving, optimizing, and fixing bugs in heavily used framework library code.

From the application development perspective, we found that developers often fail to take
enough precautions in using new APIs while targeting multiple platform versions. Although the
documentation contains necessary API level information to assist developers, it is still tedious
and error-prone to ensure that only supported APIs are used across all platform versions. We
believe that automated tools can help developers avoid such errors during development. For
instance, recent versions of the Android Lint tool which includes an API level check can be used
to detect accidental calls to newer APIs [10].

Our study finds that Java reflection is heavily used in Android applications. Therefore, it
is important to handle reflection when developing analysis tools. While statically resolving
reflective calls is very challenging in general, it is possible to take advantage of domain-specific
knowledge for better resolution results in the Android setting [45].

Besides Java reflection, we also observed that obfuscation is commonly used. This indicates
that it is important to consider obfuscation even when developing tools not intended for malware

detection and analysis.

40

During our analysis of the application code, we found that some third-party libraries,
especially advertising and analytics libraries, are included and shared in a large number of
applications. Therefore, we recommend analyzing these popular libraries, summarizing and

capturing the results, and reusing them in analysis tools to reduce analysis cost.

3.3 Related Work

Our study touches upon several active research areas, and we survey related work in this section.

Android Application Studies Researchers have performed various studies on Android
applications to understand the emerging Android ecosystem. Bohmer et al. [23] propose
AppSensor for analyzing application usage on smartphones and present both basic and
contextual descriptive statistics. To help application developers monitor the performance of their
applications, Ravindranath et al. [83] propose a lightweight system, AppInsight, that instruments
application binaries to collect trace data and pinpoints critical paths in user transactions.
ProfileDroid [94] offers multi-layer monitoring and profiling to capture characteristics of
application specification, user activities, OS and network statistics. Crussell et al. [36] propose
a static clone detection tool, DNADroid, and perform plagiarism detection on 75,000 Android
applications. To enforce security policies on Android applications, Davis et al. [37] propose
[-ARM-Droid, a bytecode rewriting framework for in-app reference monitors. Compared to
previous studies, our work is the first large-scale study that promotes a systematic understanding
from the coding and development perspective, with a unique focus on common errors and
pitfalls. It also includes the largest number of unique applications from Google Play, making our

findings representative and general.

Android Permission System Android adopts a decentralized approach to its permission
model, and delegates permission decisions to Android users. A number of approaches have
been proposed to enhance the Android permission system. Based on automated testing,

Stowaway [45] constructs a mapping between API calls and permissions to detect overprivilege

41

in Android applications. Felt et al. [48] present permission re-delegation vulnerabilities
which allow malicious applications to access privileged data and operations through confused
deputies [56]. Dietz et al. propose QUIRE [38] to mitigate confused deputy attacks by extending
the Android framework to allow applications to reason about the call-chain and data provenance
of requests. Barrera et al. [21] propose a methodology based on self-organizing maps to visualize
permission usage in 1,100 Android applications, and discuss the strengths and weaknesses of
the Android permission model. Wei et al. [93] perform a long-term study on the permission
evolution and usage in the entire Android ecosystem, from the platform to various applications.
Our study, on a much larger scale, discusses in general how permissions are used and misused

in Android applications, aiming to uncover common developer errors and pitfalls.

Application Security and Privacy There has been extensive research on the security and
privacy of Android applications. Enck et al. [42] examine Android application security by
studying 1,100 Android applications. They detected pervasive misuse of personal/phone
identifiers and deep penetration of advertising and analytics networks. Their earlier work
Kirin [40] performs lightweight certification of Android applications to defend against malware
at install time. Chia et al. [32] focus on the effectiveness of rating systems in the application
markets to measure privacy and security risks of third-party applications. RiskRanker [54]
assesses potential security risks from untrusted applications and detects dangerous behaviors
to spot zero-day malicious applications. DroidRanger [98] uses permission-based behavioral
footprinting as well as heuristics-based filtering to detect malicious applications in official
and alternative android markets. DroidMOSS [95] uses fuzzy hashing to detect repackaged
(and potentially malicious) applications in third-party Android marketplaces. Bugiel et al. [26]
propose system-centric and policy-driven runtime communication monitoring to protect against
confused deputy and collusion attacks. Woodpecker [53] detects capability leaks in popular
stock Android smartphones, where privileged permissions are unsafely exposed to other
applications. Similarly, Chan et al. propose DroidChecker [31] that searches for the same

class of vulnerabilities in third-party Android applications. To detect privacy leaks in Android

42

applications, TaintDroid [41] performs system-wide dynamic taint tracking and warns the
user when sensitive information is exfiltrated through the network. To achieve similar goals,
AndroidLeaks [52], a static analysis framework, detects privacy information leaked over the
network on a collection of 24,350 Android applications. Stevens et al. [91] also investigate
privacy leaks in Android applications, but with a focus on ad libraries. Again, in contrast to
these security-focused analyses, ours aims at a systematic understanding of Android applications
from all key aspects and leads to a broader range of new findings that can benefit the whole

Android community.

Android Lint The Android SDK provides a static analysis tool called lint [9] which checks
Android project files and warns developers of potential bugs and errors. It scans through the
manifest file, resource files, Java source code, as well as compiled bytecode, and uses a set of
pre-defined rules to find and report common issues. Developers may suppress lint warnings and
extend lint by defining customized rules. The lint tool can already detect some of the errors and
issues reported in our study, and we believe it can be enhanced, guided by our findings, to help

developers avoid even more common errors and pitfalls.

3.4 Conclusion and Future Work

In this chapter, we have presented the first large-scale, systematic study of Android applications.
We have analyzed over 120K applications from Google Play. Our analysis systematically examines
Android applications, spanning across manifest files, permissions usage and application code.
Our study has uncovered a large number of common errors and pitfalls during application
development, revealed why such errors occur, discussed their implications, and provided
actionable recommendations. We believe that our findings raise awareness and benefit the entire
Android community to improve this large, new software ecosystem.

There are a few interesting directions for future research. First, we have focused on the

applications’ code-level characteristics, but not their meta information, such as developer,

43

category, and ratings. Considering such meta-data may reveal additional interesting insights. For
example, applications across different categories may exhibit different features, such as different
usage patterns of permissions and APIs. Another interesting direction is to analyze interactions
among applications. We have focused on examining each application in isolation; interactions
among applications may contain useful and interesting characteristics worth exploring in the
future. It would also be interesting to conduct a similar study on iOS applications, which might
be of higher quality in general as Apple has a rigorous vetting and approval process. Such a
study may provide insights into the similarities and differences between the two dominating

approaches to mobile application publishing and distribution.

44

Chapter 4

Analyzing and Understanding
Sensitive Information Flow in Android

Applications

Smartphones have become increasingly popular in recent years. Their popularity is driven
in large part by an abundance of third-party applications. To achieve rich functionality,
these applications often collect, use and store users’ sensitive information, such as contacts,
geolocation, and even bank account information. However, they may be vulnerable or even
malicious, and expose sensitive information to unauthorized access. Although both static and
dynamic approaches have been proposed to detect information leakage through the network,
there has been little knowledge on the general problem of sensitive information usage in mobile
applications. This work aims to gain a comprehensive understanding of how confidential
information flows in Android applications. To this end, we identify common sources of sensitive
information, perform a static taint analysis, and discover all possible sinks through which
sensitive information may be leaked. We have designed and implemented Heimdall, a static
analysis framework that automatically tracks the flow of sensitive information in Android

applications. Using Heimdall, we have analyzed 122,570 unique Android applications and

45

discovered common unsafe sinks, including log output, network connection, public files, and
SMS messages. We found 345,965 instances of potential unsafe flows across 46,508 applications.
We have manually inspected a systematic selection of reported flows in top applications and
found concrete evidence that developers do misuse or fail to sufficiently protect privacy-sensitive
information. Results also show that our framework is precise and scalable for real-world

deployment.

4.1 Introduction

As mobile devices grow in popularity, they have become indispensable in people’s daily lives,
keeping us connected to social networks, breaking news, and the entire Internet. While there are
multiple competing platforms, Google’s Android is currently the most popular operating system
for mobile devices. Google takes an open stance toward Android — third-party applications are
not rigorously scrutinized before they are made available to users on the Play Store. This open
approach has led to security challenges and privacy concerns, and Google relies on community
reviews (e.g., user ratings and application flagging) to mitigate security threats. Google can
also remove any detected or reported malware from the Play Store and remotely from affected
devices [29]. To better defend against malware, Google recently launched Bouncer [66], a
server-side security service that performs a series of analyses to detect hidden, malicious behavior
when applications are uploaded to Google Play. However, it is found that Bouncer may be
bypassed by sophisticated malware from knowledgeable adversaries [76]. More recently, Google
launched a new application scanning service as an extension to Bouncer with the release of
Android 4.2. This new security service is built into the platform to detect potentially malicious
or harmful code when sideloading applications onto devices.

To implement rich features and achieve better user experience, applications frequently
collect and compile sensitive data available on mobile devices. Many of these applications
access users’ personal information, such as geolocation, device identifiers and contact lists.

Ideally, such accesses should be controlled to protect user privacy. Although applications

46

must ask for permissions to use sensitive information, it may not be clear to the end-user
how such information is actually used after granting access. For instance, a photo-sharing
application needs to access the network to transmit photos and acquire the user’s location for
geotagging the photos. In this example, the user needs to trust that the application only uses
this privacy-sensitive information as indicated, which is not always the case. If the application is
ad-supported, it may send the user’s location along with other privacy-related data to advertisers’
servers to display targeted ads. To mitigate this issue, recent legislation mandates that any
application that collects personal data from users must conspicuously post a privacy policy
describing how such information is collected, used and shared [57, 58]. Unfortunately, privacy
policies often contain broad, vague legal language, and can be inaccurate or out-of-date [18, 19].

Besides applications that intentionally send privacy-sensitive data through the network, there
are also applications that may inadvertently leak sensitive data. Some Android applications,
including even system applications, were discovered to write sensitive information to the system
log [65]. For instance, an application with location permissions may read the location data and
later write it to the system log. Another (malicious) application, with the permission to read
the log, can extract the location information from the log, although it cannot directly access
the location data. In this example, the first application is vulnerable and may leak sensitive
information unintentionally.

Similar to the system log example, vulnerable applications may obtain sensitive information
and later write it to the file system (e.g., the SD card). Unlike the system log, reading from the SD
card does not require any permissions, making the vulnerability easier to exploit. In April 2011,
a severe vulnerability was revealed in the widely used Skype Android application and may have
affected over 10 million users [30, 88]. It was discovered that after login, the Skype application
writes the user’s contacts, profile, instant message logs, and other sensitive information in
cleartext to a number of SQLite database files stored in the data directory. In addition, the Skype
application mistakenly left those files with improper permissions that allowed any application to
read the files.

To tackle the information leakage problem, researchers have proposed both static and

47

dynamic techniques to analyze the flow of sensitive information. While prior work focuses on
intentional leaks over the network, little is known as to where and how sensitive information
flows in general. In this work, we aim to gain a comprehensive understanding of sensitive
information usage in third-party applications. In contrast to previous studies with limited scopes,
our work considers both malicious and vulnerable applications and examines multiple sinks
where sensitive information may flow. To this end, we design and implement Heimdall, a
static taint analysis framework to track the flow of privacy-sensitive data in third-party Android
applications.

Heimdall statically checks an application to identify suspicious code paths where it first
accesses sensitive, permission-guarded information and subsequently transmits this information
to a destination that can be accessed without the same guarding permissions. Since source
code is rarely publicly available for Android applications, Heimdall performs analysis on
bytecode. Leveraging an existing static information flow framework [72] built on top of the Soot
library [92], we track the flow of sensitive information and determine if any such information
reaches a potentially unsafe sink. We adapt the analysis to work on Android applications. In
particular, we identify taint sources in event listeners as well as content providers, track the flow
of sensitive information via programming constructs specific to the Android platform, and add
support for the Android framework libraries (Section 4.3).

Using Heimdall, we have analyzed 122,570 free applications from the Google Play Store.
Our comprehensive analysis uncovers four common types of unsafe sinks: log output, network
connection, public files, and SMS messages. Among 79,354 applications that may access
sensitive data, Heimdall has detected potential unsafe flows in 46,508 applications. We found
pervasive flows of phone state and location data, and numerous flows to log and network
sinks. As reported in previous studies [41, 42, 52, 59], we also observed extensive usage
of advertising and analytics libraries, which result in many detected flows. To evaluate the
precision of Heimdall, we systematically selected 100 flows from top applications and confirmed
65 true positives and 10 false positives through manual inspection. In addition, we were able to

trigger detected leaks by running some of those applications on an Android device. Our results

48

demonstrate that applications frequently leak privacy-sensitive information and sometimes
exfiltrate personal identifiable information (PII). We believe that our findings can help users
make informed decisions regarding application usage and help security analysts detect malicious
and vulnerable applications.

The rest of this chapter is organized as follows. Section 4.2 formalizes the problem that we
tackle and presents our core approach. Next, we describe the design and implementation of
Heimdall (Section 4.3). In Section 4.4, we present an extensive empirical evaluation of the
effectiveness of Heimdall on a large number of third-party applications and discuss our analysis

results. Section 4.5 surveys related work, and Section 4.6 concludes.

4.2 Problem and Approach Formulation

This section formalizes the notion of information leakage under our threat model. In this
work, we do not consider vulnerabilities in the permission enforcement mechanism or other
parts of the operating system that may be exploited to bypass restricted resource access. Our
trusted computing base includes the Linux kernel, the Android framework and the Dalvik VM.
In addition, we do not consider implicit flows, which in itself is indicative of suspicious behavior.

Under the security model of Android, applications are sandboxed from each other and the
operating system. By default, they are not allowed to perform sensitive operations or access

sensitive data.

Definition 4.1 (Protected Resource Access). Let R denote the universe of all resources
defined in the system. Given a resource r € R, read(r) represents read access to r, and write(r)

represents write access to r. We define the universe of resource accesses as

S= U{ read(r),write(r)}.

reRr

Each resource is protected with both a read and a write permission. Note that write(r) =

read(r), which means holding only the write permission to r does not automatically grant read

49

access to r. For instance, every application can write information to the system log, but not all

applications can read from it.

Definition 4.2 (Permission Semantics). Let P denote the set of all permissions defined in
the system. We define the semantics of a permission in terms of the resources it grants access to:
[-1:P— &(S). For permission p € P, [p]] =S, & S. We define the semantics of a permission

set P"CPas[[P']= Upep, [pI.

As of this writing, there are 200 permissions defined in the Android framework, some of
which are not related to resource access. In this work, we focus on permissions p that involve

granting accesses to resources (i.e., [p] # 0).

Definition 4.3 (Application Permission Set). Let a € A denote an application. The
application permission set perm(a) C P is the set of permissions that are declared by application

a in its manifest.

Definition 4.4 (Resource Content). To describe information stored within resources, we
define the following function:

content :R— #(V),

where V is the value domain for sensitive information.

While some resources contain only one specific type of sensitive information, other resources
may hold multiple types of sensitive data. For instance, the location provider only stores the
geolocation, but the file system can be used to persist all types of sensitive information, such as
contacts, SMS messages, and location data.

In this work, we focus on sensitive information protected by permissions. That is, an
application a € A must hold appropriate permission p € P to retrieve sensitive information v € V

from resource r € R.

Definition 4.5 (Information Flow). Given an application a € A, resources 1,7, € R where
r, # ry, and sensitive information v € V, we define the information flow of v from r; to r as

a,v .
r{~ry lf

50

(i) 30<i<j<nonaprogram path m = (7,;,)o<m<n;
(ii) at program point 7t;, v € content(r;), v & content(r,);
(iii) at program point 7, v € content(ry).

Based on the above definitions, we next define the notion of information leakage that we

consider.

Definition 4.6 (Information Leakage). Application a € A leaks sensitive information v € V

w.r.t. permission p € P if 3s,t €R and 3 p’ € P such that:

e p €perm(a)

read(s) € [p;

read(s) ¢ [p'T;

write(t) € [perm(a)T;
o5 t; and

read(t) € [p'].

Each entity e with permission p’ can leverage leakage from a to access sensitive data that
are otherwise unavailable to e. Note that entity e can be another application or an external
service (e.g., an ads provider). In the case where sensitive information is sent over the network,
no permission is required to access the sink. While such leaks are usually intentional, our
formalization also captures inadvertent leaks where sensitive information v flows to unsafe
sinks w.r.t. v’s guarding permission p. For the log-based vulnerability described by Lineberry
et al. [65], an application a has the permission to read location data v from the location provider
s. The information v later flows into another resource t, which is the system log. Another
(malicious) application a’, with the only permission p’ to read the log, can extract the location

information from t, although it cannot request location data from s directly.

51

Based on Definition 4.6, we define the isLeak function in terms of an application a € A and

sensitive information v € V as follows:

isLeak(a, v) = 3p,p’ € P s,t €R
(p € perm(a)
A read(s) € [p]
Aread(s) ¢ [p']
A write(t) € [perm(a)]
As~>t
A read(t) € [p']).

We say that an application a € A is free from information leakage if a does not leak any

vev:

Vv eV :—isLeak(a, v)

For each application a, we check the flows of all possible sensitive data v to see if there
is any leakage. If a leak is identified, we report the resources s and t, which can be used for

inspection or further analysis.

4.3 Design and Implementation of Heimdall

We have designed and implemented Heimdall, a static analysis framework, to realize our
formalization. This section discusses its technical details.

Figure 4.1 depicts the architecture of Heimdall. Before analyzing an application, we
first preprocess each APK file to extract the manifest file and convert the Dalvik executable
into standard Java bytecode using existing tools [14, 81]. Next, we determine whether the
application may access sensitive information based on the permissions requested in its manifest.
If so, we perform static taint analysis to track the flow of sensitive data within that application.

Unlike prior work that only focuses on network sinks, we are interested in a comprehensive

52

s}-\ convert —-(|
—» "‘,\é EE—— J EEE— >

classes.dex JAR file Analyzer Sinks

APK file
L, < > parse &

AndroidManifest.xml Permissions Source Specs Flow Reports

Figure 4.1: Heimdall system overview.

understanding of sensitive information usage in general. We aim to discover all possible unsafe
sinks, so we do not specify pre-determined sinks in our analysis. For this reason, we cannot
start with a reachability analysis on the CFG to identify paths connecting sources and sinks
and perform on-demand dataflow analysis on reported paths. Instead, we start from program
entry points, identify taint source accesses, and conservatively approximate the flow of sensitive

information. The remainder of this section describes our design in detail.

4.3.1 Entry Points

Due to the event-driven nature of Android applications, each application may have multiple
entry points. The Android framework uses callbacks extensively, and the execution of application
code often interweaves with framework code. For instance, when a thread is created and started,
the framework takes over control, and the execution later resumes at the run method for
that thread. To focus on the analysis of application code, we need to know where execution
may begin from an application’s perspective. Fortunately, the behavior of the framework is
well-documented, so we leverage this well-defined semantics to identify entry points for our

analysis. Specifically, we consider the following entry points.

Lifecycle Methods Application components are the building blocks for Android applications
and usually serve as top-level entries through which users or the system may enter an application.

The Android framework supports four types of components, each of which has a well-defined

53

lifecycle. The system invokes a series of lifecycle methods, while each component transitions
between its various states of its lifecycle. For instance, an activity component must subclass
android.app.Activity (or one of its subclasses) and implement the onCreate method to
perform initializations and set up the UI layout. The system invokes other lifecycle methods
like onStop, onResume, onPause, and onDestroy, when the activity is being stopped, resumed,
paused, or destroyed respectively. Different types of components have different lifecycle methods,

and we consider all such methods as entry points for our analysis.

Ul Callbacks Besides lifecycle methods, application components also implement various
callbacks to respond to user interactions or system events. For example, the onBackPressed
method of an activity is called when the user presses the back key, and onLowMemory is called
when the system is running low on memory. Compared to components, user interactions happen
more frequently on UI elements (subclasses of android.view.View) such as buttons and text
fields. These Ul elements usually set up listeners that will be notified of specific events. For
example, calling setOnClickListener on a button registers a callback method (i.e., onClick)
that will be invoked by the system when the user clicks the button. We treat all these callback

methods as entry points.

Asynchronous Callbacks In addition to UI callbacks, applications may register other callbacks
and listeners to receive data asynchronously. Consider the code snippet in Figure 4.2. To
retrieve user’s real-time location, an application needs to define a LocationListener and
register it with the LocationManager to receive location updates. When a new location fix
is available, the onLocationChanged callback method defined in the LocationListener is
called to receive new location data. We identify this and other asynchronous callbacks supported

by the framework and consider them entry points.

Runnable Methods Another common type of entry points that we consider is the run method

for classes that implement the java.lang.Runnable interface. For example, run is the

54

LocationManager locationManager = (LocationManager)
getSystemService(Context.LOCATION_SERVICE);
LocationListener locationListener = new LocationListener() {
public void onLocationChanged(Location location) {
// use new location data

3

};

locationManager.requestLocationUpdates(
LocationManager.NETWORK_PROVIDER, 0, 0, locationListener);

Figure 4.2: Requesting location updates with asynchronous callback.

entry point when a new thread (e.g., java.lang.Thread) is started or when a task (e.g.,
java.util.TimerTask) is performed. To improve Ul responsiveness and user experience, long-
running operations (e.g., network I/O) are usually performed in background worker threads.
The Android framework also offers a few APIs, such as Activity.runOnUiThread (Runnable)
and View.post (Runnable), to post Runnable actions from background threads to the event

queue of the UI thread.

Special Framework Methods The Android framework provides the Handler class to facilitate
the interactions and communications between threads. A Handler can be used to send and
process Message and Runnable objects in the message queue associated with a thread. To use a
handler, applications need to subclass android.os.Handler and override the handleMessage
method to process messages. Therefore, we consider handleMessage methods as entry
points in our analysis. Another class in the Android framework, AsyncTask, encapsulates
Thread and Handler and provides a convenient way for background processing. It runs an
asynchronous task on a background thread and publishes results on the UI thread. Applications
using AsyncTask need to subclass android.os.AsyncTask and complete the task in the
following steps: onPreExecute, doInBackground, onProgressUpdate and onPostExecute,
all of which we treat as entry points in our analysis. We discuss AsyncTask and Handler in

detail in Section 4.3.5.

55

Source Type Permission”

Accounts AUTHENTICATE_ACCOUNTS,
GET_ACCOUNTS,
MANAGE_ACCOUNTS,
USE_CREDENTIALS

Calendar READ CALENDAR

Call Log & Contacts ~ READ_CONTACTS, READ_CALL LOG'

Camera CAMERA

History & Bookmarks READ_ HISTORY BOOKMARKS

Location ACCESS_COARSE_LOCATION,
ACCESS_FINE_LOCATION

Microphone RECORD_AUDIO

Phone State READ PHONE_STATE

SMS & MMS READ_SMS

Tasks GET_TASKS

User Dictionary READ USER DICTIONARY

WiFi State ACCESS_WIFI_STATE

Table 4.1: Sensitive sources and guarding permissions.

*Permission prefixes are omitted. Only READ_HISTORY_BOOKMARKS has the com.android.browser.permission.
prefix and all other permissions have the android.permission. prefix.

"The READ_CALL_LOG permission was introduced in Android 4.1. Access to the call log is implicitly provided through
READ_CONTACTS for applications that target earlier systems.

4.3.2 Taint Sources

To perform privacy analysis, we need to identify privacy-sensitive sources. In this work, we
focus on tracking sensitive information that is guarded by permissions defined by the platform.
Table 4.1 lists the types of sensitive information we consider along with permissions that guard
those resources.

We use the permissions listed in Table 4.1 to identify taint sources. Specifically, we leverage
the permission map presented in Stowaway [45] and examine the Android framework source
code to identify APIs and content providers that are guarded by those permissions. Then we look
for the usage of such APIs and content providers in the application bytecode to find potential
accesses to sensitive information.

Sources of sensitive information cover many aspects of the Android platform, and such

information is accessed by applications in a variety of ways. We have carefully studied each type

56

TelephonyManager telephonyManager = (TelephonyManager)
getSystemService(Context.TELEPHONY_SERVICE);

String deviceld = telephonyManager.getDeviceId();

Figure 4.3: Obtaining device ID through direct API access.

of privacy-sensitive information and determined how to define taint sources.

Direct API Access This is the most straightforward way to obtain sensitive information. After
calling these APIs, sensitive data is either available in the return value or in the parameters. For
instance, device identifiers can be retrieved using such APIs. Figure 4.3 shows how to access the
unique device identifier, i.e., the IMEI, MEID, or ESN of the phone, depending on the network
technology.

In this case, we simply mark the return value (or argument) of the protected API as tainted

and subsequently track its flow.

Callbacks and Listeners Some types of privacy-sensitive information are acquired through
sensors like the microphone and camera. Such information changes frequently and is often made
available through asynchronous APIs. Recall the location listener example from Section 4.3.1. To
receive location data, applications need to register a callback method (i.e., onLocationChanged
inside LocationListener) with a sensor manager (i.e., LocationManager). When location
information is available, the sensor manager invokes the registered callback method and passes
the data through its arguments. To handle cases like this, we identify such callback and listener

methods and mark their arguments that hold sensitive data as tainted.

Content Providers Shared information such as contacts and SMS messages are stored in
content providers. Such data are encapsulated and accessed in a database-like manner. An
application can access data from a content provider with a ContentResolver client object,
which provides basic CRUD (i.e., create, retrieve, update, and delete) operations. Figure 4.4

illustrates how to access the call log.

57

ContentResolver cr = getContentResolver();
Cursor ¢ = cr.query(CallLog.Calls.CONTENT_URI, null, null, null, null);
while (c.moveToNext()) {
String number = c.getString(c.getColumnIndex(CallLog.Calls.NUMBER));
long date = c.getLong(c.getColumnIndex(CallLog.Calls.DATE));
int type = c.getInt(c.getColumnIndex(CalllLog.Calls.TYPE));

Figure 4.4: Retrieving call log data using a content provider.

In order to get a list of recent calls, an application invokes the query method on a
ContentResolver, which dispatches the query to the call log content provider identified
by its content URI. The query method returns a Cursor that provides random read access to
the rows and columns of the results. Using the Cursor methods, applications can then iterate
through the rows and retrieve data from each column.

Although privacy-sensitive data are retrieved using Uri and Cursor objects, operations on
these objects do not leak sensitive information directly. To identify taint sources, we examine
the first argument to the query method and determine if the content URI matches any of the
important ones protected by permissions. In the case of a match, we attach to the returned
Cursor object a tag, which indicates the type of sensitive information stored in the protected
content provider. Then we track the tag and mark the return value as tainted when data is
retrieved from the Cursor using methods like getInt, getLong, and getString.

The presence of sensitive API calls or content provider usage in the bytecode does not
mean that the application would actually access sensitive information at run time. For better
precision, we perform a filtering step to verify if an application has required permissions
for sensitive information access. Specifically, for each application, we only consider taint
sources that are guarded by permissions requested in the manifest. For instance, we discard
location related sources if the application does not hold the ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION permission. This step is important because advertising libraries usually
check, at run time, if the host application has a certain permission before executing functionalities

that require the permission. In particular, such libraries serve geo-targeted ads only when the

58

String data = getSensitiveData();

URL url = new URL("http://example.com/");

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
DataOutputStream dos = new DataOutputStream(conn.getOutputStream());
dos.writeBytes(data);

dos.close();

Figure 4.5: An example of wrapped stream as a taint sink.

running application has proper location permissions. For applications using the sharedUserId
feature, we conservatively assume that they may hold any permission and thus do not perform

this filtering step.

4.3.3 Taint Sinks

Our privacy analysis aims to gain a comprehensive understanding of sensitive information usage
in Android applications. Therefore, we do not specify taint sinks at the beginning of the analysis.
Rather, we discover where sensitive information flows as we analyze the applications. For our
analysis, a taint sink is a location in the application code (i.e., an API call) where tainted data is
consumed. We divide taint sinks into two categories: safe sinks and unsafe sinks. API methods
that fall into safe sinks do not leak sensitive data or further propagate taint markings. For
instance, we consider APIs that send information to Ul elements as safe sinks. When sensitive
data flows into unsafe sinks, it is either exfiltrated (e.g., through the network) or can be later
retrieved (by other applications) without the same permissions that are required to access the
sensitive data. Such sinks include APIs that send information over the network. We describe the
discovered taint sinks in detail in Section 4.4.

Android applications frequently take advantage of a stream wrapping feature in the Java
I/O package. Specifically, simple stream objects are often wrapped inside other higher-level
stream objects to gain additional capabilities. For instance, an OutputStream object is often
wrapped by a BufferedOutputStream object for improved performance. This behavior poses a
challenge while we try to identify the type of taint sinks. Consider the code snippet in Figure 4.5.

In this example, the OutputStream associated with an HttpURLConnection is wrapped by

59

String data = getSensitiveData();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(baos);

dos.writeBytes(data);
sendToServer(baos.toByteArray());

Figure 4.6: An example of wrapped stream as a non-sink.

a DataOutputStream to use the higher-level writeBytes method. Any sensitive information
written to the DataOutputStream is sent over the network. However, without analyzing the
Java I/O library, we only know that sensitive data flows into a DataOutputStream object
without discovering the network sink. To address this issue, we keep track of API calls like
URLConnection.getOutputStream and attach a tag to the returned OutputStream object. We
leverage the same information flow analysis to propagate such tags, so that we know what the
real sink is when sensitive data flows into wrapper streams.

Moreover, this stream wrapping feature also introduces another problem while we determine
taint sinks. We describe the problem using an example in Figure 4.6.

While DataOutputStream.writeBytes is a sink method in the previous example, the same
API is not a sink here. In this case, sensitive data flows to the wrapped ByteArrayOutputStream
and is sent over the network later. This means that some API methods of higher-level streams
may act either as a sink or as a non-sink, depending on the type of streams wrapped inside.
In the case of non-sinks, we need to propagate taint markings back to the wrapped stream
(ByteArrayOutputStream in this example). To this end, we perform an intra-procedural
analysis to map the wrapper stream to potential wrapped streams with the help of a fast and
simple alias analysis. We then mark the wrapped objects as tainted and continue to track the
flow of information.

Similar to the filtering step used in identifying taint sources, we extract permissions used
by each application and verify if the application has proper permissions to write sensitive
information to taint sinks. For instance, we do not consider flows to network sinks if the

application does not have the INTERNET permission. Again, we do not apply this filtering step

60

Taint Propagation Description

arg « arg Taint one argument from another argument
arg < base Taint argument from base object

base « 0 Clear taint from base object

base « arg Taint base object from argument

return < arg Taint return value from argument

return < base Taint return value from base object

Table 4.2: Taint propagation rules.

on applications using the sharedUserId feature for a conservative analysis.

4.3.4 Dataflow Analysis

Heimdall is built on top of an existing information flow analysis framework [72]. The framework
relies on Soot [92] to load classes and perform pointer analysis. To analyze Android applications,
we have customized and extended the framework to handle Android-specific APIs and flows.

Since we do not analyze API methods in the standard Java library and Android framework,
we capture the flows that may occur as a result of such method invocations in the form of
derivation rules (i.e., transfer functions). For each rule, we specify a method signature and
provide a taint propagation logic, which describes relevant dataflow information between
arguments and return values. Table 4.2 lists the different types of rules that we consider.

We specify transfer functions for commonly used Java and Android APIs by carefully studying
the documentation and occasionally examining the framework source code. While the behavior
of most API methods is straightforward, some APIs have complex behavior and we need to
specify multiple transfer functions at the same time. For instance, the String.concat method
concatenates the base string with the specified string passed in the argument, so we provide
a combination of “return < arg” and “return < base” as the rule. Note that we only specify
transfer functions for APIs that handle sensitive data, and additional transfer functions can be
added easily when necessary.

Precise static taint analysis is a challenging (in fact undecidable) problem. For our analysis,

we take a conservative approach while performing taint propagation. For instance, we treat an

61

entire array or collection as tainted if any member is tainted. Similarly, we taint a complex object
(e.g., android.content.Intent, android.os.Bundle) when sensitive information is stored
inside the object. While this strategy leads to over-tainting and may introduce false positives, it
allows us to find as many important flows as possible to meet our goal of being comprehensive.
Our empirical results in Section 4.4 also show that our analysis is quite precise in practice.
Our information flow analysis is flow-sensitive, meaning that different information state is
obtained at different program points. Our analysis is also context-sensitive, so calling contexts
are considered and methods are analyzed separately for each call site. The analysis iterates until

it reaches a fixpoint.

4.3.5 Android-specific Flows

As mentioned previously, the Android framework provides a few utilities that allow easy and
convenient background processing in applications. Such utilities are widely used in Android
applications, so we need to support them properly to track the flow of sensitive information.

The AsyncTask class offers a simple way to perform short background operations and
publish results on the Ul thread. An asynchronous task is started by execute (Params...) from
the UI thread and completes in these steps: onPreExecute(), doInBackground(Params...),
onProgressUpdate(Progress...), and finally onPostExecute(Result), where Params,
Progress and Result are generic types. Only doInBackground runs in a pool of background
threads, while the other three methods run in the UI thread. Figure 4.7 shows an example of an
AsyncTask.

While the use of AsyncTask greatly simplifies the execution of worker thread tasks that
interact with the Ul, it introduces some implicit control-flows and dataflows. We handle the
control-flows by adding the step methods as entry points (Section 4.3.1), and here we describe
how we connect the implicit dataflows. A thorough examination of the documentation reveals

the following flows:

e The arguments of execute of generic type Params are sent to doInBackground upon

62

private class MyAsyncTask extends AsyncTask<String, Integer, Long> {
protected void onPreExecute() {
showProcessingDialog(Q);

}

protected Long doInBackground(String... args) {

int count = args.length;

long result = 0;

for (dnt i = 0; i < count; i++) {
result += doSomeCalculation(args[i]);
publishProgress((int) ((i / (float) count) * 100));

}

return result;

}

protected void onProgressUpdate(Integer... progress) {
setProgressPercent (progress[0]);

}

protected void onPostExecute(Long result) {
dismissProcessingDialog();
showResult ("Result: " + String.valueOf(result));
}
}

new MyAsyncTask() .execute(strl, str2, str3);

Figure 4.7: Example code with AsyncTask.

task execution.

e The arguments of publishProgress of generic type Progress are sent to the onProgressUpdate

method during background computation.

e The return value of doInBackground of generic type Result flows to onPostExecute at

the end of background computation.

We model the above behavior and automatically propagate taint markings accordingly when
we encounter subclasses of AsyncTask in the application bytecode. Our analysis also ensures
that sensitive information only flows between methods of the same AsyncTask subclass.

Handler is another commonly used class that needs special support. A Handler object

is often used to send and process Message and Runnable objects. It offers a simple way for

63

private Handler mHandler = new Handler() {
public void handleMessage(Message msg) {
switch (msg.what) {
case LOG_DATA:
Bundle bundle = msg.getData();
String data = bundle.getString("key");
log(data);
break;
}
}
b

Thread t = new Thread() {
public void run() {
String data = getSensitiveData();
Message msg = mHandler.obtainMessage (LOG_DATA);
Bundle bundle = new Bundle();
bundle.putString("key", data);
msg.setData(bundle);
mHandler.sendMessage (msg) ;
}
}.start(Q);

Figure 4.8: Example code with Handler.

communications between different threads. Figure 4.8 illustrates how it is used. In this example,
a Handler is created on the Ul thread and overrides the handleMessage method to process
messages. Sensitive data is accessed from a background thread, put into a Bundle object, and
posted to the Handler through a Message. Then the data is retrieved from the Bundle and sent
to the log function.

To support the Handler feature, we start by analyzing the handleMessage method
(Section 4.3.1). We also specify proper transfer functions for methods in the Message and
Bundle utility classes, which often process sensitive data. Finally, we propagate taint from

sendMessage to handleMessage of the same Handler subclass in order to connect the flows.

64

Source Type #apps %

Accounts 5,625 4.59%
Calendar 9,112 7.43%
Call Log & Contacts 9,851 8.04%
Camera 9,469 7.73%
History & Bookmarks 3,735 3.05%
Location 46,936 38.29%
Microphone 3,904 3.19%
Phone State 58,601 47.81%
SMS & MMS 1,557 1.27%
Tasks 6,818 5.56%
User Dictionary 54 0.04%
WiFi State 15,754 12.85%

Table 4.3: Number of applications with permissions to access sensitive sources.
4.4 Empirical Study and Analysis

We have used Heimdall to study the same 122,570 unique Android applications described in
Section 3.2.1 and analyzed how these applications use privacy-sensitive data.

By parsing and analyzing the manifest files, we found that 7,784 applications do not request
any permissions. Among the remaining, 35,802 do not use any permissions listed in Table 4.1.
We also observed that only 862 applications (0.70%) use the sharedUserId feature. In total,
43,216 applications cannot access sensitive information, and there is no need to analyze them.
Table 4.3 shows the number of applications that have permissions to access each type of sensitive
information. We observe that phone state and location are the most popular types of sensitive
information applications access, followed by WiFi state. We use Heimdall to analyze these

applications to find unsafe sinks and flows.

4.4.1 |Identifying Taint Sinks

We analyze all the applications that may access sensitive information to track where such
information flows. During this process, we have observed common API method sinks and

grouped them into a few categories by their resource types. For instance, we group all methods

65

that write data to the system log to a single log category. For each sink category, we determine if
it is safe or unsafe, depending on whether information may be exfiltrated or leaked through that
resource.

In our study, we have observed the following safe sinks:

e Private Files Internal storage provides private data storage for applications. By default,
files written to the internal storage are private to the application, so other applications
or the user cannot access them. Since the Android system manages and properly guards

such private files, we consider them safe sinks for private information.

e Shared Preferences The shared preferences provide applications a general framework
for accessing and modifying persistent preference data in the form of key-value pairs. By
default, shared preferences cannot be accessed by other applications, and are mostly used
to store data that is private to the application. Therefore, we consider it safe to write

sensitive data to shared preferences.

e SQLite Databases The Android framework provides full support for SQLite databases.
In most cases, a database is only accessible to the owner application. While an application
may implement a content provider to expose information stored in its database to other

applications, the database itself is still considered safe.

e Ul Elements Applications that retrieve sensitive data often process the data and then
display the information on the UI to provide user feedback. This behavior is usually
legitimate use of private information and does not pose threats to users’ privacy'. Since
applications cannot access UI elements of other applications, displaying information on

the screen is considered safe.
By studying the flows, we have discovered and identified four types of unsafe sinks:

e Log Output Android applications frequently utilize the logging system for debugging

and troubleshooting purposes. It is common for applications to write sensitive information

!We do not consider screen peeping attacks.

66

to the log [42, 65], although the documentation warns developers against doing so. It
is possible for a malicious application to request the READ_LOGS permission and harvest
sensitive information from the log that is otherwise unavailable to it. Since Android 4.1,
the READ_LOGS permission has a higher protection level so that it will only be granted to
system applications. This change also broke some third-party applications that legitimately

use this permission.

e Network Connection Sensitive data exfiltration over the network is the focus of most
previous studies. This type of leakage is frequently found in applications that are ad-
supported. We capture such leaks by treating the network connection as an unsafe sink.

Applications need the INTERNET permission to establish network connections.

e Public Files Although files written to internal storage are private by default, application
may explicitly make those files publicly accessible (e.g., due to misconfigurations). Such
public files on internal storage are considered unsafe sinks. As opposed to internal storage,
files saved on external storage is world-readable and world-writable, which means that
other applications or the user may access or modify the files. For this reason, we consider
it a leak when sensitive information flows to external storage. Since applications do not
need any permissions to read files from external storage, such leaks can be very easily
exploited. To mitigate this issue, Android 4.1 introduces the READ_EXTERNAL_STORAGE
permission that protects read access to external storage. However, this permission is not
enforced by default yet, and applications requesting the WRITE_EXTERNAL_STORAGE will

be granted the read permission automatically.

e SMS Messages Similar to network sinks, sensitive information may leave the device
through SMS messages. To detect such leaks, we consider SMS as an unsafe sink.

Applications need the SEND_SMS permission to send SMS messages.

When sensitive information flows into unsafe sinks in an Android application, we consider it

a potential privacy leak, because either 1) the application intentionally exfiltrates sensitive data

67

Source Type #flows flow% #apps app%

Accounts 3,478 1.01% 1,239 2.66%
Calendar 216 0.06% 43 0.09%
Call Log & Contacts 9,503 2.75% 1,339 2.88%
Camera 955 0.28% 696 1.50%
History & Bookmarks 526 0.15% 181 0.39%
Location 165,282 47.77% 24,081 51.78%
Microphone 287 0.08% 192 0.41%
Phone State 156,929 45.36% 30,109 64.74%
SMS & MMS 836 0.24% 225 0.48%
Tasks 1 0.00% 1 0.00%
User Dictionary 8 0.00% 6 0.01%
WiFi State 7,944 2.30% 2,181 4.69%

Table 4.4: Number of flows and apps by source type.

and sends it to an external entity; or 2) another application may exploit the vulnerability of this
application to indirectly access sensitive information.

Now we present the results of our study and report the potential leaks through unsafe sinks.

4.4.2 Results

We have analyzed all the applications that have permissions to access sensitive data. For each
application, we limit the analysis time to two minutes 2, and Heimdall is able to complete the
analysis on over 83% of these applications. We found a total of 345,965 flows to unsafe sinks in
46,508 of the 79,354 applications.

Table 4.4 and Table 4.5 present the number of flows and applications for each source and
sink type respectively. We can see that phone state and location data are the most popular types
of sources flowing to unsafe sinks, which is consistent with our findings in Table 4.3. For sinks,
most sensitive information flows to the system log or the network, while they are rarely leaked
via SMS messages.

We further examine the most popular types of sources, i.e., phone state and location data,

and break them down to better understand which and how frequently sensitive information is

2We have also tried longer timeout threshold (e.g., five minutes). However, given the large number of applications,
we did not discover significantly increased number of flows but observed considerably longer analysis time.

68

Sink Type #flows flow% #apps app%

Log Output 169,924 49.12% 27,227 58.54%
Network Connection 171,192 49.48% 34,146 73.42%
Public Files 3,945 1.14% 1,776 3.82%
SMS Messages 904 0.26% 323 0.69%

Table 4.5: Number of flows and apps by sink type.

Source #flows flow%
getDeviceld 113,681 72.44%
getLinelNumber 27,722 17.66%

Phone getSimSerialNumber 1,274 0.81%
getSubscriberld 14,022 8.94%
Other 230 0.15%
getCellLocation 2,802 1.70%

Location getLastKnownLocation 74,991 45.37%
getNeighboringCelllnfo 173 0.10%
onLocationChanged 87,316 52.83%

Table 4.6: Breakdown of phone state and location flows.

leaked. Table 4.6 shows the flows of phone state sources, divided into different phone state data.
We can see that the vast majority of flows leak the unique device identifier (e.g., the IMEI for
GSM devices and the MEID or ESN for CDMA devices). A device ID uniquely identifies a mobile
device and can be used to prevent a stolen device from accessing the cellular network. More
than 17% of the flows may leak the phone number (e.g., the MSISDN for a GSM phone) and
approximately 9% flows potentially exfiltrate the subscriber identifier (e.g., the IMSI for a GSM
phone). While a phone number can be linked to a specific user (e.g., via social network [43]),
device and subscriber identifiers cannot be used to immediately identify users. However, it is
still possible for popular library providers (e.g., advertisers) to aggregate detailed application
usage information to learn about users’ behavior. Therefore, leaking the phone state data poses
privacy risks to users.

Table 4.6 also shows how leaked location data is collected. More than half of the flows leak
the current location, which is acquired by registering a location listener and receiving asynchrous

location updates in onLocationChanged. For better user experience, it is a common practice

69

Sink #flows flow%

android.util.Log 165,742 97.54%
Log java.util.logging.Logger 595 0.35%
org.apache.commons.logging.lLog 3,587 2.11%
HttpClient 81,111 47.38%
OutputStream 30,232 17.66%
Network Socket 5364 3.13%
URL 35,793 20.91%
WebKit 18,692 10.92%

Table 4.7: Breakdown of log and network sinks.

for applications to utilize a cached location that represents the last known location fix before a
more accurate current location is received. Over 45% of the location flows leak cached locations.
Both current and cached locations can be retrieved from two location providers: the network
provider that serves coarse location data based on cell towers and WiFi access points, and the
GPS provider that serves fine location data using satellites. Heimdall tracks location flows from
both providers. Location data retrieved via the TelephonyManager (i.e., getCellLocation()
and getNeighboringCellInfo()) is not as common and consitutes less than 2% of the flows.

To gain a better understanding of how sensitive information is leaked, we have taken
a close look at the most popular sinks, i.e., log output and network connection. Table 4.7
indicates the number of flows to the log through the Android framework logging library, the
general Java logging library, and the Apache Commons logging library. The default logging
handler in Android is configured such that log messages written with java.util.logging and
org.apache.commons.logging.Log are passed on to android.util. Log>. We can see that
the vast majority of flows end up in methods in the Android logging library while Java and
Apache Commons logging libraries are rarely used in detected flows.

Table 4.7 also summarizes different ways sensitive information exfiltrates through the
network. We have observed that leaks most frequently occur via HTTP requests (e.g., GET

and POST) sent with HttpClient connections. It is also common to leak data through URL

3Log messages with level lower than INFO are ignored.

70

Flow Type (Source — Sink) #flows flow%

Phone State — Network Connection 96,198 27.81%
Location — Log Output 95,690 27.66%
Location — Network Connection 67,852 19.61%
Phone State — Log Output 59,580 17.22%
Call Log & Contacts — Log Output 7,358 2.13%
WiFi State — Log Output 4,167 1.20%
WiFi State — Network Connection 3,631 1.05%
Accounts — Log Output 1,752 0.51%
Accounts — Network Connection 1,588 0.46%

Call Log & Contacts — Network Connection 1,561 0.45%

Table 4.8: Top flows by source and sink types.

objects, where sensitive data is used to construct URL strings, and through OutputStream
objects associated with URLConnections. Another way of sending data over HTTP is to use
WebKit (e.g., via WebView), which constitutes over 10% of the flows. Finally, a small number of
flows use Java Socket API to leak sensitive data.

For each flow, we consider the pair of source and sink types to be the flow type. We have
observed a total of 42 different types of flows. Table 4.8 shows the top 10 most popular flow
types, and Appendix B lists all 42 types of flows detected by Heimdall.

During our analysis, we have noticed that third-party libraries are responsible for many
flows related to phone state and location data. As developers frequently rely on advertising to
monetize their free applications, we have observed that a large number of applications bundle
one or more popular advertising libraries. Such libraries often access and utilize the user’s
location, when available, to serve geo-targeted ads. Moreover, we have also found extensive
use of analytics and tracking libraries, which also collect sensitive information such as device
identifiers to compile application usage statistics. Table 4.9 shows the top 10 popular advertising
and analytics libraries used in our application collection. Among them, Google Analytics and
Flurry belong to analytics and tracking libraries, while the other 8 are from mobile ad networks.
Note that not all the applications embedding these libraries leak sensitive information. It is a

common practice among the libraries to check if the host application has certain permissions and

71

Library Name Package Name #apps
AdSense com.google.ads 39,462
AdMob com.admob.android.ads 11,125
Google Analytics com.google.android.apps.analytics 10,762
Millennial Media com.millennialmedia.android 9,489
Flurry com.flurry.android 6,619
InMobi com.inmobi.androidsdk 6,363
MdotM com.mdotm.android.ads 5,242
AdWhirl com.adwhirl 4,923
Quattro com.qwapi.adclient.android 4,667
Mobclix com.mobclix.android 4,470

Table 4.9: Top advertising and analytics libraries.

only access sensitive data when the check succeeds. Altogether, these libraries are responsible
for 76,534 of the 345,965 flows (22.12%) reported by Heimdall.

Given the large number of reported flows, it would be impossible to manually verify each of
them. In the following section, we present a more in-depth manual analysis by focusing on the

detected flows in top applications.

4.4.3 In-depth Manual Analysis

We prioritize our efforts and focus on the top 1,000 applications, while we manually verify the
validity of reported flows. We suspect such flows are more important as popular applications
have much larger install bases. Among the top 1,000 applications, 238 do not have any
permissions listed in Table 4.1 or use the sharedUserId feature, so we have excluded them
from our analysis. Generally, top applications are larger in size and take more time to analyze.
Therefore, we allow the analyzer to run for 10 minutes on each application, and Heimdall is
able to fully analyze over 86% of the 762 applications.

Heimdall reports 6,420 flows in 528 of the 762 applications. We systematically select 100
flows for manual inspection. First, we categorize all the flows by their source and sink types like
we did in Table 4.8. For the top 1,000 applications, we have observed 31 different combinations

of source and sink types. One flow is picked uniformly at random from each of these 31

72

categories, and then we select the remaining 69 flows such that the number of flows picked
from each category is proportional to the size of that category. Again, flows within the same
category are chosen uniformly at random. The 100 selected flows span across 88 applications
(see Appendix C).

To aid our manual inspection, Heimdall provides for each reported flow the sensitive
resource, the sink API method, and the context (i.e., stack trace from an entry point leading
to the sink). We manually verified 100 flows and found that 65 of them are true positives.
We were also able to confirm that 10 flows are false positives. Such false positives are mostly
caused by overtainting on containers (e.g., arrays and the Java collections framework) and
sometimes by imprecision of the alias analysis implemented in the information flow library. Due
to complex functionalities in top applications and code obfuscation in some cases, we were
not able to classify the remaining 25 flows as true positives or false positives. Table 4.10 and
Table 4.11 present the results of our manual analysis, broken down by the types of sources and
sinks respectively. In both tables, column #TP shows the number of confirmed true positives,
#FP the number of false positives, and #Unk the number of unconfirmed flows. The last two
columns list the number of selected flows for manual inspection and the total number of flows
in each category. Table 4.12 lists all 31 categories of source and sink pairs and the results of
our manual validation. We can see from the results that Heimdall is quite precise and has a
reasonably low false positive rate. We have also found that advertising and analytics libraries

are responsible for 23 of the 100 flows that we examined.

4.4.4 Case Studies

We now discuss in detail a few of our findings with respect to flows to different types of sinks.
For this study, we have installed applications under analysis on a Galaxy Nexus smartphone

running Android 4.1.2 and confirmed the detected flows by triggering them at run time.

Log Output Symantec offers a security application called Norton Security and Antivirus for

free with basic features including anti-theft and anti-malware. Users have the option to upgrade

73

Source Type #TP #FP #Unk #Sel #All

Accounts 4 0 4 8 460
Calendar 2 0 0 2 8
Call Log & Contacts 10 0 6 16 982
Camera 3 0 0 3 15
History & Bookmarks 1 0 1 2 10
Location 18 5 6 29 2,374
Microphone 1 2 0 3 45
Phone State 20 2 5 27 2,131
SMS & MMS 0 0 2 2 7
Tasks 0 0 0 0 0
User Dictionary 1 0 0 1 2
WiFi State 5 1 1 7 386
Total 65 10 25 100 6,420

Table 4.10: Number of verified flows by source type.

Sink Type #TP #FP #Unk #Sel #All
Log Output 34 5 12 51 3,762
Network Connection 24 5 8 37 2,442
Public Files 5 0 3 8 173
SMS Messages 2 0 2 4 43
Total 65 10 25 100 6,420

Table 4.11: Number of verified flows by sink type.

to the full version through in-app billing, which unlocks additional features such as call & SMS
blocking and Web protection. Heimdall detected a few flows of sensitive information in this
application. The license manager, which determines a user’s subscription status on application
launch, accesses the device’s unique identifier and MAC address and then dumps them into the
system log. We manually verified this behavior on our Android device by monitoring the system
log with logcat®.

We observed that the Smooth Calendar application writes information retrieved from a user’s
calendar to the log. Heimdall detected flows from the calendar content provider to the system

log using the Log.d method. We were able to trigger this flow on our Android device. When

“http://developer.android.com/tools/help/logcat.html

74

Flow Type (Source — Sink) #TP #FP #Unk #Sel #All

Accounts — Log Output 2 0 3 5 395
Accounts — Network Connection 2 0 0 2 57
Accounts — SMS Messages 0 0 1 1 8
Calendar — Log Output 1 0 0 1 4
Calendar — Network Connection 1 0 0 1 4
Call Log & Contacts — Log Output 6 0 3 9 693
Call Log & Contacts — Network Connection 2 0 2 4 233
Call Log & Contacts — Public Files 2 0 0 2 52
Call Log & Contacts — SMS Messages 0 0 1 1 4
Camera — Log Output 1 0 0 1 3
Camera — Network Connection 1 0 0 1 1
Camera — Public Files 1 0 0 1 11
History & Bookmarks — Log Output 1 0 0 1 6
History & Bookmarks — Network Connection 0 0 1 1 4
Location — Log Output 10 2 3 15 1,321
Location — Network Connection 7 3 2 12 1,002
Location — Public Files 0 0 1 1 33
Location — SMS Messages 1 0 0 1 18
Microphone — Log Output 0 1 0 1 32
Microphone — Network Connection 0 1 0 1 11
Microphone — Public Files 1 0 0 1 2
Phone State — Log Output 10 1 1 12 1,056
Phone State — Network Connection 9 1 2 12 996
Phone State — Public Files 0 0 2 2 66
Phone State — SMS Messages 1 0 0 1 13
SMS & MMS — Log Output 0 0 1 1 5
SMS & MMS — Network Connection 0 0 1 1 2
User Dictionary — Log Output 1 0 0 1 2
WiFi State — Log Output 2 1 1 4 245
WiFi State — Network Connection 2 0 0 2 132
WiFi State — Public Files 1 0 0 1 9
Total 65 10 25 100 6,420

Table 4.12: Verified flows by source and sink types.

updating widgets on the home screen, this application dumps calendar information to the log.
Specifically, it loops over the events in the calendar and writes the name of each event as well as

its start and end timestamps to the system log. This is presumably for debugging purposes, and

75

we found that the developer added an option to allow users to enable or disable such debug
messages in the latest version.

During our analysis, we noticed a few common patterns in flows to the system log. First,
flows to the log sometimes precede flows of the same information to the network. Before making
a HTTP request, some applications write the full URL to the log, likely for debugging purposes.
This means sensitive data that is exfiltrated over the network is often leaked to the log as well.
We also discovered that some write operations to the log are guarded by a Boolean value, which
serves as a debugging switch. Developers may set it to true during development and testing,
and flip the switch when exporting a release build. In some cases, applications offer an option

to allow users to enable or disable debugging output.

Network Connection A major means of exfiltrating sensitive information in applica-
tions is leaking to network sinks. In one application, Ant Smasher Free Game, Heim-
dall found several flows of account information to the network. During gameplay, the
application retrieves the user’s primary account name (e.g., Google account) from the
AccountManager and exfiltrates it by sending two network requests to the developer’s server
at androidsdk.bestcoolfungames.com. To trigger and confirm this behavior, we set up a
wireless access point on a laptop and tethered its network connection to our Android phone.
When we started the game, we captured and monitored network traffic using Wireshark®. The
primary account name, which is our Gmail address in this case, appeared in two HTTP GET
requests sent to the developers. The account name may be used as a unique user identifier,
but this tracking mechanism is uncommon and clearly constitutes a privacy violation. We also
examined the latest version of this game and found that the account name, along with the
device identifier and MAC address, is sent to the developer’s server at android.bcfads.com
via HTTPS. We observed the transmitted data with Wireshark, but we were not able to decipher
the encrypted payload.

Heimdall detected a few leaks to the network in SoundHound, a popular music tagging

Shttp://www.wireshark.org/

76

application. Although it also transmits data over HTTPS, sensitive data is sent in cleartext with
request headers. We found that it includes the user’s geolocation (i.e., latitude and longitude)
and the first six digits of the subscriber ID (i.e., MCC and MNC) in a custom user agent string,
which is sent with each tagging request to the server at api.midomi.com. We confirmed this
tracking behavior by monitoring the network traffic while using this application to identify
music.

As Table 4.12 shows, phone state and location data is frequently collected and exfiltrated
through the network. We observe that such data is often sent to advertising and analytics
servers. While most libraries (e.g., AdMob and Mobclix) send sensitive data in plaintext, one
library (i.e., Flurry) encodes and transmits data in binary format. Specifically, it sends reports
to the server at http://data.flurry.com/aap.do and includes location data in the HTTP
POST body. Thousands of applications integrate the Flurry library, and we have confirmed this

exfiltration behavior by monitoring network traffic with one such application.

Public Files Heimdall detected a flow of phone state data to the external storage in the
Talking Tom Cat 2 Free application. Manual examination revealed that the onCreate method
of the application’s Main activity class calls another method, which retrieves the unique device
identifier, writes it to a file on the device’s external storage, and returns the identifier to the
caller. We confirmed this privacy leak by installing and running this application on our Android
device. We observed that a file named .udid was created under the Android directory on the
SD card immediately after the application started. Just as expected, this file contains exactly our
unique device identifier. This flow is clearly a privacy leak, as any other application may access
the protected device identifier by reading the external storage without the READ_PHONE_STATE
permission.

Heimdall found a flow to the external storage in Pudding Camera, a third-party camera
application. After taking each photo, a file named temp_img.jpg is saved under the
/PuddingCamera/.BTH directory of the external storage. We were also able to confirm this

behavior by triggering it on our Android device. While this file is overwritten every time a photo

77

is taken, a scaled-down photo is saved under the PuddingCamera directory, whose file name is
based on the timestamp of the photo. We have also tested the latest version, which has similar
behavior, but both the thumbnail and original photo share the same timestamp-based file name.
Note that the stock camera application that is pre-installed on Android devices also saves photos
on the external storage. We believe this is because that media data tend to be large in size and
devices generally offer more limited internal storage space for application data. To mitigate this
issue, Google recently introduced a new READ_EXTERNAL_STORAGE permission in Android 4.1
to better control read accesses to external storage. However, this permission is not enforced by

default, and it does not apply to devices running older versions of the system.

SMS Messages Heimdall only detected a few flows of sensitive information to the SMS sink.
For instance, Wheres My Droid, an application designed to help users find their Android devices
using text messages, contains flows of location data to SMS messages. To verify the flows, we
installed this application on a test Android phone P and sent it an SMS message containing the
attention words (e.g., “GPS My Droid”) from another phone P’. We received a confirmation
message® on P’ immediately and three additional messages in a few minutes. The second
message contains the location of P (i.e., latitude and longitude); the third message is a link to
Google Maps showing that location; and the last message provides the nearest street address for
that location. This behavior can also be triggered in the latest version of this application with a
different default attention word (i.e. “wmd gps”). Given its core functionality of locating lost or
stolen devices, we believe the sensitive data transmission via SMS messages is legitimate and
expected.

Heimdall reported similar flows of phone and location data to the SMS sink in a few
other applications. Although we did not verify all such flows, we noticed that most of these
applications offer the anti-theft functionality. Therefore, we believe that the top applications do

not maliciously exfiltrate sensitive data through SMS messages.

S“WMD: Attention word received, phone is on and GPS has been started. Please wait up to 5 mins for a response.”

78

4.4.5 Discussions

While our work focuses on sensitive data on the system level, we do not track sensitive
information that is specific to an application. For instance, users’ Skype contact and profile
information is also private and should not be leaked to an outside entity. However, to handle
such cases, we need application-specific knowledge to identify taint sources. Although this
process may be largely manual, some heuristics may help automate the process. For example,
we may consider data guarded by a login process as potentially sensitive. How to automatically
identify application-specific sensitive data in general warrants further research and we plan to
explore this area in the future.

In our evaluation, we consider four types of potentially unsafe sinks. However, malicious
applications may still leak privacy-sensitive information through API methods that we consider
safe. For instance, an application can write sensitive information to its private preferences or Ul
elements, retrieve what is stored there later, and send it to unsafe sinks. To alleviate this issue,
we may model additional APIs in the Android framework and track the flows as necessary.

Currently, Heimdall cannot track the flow of information through inter-component
communications. Specifically, we do not propagate taint from one component sending an
intent to another component that receives the intent. This means we only analyze flows within
the same application component. Since an intent is a bundle containing various information,
tainting the whole intent may lead to excessive false positives. In addition, intents allow dynamic
target resolution and runtime binding, and this dynamic nature poses additional challenge for
our static analysis. We leave supporting intent-based information flows for future work.

As most Android applications are written in Java, Heimdall does not analyze native code.
We have found that only 5.2% of the applications we analyzed include and load libraries written
in native code. For applications that do handle sensitive information using native code, we are
still able to identify the taint sources in most cases, as private data is accessed using Android’s
Java APIs. In this case, it is possible to integrate existing binary analysis techniques [25, 90] to

further track the information flows in native code.

79

4.5 Related Work

Privacy Leak Detection As privacy leaks become a growing concern among smartphone
users, researchers have proposed various techniques to detect such leaks. PiOS [39], a
static analysis tool, analyzes iOS applications to detect leaks of sensitive information through
reachability analysis on control-flow graphs. It has found that a majority of applications
leak unique device IDs to third parties. SCanDroid [49] statically reasons about the security
of applications using modular dataflow analysis on Java source code. It can be used for
automated security certification, although the analysis has not been applied to real-world
applications. AndroidLeaks [52], another static analysis framework, finds potential leaks of
sensitive information in Android applications. It uncovers various leaks from a large collection
of 24,350 applications. On a smaller scale, ScaNDAL [64] considers multiple pre-defined
taint sources and sinks, and detects privacy leaks in 98 Android applications. Similarly,
Mann and Starostin [68] identify taint sources and sinks by studying Android APIs, but their
framework has not been evaluation on real-world applications. Stevens et al. [91] also look for
privacy vulnerabilities in Android applications, but with a focus on popular advertising libraries.
Besides static techniques, dynamic approaches have also been proposed to detect privacy leaks.
TaintDroid [41] monitors the flow of sensitive data through system-wide dynamic taint tracking.
When sensitive data leaves the system via third-party applications, TaintDroid warns the user
and logs the suspicious flow which can be audited by the user or security analysts. In contrast
to previous work that focus on network-based sinks, our work aims to understand information
leakage comprehensively and provides insights into how third-party applications handle and use

private data.

Privacy Leak Prevention A number of techniques have been proposed to mitigate information
leakage on smartphones. MockDroid [22] protects privacy by replacing sensitive user
information with mock data, while still allowing applications to run, possibly with reduced

functionalities. TISSA [97] provides users fine-grained control and runtime adjustment capability

80

over what kinds of sensitive user information will be available to untrusted applications and how
that information is accessed (e.g., anonymized, empty, mock). Nauman et al. [73] propose Apex,
a policy enforcement framework that allows users to selectively grant permissions to Android
applications and impose runtime resource access constraints. AppFence [59], a follow-up work
to TaintDroid, retrofits the Android system to impose privacy controls on third-party applications.
It allows users to provide mock data to permission-hungry applications and blocks sensitive data
obtained by applications from leaving the device. While our work does not directly prevent
leaks, we believe that a comprehensive understanding of how applications use sensitive data

will enable researchers to design and improve systems for better thwarting privacy leaks.

Android Permissions and Security There have been extensive studies on Android’s
permission system and its close connections to security and privacy. Kirin [40] is a lightweight
security service that checks permissions requested by applications against a set of security
rules to look for suspicious permission combinations at install time. Felt et al. [45] leverage
automated testing techniques to uncover the permissions required by each API method. They
developed a tool, Stoaway, to analyze permission usage in 940 Android applications and found
that about one third of them are overprivileged. Enck et al. [42] implement the ded decompiler
for Android applications to look for dangerous functionalities and vulnerabilities. Using ded,
they studied the decompiled source code of 1,100 popular Android applications and found
pervasive exfiltration of phone identifiers and location information. Jeon et al. [61] propose a
finer-grained permission system for stock Android devices. They developed a tool that rewrites
applications to access sensitive resources via a dedicated service that enforces finer-grained

permissions.

4.6 Conclusion

With the increased popularity of smartphones and tablets, the number of third-party applications

is rapidly growing. To implement appealing features, such applications often access a wide range

81

of sensitive data, which has led to increased privacy concerns among users. This chapter has
presented the first comprehensive study on sensitive information usage in Android applications.
Specifically, we aim to understand the overall privacy threats they pose to user data. To this end,
we have designed and implemented Heimdall, a static analysis framework, to automatically track
the flow of sensitive information and detect dataflows to unsafe sinks. We have used Heimdall
to study the behavior of 122,570 unique Android applications downloaded from the Google Play
Store. Our results have shown that a large number of applications either intentionally exfiltrate
sensitive data or inadvertently leak such data through unsafe sinks. We believe that our findings

can benefit both end-users and security professionals.

82

Chapter 5

Conclusion

This dissertation has presented techniques and tools for understanding the emerging, large, and
important software ecosystem of Android applications.

We have presented the first large-scale, systematic study of Android applications. From the
coding and development perspective, we have examined unique aspects of Android applications
and uncovered a number of common errors and pitfalls. Leveraging our findings, platform
developers (i.e., Google) may prioritize their efforts to improve frequently used APIs, clarify
platform documentation, and implement security enhancements. With deeper understanding
of applications, tool developers may build better tool support, such as testing, analysis, and
development environments, to assist application developers. Researchers and analysts should
address challenges of Java reflection and code obfuscation when developing automated tools.
Application developers can learn from uncovered programming errors and pitfalls so that they
can avoid similar mistakes. We believe that these actionable recommendations, along with
raised awareness among developers and users, benefit the entire Android community.

Focusing on security and privacy, we have also presented the first comprehensive study on
sensitive information usage in Android applications. Our study aims to understand the overall
privacy threats to privacy-sensitive user data from third-party Android applications. To this end,

we have designed and implemented a static analysis framework to detect unsafe information

83

flows. We have found that a large number of applications either intentionally exfiltrate sensitive
data or inadvertently leak such data through unsafe sinks. To better protect user privacy, we
suggest application developers exercise caution when handling sensitive user data to avoid
unintentional leaks. We also believe that such a system may be deployed to automatically
analyze third-party applications before they are released and published.

This dissertation focuses on understanding third-party Android applications. While mobile
applications continue to become increasingly popular and more feature-rich, there are many
outstanding open problems in this area. We highlight and discuss a few interesting future

directions below.

Inter-application Interactions and Communications The Android operating system pro-
vides a rich, powerful inter-application messaging mechanism that promotes inter-application
collaboration and component reuse. Application developers may leverage existing functionalities
provided by other applications while still giving users the impression of a single, seamless experi-
ence. For instance, instead of implementing its own layout and rendering engine, an application
may direct users to a dedicated browser application to navigate a Web page. Researchers have
started examining such application interactions from a security perspective to identify security
risks [33], but there is still a lack of general understanding. Studying the interactions and
communications between applications will provide valuable insights into characteristics of the

Android platform and enable comprehensive understanding of application behavior.

Malicious Application Detection With the rapid adoption of smart mobile devices, mobile
malware has been on the rise [44, 67, 69] and will both evolve in technique and grow in
volume [24, 55]. In Chapter 4, we have touched upon malicious applications that exfiltrate
sensitive information. However, there are other types of malicious applications (e.g., toll fraud
malware, ransomware) that also pose significant security threats. To tackle this problem,
researchers have taken first steps toward characterizing and understanding existing mobile

malware [46, 96]. While various techniques have been developed to detect traditional malware,

84

new challenges must be addressed to mitigate mobile malware threats, as some of the attack

vectors are unique to mobile platforms.

Mobile Applications on Other Platforms In this dissertation, we have focused on
understanding mobile applications on the Android platform. However, there are other popular
and burgeoning mobile platforms, such as Apple’s iOS and Microsoft Windows Phone. We
believe that similar methodologies can be adopted and extended to analyze and understand
applications on those platforms. Additional efforts in this research area may also provide insights

into the similarities and differences among difference mobile platforms.

A fundamental goal of understanding mobile applications is to improve the quality of such
applications as well as the platform, facilitate the development and testing processes, and
promote best security practices for the mobile software ecosystem. As the landscape of mobile
computing continues to develop and evolve, we hope that the approaches and techniques

presented here will be more broadly applied.

85

Appendix A

List of Common External Libraries

In Chapter 3, we listed the top 10 external libraries used in third-party Android applications.
We believe that this knowledge of external library usage can benefit researchers and analysts
studying Android applications. For completeness, the top 100 mostly used libraries are listed in

Table A.1, which continues for multiple pages.

Library Description #apps
com.google.ads AdSense/AdMob 39,462
com.google.android.maps Google Maps API 23,345
org.apache.commons.logging Apache Commons Logging 19,762
com.facebook.android Facebook API 19,730
org.slf4j SLF4J (logging) 17,718
twitter4;j Twitter API 17,020
org.apache.log4j Apache log4j 16,680
org.apache.commons.codec Apache Commons Codec 16,538
com.admob.android.ads AdMob 11,125
com.google.android.apps.analytics Google Analytics 10,762
oauth.signpost Simple OAuth 9,880
com.google.gdata Google Data APIs 9,698
com.millennialmedia.android Millennial Media 9,489
com.android.vending.billing In-app Billing 8,070
org.codehaus.jackson Jackson JSON Processor 7,795
org.joda.time Joda Time API 7,149
com.airpush.android AirPush 7,056
com.flurry.android Flurry 6,619

86

Library Description #apps
org.mortbay.jetty Jetty Server 6,464
com.inmobi.androidsdk InMobi 6,363
com.nikkoaiello.mobile.android Android Pinch 6,349
com.google.common Google Collections Library 5,989
com.google.protobuf Protocol Buffers 5,703
com.urbanairship Urban Airship 5,574
com.zestadz.android ZestADZ 5,568
com.readystatesoftware MapView Balloons 5,310
com.mdotm.android.ads MdotM 5,242
com.google.gson Gson 4,976
com.adwhirl AdWhirl 4,923
com.qwapi.adclient.android Quattro 4,667
com.mobclix.android Mobclix 4,470
com.google.android.c2dm Android C2DM 3,746
org.apache.james Apache James 3,396
com.oneriot OneRiot 3,317
com.phonegap PhoneGap 3,066
com.wooboo.adlib_android Wooboo 2,841
jp.Adlantis.Android Atlantis 2,708
net.youmi Youmi 2,426
com.mobclick.android Umeng 2,399
com.greystripe.android.sdk Greystripe 2,397
com.mobfox.sdk MobFox 2,340
com.madhouse.android.ads Madhouse 2,199
cn.domob.android DOMOB 2,160
com.google.zxing Zebra Crossing 2,017
com.casee CASEE 1,994
com.smaato.SOMA Smaato 1,966
com.adwo.adsdk Adwo 1,958
com.adchina.android AdChina 1,928
com.vpon Vpon 1,828
org.apache.commons.lang Apache Commons Lang 1,815
jp-co.nobot Nobot 1,759
org.acra ACRA 1,740
com.energysource.szj AdTouch 1,739
org.jaxen Jaxen 1,730
com.android.vending.licensing Google Play Licensing 1,613
com.j256.ormlite ORMLite 1,602
com.Leadbolt LeadBolt 1,589
com.mt.airad airAD 1,493
kankan.wheel Android Wheel Widget 1,415
com.waps WAPS 1,391

87

Library Description #apps
com.baidu Baidu 1,369
org.apache.avalon.framework Apache Avalon 1,350
org.apache.log Avalon LogKit 1,347
com.scoreloop.client.android Scoreloop 1,245
org.jsoup Java HTML Parser 1,218
org.kxml2 kXML 1,154
org.simpleframework Simple Framework 1,123
org.apache.commons.httpclient Apache HttpClient 1,106
com.admarvel.android AdMarvel 1,077
org.appcelerator Appcelerator 1,067
com.nullwire.trace Android Remote Stacktrace 1,066
com.google.devtools.simple Simple 1,053
gnu.” /kawa.* GNU Kawa 1,050
com.google.youngandroid App Inventor for Android 1,049
com.l.adlib_android LSense 1,025
com.tapjoy Tapjoy 1,005
org.scribe Scribe 978
com.thoughtworks Selenium Java Client Driver 955
com.jumptap.adtag Jumptap 938
com.vdopia.client.android iVdopia 936
com.winad.android WinAds 930
winterwell. jtwitter JTwitter 924
Igpl.haustein Campyre 920
com.badlogic Badlogic 916
org.jdom JDOM 913
org.apache.harmony Apache Harmony 912
com.openfeint OpenFeint 894
org.apache.commons.io Apache Commons IO 856
net.jcip.annotations Java Concurrency in Practice 845
com.Localytics.android Localytics 835
com.guohead.sdk GuoheAd 835
org.kobjects kObjects 827
com.adserver.adview mOcean 814
org.ksoap2 KSoap 803
com.smartadserver.library Smart AdServer 782
com.unity3d Unity 780
jp.co.imobile.android i-mobile 742
com.innerActive.ads inneractive 738
com.skyd SkypeKit SDK 728
com.admogo AdmOgo 726

Table A.1: Top 100 external libraries.

88

Appendix B

List of Sensitive Flows by Type

In Chapter 4, we used Heimdall to analyze the flow of sensitive information in 122,570 Android
applications from the Google Play Store. Among all the flows, we have observed 42 different

combinations of source and sink types. Table B.1 shows all 42 types of flows, ordered by the

number of flows for each type.

Source Type Sink Type #flows
Phone State Network Connection 96,198
Location Log Output 95,690
Location Network Connection 67,852
Phone State Log Output 59,580
Call Log & Contacts Log Output 7,358
WiFi State Log Output 4,167
WiFi State Network Connection 3,631
Accounts Log Output 1,752
Accounts Network Connection 1,588
Call Log & Contacts = Network Connection 1,561
Location Public Files 1,315
Phone State Public Files 889
Camera Public Files 733
SMS & MMS Log Output 541
Call Log & Contacts Public Files 461
History & Bookmarks Log Output 432
Location SMS Messages 425
Phone State SMS Messages 262

89

Source Type Sink Type #flows
SMS & MMS Network Connection 175
Calendar Log Output 157
Microphone Public Files 148
WiFi State Public Files 139
Camera Log Output 133
Accounts Public Files 126
Call Log & Contacts ~ SMS Messages 123
Microphone Log Output 107
Camera Network Connection 89
SMS & MMS SMS Messages 67
History & Bookmarks Network Connection 54
SMS & MMS Public Files 53
Calendar Public Files 41
History & Bookmarks Public Files 38
Microphone Network Connection 28
Calendar Network Connection 16
Accounts SMS Messages 12
WiFi State SMS Messages 7
User Dictionary Log Output 6
Microphone SMS Messages 4
History & Bookmarks SMS Messages 2
User Dictionary Public Files 2
Calendar SMS Messages 2
Tasks Log Output 1

Table B.1: Flows by Source and Sink Types.

90

Appendix C

List of Reviewed Android Applications

To evaluate the effectiveness of Heimdall, we systematically selected and manually reviewed

100 flows from 88 popular Android applications from Google Play. These 88 applications are

listed in Table C.1, which spans across several pages.

App Name Package Version
Angry Birds Rio com.rovio.angrybirdsrio 1.4.0
Basketball Shots 3D com.sas.basketball 1.9.1
BIG TIME GANGSTA com.glu.android.brawler 2.0.1
Bluetooth File Transfer it.medieval.blueftp 5
Brightest Flashlight Free goldenshorestechnologies- 1.9.3
.brightestflashlight.free
Bunny Shooter - Best Free Game com.bestcoolfungamesfreegame- 1.3.0
appcreation.bunnyshooter
Call Control - Call Blocker com.flexaspect.android- 3.0.2
.everycallcontrol
Cardiograph com.macropinch.hydra.android 2.6
chompSMS com.pl.chompsms 5.26
Cleopatra’s Pyramid com.gameduell.cleopatraspyramid 1.4
Coin Pirates com.nubee.coinpirates 1.0.10
Crazy Snowboard com.ezone.Snowboard 1.1.3
Digitally Imported Radio com.audioaddict.di 0.9.17
Dropbox com.dropbox.android 1.2.4

Family Locator
. ™
Fashion Story

com.life360.android.safetymapa
com.teamlava.fashionstory

5.0.2 build 2795
1.0.6

91

App Name Package Version
Foursquare com.joelapenna.foursquared 2011.11.18
FriendCaster for Facebook uk.co.senab.blueNotifyFree 4.1.2
GameFly com.gamefly.android.gamecenter 2.0.5
Gmail com.google.android.gm 2.3.5.2
GO SMS Pro com.jb.gosms 3.78
Goal.com Mobile - Football com.handmark.mpp.goal 3.1.3.1
Google Books com.google.android.apps.books 1.4.6
Google Korean IME com.google.android.inputmethod- 0.78
.korean
Google Music com.google.android.music 4.0.9
Grindr - Gay guy finder com.grindrapp.android 1.1.7
Handcent SMS com.handcent.nextsms 3.9.9.8
HeyTell com.heytell 2.0.4.256
HeyWire - Free Texting com.mediafriends.chime 2.7.12
Horoscope fr.telemaque.horoscope 2.0.2
ICQ messenger - free chat com.icq.mobile.client 3.0.1
K-9 Mail com.fsck.k9 3.802
KakaoTalk Messenger com.kakao.talk 2.6.0
KAYAK Flight Hotel Car Search ~ com.kayak.android 4.2.0.3
LINE jp-naver.line.android 1.6.2
McAfee WaveSecure (Trial) com.wsandroid 4.2.5.199
Meet New People on Badoo com.badoo.mobile 1.7.0
MixZing Media Player com.mixzing.basic 3.6.1
Moon Chaser com.reverie.game.ninja 1.1.1
Mr. Number com.mrnumber.blocker 1.1.14
My Country com.gameinsight.mycountry 1.12
NinJump com.bfs.ninjump 1.03
Norton Security and Antivirus com.symantec.mobilesecurity 2.5.0.384
OpenSignalMaps com.staircase3.opensignal 1.13
Paradise Island com.seventeenbullets.android- 1.1.21
.island
PhoneFlicks-Netflix Android com.nextmobileweb.phoneflix 1.4
PhotoWonder cn.jingling. motu.photowonder 1.1.2
Police Scanner Radio Scanner com.berobo.android.scanner 7
Pool Master Pro com.forthblue.pool 1.8
Reckless Racing Lite com.polarbit.RecklessRacingLite 1.0.3
Retro Camera org.urbian.android.tools- 3.71
.vintagecam
Ringtone Maker com.mobilel7.maketones- 1.1.4

Sex Offender Search
ShopSavvy Barcode Scanner

.android.free
com.life360.android.safetymapc
com.biggu.shopsavvy

5.0.2 build 2795
5.0.1

92

App Name Package Version
SKOUT - Meet, Chat, & Flirt com.skout.android 2.8.1
Skype com.skype.raider 2.5.0.160
Slot Machine com.apostek.SlotMachine 5.7.1
Smart App Protector(app lock) com.sp.protector.free 3.9.1
Smooth Calendar se.catharsis.android.calendar 1.0.0.2
SMS Backup tv.studer.smssync 1.1.1
SoundHound com.melodis.midomiMusic- 2.8.4
Identifier.freemium
Speed Skater com.incrementalsoft.SkaterIsBack 2.0.1
T-Mobile Video Chat by Qik com.qiktmobile.android 0.11.62
Talking Gina the Giraffe Free com.outfit7.talkinggina 1.2
Talking Santa Free com.outfit7.talkingsantafree 2.0.1
Tap Tap Revenge 4 com.tapulous.taptaprevenge4 4.1.3 (807)
TeamViewer for Remote Control com.teamviewer.teamviewer- 7.0.238
.market.mobile
Toddler Lock marcone.toddlerlock 2.7.5
Trapster com.trapster.android 3.0.3
TripAdvisor com.tripadvisor.tripadvisor 1.3.3
TweetCaster for Twitter com.handmark.tweetcaster 5.2
UberSocial for Android com.twidroid 7.2.2
UC Browser com.uc.browser 7.9.3
Uloops Studio Lite net.uloops.android 2.11.2
USAA Mobile com.usaa.mobile.android.usaa 4.1
VKontakte com.vkontakte.android 2.0.1
Vlingo Virtual Assistant com.vlingo.client 3.3
Wheres My Droid com.alienmanfc6.wheres- 3.5.0
myandroid
Whoopee Cushion! (fart) com.foncannoninc.wc 1.52
Words With Friends Free com.zynga.words 4.56
World Newspapers com.world.newspapers 2.2
Yahoo! Fantasy Football 11 com.yahoo.mobile.client.android- 2.2.0
.fantasyfootball
Yandex.Maps ru.yandex.yandexmaps 2.11
YP Yellow Pages & Gas Prices com.yellowpages.android- 3.3.2
.ypmobile
ZombieBooth com.motionportrait.ZombieBooth ~ 3.05
Mobile QQ2011 com.tencent.qq 2011
Daum net.daum.android.daum 2.8.5
TicToc kr.co.tictocplus 1.6.3

Table C.1: Manually reviewed Android applications.

93

Bibliography

[10]

The AndroidManifest.xml File. http://developer.android.com/guide/topics/

manifest/manifest-intro.html.

Application Fundamentals. http://developer.android.com/guide/topics/

manifest/manifest-intro.html.

Dalvik Virtual Machine. http://code.google.com/p/dalvik/.

Dalvik Executable Format. http://source.android.com/tech/dalvik/dex-format.

html.

Issue 19192: documentation error - ACCESS_COARSE_UPDATES is not a real permission.

https://code.google.com/p/android/issues/detail?id=19192.
ADT Plugin. http://developer.android.com/tools/sdk/eclipse-adt.html.

Filters on Google Play. http://developer.android.com/guide/google/play/

filters.html.

Intents and Intent Filters. http://developer.android.com/guide/components/

intents-filters.html.
Android Lint. http://tools.android.com/tips/lint/.

Lint API Check. http://tools.android.com/recent/lintapicheck.

94

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://code.google.com/p/dalvik/
http://source.android.com/tech/dalvik/dex-format.html
http://source.android.com/tech/dalvik/dex-format.html
https://code.google.com/p/android/issues/detail?id=19192
http://developer.android.com/tools/sdk/eclipse-adt.html
http://developer.android.com/guide/google/play/filters.html
http://developer.android.com/guide/google/play/filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://tools.android.com/tips/lint/
http://tools.android.com/recent/lintapicheck

[11]

[12]

[13]

[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

Manifest Permissions. http://developer.android.com/reference/android/

Manifest.permission.html.
Android NDK. http://developer.android.com/tools/sdk/ndk/overview.html.

Android Permissions. http://developer.android.com/guide/topics/security/

permissions.html.

apktool. http://code.google.com/p/android-apktool/.
AXMLPrinter2. http://code.google.com/p/android4me/.
ProGuard. http://proguard. sourceforge.net/.

undx. http://undx.sourceforge.net/.

Aaron Tilton. Vlingo Privacy Breach: Data Sent to Remote Servers Without Consent.

http://www.androidpit.com/Vlingo-security-flaw, January 2012.

Aaron Tilton. Vlingo Makes Official Statement: Success At Customers’ Expense. http:

//www.androidpit.com/vlingo-user-data-leak, January 2012.

Apple Inc. Apple’s App Store Marks Historic 50 Billionth Download. http:
//www.apple.com/pr/library/2013/05/16Apples-App-Store-Marks-Historic-

50-Billionth-Download.html, May 2013.

David Barrera, H. Gunes Kayacik, BC. van Oorschot, and Anil Somayaji. A Method-
ology for Empirical Analysis of Permission-Based Security Models and its Applica-
tion to Android. In CCS ’10: Proceedings of the 17th ACM Conference on Computer
and Communications Security, pages 73-84, 2010. ISBN 978-1-4503-0245-6. doi:
{http://dx.doi.org/10.1145/1866307.1866317}.

Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. MockDroid:

Trading Privacy for Application Functionality on Smartphones. In HotMobile ’11:

95

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/tools/sdk/ndk/overview.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://code.google.com/p/android-apktool/
http://code.google.com/p/android4me/
http://proguard.sourceforge.net/
http://undx.sourceforge.net/
http://www.androidpit.com/Vlingo-security-flaw
http://www.androidpit.com/vlingo-user-data-leak
http://www.androidpit.com/vlingo-user-data-leak
http://www.apple.com/pr/library/2013/05/16Apples-App-Store-Marks-Historic-50-Billionth-Download.html
http://www.apple.com/pr/library/2013/05/16Apples-App-Store-Marks-Historic-50-Billionth-Download.html
http://www.apple.com/pr/library/2013/05/16Apples-App-Store-Marks-Historic-50-Billionth-Download.html
http://dx.doi.org/10.1145/1866307.1866317
http://dx.doi.org/10.1145/1866307.1866317

(23]

[24]

[25]

[26]

[27]

(28]

Proceedings of the 12th Workshop on Mobile Computing Systems and Applications, pages 49—
54, 2011. ISBN 978-1-4503-0649-2. doi: {http://dx.doi.org/10.1145/2184489.2184500}.

Matthias Bohmer, Brent Hecht, Johannes Schoning, Antonio Kruger, and Gernot Bauer.
Falling Asleep with Angry Birds, Facebook and Kindle — A Large Scale Study on Mobile
Application Usage. In MobileHCI ’11: Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and Services, pages 47-56, 2011. ISBN

978-1-4503-0541-9. doi: {http://dx.doi.org/10.1145/2037373.2037383}.

Sebastian Bortnik. Trends for 2013: Astounding Growth of Mobile Malware.
http://blog.eset.com/2012/12/11/trends-for-2013-astounding-growth-of-

mobile-malware, December 2012.

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. BAP: A
Binary Analysis Platform. In CAV ’11: Proceedings of the 23rd International Conference
on Computer Aided Verification, pages 463—-469, 2011. ISBN 978-3-642-22109-5. doi:
{http://dx.doi.org/10.1007/978-3-642-22110-1_37}.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi,
and Bhargava Shastry. Towards Taming Privilege-Escalation Attacks on Android. In NDSS
’12: Proceedings of the 19th Annual Network and Distributed System Security Conference,

2012.

Canalys. Smart phones overtake client PCs in 2011. http://www.canalys.com/

newsroom/smart-phones-overtake-client-pcs-2011, February 2012.

Canalys. Smart mobile device shipments exceed 300 million in Q1 2013.
http://www.canalys.com/newsroom/smart-mobile-device-shipments-exceed-

300-million-ql1-2013, May 2013.

96

http://dx.doi.org/10.1145/2184489.2184500
http://dx.doi.org/10.1145/2037373.2037383
http://blog.eset.com/2012/12/11/trends-for-2013-astounding-growth-of-mobile-malware
http://blog.eset.com/2012/12/11/trends-for-2013-astounding-growth-of-mobile-malware
http://dx.doi.org/10.1007/978-3-642-22110-1_37
http://dx.doi.org/10.1007/978-3-642-22110-1_37
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-mobile-device-shipments-exceed-300-million-q1-2013
http://www.canalys.com/newsroom/smart-mobile-device-shipments-exceed-300-million-q1-2013

[29]

(30]

[31]

[32]

[33]

[34]

[35]

Rich Cannings. Exercising Our Remote Application Removal Feature. http://android-
developers.blogspot.com/2010/06/exercising-our-remote-application.html,

June 2010.

Justin Case. Exclusive: Vulnerability In Skype For Android Is Exposing Your Name, Phone
Number, Chat Logs, And A Lot More. http://www.androidpolice.com/2011/04/
14/exclusive-vulnerability-in-skype-for-android-is-exposing-your-name-

phone-number-chat-logs-and-a-lot-more/, April 2011.

Patrick PE Chan, Lucas C.K. Hui, and S.M. Yiu. DroidChecker: Analyzing Android
Applications for Capability Leak. In WISEC ’12: Proceedings of the 5th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, pages 125-136, 2012. ISBN

978-1-4503-1265-3. doi: {http://dx.doi.org/10.1145/2185448.2185466}.

Pern Hui Chia, Yusuke Yamamoto, and N. Asokan. Is this App Safe? A Large Scale Study on
Application Permissions and Risk Signals. In WWW ’12: Proceedings of the 21st International
Conference on World Wide Web, pages 311-320, 2012. ISBN 978-1-4503-1229-5. doi:

{http://dx.doi.org/10.1145/2187836.2187879}.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing Inter-
Application Communication in Android. In MobiSys ’11: Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services, pages 239-252, 2011. ISBN 978-
1-4503-0643-0. doi: {http://dx.doi.org/10.1145/1999995.2000018}.

comScore. comScore Reports March 2013 U.S. Smartphone Subscriber Market
Share. http://www.comscore.com/Insights/Press_Releases/2013/5/comScore_

Reports_March_2013_U.S._Smartphone_Subscriber_Market_Share, May 2013.

Josh Constine. Mary Meeker Gives Mid-Year Internet Trends Report: Android Adoption
Ramping Up 6X Faster Than iPhone. http://techcrunch.com/2012/11/05/mary-

meeker-internet-trends/, November 2012.

97

http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://www.androidpolice.com/2011/04/14/exclusive-vulnerability-in-skype-for-android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/
http://www.androidpolice.com/2011/04/14/exclusive-vulnerability-in-skype-for-android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/
http://www.androidpolice.com/2011/04/14/exclusive-vulnerability-in-skype-for-android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/
http://dx.doi.org/10.1145/2185448.2185466
http://dx.doi.org/10.1145/2187836.2187879
http://dx.doi.org/10.1145/2187836.2187879
http://dx.doi.org/10.1145/1999995.2000018
http://www.comscore.com/Insights/Press_Releases/2013/5/comScore_Reports_March_2013_U.S._Smartphone_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2013/5/comScore_Reports_March_2013_U.S._Smartphone_Subscriber_Market_Share
http://techcrunch.com/2012/11/05/mary-meeker-internet-trends/
http://techcrunch.com/2012/11/05/mary-meeker-internet-trends/

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the Clones: Detecting Cloned
Applications on Android Markets. In ESORICS ’12: Proceedings of the 17th European
Symposium on Research in Computer Security, pages 37-54, 2012. ISBN 978-3-642-33166-

4. doi: {http://dx.doi.org/10.1007/978-3-642-33167-1_3}.

Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. I-ARM-Droid: A
Rewriting Framework for In-App Reference Monitors for Android Applications. In MoST

’12: Proceedings of IEEE Mobile Security Technologies, 2012.

Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach. QUIRE:
Lightweight Provenance for Smart Phone Operating Systems. In SEC ’11: Proceedings of

the 20th USENIX Conference on Security, 2011.

Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. PiOS: Detecting
Privacy Leaks in iOS Applications. In NDSS ’11: Proceedings of the 18th Annual Network

and Distributed System Security Conference, 2011.

William Enck, Machigar Ongtang, and Patrick McDaniel. On Lightweight Mobile Phone
Application Certification. In CCS ’09: Proceedings of the 16th ACM Conference on Computer
and Communications Security, pages 235-245, 2009. ISBN 978-1-60558-894-0. doi:

{http://dx.doi.org/10.1145/1653662.1653691}.

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In OSDI ’10: Proceedings of the 9th USENIX

Conference on Operating Systems Design and Implementation, 2010.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study of
Android Application Security. In SEC ’11: Proceedings of the 20th USENIX Conference on

Security, 2011.

98

http://dx.doi.org/10.1007/978-3-642-33167-1_3
http://dx.doi.org/10.1145/1653662.1653691
http://dx.doi.org/10.1145/1653662.1653691

[43]

(44]

[45]

[46]

[47]

(48]

[49]

[50]

Darrell Etherington. Have Just A Phone Number? iOS 6 Facebook Integration Can Fill
In The Blanks. http://techcrunch.com/2012/09/27/have- just-a-phone-number-

ios-6-facebook-integration-can-fill-in-the-blanks/, September 2012.
Mobile Threat Report Q4 2012. F-Secure Labs, March 2013.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android
Permissions Demystified. In CCS ’11: Proceedings of the 18th ACM Conference on Computer
and Communications Security, pages 627-638, 2011. ISBN 978-1-4503-0948-6. doi:

{http://dx.doi.org/10.1145/2046707.2046779}.

Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steven Hanna, and David Wagner. A
Survey of Mobile Malware in the Wild. In SPSM ’'11: Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, pages 3—-14, 2011. ISBN
978-1-4503-1000-0. doi: {http://dx.doi.org/10.1145/2046614.2046618}.

Adrienne Porter Felt, Kate Greenwood, and David Wagner. The Effectiveness of Application
Permissions. In WebApps ’11: Proceedings of the 2nd USENIX Conference on Web Application

Development, 2011.

Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and Erika Chin.
Permission Re-Delegation: Attacks and Defenses. In SEC ’11: Proceedings of the 20th

USENIX Conference on Security, 2011.

Adam P, Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. SCanDroid: Automated Security
Certification of Android Applications. Technical Report CS-TR-4991, Department of

Computer Science, University of Maryland, 2009.

Dan Galpin, Ilya Firman, Andy Stadler, Michael Siliski, and Ellie Powers. Android
Apps Break the 50MB Barrier. http://android-developers.blogspot.com/2012/

03/android-apps-break-50mb-barrier.html, March 2012.

99

http://techcrunch.com/2012/09/27/have-just-a-phone-number-ios-6-facebook-integration-can-fill-in-the-blanks/
http://techcrunch.com/2012/09/27/have-just-a-phone-number-ios-6-facebook-integration-can-fill-in-the-blanks/
http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2046614.2046618
http://android-developers.blogspot.com/2012/03/android-apps-break-50mb-barrier.html
http://android-developers.blogspot.com/2012/03/android-apps-break-50mb-barrier.html

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

Gartner. Gartner Says Asia/Pacific Led Worldwide Mobile Phone Sales to Growth in First

Quarter of 2013. http://www.gartner.com/newsroom/id/2482816, May 2013.

Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. AndroidLeaks: Automatically
Detecting Potential Privacy Leaks In Android Applications on a Large Scale. In TRUST ’12:
Proceedings of the 5th International Conference on Trust and Trustworthy Computing, pages
291-307, 2012. ISBN 978-3-642-30920-5. doi: {http://dx.doi.org/10.1007/978-3-642-

30921-2_17}.

Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic Detection of Capability
Leaks in Stock Android Smartphones. In NDSS ’12: Proceedings of the 19th Annual Network

and Distributed System Security Conference, 2012.

Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. RiskRanker: Scal-
able and Accurate Zero-day Android Malware Detection. In MobiSys ’12: Proceedings of the
10th International Conference on Mobile Systems, Applications, and Services, pages 281-294,

2012. ISBN 978-1-4503-1301-8. doi: {http://dx.doi.org/10.1145/2307636.2307663}.

Derek Halliday. 2013 Mobile Threat Predictions. https://blog.lookout.com/blog/

2012/12/13/2013-mobile-threat-predictions/, December 2012.

Norm Hardy. The Confused Deputy (or why capabilities might have been invented). ACM

SIGOPS Operating Systems Review, 22:36-38, 1988.

Kamala D. Harris. Attorney General Kamala D. Harris Secures Global Agree-
ment to Strengthen Privacy Protections for Users of Mobile Applications.
http://oag.ca.gov/news/press-releases/attorney-general-kamala-d-

harris-secures-global-agreement-strengthen-privacy, February 2012.

Kamala D. Harris. Attorney General Kamala D. Harris Notifies Mobile App Developers of

Non-Compliance with California Privacy Law. http://oag.ca.gov/news/press-

100

http://www.gartner.com/newsroom/id/2482816
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1145/2307636.2307663
https://blog.lookout.com/blog/2012/12/13/2013-mobile-threat-predictions/
https://blog.lookout.com/blog/2012/12/13/2013-mobile-threat-predictions/
http://oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-secures-global-agreement-strengthen-privacy
http://oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-secures-global-agreement-strengthen-privacy
http://oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-notifies-mobile-app-developers-non-compliance
http://oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-notifies-mobile-app-developers-non-compliance

[59]

[60]

[61]

[62]

[63]

[64]

[65]

releases/attorney-general-kamala-d-harris-notifies-mobile-app-

developers-non-compliance, October 2012.

Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall.
"These Aren’t the Droids You’re Looking For": Retroffiting Android to Protect Data from
Imperious Applications. In CCS ’11: Proceedings of the 18th ACM Conference on Computer
and Communications Security, pages 639-652, 2011. ISBN 978-1-4503-0948-6. doi:
{http://dx.doi.org/10.1145/2046707.2046780}.

IDC. Android and iOS Combine for 92.3% of All Smartphone Operating System Shipments
in the First Quarter While Windows Phone Leapfrogs BlackBerry, According to IDC.

http://www.idc.com/getdoc. jsp?containerId=prUS24108913, May 2013.

Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy,
Jeffrey S. Foster, and Todd Millstein. Dr. Android and Mr. Hide: Fine-grained Permissions in
Android Applications. In SPSM ’12: Proceedings of the 2nd ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pages 3—14, 2012. ISBN 978-1-4503-1666-8.

doi: {http://dx.doi.org/10.1145/2381934.2381938}.

Trevor Johns. Securing Android IVL Applications. http://android-developers.
blogspot.com/2010/09/securing-android-1vl-applications.html, September

2010.

Simon Khalaf. Mobile Apps: We Interrupt This Broadcast. http://blog. flurry.com/

bid/92105/Mobile-Apps-We-Interrupt-This-Broadcast, December 2012.

Jinyung Kim, Yongho Yoon, and Kwangkeun Yi. ScaNDaAL: Static Analyzer for Detecting
Privacy Leaks in Android Applications. In MoST ’12: Proceedings of IEEE Mobile Security

Technologies, 2012.

Anthony Lineberry, David Luke Richardson, and Tim Wyatt. These Are Not the Permissions

You Are Looking For. In DefCon 18, 2010.

101

http://oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-notifies-mobile-app-developers-non-compliance
http://oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-notifies-mobile-app-developers-non-compliance
http://oag.ca.gov/news/press-releases/attorney-general-kamala-d-harris-notifies-mobile-app-developers-non-compliance
http://dx.doi.org/10.1145/2046707.2046780
http://dx.doi.org/10.1145/2046707.2046780
http://www.idc.com/getdoc.jsp?containerId=prUS24108913
http://dx.doi.org/10.1145/2381934.2381938
http://android-developers.blogspot.com/2010/09/securing-android-lvl-applications.html
http://android-developers.blogspot.com/2010/09/securing-android-lvl-applications.html
http://blog.flurry.com/bid/92105/Mobile-Apps-We-Interrupt-This-Broadcast
http://blog.flurry.com/bid/92105/Mobile-Apps-We-Interrupt-This-Broadcast

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

Hiroshi Lockheimer. Android and Security. http://googlemobile.blogspot.com/

2012/02/android-and-security.html, February 2012.

State of Mobile Security 2012. Lookout Mobile Security, 1 Front Street, Suite 2700, San

Francisco, CA 94111, September 2012.

Christopher Mann and Artem Starostin. A Framework for Static Detection of Privacy
Leaks in Android Applications. In SAC ’'12: Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 1457-1462, 2012. ISBN 978-1-4503-0857-1. doi:
{http://dx.doi.org/10.1145/2245276.2232009}.

McAfee Threats Report: Third Quarter 2012. McAfee Labs, 2821 Mission College Boulevard,

Santa Clara, CA 95054, November 2012.

Darren McCarra. Google Play will hit one million apps this June. http://sociable.co/

mobile/google-play-will-hit-one-billion-apps-this-june/, January 2013.

Andy McFadden. Backward compatibility for Android applications. http:
//android-developers.blogspot.com/2009/04/backward-compatibility-for-
android.html, April 2009.

Anders Mgller and Mathias Schwarz. Automated Detection of Client-State Manip-
ulation Vulnerabilities. In ICSE ’12: Proceedings of the 34th International Confer-
ence on Software Engineering, pages 749-759, 2012. ISBN 978-1-4673-1066-6. doi:
{http://dx.doi.org/10.1109/ICSE.2012.6227143}.

Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime Constraints. In ASI-
ACCS ’10: Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, pages 328-332, 2010. ISBN 978-1-60558-936-7. doi:
{http://dx.doi.org/10.1145/1755688.1755732}.

102

http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://dx.doi.org/10.1145/2245276.2232009
http://dx.doi.org/10.1145/2245276.2232009
http://sociable.co/mobile/google-play-will-hit-one-billion-apps-this-june/
http://sociable.co/mobile/google-play-will-hit-one-billion-apps-this-june/
http://android-developers.blogspot.com/2009/04/backward-compatibility-for-android.html
http://android-developers.blogspot.com/2009/04/backward-compatibility-for-android.html
http://android-developers.blogspot.com/2009/04/backward-compatibility-for-android.html
http://dx.doi.org/10.1109/ICSE.2012.6227143
http://dx.doi.org/10.1109/ICSE.2012.6227143
http://dx.doi.org/10.1145/1755688.1755732
http://dx.doi.org/10.1145/1755688.1755732

[74]

[75]

[76]

[77]

[78]

[79]

(80]

[81]

[82]

[83]

Nielsen. State of the Appnation - A Year of Change and Growth in U.S. Smartphones.

http://blog.nielsen.com/nielsenwire/?p=31891, May 2012.

Nielsen. Two Thirds of New Mobile Buyers Now Opting For Smartphones. http:

//blog.nielsen.com/nielsenwire/?p=32494, July 2012.

Jon Oberheide and Charlie Miller. Dissecting Android’s Bouncer. In SummerCon 2012,
2012.
Damien Octeau, Patrick McDaniel, and William Enck. ded: Decompiling Android

Applications. http://siis.cse.psu.edu/ded/.

Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting Android Applications to
Java Bytecode. In FSE ’12: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, pages 6:1-6:11, 2012. ISBN 978-1-4503-1614-
9. doi: {http://dx.doi.org/10.1145/2393596.2393600}.

Drew Olanoff. Google Announces It Has Reached 900M Android Activations, Sundar Pichai
Calls It “Most Popular Mobile OS In The World”. http://techcrunch.com/2013/05/

15/google-announces-it-has-reached-900m-android-activations/, May 2013.
Gabor Paller. Dedexer. http://dedexer.sourceforge.net/.
Xiaobo Pan. dex2jar. http://code.google.com/p/dex2jar/.

Adam Powell. How to have your (Cup)cake and eat it too. http://android-developers.
blogspot.com/2010/07 /how-to-have-your-cupcake-and-eat-it-too.html, July

2010.

Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian Obermiller,
and Shahin Shayandeh. ApplInsight: Mobile App Performance Monitoring in the Wild.
In OSDI ’12: Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, pages 107-120, 2012. ISBN 978-1-931971-96-6.

103

http://blog.nielsen.com/nielsenwire/?p=31891
http://blog.nielsen.com/nielsenwire/?p=32494
http://blog.nielsen.com/nielsenwire/?p=32494
http://siis.cse.psu.edu/ded/
http://dx.doi.org/10.1145/2393596.2393600
http://techcrunch.com/2013/05/15/google-announces-it-has-reached-900m-android-activations/
http://techcrunch.com/2013/05/15/google-announces-it-has-reached-900m-android-activations/
http://dedexer.sourceforge.net/
http://code.google.com/p/dex2jar/
http://android-developers.blogspot.com/2010/07/how-to-have-your-cupcake-and-eat-it-too.html
http://android-developers.blogspot.com/2010/07/how-to-have-your-cupcake-and-eat-it-too.html

(84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Matthew Rollings. Android: Requesting root access in your app. http:
//www.stealthcopter.com/blog/2010/01/android-requesting-root-access-

in-your-app/, January 2010.

Jamie Rosenberg. Celebrating Google Play’s first birthday. http://officialandroid.
blogspot.com/2013/03/celebrating-google-plays-first-birthday.html,

March 2013.

Dan Rowinski. Google Play Will Beat Apple App Store To 1,000,000 Apps.
http://readwrite.com/2013/01/08/google-play-to-hit-1-million-apps-

before-apple-app-store, January 2013.

Michael Saylor. The Mobile Wave: How Mobile Intelligence Will Change Everything. Vanguard

Press, June 2012. ISBN 978-1593157203.

Skype blogs. Privacy vulnerability in Skype for Android. http://blogs.skype.com/

security/2011/04/privacy_vulnerability_in_skype.html, April 2011.

American Dialect Society. “App” voted 2010 word of the year by the American Dialect
Society (UPDATED). http://www.americandialect.org/app-voted-2010-word-of-

the-year-by-the-american-dialect-society-updated, January 2011.

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang,
Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena. BitBlaze: A
New Approach to Computer Security via Binary Analysis. In ICISS '08: Proceedings of the
4th International Conference on Information Systems Security, pages 1-25, 2008. ISBN

978-3-540-89861-0. doi: {http://dx.doi.org/10.1007/978-3-540-89862-7 1}.

Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. Investigating
User Privacy in Android Ad Libraries. In MoST ’12: Proceedings of IEEE Mobile Security

Technologies, 2012.

104

http://www.stealthcopter.com/blog/2010/01/android-requesting-root-access-in-your-app/
http://www.stealthcopter.com/blog/2010/01/android-requesting-root-access-in-your-app/
http://www.stealthcopter.com/blog/2010/01/android-requesting-root-access-in-your-app/
http://officialandroid.blogspot.com/2013/03/celebrating-google-plays-first-birthday.html
http://officialandroid.blogspot.com/2013/03/celebrating-google-plays-first-birthday.html
http://readwrite.com/2013/01/08/google-play-to-hit-1-million-apps-before-apple-app-store
http://readwrite.com/2013/01/08/google-play-to-hit-1-million-apps-before-apple-app-store
http://blogs.skype.com/security/2011/04/privacy_vulnerability_in_skype.html
http://blogs.skype.com/security/2011/04/privacy_vulnerability_in_skype.html
http://www.americandialect.org/app-voted-2010-word-of-the-year-by-the-american-dialect-society-updated
http://www.americandialect.org/app-voted-2010-word-of-the-year-by-the-american-dialect-society-updated
http://dx.doi.org/10.1007/978-3-540-89862-7_1

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Raja Vallee-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville, and
Vijay Sundaresan. Optimizing Java Bytecode using the Soot Framework: Is it Feasible? In
CC ’00: Proceedings of the 9th International Conference on Compiler Construction, pages 18-

34, 2000. ISBN 978-3-540-67263-0. doi: {http://dx.doi.org/10.1007/3-540-46423-9 2}.

Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. Permission Evolution
in the Android Ecosystem. In ACSAC ’12: Proceedings of the 28th Annual Computer
Security Applications Conference, pages 31-40, 2012. ISBN 978-1-4503-1312-4. doi:

{http://dx.doi.org/10.1145/2420950.2420956}.

Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. ProfileDroid: Multi-
layer Profiling of Android Applications. In Mobicom ’12: Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, pages 137-148, 2012. ISBN
978-1-4503-1159-5. doi: {http://dx.doi.org/10.1145/2348543.2348563}.

Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting Repackaged Smartphone
Applications in Third-Party Android Marketplaces. In CODASPY ’12: Proceedings of the 2nd
ACM Conference on Data and Application Security and Privacy, pages 317-326, 2012. ISBN
978-1-4503-1091-8. doi: {http://dx.doi.org/10.1145/2133601.2133640}.

Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization and Evolution.
In S & P ’12: Proceedings of the 33th IEEE Symposium on Security and Privacy, pages 95-109,
2012. ISBN 978-1-4673-1244-8. doi: {http://dx.doi.org/10.1109/SP2012.16}.

Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh. Taming Information-
Stealing Smartphone Applications (on Android). In TRUST ’11: Proceedings of the 4th
International Conference on Trust and Trustworthy Computing, pages 93-107, 2011. ISBN

978-3-642-21598-8. doi: {http://dx.doi.org/10.1007/978-3-642-21599-5_7}.

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets. In NDSS ’12:

Proceedings of the 19th Annual Network and Distributed System Security Conference, 2012.

105

http://dx.doi.org/10.1007/3-540-46423-9_2
http://dx.doi.org/10.1145/2420950.2420956
http://dx.doi.org/10.1145/2420950.2420956
http://dx.doi.org/10.1145/2348543.2348563
http://dx.doi.org/10.1145/2133601.2133640
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1007/978-3-642-21599-5_7

	List of Figures
	List of Tables
	Introduction
	Background
	APK File Format
	Android Manifest
	The Permission System
	Application Components
	Dalvik Executable

	A Systematic Study of Errors and Pitfalls in Android Applications
	Introduction
	Study Design and Results
	Application Collection
	Methodology
	General Statistics
	Manifest
	Permissions
	Code

	Related Work
	Conclusion and Future Work

	Analyzing and Understanding Sensitive Information Flow in Android Applications
	Introduction
	Problem and Approach Formulation
	Design and Implementation of Heimdall
	Entry Points
	Taint Sources
	Taint Sinks
	Dataflow Analysis
	Android-specific Flows

	Empirical Study and Analysis
	Identifying Taint Sinks
	Results
	In-depth Manual Analysis
	Case Studies
	Discussions

	Related Work
	Conclusion

	Conclusion
	Appendix List of Common External Libraries
	Appendix List of Sensitive Flows by Type
	Appendix List of Reviewed Android Applications
	Bibliography

