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Abstract

A key mission of computer science is to enable people realize their creative

ideas as naturally and painlessly as possible. Software engineering is at the

center of this mission — software technologies enable reification of ideas into

working systems. As computers become ubiquitous, both in availability and

the aspects of human lives they touch, the quantity and diversity of ideas also

rapidly grow. Our programming systems and technologies need to evolve to

make this reification process — transforming ideas into software — as quick and

accessible as possible.

This dissertation advocates and highlights the “transforming ideas to soft-

ware” mission as a moonshot for software engineering research. This is a

long-term direction for the community, and there is no silver bullet that can get

us there. To make this mission a reality, as a community, we need to improve the

status quo across many dimensions. Thus, the second goal is to outline a number

of directions to modernize our contemporary programming technologies for

decades to come, describe work that has been undertaken along those vectors,

and pinpoint critical challenges.

A key contribution towards that direction is introducing the prorogued pro-

gramming paradigm, a new paradigm more closely aligned with a programmer’s
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thought process. A prorogued programming language (PPL) supports three basic

principles: 1) proroguing concerns1: the ability to defer a concern, to focus on

and finish the current concern; 2) hybrid computation: the ability to involve the

programmer as an integral part of computation; and 3) executable refinement:

the ability to execute any intermediate program refinements. Working in a

PPL, the programmer can run and experiment with an incomplete program, and

gradually and iteratively reify the missing parts while catching design and imple-

mentation mistakes early. We describe the prorogued programming paradigm,

our design and realization of the paradigm using Prorogued C#, our extension

to C#, and demonstrate its utility through a few use cases.

Furthermore, we discuss Live Symbols, a technique to invigorate an integrated

development environment by making identifiers not only meaningful to the

compiler, but also direct the programming environment to interact with the user

in a context-specific way. We illustrate leveraging identifiers as hooks not just

for gluing pieces of a program together, but as terminals to interact with the

programmer, program documentation, knowledge external to the program, the

programming environment, and serve as tools to manipulate the program itself

in specialized ways.

Finally, we explore a powerful mechanism to create white-box abstractions

through program refinement, to encourage flattening of abstraction hierarchies,

and to make it easier to manipulate and customize software components when

necessary.

1A concern is any piece of interest or focus in a program [Dijkstra, 1974].
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CHAPTER 1

Introduction

A key mission of computer science is to enable people realize their creative

ideas as naturally and painlessly as possible. Software engineering is at the

center of this mission — software technologies enable reification of ideas into

working systems. As computers become ubiquitous, both in availability and

the aspects of human lives they touch, the quantity and diversity of ideas also

rapidly grow. Our programming systems and technologies need to evolve to

make this reification process — transforming ideas into software — as quick and

accessible as possible.

The goal of this chapter is twofold. First, it advocates and highlights the

“transforming ideas to software” mission as a moonshot for software engineering

research. This is a long-term direction for the community, and there is no silver

bullet that can get us there. To make this mission a reality, as a community, we

need to improve the status quo across many dimensions. Thus, the second goal is

to outline a number of directions to modernize our contemporary programming
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technologies for decades to come, describe work that has been undertaken along

those vectors, and pinpoint critical challenges.

1.1. Toward Rapid Transformation of Ideas Into Software

There has been no shortage of creative technological ideas, but few have been

realized — it is a daunting task to transform an idea into a working prototype.

Indeed, software engineering — the process of expressing and refining ideas

in a programming language — has been regarded one of the most challenging

human endeavors. Programming innovations, such as procedural abstraction

and object orientation, have helped increase programmer productivity. However,

we still build software essentially the same way as we did decades ago. As a

community, we should rethink and redesign methodologies and techniques for

programming to make software development more natural and painless to help

people realize their creative ideas.

We believe that transforming ideas into software (TIIS) should be identified as

a long-term, catalytic mission for the software engineering community. Decades

of research and development have led to better languages, methodologies, tools,

environments, and processes. However, it is fair to say that most have been

incremental improvements and do not promise significant advances demanded

for the mission. Identifying and highlighting the TIIS mission can help unite

the community and clarify important research focuses to achieve significant

innovations.

The TIIS mission requires a multi-faceted approach, which we organize

around several key principles:
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• Quick experimentation: to provide developers with immediate feed-

back on their code modifications and allow them to experiment with

incomplete systems;

• Programming knowledge reuse: to allow developers quick access to the

vast amount of accumulated programming knowledge and wisdom;

• Proactive programming assistant: to monitor the developers’ actions and

proactively feed them relevant information about the program; and

• Intelligent, conversational interfaces: to provide alternative interfaces

that allow developers to express their intentions and conduct interactive

exchanges with the system.

The two core questions in programming are “What” and “How”: (1) “What”

specifies the intention, and (2) “How” concerns the solution. The first three

principles center around the “How” question, while the last principle the “What”.

Next, we discuss the above principles, and pinpoint specific research problems

and challenges.

1.2. Directions and Challenges

The vision for quick transformation of ideas into software is broad, and

advances in a number of directions are necessary and can move the state of

affairs forward. We discuss several directions that we have identified that can

be influential toward our goal. We have done early work along some of these

directions and hope the community as a whole can help accelerate the progress

toward improving programming and in particular, the pace of concretizing ideas.
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1.2.1. Quick Experimentation. Live programming has gained momentum

following Bret Victor’s presentation [Victor, 2012], in which he highlighted the

importance of immediate connection between the idea and observing its effect,

not just as a catalyst, but as an enabler, in an effective creative process. Since

then, several live programming environments, e.g. Xcode [Apple Inc., 2014]

(via its Playground feature), LightTable [Kodowa, Inc., 2012], and Log-

icBlox [Green et al., 2015] have been influenced by this principle.

Prorogued programming [Afshari et al., 2012] is a programming paradigm

that explicitly deals with the issue of quick experimentation. It is focused on

liberating the programmer from having to deal with programming concerns that

are necessary to get a partial, incomplete, program running and meaningfully

experiment with it and observe its behavior. It does so by providing the ability to

annotate function calls or type instantiations with a special keyword, prorogue.

The prorogue keyword acts as a hint for the compiler to let it know that the

implementation for the particular method being called is unavailable. At runtime,

after a prorogued call is executed, a lazy future object is returned in lieu of the

return value and the program execution continues. Later, if the value of that

object is consulted during the program execution, the user will be asked to

provide a concrete return value for the call interactively, while presenting him

the actual arguments in that specific invocation. The user interaction will then be

recorded and persisted for the rest of the program execution and for subsequent

runs, so that the program can be run and experimented with in spite of the

unimplemented method body.
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In effect, prorogued programming aids quick experimentation and top-down

design by letting the programmer freely rearrange his workflow as he sees fit,

rather than having to follow an order imposed by the toolchain they are using.

More interestingly, through hybrid computation, prorogued calls can act

as hooks to glue a program written in an imperative textual programming

language into more domain-specific programming systems that would capture

the human intent much better and in a more concise fashion for particular

purposes. The other end of hybrid computation does not even have to be an

imperative program. It can be a machine learning model that is trained to

provide the desired function that would be hard to express the host language.

Alternatively, it can be an interactive system that computes the desired output

through some user interaction. It is possible to have a hybrid computation engine

that is mostly similar to mainstream textual programming languages, except it is

much softer when it comes to interpreting programmer intent, leaving room for

the compiler to make educated guesses and at the same time be more lenient to

programmer mistakes, at the expense of precision.

1.2.2. Programming Knowledge Reuse. Software is rarely written from

scratch. Rather, programs are generally composed of smaller pieces. That makes

software engineering activity largely a system integration process. Software

engineers build more complex abstractions out of simpler ones and that lets

them build increasingly sophisticated systems. While seeing the effects of a

program live helps, the question remains that given that there are vast amounts

of source code available on the Internet, should we move from writing new code

to casting programming as a search problem?



1.2. DIRECTIONS AND CHALLENGES 6

The programming knowledge publicly available today comes in various forms,

such as questions and answers on Stack Overflow [Stack Overflow Inc., 2008],

sometimes including code snippets as well as answers, or through publicly acces-

sible code repositories such as the ones hosted on GitHub [GitHub Inc., 2008].

Commercial software development endeavors also collect internal data about

their development process, including the version history of the code base, data

about bugs and defects, and free-form knowledge in form of comments written

on the code review tool, wikis, and sometimes in other forms, like tracking

the time the programmers spend on various tasks, storing the search queries

they perform [Sadowski et al., 2015], or looking at their behavior within the

development environment.

In software engineering practice, major effort is expended to integrate various

systems and assemble a program from building blocks. Given the large amount

of code available, it is conceivable that what a programmer plans to write is

already written and available in some shape or form. Effective code search can

help the programmer discover the existing functionality from existing code bases

import it in the code being written [Microsoft Research, 2015].

With a mechanism to locate pieces of functionality through existing APIs or

code snippets mined from the Internet, we need to be able to run the resulting

mashup consisting of the different pieces and quickly experiment with them.

A programming paradigm like prorogued programming is well-suited for this

task. Proroguing programming concerns not only helps in piecing together the

building blocks of functionality discovered in the existing code bases, but also

provides a way to effectively insert holes in the program, which can be filled

later. Filling these holes can be done through traditional implementation, i.e.
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writing a body for the unimplemented method, or it can be done through more

innovative means, like acting as a signal in addition to the search query and

helping the search engine know the context in which the code snippet being

searched for is going to be live in. In addition to providing that context, the

input/output examples persisted during runtime invocation of prorogued calls

are a great source of input for an I/O-based code search engine and act as a

final filter for validation of code found by a simple keyword based code search

engine.

Collecting data about the programmer’s actions is helpful in other ways as

well. By looking at the actions the programmer performs within their develop-

ment environment, for example, it is possible to predict what they intend to

accomplish and propose shortcuts to achieve what they are aiming for more

efficiently [Gu et al., 2014, Murphy-Hill et al., 2012], thereby educating the

programmer and making them more effective in the future. Obviously, this can

help the IDE designer improve the development environment and simplify its

user interface as well.

Reusing programming knowledge is also beneficial in activities beyond writ-

ing code. For instance, we are able to leverage debugging knowledge accumu-

lated over the previous debugging sessions to automatically help the programmer

fix the new, similar, issues [Gu et al., 2012]. One way that has been accom-

plished is by collecting and matching the program traces that exhibit buggy

behavior and pattern matching new traces against the ones in the bug database,

revealing information about the nature of the bug and how it was previously

fixed, potentially helping the programmer understand and fix the new issue.
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1.2.3. Proactive Programming Assistant. Many programming analysis tools

have been developed. In practice, program analyses are primarily left to compile

time and later. We believe that we should surface as much relevant informa-

tion as possible to the programmer as soon as possible. Programming tools

should capture runtime data and run background static or dynamic analysis

while the code is being written, and guide the programmer throughout the

coding process. With the popularity of compiler-as-a-library solutions like lib-

clang [The Clang Team, 2007] or Roslyn [.NET Foundation, 2015], we are

already seeing this shift accelerating. Our editors are indeed becoming more

proactive in issuing compiler warnings and providing safe refactoring tools.

That said, in particular, the potential for capturing dynamic information and

surfacing it in useful ways while coding remains largely untapped. Among other

things, the captured data can feed into the live programming aspects of the

system, providing the user with a concrete view of the program, instead of a

purely abstract one relying solely on static analysis. We believe what information

is useful to the programmer and how to best surface it will be an exciting and

impactful avenue for further research.

Speculative analysis [Brun et al., 2010] and its follow up work can perhaps

be viewed as a specific instance of this direction, where the focus is on using

speculative analysis in the background to help developers make certain decisions.

1.2.4. Human Interface Innovation. Textual code is a precise and expres-

sive medium for communicating intent. Looking back at the past half century

of programming history, it is hard to see it going away anytime soon. However,

most of the computing devices shipped today are phones that do not have a
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physical keyboard and mouse. While it may seem unlikely that most professional

programming will ever be done on such devices—at least without some external

accessories—, it is almost certain that end-users would want to use them to

accomplish custom computational goals or control systems by defining actions

that would happen in response to specific events.

Accomplishing this requires innovation both on the human interface front

and on the backend engine. It is likely that many of the functionalities will be

exposed via artificial intelligence-based assistants, and will be expressed as inter-

active voice conversations. On the backend, we need to build more interactive

programming systems that can make educated guesses and synthesize programs

with incomplete specification, and interactively adapt them as specifications

perfected by gradually asking for and capturing additional user input.

Moreover, even on more traditional computers, e.g. desktops and laptops,

we need fundamental interface innovations to support alternative program-

mers [Schachman, 2012], i.e. people who are not professional programmers

and write programs that do computation and produces a result, which is the

object of interest to them, as opposed to the program itself. An important class of

people who would benefit from such interface innovations are people doing anal-

ysis on various data sets. Already, tools like IPython [Pérez and Granger, 2007]

that have more interactive characteristics and suit domain-specific use-cases well

have gained widespread adoption in that community. We believe that there is

enormous potential to carry out research that would substantially impact the

life of alternative programmers in a positive way in this area.
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1.3. Outline

In this chapter, we have advocated the TIIS mission for quick realization of

ideas as working systems and the modernization of our techniques and tools

to better support programming in the coming decades. Given the ubiquity of

connected computer systems — mostly in the form of smartphones — we are

just at the beginning of an explosion of ideas and applications that wait to be

realized by professional developers or end users. Consequently, it is even more

important that we do our best as a community to improve our programming

practice to adapt it for the future challenges we will likely face. Achieving the

TIIS mission will require significant efforts spanning many directions. We have

identified, as a first step, several directions centered around four principles. We

hope that the community unite to move the state-of-the-art forward toward the

TIIS vision along these and other important pertinent directions.

In the chapters that follow, we deep dive into a few of these directions

and further discuss how we can leverage some of the new techniques that we

developed to move towards acheiving this mission.
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CHAPTER 2

Liberating the Programmer with

Prorogued Programming

Programming is the process of expressing and refining ideas in a program-

ming language. Ideally, we want our programming language to flexibly fit our

natural thought process. Language innovations, such as procedural abstrac-

tion, object and aspect orientation, have helped increase programming agility.

However, they still lack important features that a programmer could exploit to

quickly experiment with design and implementation choices.

We propose prorogued programming, a new paradigm more closely aligned

with a programmer’s thought process. A prorogued programming language

(PPL) supports three basic principles: 1) proroguing concerns1: the ability to

defer a concern, to focus on and finish the current concern; 2) hybrid computa-

tion: the ability to involve the programmer as an integral part of computation;

1A concern is any piece of interest or focus in a program [Dijkstra, 1974].



2.1. INTRODUCTION TO PROROGUED PROGRAMMING 12

and 3) executable refinement: the ability to execute any intermediate program

refinements. Working in a PPL, the programmer can run and experiment with an

incomplete program, and gradually and iteratively reify the missing parts while

catching design and implementation mistakes early. We describe the prorogued

programming paradigm, our design and realization of the paradigm using Pro-

rogued C#, our extension to C#, and demonstrate its utility through a few use

cases.

2.1. Introduction

Programming is one of the most challenging human endeavors, as it forces a

programmer to simultaneously manage many, at times even conflicting, concerns.

It is a gradual, iterative process of expressing, experimenting with, and refining

ideas in a programming language. Advances in programming language design

have helped programmers focus on important programming-related concerns

rather than less critical ones [Brooks, 1995]. Nonetheless, opportunities for

improvement remain, especially during program construction.

For example, a programmer may need to invoke a function that has not yet

been written to test and experiment with other parts of a system. In mainstream

languages, the compiler will not compile code that depends on a nonexistent

function. To satisfy the compiler, a programmer must either implement the

function or write a stub for it. This may break the programmer’s train of thought

and force a distracting abstraction shift upon her [Czerwinski et al., 2004,

Iqbal and Horvitz, 2007]. Writing a stub requires typing a function declaration,

and, in safer languages like Java, convincing the compiler that the stub returns
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correctly. Even when a refactoring tool helps generate a stub, that stub is code

that is likely to change and whose maintenance can be distracting.

This phenomenon may explain the increasing industrial adoption of dynamic

languages2 like Python and JavaScript. However, the status quo is little better

in dynamic languages. While dynamic languages dispense with ahead-of-time

compilation and can start running an incomplete program, the interpreter halts

execution when it fails to dispatch a call to an unimplemented method. Moreover,

the execution of incomplete programs comes at the expense of compile-time

guarantees that a statically-typed language provides.

2.1.1. Prorogued Programming. We propose a new programming para-

digm, prorogued programming, to lift these restrictions: it allows programmers

to compile and run incomplete programs so they can test and refine work-in-

progress. It supports the following three basic principles.

Proroguing Concerns. Prorogued programming allows a programmer to pro-

rogue a concern so that she can continue her train of thought and quickly

experiment with high-level design and implementation decisions. A prorogued

concern can be a yet-to-be-implemented function whose implementation would

derail the current task, is being implemented by another developer, or whose

need is unclear pending a high-level design decision. To achieve this, we let the

programmer designate function invocations as prorogued, explicitly making the

compiler or interpreter aware that the callee is not yet implemented. When it

encounters a prorogued call, the compiler continues translating and statically

checking the program. During execution, the prorogue dispatcher intercepts a

2In this chapter, we refer to mainstream interpreted implementations of dynamically-typed
languages as dynamic languages.
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prorogued call and supplies a placeholder instance, a prorogued value, as its

return value.

Hybrid Computation. A prorogued program continues its execution under the

semantics of the host language until it reaches a prorogued call. At that point, it

brings a human into the process: it displays the arguments of the most recent

call to a prorogued function and asks the programmer to supply a return value.

The prorogue dispatcher saves the programmer’s response. Subsequent uses of

the prorogued value, or prorogued invocations with identical arguments, do

not need interactive resolution: normal execution continues with the previously

user-supplied value. By bringing humans into the process, we can enable a more

meaningful execution for partial implementations than mechanically generated

stubs that do not capture programmer intent. Prorogued programming is there-

fore ideal for problems for which a general solution is hard to implement but

for which it is easy for humans to generate examples [von Ahn et al., 2008,

von Ahn and Dabbish, 2004, von Ahn et al., 2003]. section 2.5 discusses a

few such examples using Prorogued C#, our realization of prorogued program-

ming for C#.

Executable Refinement. As programming is the iterative process of expressing

and evolving programs, prorogued programming lets the programmer compile,

statically analyze, execute, and observe the behavior of program refinements, or

incomplete programs. This allows the compiler to typecheck and catch errors

throughout program construction. Prorogued programming is about maintain-

ing incomplete, but readily testable programs. With little effort, these partial

programs are compilable and executable, so that a developer can seamlessly

transition to experimenting with her code at any time. To this end, a prorogued
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language interacts with a user to enable the execution of an incomplete program.

Integrating human and traditional machine computation, this hybrid model

opens up opportunities for more productive program construction, including

crowdsourcing (subsection 2.5.1).

In short, prorogued programming helps programmers hew to their natu-

ral workflow, evolving the program by focusing on the top-down design and

implementation, and filling in the details as needed [Wirth, 1971], thus avoid-

ing housekeeping merely to satisfy a language’s implementation. As a result,

the development team can iterate more quickly, recognize fundamental and

high-level design and implementation errors throughout program construction.

Furthermore, a program’s modules can run independently by proroguing their

dependencies.

Prorogued programming targets functionality for which the developer has

a few input-output pairs in mind. In this case, a prorogued call enables the

developer to explore the caller’s logic. When the developer does not have a

small set of input-output pairs in mind or when execution generates inputs

outside of that set, excessive interaction can ensue. Most often the solution

is to wrap the prorogued call in logic that suppresses unwanted interactions.

Further, we acknowledge that, most of the time the programmer must eventually

write the code that realizes a prorogued method. The fact that we do not

eliminate this work is orthogonal to what prorogued programming does

provide — viz, new and better workflows. First, prorogued programming

gives programmers the power to defer that work until they can, and wish to,

concentrate on it. Second, prorogued programming allows parallel development

on prorogued methods: while one developer continues to develop using a
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prorogued call, another developer can examine its IO store — the collected

input/output values — and begin its implementation. The existence of the IO

store also may facilitate the implementation of the module it approximates

by allowing the implementor to study the IO store and gain insight. The

IO store may also provide useful input to synthesis tools that learn from ex-

amples [Harris and Gulwani, 2011, Gulwani, 2011, Witten and Mo, 1993,

Lau et al., 2003a, Lau et al., 2000, Lau et al., 2003b] and test-based

code search tools [Reiss, 2009, Lemos et al., 2007, Lemos et al., 2011,

Jiang and Su, 2009].

The prorogued programming paradigm improves collaborative software

development by reducing interpersonal and cross-team dependencies. One

team can continue development by proroguing method calls across components

without having to wait for a fixed interface to be supplied by the team writing

the underlying component. Also, prorogued programming facilitates component

developments by means of proroguing stateful types in addition to simple

methods. Moreover, it reduces the risk of stalling development while selecting

third-party components since prorogued methods can proxy those components,

allowing development to continue while a choice of component vendor is being

made.

2.1.2. Main Contributions. This chapter makes the following contribu-

tions:

• We introduce a new programming paradigm that allows programmers

to defer programming concerns and finish their current task. In so
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doing, it makes program construction more closely conform to how

humans actually think when programming.

• We present the design and realization of the prorogued programming

paradigm in C#. In particular, we discuss and motivate our design

decisions of incorporating and supporting prorogued programming in a

real-world programming language.

• We discuss software engineering implications of the prorogued pro-

gramming paradigm and show its power, applicability, and universality

through a collection of case studies.

• We discuss open issues, such as utility and usability, applicability, pro-

gram evolution and reification, and possible approaches for addressing

them.

The rest of this chapter is organized as follows. We first use an example to

motivate prorogued programming and illustrate its use (section 2.2). Next, we

formalize prorogued programming for a small functional language (section 2.3).

section 2.4 describes our design and realization of prorogued programming

for a real-world language, C#. We then use a few examples to highlight the

utility of prorogued programming (section 2.5). section 2.6 discusses a few

open issues and opportunities for prorogued programming. Finally, section 2.7

surveys related work, and section 2.8 concludes.

2.2. Illustrating Example

To motivate and illustrate the utility of the prorogued programming para-

digm, we describe a scenario in which a programmer, call her Lily, builds an

application that reads a file named "mail.txt" containing a simplified raw



2.2. ILLUSTRATING EXAMPLE 18

1 static void Main() {
2 string input =
3 prorogue ReadFile("mail.txt");
4 PrintEmail(input);
5 }
6 static void PrintEmail(string input) {
7 string from =
8 prorogue GetHeader(input, "From");
9 string subject =

10 prorogue GetHeader(input, "Subject");
11 string body =
12 prorogue GetBody(input);
13 Console.WriteLine("From: " + from);
14 Console.WriteLine("Subject: " + subject);
15 Console.WriteLine(body);
16 }

FIGURE 2.1. The simple mail parser in Prorogued C#.

email message. It pretty-prints the relevant parts of the message such as its

sender, subject, and body. Lily first writes the high-level aspects of the mail parser

application; she decomposes her task into the methods ReadFile, GetHeader,

and GetBody, then prints the parsed output. Even though these methods do not

yet exist, Lily may wish to experiment with her high-level design. Two options

exist: 1) she can fully implement these missing methods or 2) provide stubs for

them.

At this point, she only wishes to experiment with the high-level implemen-

tation decisions and ignore the low-level details of how to implement these

missing methods. Thus, the first option would be unnecessarily disruptive. So

she takes the second option and writes stubs that merely return the empty string

for the missing methods. Unfortunately, this option is also disruptive: 1) she
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1 static void Main() {
2 var db = prorogue
3 new UserDatabase { Server = "server1" };
4 db.ConnectionTimeout = 1000;
5 var userName = Console.ReadLine();
6 var password = Console.ReadLine();
7 if (db.Authenticate(userName, password)) {
8 string input =
9 prorogue ReadFile("mail.txt");

10 PrintEmail(input);
11 } else Console.WriteLine
12 ("Authentication failed.");
13 }

FIGURE 2.2. Mail program using a prorogued mock database.

needs to write the stubs; 2) the stubs, although simple, can contain errors, which

she would have to fix; and 3) the stubs must return artificial values because Lily

does not know with which inputs they may be invoked. In summary, neither

option is ideal.

While writing these functions is not particularly hard and Lily can implement

them with a couple of regular expressions, she will probably need to look for

and read about the regular expressions API, then experiment with her regular

expression to ensure it is correct. As Jamie Zawinski famously said, she now has

two problems. At the very least, refining her regular expressions will distract

her from her current task, forcing her to context switch and work at a different

level of abstraction.

Now, let us see how Prorogued C# can aid Lily. As above, Lily first writes the

high-level aspects of the program, but with the power to prorogue the details.

Figure 2.1 depicts this initial draft of Lily’s mail parser. The Prorogued C#
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compiler compiles this code, even though the methods ReadFile, GetHeader,

and GetBody do not yet exist. Here, we assume that Lily has in mind a small

set of emails she can use as input while testing her incomplete program and

from which she can quickly extract the appropriate output. The first time the

program runs, the prorogue dispatcher initiate hybrid computation and asks Lily

for return values of each prorogued method call, and continues execution and

prints out the values received from her at lines 8, 10, and 12. The next time the

program runs, it simply prints out those values and exits, since the previous run

saved Lily’s responses and the method arguments were unchanged. When this

happens, the prorogue dispatcher simply returns the saved values.

Prorogued programming allows Lily to prorogue types as well as methods.

For instance, Lily can use prorogued programming to instantiate a mock database

and begin to flesh out her authentication logic, as shown in Figure 2.2. We apply

the prorogue keyword to the constructor call on line 3 to create a mock object

on which all method calls that are not already implemented in UserDatabase

type, such as the call to Authenticate on line 7, are prorogued, like those

in Figure 2.1. The assignments on line 3 and line 4 simply create properties

within the db instance. After each change, prorogued programming allows Lily

to immediately compile, execute, and experiment with the refined, albeit still

partial, program.

Later, Lily discovers a built-in method to read a text file and return its con-

tents as a string. To use it, Lily replaces the ReadFile invocation with

the framework-provided method, removing the first prorogued call: string

input = File.ReadAllText("mail.txt");. After this change, the pro-

gram actually reads the "mail.txt" file. The program interacts with the user
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to produce a result every time the file contents is changed. Again, it persists the

result of that hybrid computation for reuse in subsequent calls.

The fact that we were able to prorogue the ReadFile method highlights

a useful property of prorogued programming: the programmer can continue

testing a program that relies on an external resource or module when that

resource or module is not readily available. The program can execute and be

debugged without having to resort to explicit mocking techniques, simply by

proroguing a call that depends on the external resource. To make it easier to

debug the program during the construction phase, we can prorogue the invo-

cation to File.ReadAllText, shadowing the existing method implementa-

tion: string input = prorogue File.ReadAllText("mail.txt");.

When it encounters prorogue applied to a call to a preexisting function, the

compiler warns the developer that it will ignore that function’s existing imple-

mentation and treat it as a prorogued method. When it reaches the shadowing

prorogued function call, the program presents its inputs and prompts the pro-

grammer for a return value. The programmer can then choose a return value

that drives execution to a particular program point.

We can leverage the input/output pairs captured in the interactive process to

generate code via reification. Reification removes the prorogue keyword from

call sites and generates code in the form of an if-else chain that, to handle

unknown inputs, culminates in a prorogued call. For existing implementations,

like the prorogued call to File.ReadAllText, reification simply removes the

prorogue keyword and issues a warning. In an IDE with first-class support for

prorogued programming, the reification tool will be integrated in the IDE. The
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Program p ::= p, fun f (x) = e | ε
Expression e ::= n | x | e1 op e2

| if e e1 e2
| let x = e1 in e2
| f (e)
| prorogue f (e)

FIGURE 2.3. The syntax of the simple prorogued language Fp,
which adds, to a standard expression language, the new syntactic
construct “prorogue f (e).”

resulting program is immediately runnable. Typically, the programmer fills in

the final implementation details of each, formerly prorogued, method.

It is possible to perform a global reification as well as selectively specifying a

set of methods to reify. If the function is naturally a direct mapping between a

small set of inputs and outputs (e.g. a function returning a string representation

for enum values), the reified implementation might be immediately useful.

For functions exhibiting more complex behavior, the programmer can use the

generated code as a skeleton and write code for the custom behavior. The pairs

collected by running a prorogued program can also be used to generate unit

tests automatically (section 2.6). Programmers can use these tests to ensure that

the behavior of the method’s implementation matches the expected behavior as

collected when the method was prorogued.

2.3. A Prorogued Programming Language

This section formalizes the syntax and semantics of a small prorogued pro-

gramming language Fp to clarify our presentation. Our actual implementation

(Section 2.4) is an extension to C#.
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〈p,σ ,κ,n〉 ⇓ 〈κ,n〉 [const]

〈p,σ ,κ,x〉 ⇓ 〈κ,σ(x)〉 [var]

(A) Semantics of const and var.
〈p,σ ,κ,e1〉 ⇓ 〈κ1,v1〉
〈p,σ ,κ1,e2〉 ⇓ 〈κ2,v2〉

〈p,σ ,κ,e1 op e2〉 ⇓ 〈κ2,v1 JopK v2〉
[op]

(B) Semantics of op.

〈p,σ ,κ,e〉 ⇓ 〈κ1,0〉
〈p,σ ,κ1,e2〉 ⇓ 〈κ2,v2〉

〈p,σ ,κ, if e e1 e2〉 ⇓ 〈κ2,v2〉
[if-false]

(C) Semantics of if-false.

〈p,σ ,κ,e〉 ⇓ 〈κ1,1〉
〈p,σ ,κ1,e1〉 ⇓ 〈κ2,v1〉

〈p,σ ,κ, if e e1 e2〉 ⇓ 〈κ2,v1〉
[if-true]

(D) Semantics of if-true.

〈p,σ ,κ,e1〉 ⇓ 〈κ1,v1〉
〈p,σ [v1/x],κ1,e2〉 ⇓ 〈κ2,v2〉

〈p,σ ,κ, let x = e1 in e2〉 ⇓ 〈κ2,v2〉
[let]

(E) Semantics of let.

FIGURE 2.4. The simple prorogued language Fp, which adds,
to a standard expression language, the new syntactic construct
“prorogue f (e).” Its dynamic semantics is specified in the big-step
style, where 1) JopK denotes the semantic interpretation of op,
2) Φ f the oracle for a prorogued function f , and 3) ⊕ function
overriding: κ2 = κ1⊕ (( f ,v),v1) iff κ2( f ,v) = v1 and κ2( f ′,v′) =
κ1( f ′,v′) for all ( f ′,v′) 6= ( f ,v). Continued in Figure 2.5

2.3.1. Syntax and Semantics of Fp. Fp extends a standard core expression

language; Figure 2.3 shows its syntax and Figure 2.4, its semantics. An Fp

program consists of a list of functions, each of which has a single integer
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〈p,σ ,κ,e〉 ⇓ 〈κ1,v〉 p( f ) = λx.e1
〈p,σ [v/x],κ1,e1〉 ⇓ 〈κ2,v1〉
〈p,σ ,κ, f (e)〉 ⇓ 〈κ2,v1〉

[call]

(A) Semantics of call.

〈p,σ ,κ,e〉 ⇓ 〈κ1,v〉 κ1( f ,v) = v1

〈p,σ ,κ,prorogue f (e)〉 ⇓ 〈κ1,v1〉
[p-call-old]

(B) Semantics of p-call-old.

〈p,σ ,κ,e〉 ⇓ 〈κ1,v〉
κ1( f ,v) =⊥ Φ f (v) = v1

κ2 = κ1⊕ (( f ,v),v1)

〈p,σ ,κ,prorogue f (e)〉 ⇓ 〈κ2,v1〉
[p-call-new]

(C) Semantics of p-call-new.

FIGURE 2.5. Continued from Figure 2.4

argument and an expression as its body. With the exception of the prorogue

construct, the expression sublanguage is standard. An integer literal is n and x

is a variable, over integers. We use op to denote a primitive operation whose

semantics is given by JopK, e.g., J+K is integer addition. As usual, if and let

denote the conditional and local binding constructs. Function invocation is f (e)

and prorogue f (e) denotes a prorogued function invocation, whose semantics

we formalize next.

Figure 2.4 give the dynamic, big-step semantics of Fp. The value domain is

Value = Z∪{⊥}= Z⊥. Evaluation judgments have the form 〈p,σ ,κ,e〉 ⇓ 〈κ ′,v〉

where
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• the program p maps a function name f to its definition: 1) p( f ) = λx.e

if p contains “fun f (x) = e”, and 2) p( f ) =⊥ otherwise;

• the state Σ 3 σ : Var → Value maps variables to values;

• the IO store κ : F×Value → Value maps a prorogued function f and an

argument i to an output o, i.e., κ( f , i) = o (where F denotes the set of

functions);

• e is the expression being evaluated;

• κ ′ is the updated IO store after evaluating e; and

• v is the result of evaluating e.

The evaluation rules are straightforward. For conditionals, we let 0 denote

false and 1 denote true. The term σ [v/x] denotes an updated state σ ′ where

σ ′(x) = v and σ ′(y) = σ(y) for all y 6= x.

The [p-call-old] and [p-call-new] rules are specific to prorogued program-

ming. The programmer prorogues a function to defer its implementation. When

code containing a prorogued call of the function f executes, if f has been in-

voked with the argument v, the previously returned value v1 stored in the IO

store κ1 is returned (as shown in the [p-call-old] rule). Otherwise the oracle

Φ f is consulted, as shown in rule [p-call-new], and the IO store is updated to

yield the new κ2 (via ⊕, the function override operator). Initially, the IO store

κ is empty; calls to the oracle Φ f populate it, so its contents are correct. To

realize the oracle, we apply our hybrid computation principle, and involve the

programmer. We describe a concrete realization of this interaction in section 2.4.

From the above discussion, we see that Fp naturally supports the three

principles of prorogued programming: 1) prorogue f (e) allows the programmer
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to prorogue the “concern” of implementing the function f (proroguing concerns);

2) humans realize the formal oracle Φ and compute the result of prorogued

function invocations (hybrid computation); and 3) an Fp program, starting

from the minimal “prorogue main()”, is executable at each refinement step, as

it evolves (executable refinement).

In this simple functional language, prorogued functions are pure. A pro-

grammer who wishes to update state, such as a global, must use assignment to

write the return value of a prorogued function into the desired location, as with

g := prorogue f (x).

THEOREM 1 (Correctness of Prorogued Semantics). For any program p, state

σ , and expression e,

∀κ,v(〈p,σ ,Φ,e〉 ⇓ 〈κ,v〉 ⇒ 〈p,σ , /0,e〉 ⇓ 〈_,v〉).

2.3.2. Reifying Prorogued Functions. As a programmer stepwise refines

a prorogued program, that programmer will, in general, implement a pro-

rogued function and remove the prorogue keyword from its call sites to convert

them into standard method calls. We call this process reification. Although

it only makes sense in the context of a prorogued language, reification is or-

thogonal to the prorogued programming paradigm, since it is, in essence, an

instance of stepwise refinement [Wirth, 1971]. That said, reification will be

integral to a programmer’s workflow when using a prorogued language. Be-

yond the manual implementation of the prorogued function, we discuss a few

rewriting strategies that assist the programmer in replacing prorogued calls:
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1) deploy a version of the program that still contains prorogued calls; 2) con-

vert the IO store into code; 3) leverage test-based code search techniques

[Reiss, 2009, Lemos et al., 2007, Lemos et al., 2011, Jiang and Su, 2009]

to find reusable implementations; and 4) employ synthesis by example tech-

niques [Harris and Gulwani, 2011, Gulwani, 2011, Witten and Mo, 1993,

Lau et al., 2003a, Lau et al., 2000, Lau et al., 2003b] using the IO store as

input.

The first strategy leaves the prorogued calls untouched. It may be applicable

for programs containing functionality that can be approximated by a set of

input/output pairs and complex enough not to be profitable to implement. The

second strategy reifies the set of IO pairs as an if-else chain or a switch

statement. Studying the set of IO pairs in this executable and modifiable format

may help a programmer gain insight into how to devise an algorithm that

abstracts the behavior encoded in the set. The last two strategies rest on the

observation that the IO stores that a prorogued program produces may provide

a fertile new source of applications and problems for test-based code search and

program synthesis.

THEOREM 2 (Correctness of Reification). For any program p, state σ , and

expression e,

∀κ,v(〈p,σ , /0,e〉 ⇓ 〈κ,v〉 ⇒ ∀θκ〈θκ(p),σ , /0,θκ(e)〉 ⇓ 〈 /0,v〉)

where θκ denotes any correct reification strategy w.r.t. κ , i.e., θκ( f )(i) = κ( f , i) for

all f and i with κ( f , i) 6=⊥.
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2.4. Design and Realization of Prorogued C#

To experiment with prorogued programming, we extended the Mono C#

compiler [de Icaza et al., 2010], an open source implementation of C#, a pop-

ular, real-world language. We chose a statically typed language to demonstrate

the universality of the prorogued programming paradigm. This section discusses

the design choices we made and interesting implementation details.

2.4.1. The Language. To realize the prorogued programming paradigm in

C#, we amended the C# grammar [Hejlsberg et al., 2010] to include prorogue

as a keyword and added the production

prorogued-invocation-expression ::=

prorogue primary-expression ( argument-list )

to decorate invocation expressions. In the case of a chain of method invocations,

prorogue binds to the first invocation in the chain: the Prorogued C# compiler

parses prorogue a().b().c() as (prorogue a()).b().c(). While a

programmer might prefer prorogue to bind to the last call in the chain than

the first, this design decision is a more natural fit to C#, since it is consistent

with left-associativity of the dot operator and other constructs. As usual, the

programmer can resort to parentheses to override this behavior.

By default, a simple prorogued call like prorogue Foo() assumes the

callee is a static method in the current type. To prorogue a method call in

another type, that type must qualify the method name:
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prorogue FooNamespace.BarClass.Baz( arg1, arg2). The above ex-

pression prorogues a call to the static Baz method in the context of BarClass

declared in the FooNamespace namespace.

To prorogue an instance method, a programmer must prepend the prorogue

keyword to an instance method invocation expression: prorogue

obj.InstanceMethod(arg). Of course, an arbitrary expression yielding a

value can replace obj. In the above example, we assume that InstanceMethod

is an instance method in the context of the static type of the receiver expression,

obj. Proroguing an instance method of the type in which a prorogued call

appears is a special case, in which the programmer uses this as the receiver:

prorogue this.InstanceMethodInCurrentType(arg).

2.4.2. Prorogued Types. Prorogued C# also supports proroguing types.

This is achieved by prepending an object-creation-expression with the prorogue

keyword which is supported by the

prorogued-creation-expression ::=

prorogue object-creation-expression

production in the grammar. Extending the idea of proroguing concerns from

methods to an entire type, potentially with mutable state, enables the program-

mer to prorogue the design of a module or component while writing the client

code that consumes it.

A prorogued type is instantiated using a regular type that it extends. It

acts as a proxy, dispatching implemented methods to the underlying type while

treating the rest as prorogued calls. Supporting prorogued types complicates
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1 var msg = prorogue new Message {
2 From = "from@email.com",
3 To = "to@email.com",
4 Delivered = false
5 };
6 msg.Send(login, passwd);
7 Console.WriteLine(msg.Delivered);

FIGURE 2.6. Example of a prorogued type; the UI interaction for
the prorogued call on line 6 happens on line 7 where the value of
msg.Delivered can mutate as a result of the interaction.

lazy evaluation, discussed below in subsection 2.4.5, and requires the handling

of mutable state, in contrast to simple prorogued functions that are pure value-

to-value transformations. In principle, a method invocation on a prorogued

type can still be thought of as a value-to-value transformation in which the

state mutation is an element in the return tuple. The prorogue dispatcher then

dissects the return tuple and mutates the state of the prorogued instance. Of

course, the user interface is smart enough to hide this implementation detail and

lets the user manipulate state as if the function itself, as opposed to prorogue

dispatcher, was mutating state.

Sometimes, a prorogued type relies on global state, external input, or state

that is not implemented yet. For instance, while mocking an object that repre-

sents a network stream, we might want to make two consecutive ReadLine()

calls return two distinct values, despite the fact that it is called with the same

set of arguments, i.e. none, both times. The canonical pattern for preventing

the prorogue dispatcher from simply returning the cached value from the first

call in response to the second, when no explicit state change has occurred, is to

introduce one, i.e. change the value of a dummy property in the user interface
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to implicitly capture the state of the object during the execution of the program.

Of course, this solution will not scale to complex interactions with the mocked

object, but recall that prorogued programming’s purpose is to record and replay

a relatively small set of behaviors from the developer to allow that developer to

continue her current task. In this case, the user, upon returning from the first

call, assigns the value 1 to a property named readCount of the instance in the

UI. Since the instance does not have such a member, it is added to the type on

the fly, which causes the prorogue dispatcher to ask for a new return value when

it dispatches the second call, since the receiver object’s state has changed.

var netStream = prorogue

new NetStream { Host = "server", Port = 80 };

string line1 = netStream.ReadLine();

Console.WriteLine("Line 1: " + line1);

string line2 = netStream.ReadLine();

Console.WriteLine("Line 2: " + line2);

2.4.3. The IO Store. The IO store maps input to outputs. The design ques-

tion it presents is to decide what it should accept as inputs and outputs. Should

IO store contain code (including values) or only values? If only values, should it

store instances of user-defined types or only instances of system types?

Code vs. Values. Binding code to a prorogued call would allow a programmer

the flexibility of handling some inputs with code, while simply returning values

for the rest. Unfortunately, binding code to a prorogued function in the IO

store would come at some cost. It would make programs more complicated
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T0 transmute(T1 x, T2 y) {
if (x < 0)
return 0;

else
return prorogue transmute(x, y);

}

FIGURE 2.7. In prorogued languages, a developer can partially
implement a previously prorogued function to handle part of its
input domain and prorogue the rest, reusing the IO store populated
before partial implementation.

and harder to understand by scattering executable logic across the prorogued

program and the IO store. One would have to decide whether or not to allow

nested prorogued calls and, if so, their execution semantics. It would prevent

lazy dispatch of prorogued calls. The ability to write code in response to a

query from a prorogued call may distract a programmer into doing just that,

defeating the principle of proroguing concerns. Finally, it violates the principle

of simplicity and, in the end, is unnecessary, as we demonstrate next.

When a programmer is ready to partially implement a prorogued function,

that programmer has two choices: 1) reify the prorogued function’s IO into code,

as described in subsection 2.4.7, and edit the result or 2) define the formerly

prorogued function in the host language, making prorogued calls to the function

as desired. Figure 2.7 depicts this latter case. In essence, the programmer

writes logic to directly handle some cases, while proroguing the rest to the

previously populated IO store. Partial implementation allows a developer to

suppress unwanted interaction with a prorogued function. For instance, if a

programmer learns that a frequently called, prorogued function should return 0

whenever its first input is negative, the programmer simply defines transmute



2.4. DESIGN AND REALIZATION OF PROROGUED C# 33

as shown in Figure 2.7. This strategy of pushing down a prorogued call into

a partially implemented function is always possible. Therefore, a prorogued

language loses no expressive power by restricting prorogued functions to values.

Indeed, an IDE for a prorogued language could provide a developer with the

illusion of an IO store that intermixes code and values by maintaining that

store as a non-prorogued function that makes prorogued calls as appropriate.

Implementation of a function is complete when the prorogued call is detritus.

System vs. User-defined Types. The next question is whether to allow the IO

store to contain instances of user-defined types or restrict it to system-defined

values, instances of values defined by type in a prorogued languages default

distribution of libraries. The argument for the latter is mainly simplicity: working

with values defined over a fixed set of types may allow optimized layout of the

IO store and restrict the complexity of queries, forcing the programmer to

deconstruct a potentially complex input into values defined over a prorogued

language’s constituent, well-known types. This restriction might also address

the problem with objects pointed to by reference type arguments mutating

between a call site and lazy dispatch (subsection 2.4.5) since, in principle,

we could traverse any referenced data structure. This design choice has two

problems. First, it violates the principle of least surprise by handling system

types, the set of which is not even clearly defined, differently than user-defined

types, a distinction that C# itself does not make. Second, it does not give

the programmer sufficient power to abstract inputs, e.g. into intervals. For

example say the programmer knows that [0..10]→ 5. If Prorogued C# restricted

its user to system types, encoding this fact into the IO store would require 10

tedious and distracting interactions, dragging out the handling of this concern
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int foo(int x) {
if (isPrime(x))
return prorogue primeFoo();

else
return <previous logic>;

}

FIGURE 2.8. Extending existing functions with prorogue.

and violating the first principle of prorogued programming which is to alleviate

distraction by allowing programmers to defer work. Worse, what if the range

were over floating-point numbers? Of course, the developer could resort to

partially implementing a prorogued method, writing if (x >= 0 || x <=

10) y = prorogue foo(5); but this too would be cumbersome and run

counter to prorogued programming’s central goal of concern deferment.

Thus, we decided to restrict the IO store to map values to values, over

arbitrary types. To persist across runs, these types must be serializable. User-

defined types give the programmer the power to abstract inputs into classes that

can arbitrarily partition the space of underlying values. The programmer can

simply abstract a partition into a class and pass instances of that class to a pro-

rogued function. So for instance, a developer could define incomeInterval

as new Interval { Start = (int)Math.Floor(income / 1000),

End = (int)Math.Ceiling(income / 1000) }, then use the resulting

interval in a prorogued call — var taxRate = prorogue

GetTaxRate(incomeInterval);. User-defined types give the programmer

similar power over the output. Indeed, nothing prevents the programmer from

defining a prorogued method that returns an expression tree, which the program

executes.
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Extending Existing Functions. A consequence of our decision to disallow

placing code in a prorogued function’s data store is that prorogued methods are

restricted to leaf nodes in the call graph. To prorogue an existing function whose

functionality you want to extend, you add a prorogued call into its function

body along the path you wish to extend. You may even need to add that path.

For instance, imagine that you wanted a function foo that previously did not

distinguish between composites and primes to handle primes differently. You

would modify foo in the host language to add the path that makes a leaf call to

a prorogued function: Of course, we could also implicitly resort to user-defined

types here and rewrite this example as return prorogue foo(prorogue

isPrime(x));.

The design decision to implement prorogued functions as value-to-value

transformations under the hood makes prorogued programs simpler, prevents

the scattering of executable logic across the program and its IO stores, and allows

prorogued functions to be pure, which allows the caching of results and the

lazy evaluation of calls at the cost of reference and output parameters. Without

giving up simplicity, prorogue can leverage the abstraction of user-defined types

that the host language provide to reclaim any expressive power lost by restricting

IO stores to values, as opposed to executable code.

2.4.4. Typechecking. To typecheck a prorogued call, we could 1) force the

programmer to declare its signature, 2) infer the signature, or 3) use a generic

signature. Two principles guided our design here: proroguing concerns and

coexisting naturally with the host language’s type system. In this context, the

principle of proroguing concerns implies that our choice should not distract the
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programmer with concerns other than the one on which she is currently focused.

This principle leads us to reject the first choice, that of forcing the programmer

to declare each prorogued function’s signature, since, in general, a programmer

might prorogue a function precisely because they wish to defer deciding its

signature.

One could infer the signature of a prorogued function from the types of the

arguments at a prorogued call site. One might be tempted to treat one of the call

sites specially and extract a signature from it. However, there is no principled,

general way to do so, short of revisiting the first design choice and involving

the programmer. Thus, we extract a signature from each call. For example,

in var var1 = prorogue Foo(5); the type of Foo is int → dynamic,

while that of var var2 = prorogue Foo("hello, world"); is string

→ dynamic. This design choice implicitly overloads Foo whenever the com-

piler encounters a new signature, and therefore creates a different prorogued

function with its own IO store. To avoid unintended method overloading, the

programmer would have to tediously cast each call to the desired base class;

for var2, the example is var var2 = prorogue Foo((object)"hello,

world");. Not only is this cumbersome, forcing unnatural, explicit casts to

a shared ancestor, but it runs counter to the spirit of prorogued programming,

since it distracts the programmer with details from a concern other than the

one she is working on, thereby defeating some of the benefits of prorogued

programming.

We could bypass C#’s type system and build our own that infers a prorogued

function’s signature from all the calls to it. For instance, we could experiment

with equality-based unification. However, this approach violates our design
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principle of peaceful coexistence with the host language, so we do not consider

it further. Another approach is to infer the signature from all the prorogued calls

to a particular name. In C#’s class-based subtype system, every type is a subtype

of object. Thus, this approach would be unable to distinguish between type

errors and intended polymorphism because all types unify at object, if not

before.

This last approach to signature inference is effectively indistinguishable from

the third choice but requires more work, so, for simplicity, we choose the third

option: in Prorogued C#, the type of a prorogued invocation expression is

dynamic and the type of its parameters is always object. As a consequence

of the fact that its parameters all have type object, overloading prorogued

methods is possible only if the number of parameters vary. Since its return type

is dynamic, the return value of a prorogued method call is implicitly convertible

to any type. With this assumption, the Prorogued C# compiler typechecks a

program with C#’s existing type system. While employing dynamic types is a

simple way to implement the prorogued programming paradigm and is consistent

with our design principles, it is important to point out that our paradigm is by no

means restricted to languages that support dynamic invocation. In a language

without a similar feature, a prorogued invocation could return a special type

that the compiler could convert to any other type. The compiler could then

typecheck the program and generate code to invoke the prorogue dispatcher

when it encounters such a type conversion.

2.4.5. Lazy Evaluation of Prorogued Calls. An execution of a prorogued

program that prompts the programmer to populate IO stores too frequently
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var value = prorogue foo();
if (condition)
Console.WriteLine(value);

FIGURE 2.9. Lazy evaluation of prorogued return values.

would tediously undermine the utility of prorogued programming. To miti-

gate this threat, Prorogued C# lazily evaluates prorogued calls. When a pro-

rogued call executes, the prorogue dispatcher immediately returns an implicit

future [Baker and Hewitt, 1977] to represent that call, along with its argu-

ments. To minimize the number of user interactions, it is not until the first time

the return value is used in the program that a user interaction might be necessary.

In Figure 2.9, if the condition evaluates to false, user interaction is avoided

altogether.

The following constitute use of a prorogued return value. First, there is

casting the return value to another type, as implicitly with string s =

prorogue Foo(); or explicitly with int i = (int)prorogue Bar();.

Second, one can pass the return value as an argument to a prorogued function.

For example, we first execute var input = prorogue GetInput(); and

later input is used and therefore evaluated in sqrt = prorogue

SquareRoot(input);. Finally, the return value can be used in an expression

in which it does not appear alone: int sum = 5 + prorogue Bar();.

Since prorogued calls cannot have global side effects, the only way for

a prorogued function to affect the program state is through its return value.

Further, lazy evaluation of their returns should not affect program behavior in

most cases. Reference types are problematic, however: we copy their reference
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1 void PrintFinalInvoice(int price) {
2 var discount = prorogue CalculateRebate(price);
3 if (price < 1000)
4 discount = 0;
5 price += GetSalesTax(price);
6 Console.WriteLine(price - discount);
7 }

FIGURE 2.10. Capturing the context of a call.

by value to save time and because the prorogue dispatcher cannot traverse

arbitrary data structures. Thus, the referenced object may change between the

time the prorogued call is encountered and the time it is actually dispatched,

changing its behavior and possibly violating the program’s semantics.

The situation is a more complicated with regard to prorogued types. Method

invocations on prorogued types can mutate the internal state of the instance.

Operations on prorogued types are kept track of by the prorogue dispatcher and

will dispatch in order the first time the instance is being read from or cast to a

non-prorogued type.

Laziness brings up another potential issue: the order of user interactions

may not correspond to the order in which prorogued calls were visited during

execution. In Figure 2.10, the call to CalculateRebate is prorogued, but the

dispatcher does not prompt the user until execution reaches line 5. If price is

less than 1000, the user is not prompted for that call. However, the prorogued

call to GetSalesTax on line 5 is always evaluated when the call returns, due

to the implicit cast to int. Consequently, the user may be prompted for the

second prorogued call before the first one. To help the user distinguish the two

calls and identify their relative execution order, the dialog that prompts the user
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for an output contains the source file name, line number, and timestamp when

the prorogued call was encountered. The coordinates and timestamp of a call

are especially helpful while debugging a prorogued program.

In a multithreaded program, the dispatcher queues and sequentially makes

prorogued calls. Execution of the thread making a prorogued call stalls until

its user interaction completes. Since user interaction can take an indefinite

amount of time, to the other running threads, the user interface thread runs very

slowly. This fact can adversely impact programs that rely on timing information

or use timeouts, making prorogued calls unsuitable to specific regions of such

programs. In a race-free, multithreaded program that does not rely on timing,

prorogued program behavior matches its non-prorogued version.

2.4.6. User Interaction. When a prorogued value is first used, the prorogue

dispatcher must provide a concrete value to the program and may need to inter-

act with the programmer. To prompt the user, the prorogue dispatcher displays

the arguments to, coordinates of, and timestamp of a call, either graphically if

the programmer is using an integrated development environment (IDE) or on

the command line, if her workflow is terminal-based. Figure 2.11 shows the

Prorogued C#’s user interface.

To capture the return value from the user, we need to provide her with a way

to express it. For simple types, this is easy: a string representation of the type

will do. More complex types require a more powerful, yet still human-readable

serialization. XML is too verbose and inconvenient to write. A better solution is

JavaScript Object Notation (JSON) serialization, which represents hierarchical

object graphs in a concise, readable, and easy to write way. Since JSON is



2.4. DESIGN AND REALIZATION OF PROROGUED C# 41

FIGURE 2.11. Prorogued C#’s user interface.

a popular serialization scheme, flexible libraries and frameworks that handle

complex type serialization and deserialization in JSON are readily available.

While persisting prorogued functions works for all argument types that

support JSON serialization and is not limited to primitive types, some types

are not serializable: persistence is meaningless for types like file and process

handles. In many cases, it is better to pass only a fine-grained subset of the

state of input to the prorogued function, rather than passing the reference to

the complex instance: calling prorogue GetPrice(c.Make, c.Model,

c.Year); instead of GetPrice(c).

2.4.7. Program Refinement. Reifying a prorogued method into code is a

natural phase of the prorogued programming paradigm. When the programmer

specifies that they want to reify a prorogued method, the IO pairs are written out

as a sequence of if statements, usually into the receiver class specified in the

call, where the programmer can then edit them. The prorogue keyword is then
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int fib(int x) {
if (x == 0) return 1; // (0, 1)
if (x == 1) return 1; // (1, 1)
if (x == 2) return 2; // (2, 2)
if (x == 3) return 3; // (3, 3)
if (x == 4) return 5; // (4, 5)
return prorogue; // fallback

}

FIGURE 2.12. Generated code for a reified method.

removed from the call sites of the reified method. In an IDE, the programmer

simply selects a prorogued call site, right-clicks and selects reify. Reifying a

prorogued class simply iterates over and reifies the prorogued method calls it

contains. At the command line, the programmer can issue a command passing a

list of classes or methods she wants to reify.

Prorogued C# also allows you to prorogue methods in interfaces and enu-

merations, that cannot have methods, and types that are not defined in the

current project and are externally referenced. In the reification process, static

and instance methods of a class or struct, defined in the current project, are

added to the respective source files that define those classes. Instance methods

of types that do not support the addition of methods or are declared outside the

current project, are generated as static extension methods in a separate class,

which is added to the current project, and the relevant call sites are redirected

to the newly generated method. Prorogued C# does not infer types (subsec-

tion 2.4.4), but it does guess at the types based on the values in the reified

function’s IO store. In case the guessed signature does not match programmer’s
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intent, the suggested types should be corrected manually. Figure 2.12 shows a

simple reified method.

When methods are reified into a sequence of if statements, a default branch

is added that executes whenever the function acts on arguments not encoun-

tered during its prorogued incarnation. This default branch invokes a fallback

prorogued call that shadows the newly reified method. This prorogued fallback

makes reification an iterative process that helps a program evolve naturally.

Since program refinement is a core aspect of the prorogued programming par-

adigm, we have added a syntactic sugar for a prorogued call that represents

fallback behavior: the appearance of the prorogue keyword by itself, not

followed by an identifier name and parenthesis, is essentially equivalent to

recursively proroguing a call to the current method using the arguments3. The

only difference between the two is that prorogue foo(x) triggers a compiler

warning about shadowing an existing implementation while prorogue is a

known and common pattern that does not trigger the warning.

2.5. Applications

Prorogued programming is a practical paradigm that can improve many

programming scenarios, ranging from simple to complex. In this section, we

present a select few applications that highlight the strengths of this paradigm.

2.5.1. Impact on Software Engineering Practice. We believe prorogued

programming will have wide-ranging impact on software engineering practice.

Here, we outline how it may transform task assignment and unit testing, permit

3This syntax could have been used in Figure 2.7.
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the deployment of incomplete programs, and open the door to new forms of

development crowdsourcing.

Task Assignment. Program construction is difficult to parallelize [Brooks, 1995].

In large projects, where people of different experience and expertise work to-

gether, this problem becomes even harder. One way to parallelize the con-

struction of a program is to separate the program into well-defined modules.

However, existing paradigms are not as successful at separating concerns during

program construction. As a result of natural interdependencies across modules,

these paradigms generally impose a specific construction order to programmers.

Thus, these paradigms often require careful planning that fixes a large fraction of

design beforehand and necessitates writing stringent specifications that clearly

communicate that design to the teams responsible for the different modules, all

of which reduces agility, delays coding phase, and increases overhead, especially

at the beginning of a project.

Prorogued programming separates concerns during program construction;

it separates high-level design from low-level implementation details, without

requiring a fixed specification before coding. This method of program construc-

tion is reminiscent of the way traditional hand-drawn animation used to be

produced: senior animators created the key frames that represented the major

movements of the characters, and after successfully experimenting with the

high-level idea of the animation, assigned the task of drawing inbetweens, which

made the animation smooth, to junior animators.

Besides task assignment based on expertise and experience, in practice, an

organization may need to assign tasks based on trust. It may choose to have its

security related code written by a handful of trusted security experts to prevent
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string GetLocalizedWord(Word w, string lang) {
if (lang == "en" || lang == "en-US")
switch (w) {
case Word.Hello: return "Hello";
case Word.World: return "World";
default: throw new ArgumentException("w");

}
throw new NotImplementedException();

}

FIGURE 2.13. Deploying an incomplete program in a non-
prorogued language by hardcoding values.

potential exploits and backdoors. To stop leaks of product details before launch,

a company may decide not to use a large portion of its human resources on

a critical project. Prorogued programming shines in such scenarios because

untrusted and outsourced programmers can be tasked to implement low-level

aspects of the program without being aware of the overall design goal. Another

key benefit of prorogued programming is prioritization of program construction

tasks based on their criticality to the project rather than dependency satisfaction.

Deployment of Prorogued Programs. The software industry is highly competi-

tive today. Success demands quickly reacting to customer demands and features

that competitors introduce. Predicting the time and resources that a software

project needs, even in isolation, is not an easy problem, and statistics show that

a large percent of all software projects fail or are delivered late [Brooks, 1995].

Consequently, keeping software in a runnable state at all times during construc-

tion is a valuable asset and reduces the risk of a software firm. In practice,

many software systems, especially custom software systems that are developed
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string GetLocalizedWord(Word w, string lang) {
return prorogue;

}

FIGURE 2.14. Prorogued localization.

in-house, are incomplete and depend on hardcoded values in code. Existing

programming paradigms have not focused on addressing this problem.

For instance, to ship a program intended to eventually support 100 languages,

but needed in English quickly, one may have hardcoded values in different parts

of code, as shown in Figure 2.13. Had prorogued programming been available,

the code could have been written as in Figure 2.14. In addition to demanding

less code, the prorogued version is more flexible. To support another language,

one need only ask speakers of the target language to run the program, which

will harvest and store their responses in the IO store. Prorogued programming

obviates hardcoded values, making the code easier to maintain. Furthermore,

the system can be kept ready for deployment, “as is”, with the languages it

already supports. There is no need to interrupt normal development efforts to

hardcode values to ship an incomplete program.

Unit Testing. Programmers usually consider writing unit tests to be tedious.

The existence of unit tests, however, makes a program easier to maintain by

assuring programmers that their changes do not adversely affect existing func-

tionality.

In addition to easing implementation via reification, the prorogued pro-

gramming paradigm promises “test cases for free”: the input-output pairs in

an IO store can be easily transformed into test cases, in a similar fashion to
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the “program testing assistant” proposed by David Chapman [Chapman, 1982],

who recognized the value of collecting and preserving such test cases early on.

As the program is being constructed, these collected unit tests can serve as an

evolving foundation for the integrity of the program. Moreover, when coupled

with outsourcing low-level tasks to junior or outsourced programmers, they

serve as a correctness verification mechanism to ensure they have done their

job correctly. Further, these test cases are likely to cover important behavior

precisely because a developer took the trouble to enter them into the IO store

while testing refinements during program construction. Finally, prorogued pro-

gramming decreases the cost of writing test cases by enabling testers with less

knowledge of programming to generate unit tests without having to write any

code, just by running the program over and over again with different inputs.

Not only prorogued programming can help collecting test cases, it can be

useful in setting up the environment for testing functions. Specifically, prorogued

types can be leveraged as an alternate approach in place of mocking frameworks.

Crowdsourcing. By deferring some concerns until after running a program,

prorogued programming can open the door to crowdsourcing. A partial program

can be shipped to a number of end users who contribute values for the prorogued

functions in the program, without having specialized programming knowledge

or knowing the internal details of the system. The crowd can be end-users of

the program, or gathered rather inexpensively by posting Human Intelligence

Tasks on services such as Amazon Mechanical Turk. Contributing translations is

amenable to this type of crowdsourcing. Facebook has successfully crowdsourced

the localization of its user interface.
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1 static void Main() {
2 var input = File.ReadAllText("mail.txt");
3 var from =
4 prorogue GetHeader(input, "From");
5 var subject =
6 prorogue GetHeader(input, "Subject");
7 var body = prorogue GetBody(input);
8 if (prorogue IsSpam(body)) {
9 Console.WriteLine("SPAM!\n");

10 } else {
11 Console.WriteLine("From: " + from);
12 Console.WriteLine("Subject: " + subject);
13 Console.WriteLine(body);
14 }
15 }

FIGURE 2.15. Spam filtering with prorogued programming.

2.5.2. Case Studies. Here we use case studies to study the power and utility

of prorogued programming.

Spam Filtering. Spam filtering is an excellent example of a problem at which

humans can easily identify an instance4, but a general implementation is tedious.

We extend our motivating example (section 2.2) to handle spam filtering and

print out "SPAM!" instead of the email body if it believes the message is a spam.

Adding spam filtering to our mail parser example required minimal structural

modification to the program and without triggering an abstraction shift. The

program is runnable and testable given a small set of input emails. Later, an

automated spam filtering function can be written, or a spam filtering library

can be used, to complete the program. Spam filtering is an example of a class

of applications for which the prorogued programming paradigm is particularly

4To paraphrase Justice Stewart, we know it when we see it.



2.5. APPLICATIONS 49

MsgStatus Send(string recipient, string msg) {
try {
return prorogue Sms.Send(recipient, msg);

} catch {
return prorogue;

}
}

FIGURE 2.16. Evolving an existing API.

well-suited. Spell checking, parsing, as of email headers or configuration files,

handling CAPTCHAs, and generally any functions that process or tag images,

are other members of this class. This underscores the importance of the hybrid

computation principle of prorogued programming. Usually, these problems are

amenable to crowdsourcing for building the IO store.

Evolving API. By proroguing dependencies, a team working on a client to an

API can work and iterate independently from the team that implements that API.

Faster, untangled, iteration helps the API client team to have a more concrete

idea about what they are going to need from the API implementors, so that they

can provide feedback early in the API evolution process. Prorogued programming

opens the way to the parallel development of coupled modules, while minimizing

the need for coordination. The IO stores capture the behavior each team expects

and can be examined by the other team. This extends the paradigm’s power

to support the execution of partial implementation and evolution of code from

the individual programmer to a team of developers. Additionally, prorogued

programming can be used to defer the concerns about the exact characteristics

of an API, like the exceptions it may throw, to a later time. A common usage

pattern for prorogued calls is in the catch blocks, shown in Figure 2.16.
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void ChargeUser(Card cc, decimal amount) {
if (prorogue cc.Charge(amount)) {
var video =
(int)Session["RequestedVideo"];

var ip = Request.UserHostAddress;
var server = FindContentServer(ip, video);
var key = CreateAuthKey(server, video);
Response.Redirect(
GetVideoUrl(server, video, key));

} else Response.Redirect("/failed.html");
}

FIGURE 2.17. Debugging with prorogued invocations.

Shadowing while Debugging. Prorogued programming gives a programmer

the power to temporarily decouple tightly coupled modules and interactively

control (via IO store construction) the output of the shadowed method to drive

execution as desired. This is especially useful if the call being shadowed depends

on time or location the program is being run, or the call is costly, such as a

paid web service. Simply prepending an existing call with prorogue decouples

the caller from the callee and provides a means to inject values into the caller.

Decorating a method declaration with the prorogue keyword is also supported

and is semantically equivalent to annotating all call sites bound to the method

with prorogue. Another use case of shadowing is bug localization: if the

both caller and callee are complex methods and we wish to identify where

the problem lies, we can prorogue the call and act as an oracle in between

that returns correct values. For example, we can test the example program

in Figure 2.17 without actually charging a real credit card, by proroguing the

cc.Charge invocation in the if condition as shown.
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Mocking External Resources. Another benefit of prorogued programming

is the ability to prorogue external resources, as highlighted in the illustrating

example Figure 2.2, we use a database to back our mail program. The program

is functional without relying on a real database at all. The programmer is free to

experiment with the data model and code; she can also just leave the database

concerns to database experts.

2.6. Open Issues

Prorogued programming is the newborn fusion of three principles, viz pro-

rogued concerns, hybrid computation, and executable refinement. To date,

our focus has been on realizing and experimenting with a prorogued language,

Prorogued C#. Much work lies before the fruition of prorogued programming.

We must assess its utility and usability, work to identify application domains for

which it is well-suited, and explore the evolution of prorogued programs.

Utility. New language features and paradigms are intrinsically hard to evalu-

ate, especially at their debut when there is no data or experience to draw upon.

Object-oriented programming (OOP) and aspect-oriented programming (AOP)

faced similar difficulties in measuring their impact on programming practice

when they arrived [Kiczales et al., 1997]. In section 2.5, we followed their

lead and used case studies to illustrate the prorogued programming paradigm.

Quantifying the impact of prorogued programming on programmer produc-

tivity is an open issue. In general, a prorogued program runs slower than a

version without prorogued calls. The magnitude of this slowdown is a function

of the number of human interactions. As a developer gradually designs and

refines a program during its construction, we contend that this slowdown will be
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more than offset by the productivity gains of catching errors because of the ease

of testing refinements and from not having to write stubs in order to perform

testing at all. Related is the question of quantifying the productivity gains from

avoiding abstraction shifts.

Usability. User interaction underlies hybrid computation: the human must

be efficiently and effectively involved both in populating the IO store and,

during reification, in understanding and abstracting it into code. Thus, the user

interface of any prorogued language will be critical to its success. Currently,

complex objects are displayed in a hierarchical fashion in the user interface.

Pattern recognition is a human strength, so IO tables should store and return

graphical objects. For example, a human will not be able to solve a CAPTCHA

if the interface does not display it. Perhaps we can harness frameworks, like

Microsoft’s debugger visualizer, to allow a programmer to write renderers for

objects within an IO store. In future work, we will release a prorogued language

to users, study how they use it in order to improve its realization, notably its

user interface.

Understanding what functionality is, or is not, well-suited for proroguing

requires more investigation. Human latency and excessive user interaction are

two issues here. While it is natural to model human computation as a very

slow thread in a concurrent application, not all concurrent applications can

tolerate the resulting latency. Regarding excessive user interaction, the pertinent

questions are “How many times can the system query the programmer?” and

“How complex can each query be?”

A worse case for prorogued programming would be to prorogue a function

that adds one to unique numeric parameters, since the human (at least one who
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did not instantly grasp the pattern) would be tediously involved in every call.

For many functions, however, a small set of test cases can drive them to exhibit

their critical behaviors. Even when a function has many behaviors, prorogued

programming can help a programmer systematically explore subsets of them, by

progressively, partially implementing (subsection 2.4.3) the handling of subsets

of inputs and requiring the prorogue call to handle only a manageable set of test

inputs.

Query complexity is a challenging problem. To begin, we note that, in our

use of a prorogued language, we have observed simple queries. A programmer

can find a query complex either 1) because it is complex for the human intellect,

perhaps merely because of problem size, but not, in principle, for a computer,

once an algorithm has been found and implemented or 2) because it is an

intrinsically hard problem for both man and machine. Prorogued programming

offers nothing special to tackle the latter problem; indeed, no silver bullet may

exist. The former problem presents an opportunity: if a user feels a query is

too complex, she can give the system a hint and ask for a simpler query that is

also useful from the system’s perspective. When faced by a complex query, a

human can also consult other resources, such as other developers or even an

SMT solver. Finally, an approach to the problem of a complex is to again avail

ourselves of our principle of hybrid computation and interact with the user to

simplify a query.

As with query quantity, a programmer could mistakenly prorogue a function

that is better suited for a computer than a human. Clearly, a programmer

will not learn very much from testing refinements when spending most of her

time populating an IO store. However, these are programming errors, akin to
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unintentionally writing an infinite loop. Like an infinite loop, these errors can

be quickly identified and addressed. For instance, a programmer could partially

implement a prorogued call by wrapping it in logic in the host language as

described in subsection 2.4.3. In short, the programmer decides whether or not

and how often to prorogue some, as yet unimplemented, functionality.

Program Evolution. We conjecture that prorogued programs will typically

evolve toward fewer prorogued calls throughout construction. Here, the open

question is how to best leverage the knowledge captured in a prorogued func-

tion’s IO store. One promising direction is to use IO stores as input to program

synthesis techniques [Gulwani, 2010]. Here, if the IO store is insufficient,

perhaps we could again apply our principle of hybrid computation and solicit

human help and allow the synthesis algorithm to query the human for additional

examples that resolve ambiguities. We all make mistakes; programmers will

inevitably incorrectly answer a query and pollute a prorogued function’s IO store.

How do we allow the user to correct or update the IO store? Can we devise

algorithms to detect errors in an IO store with high precision and recall? Finally,

as code evolves, the signature of a prorogued method may change. Rather than

repopulate that method’s IO store from scratch, can we migrate the contents of

an existing IO store to the new format?

2.7. Related Work

We are introducing a new programming paradigm, a perilous and ambi-

tious endeavor since few paradigms gain traction. Two paradigms that also

sought to change how programmers manage concerns and that succeeded

are Object-Oriented Programming (OOP) and Aspect-Oriented Programming
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(AOP) [Kiczales et al., 1997]. OOP defined a new way to design programs

and to modularize concerns. AOP modularizes a concern that OOP did not

capture, namely cross-cutting concerns, like logging. Prorogued programming

differs from OOP and AOP along all three of its defining principles: by involv-

ing humans, its hybrid computation both enables proroguing concerns and

experimenting with very fine-grained refinements.

Tinker, by Lieberman and Hewitt, is, in modern terms, an early integrated

development environment (IDE) for Lisp that uses interactive memoization to in-

tegrate implementation and testing [Lieberman and Hewitt, 1980]. Lieberman

and Hewitt focus on Tinker’s menu-driven code entry and reversible debugger

features, although they speculate that Tinker may aid top-down development.

Prorogued programming also uses memoization; however, we do so to introduce

a programming paradigm that aims to streamline development by allowing a

programmer to control the order in which they work on tasks. To realize pro-

rogued programming, we integrated its three features directly into the language,

not as an IDE-overlay, and we targeted a statically typed, compiled language, to

demonstrate the universality of prorogued programming.

We next describe two projects that share with prorogued programming a

focus on enhancing programmer productivity during program construction.

DuctileJ is a detyping transformation that allows the execution of type-incorrect

Java programs [Bayne et al., 2011]. From the domain of dynamically typed

languages, it focuses on bringing the ability to execute code at nearly any

time to a statically typed language. The motivation is facilitate testing, during

program construction while a programmer works to converge on a final, type-

correct program. One aspect of prorogued programming shares this focus, viz
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its realization of executable and testable refinements. Beyond this, prorogued

programming is quite different. Prorogued programming is about correct, but

incomplete programs; DuctileJ is about incorrect programs. DuctileJ is unneeded

in a dynamic language; in contrast, prorogued programming is universal.

Angelic programming shows how to employ Floyd’s nondeterministic choose

operator to assist program construction [Bodik et al., 2010]. Given an angelic

program, an angelic solver controls the output of the choose operators within

a program to search for safe traces, executions that terminate without failing an

assertion. The programmer is expected to reason about the resulting safe traces

to gain insight and discover algorithms that allow her to restructure the program

toward its deterministic, choose-free final version. As with DuctileJ, prorogued

programming is also concerned with improving program construction and is

otherwise quite different. Prorogued programming relies on hybrid computation

to execute incomplete programs, not backtracking or SAT-based solvers. The

prorogue keyword decorates any function call and can return arbitrary collec-

tions of types; the choose operator is limited to producing boolean, integer, or

address values. To help a developer shift through and control the production of

traces, angelic programming relies on assertions. It is not clear that writing these

assertions reduces, rather than simply shifts, the complexity of the programming

task facing a developer. In contrast, prorogued programming’s execution model,

other than when it prompts the user to populate a prorogued method’s IO store,

is standard and allows a more traditional workflow: a developer is not required

to (but can) use assertions to control a prorogued program execution. Although

not related to prorogued programming’s current realization, we note that angelic

programming has been adapted to debugging [Chandra et al., 2011].
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During the evolution of a prorogued program, prorogued functions are typi-

cally progressively reified and eliminated. The reification of a prorogued method

may be quite difficult; a programmer may not gain very much insight from even a

large IO store. All is not lost when this happens of course, since the programmer

benefited from deferring the concern. Nonetheless, the tantalizing problem here

is to leverage knowledge an IO store contains to ease the implementation of the

deferred task. Next we discuss work that bears on this problem of facilitating

the evolution of prorogued programs.

Mixed interpreters execute programs that mix specification

and implementation [Samimi et al., 2010, Milicevic et al., 2011,

Freeman-Benson and Borning, 1992].

When it encounters a specification, a mixed interpreter runs a solver and

updates the heap with the solution if one is found. Writing specifications can be

quite difficult, so mixed interpreters can impose precisely the disruptive abstrac-

tion shift that prorogue aims to obviate. During the evolution of a prorogued

program, however, the programmer may decide to use formal specification to

capture a prorogued function. Can an IO store’s input/output pairs facilitate the

writing of a specification?

When program sketching, a programmer needs to write only a skele-

ton, or sketch, of a desired implementation, leaving holes that a

synthesizer fills in [Solar-Lezama et al., 2008, Solar-Lezama et al., 2007,

Solar-Lezama et al., 2006, Solar-Lezama et al., 2005]. Prorogued calls can

be seen as these holes. Example-guided synthesis, as its name suggests, uses
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examples to guide synthesis [Harris and Gulwani, 2011, Gulwani, 2011]. Ob-

viously a prorogued method’s IO store may be an excellent source of ex-

amples for this line of work, which may, in turn, help automate the reifi-

cation of prorogued functions. Finally, a related line of work, previously

discussed in section 2.3, is programming by example (aka programming by

demonstration) [Witten and Mo, 1993, Lau et al., 2003a, Lau et al., 2000,

Lau et al., 2003b]; this work too provides an opportunity for synergism with

prorogued programming.

2.8. Conclusion

In this work, we have introduced a new programming paradigm, prorogued

programming, founded on three principles — proroguing concerns, hybrid com-

putation, and executable refinements. These principles interlock to form a new

paradigm that lets a programmer compile and experiment with an incomplete

program that invokes unimplemented functions. A user interface allows the

programmer to control the behavior of these functions at runtime if they are

actually invoked. This paradigm allows a programmer to prorogue the concern

that an unimplemented function embodies and focus on and complete a task

at a particular level of abstraction. In contrast, today’s languages force the

programmer, if she wishes to compile and experiment with their code, to imme-

diately define at least a stub for an unresolved dependency, potentially derailing

her train of thought. Prorogued programming also enables a programmer to

interact and experiment with their implementation very early in its development,

because each successive refinement is executable and testable. We believe that
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prorogued programming will facilitate program construction and enable new

programming workflows that increase programmer productivity.
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CHAPTER 3

Invigorating the Programming

Canvas with Live Symbols

Programming is about expressing ideas. In mainstream programming lan-

guages, the expression of ideas often takes form in sequences of program state-

ments. The composition of a program tokens dictates its behavior to the machine.

Pieces of this composition are glued together by identifiers. Identifiers tell the

compiler how statements relate to each other and how data and control flows

throughout the program. While this is the principal purpose of identifiers from

the machine’s perspective, they serve a more important purpose when it comes

to the interaction of the programmmer with the program. They are critical from

the standpoint of program understanding and navigation to the point that one

of the most primitive jobs of most program obfuscators is to rename identifiers.

Observation of obfuscated programs also shows us that the two purposes of

identifiers are distinct. You can have a working program that is very difficult
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to understand. Programmers usually overload the mechanical purpose for

identifiers and use them as signposts to aid with program understanding.

In this chapter, we propose consciously leveraging identifiers as hooks not

just for gluing pieces of a program together, but as terminals to interact with

the programmer, program documentation, knowledge external to the program,

the programming environment, and serve as tools to manipulate the program

itself in specialized ways. We illustrate how such systems would look like and

explore the opportunities, and suggest solutions to some of the challenges faced

in realizing such programming environments.

3.1. Introduction

Mainstream programming often involves typing and manipulating characters

in a text editor. The goal is, however, rarely to manipulate individual characters.

When modifying a program, we generally want to alter higher level chunks of

the code. Traditionally, this problem has been alleviated by more powerful batch

character manipulation tools. However, the programmer still has to map an

intended higher-level change to deltas in character sequences, which these tools

manipulate. The more savvy programmer might invoke a text editor shortcut to

execute the delta in as few keystrokes as possible.

Ironically, even our compilers (for the most part) deal with higher level

things than raw character sequences, such as abstract syntax trees.

To fix this problem, we need a better canvas for composing our ideas — we

want to modernize our program editors and make them smarter. In this chapter,

we outline our vision for how a first step towards that path might look like.
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3.1.1. Main Contributions. This chapter makes the following contribu-

tions:

• We introduce Live Symbols as our vision for a modern programming

canvas.

• We discuss our design, and the assumptions and choices made in the

design process.

• Through a collection of case studies, we illustrate the power of our

modern programming environment.

The rest of this chapter is organized as follows. We first discuss our design in

section 3.2. Then we use a few examples to show its utility (section 3.3). Finally,

section 3.4 discusses related work and section 3.5 concludes.

3.2. Design

Our vision for a new programming environment is based on the following

assumptions:

• The current mainstream programming style is not the best way to solve

all problems. That said, it might still be suitable for a great many of

them, and many people are comfortable with it.

• We are not limited to keystrokes to interact with our programming

workspace.

• Sometimes, applying tools on a problem is better than building complex

abstractions.

With those in mind, we describe the pillars on which our design stands.
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• Contextual Extensibility: We should be able to extend the environ-

ment by defining characteristics and operations on specific identifiers.

These operations are defined alongside the type “package” and are

loaded on-the-fly, as opposed to plug-ins preinstalled in the environ-

ment.

• Domain Specificity: Parts of the program that express domain-specific

problems should be expressed in domain-specific languages or tools.

• Interactivity: The programming environment should be interactive

whenever it makes sense and can leverage modern input/output tech-

nologies.

Live symbols work by defining design-time metadata and operations to types

or other program entities. The environment uses the metadata to:

(1) display buttons and other user interface elements to invoke those

custom operations on identifiers affected, e.g. display a color picker

beside a value of type Color. Of course, a live symbol can handle

arbitrarily complex interactions with the symbol in the programming

environment, as long as they supply the necessary code.

(2) customize visualization of certain values or blocks of code in the pro-

gram, like displaying a colored rectangle beside a value of type Color.

By giving arbitrary extensibility to live symbols, they can selectively pop

up windows, providing tools at the programmer’s fingertips, and perform com-

plex interactions with the programmer. They can selectively generate code or

customize code around their context as they respond to user interactions.
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3.2.1. Realization. In practice, the design of a programming environment

supporting live symbols depends on many factors. One of the most important

factors is the programming language it is going to support. Here we discuss

one way to design such programming environment for a typical object-oriented,

imperative, programming language.

To engage with the extensibility hooks of the environment, the program

entity (usually a class definition) that wants to provide interactive functionality

for its users should annotate itself with a reference to a function or type that

will serve as a plug-in to the environment that will be loaded on-the-fly when

the type is used. Alternatively, a standard naming convention can be used in

place of an explicit annotation that lets the environment to find the extensibility

procedures.

Once a extensibility handler for the specific program entity is loaded from

the library package, it can communicate back and forth with the environment

via its normal plug-in mechanisms, getting information about the code context,

displaying embedded widgets within the text editor or popping up external

dialogs, and possibly inject code into the program itself.

3.3. Applications

To demonstrate the potential impact of live symbols on software engineering

practice, we present a few case studies and applications.

3.3.1. Classifier Trainer. Assume that we have a piece of code for a basic

neural network and a data set for training it. Without live symbols, we probably

need to invoke a program offline, train the neural network using the data set,
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and incoporate the learned weights in the final program’s source code before

shipping it to the user who needs the classifier.

With live symbols, it could be as easy as starting typing:

classifier := NeuralNet{}

Depending on the exact user interface implementation, there could be a

down arrow displayed when we finish typing NeuralNet, clicking on which

will provide us with the option "Train from data set", clicking on which would

ask for a file containing training data. We would simply load the file and the

neural network will train itself offline and embed the final weights in our code

under the hood. It is possible because the NeuralNet library has provided the

code necessary to accomplish this and the environment has simply invoked that

extension.

3.3.2. String Pattern Matching. Imagine having a live symbol enabled

pattern matcher. Analogous to the neural network example, it could pop up a

dialog that lets us experiment with various regular expressions. Alternatively, in

that user interface, it could give us an option to discover a pattern based on a few

examples that we provide, using program synthesis [Le and Gulwani, 2014].

3.3.3. Color Picker. The programming environment is able to visualize

the color based on the arguments given to the constructor of a Color(245,

255, 1) type.

Additionally, it would be able to display a color picker when we click on

the value in the editor and rewrite the underlying code when another color is

picked.
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3.3.4. Spreadsheet-Assisted Computation. Imagine writing a program that

depends on a model designed by a domain expert who has implemented it in an

spreadsheet. With a SpreadsheetEvaluator object, we could immediately

open a spreadsheet editor from our programming environment, pull up the

model developed by domain expert, pick cells that represent inputs and outputs

to the model, and plug it in to certain variables in scope and we will be all

set. This is possible because the SpreadseetEvaluator class is packaged

with code necessary to invoke the spreadsheet engine and the user interface to

generate the appropriate hooks when invoked as a live symbol.

3.3.5. Image Filter Application. If we want to write a program that loads

a set of images and draws an X on each of them, traditionally we need to write

a loop and then use drawing statements in our favorite graphics library to draw

the X. With live symbols, the ImageFilter object can open up a Photoshop like

environment where we apply a bunch of modifications to a sample image and

it will learn the modifications, and initialize the object in our code accordingly.

Then, calling the Apply method on our object will reapply the sample operations

on the actual bitmap passed in at run time.

3.3.6. Querying a SQL Database. In a database client application, we need

to issue a complex query, but we are not entirely familiar with the database

schema. Invoking the "Design Query" operation associated with the database

command object will not only bring up a designer and let us visually construct

the query and test it, but also when we are done with it, will show the embedded

SQL in code, but with syntax highlighting! Because the SQL command object

comes with the design time operation to visualize the query appropriately, it



3.4. DISCUSSIONS AND RELATED WORK 67

can display the SELECT statement with proper syntax highlighting visually

embedded right into the host language code editor.

3.3.7. LaTeX Editor. In a LATEX programming environment supporting these

techniques, we can define a set of commands for say, defining tables, and anno-

tate the command definition to refer to a class that extends the environment by

providing a visual table editor. When \NewTable{} is typed, the environment

recognizes it and starts by looking at the source containing its definition and

picking up its annotation referring to a function provided alongside the LATEX

library and invokes it. The function will then interact with the environment,

presenting the user with a live table editor, embedded in the middle of the text

editing environment.

3.4. Discussions and Related Work

A large body of work in various areas such as programming languages,

integrated development environments (IDEs), interaction design, and end-user

programming, have served as inspiration, are related to, or have the potential

to be improved by the ideas presented in this chapter. In this section, we

highlight several of those to better contextualize the work and put its potential

in perspective.

3.4.1. Extensibility. Many of the popular text editing tools are extensible.

Most notably, Emacs and Vim have over the years developed a vibrant community

of users who write scripts that extend the editor in many ways and share them

online, turning them into incredibly powerful tools. In the case of Emacs, many

of the extensions have little to do with coding and are basically applications
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written to run in the Emacs environment, flashing a spotlight on the broad range

of extensibility facilities offered by that environment. Many other extensions

focus on making text editing more efficient and powerful, and are broadly useful

for editing all kinds of textual data. There are language-specific extensions

that do syntax highlighting and navigating through code, most of which are

accomplished by quickly parsing outer levels of productions specified in language

grammars (and often, to make it fast, finding a regular approximation of the

grammar and simplifying parsing). Anecdotally, the main class of extensions

that take the semantics of the code written into account are the ones that enable

autocompletion. Live symbols can bring on-the-fly contextual extensibility to

these editors.

3.4.2. Integrated Development Environment Features. IDEs such as Eclipse

and Visual Studio come with a bunch of tools and services in addition to the

main text editor. Similar to live symbols, some of these services help with

domain-specific tasks like visually designing dialog boxes or database queries.

However, unlike live symbols, these services are rarely blended directly into the

text editor and feel more like separate tools bundled into the IDE and accessible

via a shortcut. There is often an impedance-mismatch between the artifacts

generated by those IDE services and the textual code. While the overarching

vision of live symbols is hard to spot in mainstream IDEs, sparks of it can be seen

nevertheless. For instance, Microsoft Visual Studio supports a feature dubbed

“visualizers” [Microsoft, 2015] in its debugger, that lets the programmer write

code to meaningfully display objects of that type when inspected in the debugger

at run time. Similarly, the form designer supports customizing the design-time
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behavior of visual controls dropped into a form via metadata annotations on the

custom control type.

There are other environments that have a fixed and limited set of domain-

specific functionalities that live symbols can offer. One example is Android

Studio [Google Inc., 2013] is an IDE for targeting the Android platform, that

supports displaying actual localized strings within the text editor, embedded in

code, in place of the “real” code that consists of a locale-independent resource

key. Another example is Codea [Two Lives Left, 2014], a programming tool for

iPad based on the Lua programming language specifically targeted at making

games and simulations. When a user touches a value of a small, fixed, set of

types, like colors and images, in the program text, Codea brings up a color or

image picker, that lets the user easily manipulate the value. Live symbols offers

a universal way to add these features to the environment without the need to

hardcode them into the IDE or offering them as separately shipped plug-ins.

3.4.3. Live Programming. In some dynamic programming environments

like Self [Smith and Ungar, 1995] and Smalltalk [Goldberg and Robson, 1983]

development can happen in a living environment, in which program objects can

be instantiated and manipulated and can potentially interact with the environ-

ment itself to serve as tools for the programmer, like live symbols do.

Bret Victor’s “Inventing on Principle” talk [Victor, 2012] inspired the com-

munity to strive to bring in a more immediate connection between the pro-

grammer’s ideas and the final product. It triggered a renewed interest in live

programming environments. In particular, Light Table [Kodowa, Inc., 2012]

and Xcode [Apple Inc., 2014] (via its Playgrounds feature) have strived to
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bring that vision closer to reality by displaying the runtime values of variables

alongside program statements.

Live symbols are complementary to live programming. Raw runtime data

can be too low level to be meaningful to the programmer. Live symbols can help

abstract the raw data in a type-specific fashion and present it to the programmer

in a concise and easy to comprehend way. Moreover, in the absence of actual

runtime data, e.g. in a complex distributed system where it is hard to keep the

complete system live, live symbols can ease understanding of the system just

by looking at the code statically and presenting a static model of what would

happen at runtime. Lastly, live programming environments do not necessarily

provide the ability to use the live objects as interactive tools that help the

programmer with the code. They often merely try to help the programmer tell

what the code does, not more.

3.4.4. Hybrid Computation. Prorogued Programming [Afshari et al., 2012]

is a programming paradigm that allows programmers to compile and run in-

complete programs so they can experiment with and refine work-in-progress.

It works by decorating invocation expressions in a program with the prorogue

keyword and letting the compiler know that it is okay if the callee does not

currently exist. At run time, if a prorogued call is encountered for the first time,

it will pop up a dialog and asks the user to supply a return value for the program

to continue execution, which it then caches and persists for future runs of the

program if the same invocation is encountered with the same set of arguments.

While prorogued programming is mainly concerned with giving the programmer

the power to freely reorder concerns by untangling dependencies across program
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constructs, it also enables hybrid computation. Ideas highlighted in this chapter

synergize with prorogued programming along two dimensions: first, they can

empower the interactive query dialog when a prorogued call is encountered at

runtime, by providing enhanced custom visualizations for the arguments passed

to the function, and by enabling the programmer to construct complex custom

objects by leveraging the same type-specific tools and operations that the object

type carries with it; second, it extends the opportunity for hybrid computation

from just leaf level functions when the program is run to the entire programming

environment, by connecting external “computation engines” to the program via

the tools provided by live symbols.

Live symbols make hybrid computation seamless, and may effectively make

alternative ways to express ideas to a computer such as programming by exam-

ple [Halbert, 1984] mainstream, allowing to switch from one form of expression

to another, depending on the suitability to the task at hand.

Systems like MATLAB [The MathWorks, Inc., 1984] that are designed mainly

for scientists, engineers, and non-professional programmers to accomplish

domain-specific tasks across many domains are arguably instances of hybrid

computation. It is conceivable that such systems could be implemented with

a set of libraries by taking advantage of a programming environment that sup-

ports live symbols. Domain-specific toolboxes would be reduced to libraries and

there would be little differentiation between a toolbox’s “applications” and the

functions provided by it.

3.4.5. Metaprogramming. Macros [Leavenworth, 1966] can be thought

of as primitive, non-interactive, stripped-down version of live symbols. While
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they are not interactive, they can be thought of as tools for code generation.

They are similar with live symbols in that they are a form of extensibility that

gets carried over from the program being edited, not by direct installation in the

environment, making them contextual and simple to add with little marginal

cost.

A domain-specific language [van Deursen et al., 2000] (DSL) is yet another

way to increase expressiveness of a program (or piece of a program) when it tar-

gets a specific problem domain. When working with a DSL as part of a program

written in a mainstream language, the connection between the two becomes a

challenge. To prevent this problem, a number of DSLs try to restrict themselves

to valid syntactic constructs in the host language and merely “trick” the host com-

piler into generating the code that behaves as they want [Ghosh, 2011]. This

resolves the embedding issue, but restricts the DSL to the syntax and semantics of

the host language. Integrating free-form DSLs [Bravenboer and Visser, 2004]

into a host language is possible, but the downside is that the host language

compiler needs to be modified to support DSL hosting. Like macros, embedding

a DSL without the appropriate tooling on the environment side, will result in

a non-interactive solution that partially addresses the same problems as live

symbols. Live symbol implementations can use this technique under the hood to

persist the source files.

3.5. Conclusion

In this chapter, we described a novel way to think about the programming

canvas, making it richer, more interactive, more contextual, and wary of the

code being written. Transformation of the code editor into a hybrid canvas that
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hosts various tools opens up opportunities for lightweight and fast innovation in

program construction tools. Furthermore, this transformation can change the

traditional code editor from a tool used primarily by professional programmers

into a versatile tool for creation and computation to accomplish domain-specific

goals, via lightweight toolboxes that are simply “packaged libraries”. Finally, it

sets the stage to escape from the traditional, mostly text-based, environment for

creating programs, and toward more modern ways to create programs, taking

more advantage of input and output devices other than the teletype and its

modern incarnations and emulations. This is especially important considering

the increasing popularity of touchscreen tablets and phones; they are the devices

that the next generation of programmers grow up with.

We believe the path that takes us towards that vision will make program

construction easier and the programmers more productive, and is an exciting

avenue for future research.
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CHAPTER 4

Building White-Box Abstractions by

Program Refinement

Abstractions make building complex systems possible. Many facilities pro-

vided by a modern programming language are directly designed to build a

certain style of abstraction. Abstractions also aim to enhance code reusability,

thus enhancing programmer productivity and effectiveness.

Real-world software systems can grow to have a complicated hierarchy

of abstractions. Often, the hierarchy grows unnecessarily deep, because the

programmers have envisioned the most generic use cases for a piece of code

to make it reusable. Sometimes, the abstractions used in the program are not

the appropriate ones, and it would be simpler for the higher level client to

circumvent such abstractions. Another problem is the impedance mismatch

between different pieces of code or libraries coming from different projects that

are not designed to work together. Interoperability between such libraries are



4.1. INTRODUCTION 75

often hindered by abstractions, by design, in the name of hiding implementation

details and encapsulation. These problems necessitate forms of abstraction that

are easy to manipulate if needed.

In this chapter, we describe a powerful mechanism to create white-box abstrac-

tions, that encourage flatter hierarchies of abstraction and ease of manipulation

and customization when necessary: program refinement.

In so doing, we rely on the basic principle that writing directly in the host

programming language is as least restrictive as one can get in terms of expressive-

ness, and allow the programmer to reuse and customize existing code snippets

to address their specific needs.

4.1. Introduction

Programming is about expressing ideas. Ideas expressed in programs vary

widely in complexity. Programs can exhibit small ideas or very complex ones.

Complex ideas are built from simple ones. There are three ways to build

complex ideas from simple ones: by combining them into a compound one, by

comparing them with each other without unifying them, and via abstraction,

i.e. distancing them from other ideas that accompany them in their concrete

existence [Locke, 1689].

Complex programs, like ideas, are generally composed of smaller

pieces. In order to make building complex systems tractable, and to

be able to reuse these smaller pieces in different contexts, we need

to rely on abstraction. Programming languages provide various ways
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to build abstractions, like procedures [Abelson and Sussman, 1996], ab-

stract data types [Liskov and Zilles, 1974], classes [Dahl et al., 1968], ob-

jects [Goldberg and Robson, 1983], and actors [Hewitt et al., 1973]. Differ-

ent programming languages provide different means of abstraction.

In practice, software systems often consist of complex abstractions composed

of other complex abstractions, forming a deep hierarchy of abstractions, created

by different people at different times to achieve different goals. While some of

the nodes in this hierarchy are essential to the program, a deep hierarchy of

abstractions have some obvious downsides.

One issue is imperfections of the abstractions themselves, i.e. they do not

fully abstract away the related ideas that accompany the underlying concrete

instantiations of the abstraction and the subtleties leak to the higher level

observer, making it responsible for specifically working around such leaks,

thereby hindering the reusability of the abstraction in arbitrary contexts.

Another concern is understandability of programs relying heavily on complex

abstractions: by design, many of the language features and techniques to build

abstractions, e.g. procedural abstraction and object orientation, aim to build

black-box abstractions. Black-box abstractions are double-edged swords. The

advantage of hiding the internals is that the component can be isolated and

reasoned about as a separate unit with clear interfaces and boundaries. The

disadvantage is that the interfaces can be arbitrary and lacking documentation,

or worse, having incorrect documentation that does not perfectly reflect the

subtleties of the implementation, causing confusion for the programmer. Anec-

dotally, sometimes reading the source code for the component, if available, can
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be the best path for understanding the subtleties of the implementation. Deep

abstraction hierarchies can make this more difficult.

4.1.1. Abstraction by Refinement. In this chapter, we introduce a new

mechanism for building abstractions: program refinement.

The core idea is treating a certain procedure (β ) as the base template and let-

ting the programmer modify it as they wish. The new, specialized, procedure (Γ)

can be formally described of as a pair consisting of the original base procedure

and its differences (∆).

Γ = (β ,∆)

∆ is the refinement applied by the programmer and captures the intent of the

specialization on the base template. The way ∆ is interpreted is implementation-

dependent. In the simplest implementations, it can be a syntactic difference

provided by a version control tool.

For it to be a proper abstraction, we need to be able to liberate ∆ from being

meaningful only in the context of that particular base, and be able to apply it

to other base templates as well, computing a new specialization with the same

delta over a new base template. This is formalized by a merge operation:

Γ2 = merge(Γ,β2) = merge((β ,∆),β2)

The actual behavior of a merge operation is also implementation dependent.

In the simplest case, it is a version control-like syntactic automerge, but it can

be made smarter and more semantic-oriented. The smartness of the merge



4.1. INTRODUCTION 78

operation is, in a way, representative of how capable the programming system is

in capturing the programmer’s intent.

A single base can serve as the template for many specializations. There can,

in principle, be a nested tree of specializations. When the root base changes, the

changes would propagate by applying successive merge operations. The merge

operation can be unsuccessful. We will leave the discussion on how we resolve

this issue to section 4.3.

We have used this simple formalization to describe the idea as an analogy to

another known idea, and the differences between the two.

At this point, the description might sound similar to a macro system, or a

template metaprogramming feature in a language like C++. Subtle, but key,

differences, however, exist, as we describe.

Refinement vs. Macros. Macros are powerful abstraction tools. Similar

to refinement, they offer specialization from a symbolic template. Macros,

in languages that embrace them, like flavors of Lisp, operate at the abstract

syntax tree level, and therefore make the full power for the underlying language

accessible to the programmer. However, there are two key differences:

(1) Macro expansions are evaluated in the scope of the use site. In this

manner, they are similar to copy-pasted code. A key feature in refine-

ment abstractions is evaluation within the environment of the original

base template.

(2) Macros need to be predefined. A programmer generally needs to

think beforehand about what macros to write, and provide appropriate

“holes” in them for the external arguments. The programmer would
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often overgeneralize the macro before the complexity is actually needed

in the program. The opposite can also occur, where the macro definition

does not support parameterization of certain parts of itself. Clearly,

arbitrary procedures do not become macros automatically, but you can

apply refinement to any procedure in the program, without any special

consideration when the procedure is being authored.

Refinement vs. Metaprogramming Templates. Metaprogramming template

systems vary in design and function. To address the differences, we take C++

template system as a popular, concrete instantiation. In contrast with the C++

templates:

(1) Refinements, being syntactic, are constrained by the expressiveness of

the host language only. Templates, however, can only be parameterized

in certain areas. An arbitrary statement cannot be fed into a C++

template as an argument. The parameterization potential is usually

limited to types, values, and function references.

(2) Refinements can be applied to any base procedure, whereas templates,

like macros, need to be predefined as such.

(3) Depending on the way the template system is implemented, its ex-

pansions can exhibit the second limitation described for macros, i.e.

redefinition of the environment in which the template is expanded.

4.1.2. Main Contributions. This chapter makes the following contribu-

tions:

• We introduce a new general paradigm for building abstractions by

allowing the programmers to refine existing code.
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• We present and discuss the design choices in GOCLR, our development

environment for Go featuring abstraction by refinement.

• We illustrate the usefulness of this abstraction toolkit through a collec-

tion of case studies.

• We discuss open issues, such as usability, challenges in merging, inter-

actions with external editors, and possible approaches for resolving

them.

4.1.3. Chapter Outline. The rest of this chapter is organized as follows.

First, in section 4.2, we use an illustrating example to motivate building ab-

stractions by refinement and illustrate its use. In section 4.3, we describe our

design and realization of a system with support for building abstractions via

program refinement for a real-world language, Go. We then use a few examples

in section 4.4 to highlight the utility of the paradigm. In section 4.5, we discuss

a few open issues. Finally, section 4.6 surveys related work, and section 4.7

concludes.

4.2. Illustrating Example

To motivate and illustrate the utility of white-box abstractions created with

program refinement, we use an illustrating example.

Imagine using a package that implements some graph operations, among

other things. The package contains a public DFS function that does a depth-first

traversal of a graph passed via a root node as an argument and marks them as

visited. The end result is that all reachable nodes are marked as visible in some

state variables internal to the package for future use, for instance to check graph

connectivity.
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1 func DFS(root *Node) {
2 q := Stack{}
3 q.Push(root)
4 for !q.Empty() {
5 node := q.Pop()
6 if !visited(node) {
7 markVisited(node)
8 for adj := adjacentNodes(node) {
9 if !visited(adj) {

10 q.Push(adj)
11 }
12 }
13 }
14 }
15 }

FIGURE 4.1. The original depth-first search function provided by
the library.

A programmer using this package is interested in the depth-first search

functionality (Figure 4.1), but needs to perform a custom task when a new node

is visited, like printing its satellite data.

Had the original author of the DFS function had the foresight that it would

be used this way, they would have provided a generic way to pass in, say, a

function pointer to the DFS function (Figure 4.2). The caller would have then

supplied a function that takes a node and processes it as an argument to the DFS

function. Note that providing this functionality is only possible if the underlying

language has the required bells and whistles, like the ability to pass functions

as arguments. Furthermore, this approach limits the degree of freedom of the

client to intervene at the specific point after visit is called in the function. Any

other functionality would still be unsupported. Realistically, the caller might
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1 func DFS(root *Node, look func(*Node)) {
2 q := Stack{}
3 q.Push(root)
4 for !q.Empty() {
5 node := q.Pop()
6 if !visited(node) {
7 markVisited(node)
8 look(node)
9 for adj := adjacentNodes(node) {

10 if !visited(adj) {
11 q.Push(adj)
12 }
13 }
14 }
15 }
16 }

FIGURE 4.2. Depth-first search procedure extended to support a
custom processing via a function reference.

want to use the DFS code to find back-edges in the graph, which requires more

changes to DFS than just being able to pass the callback that would be run on

every visit.

Nevertheless, the original author has not provided us with this functionality.

We are stuck with a decision to copy and paste the DFS source code or modify it

in-place.

There are a number of problems with explicit copying and pasting. First,

the programmer needs to figure out where to paste the copied code. If the

code is pasted in the caller context, it will not compile, because its identifiers

refer to dependencies that are meaningless in the caller’s scope. Therefore,
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the programmer needs to manually resolve the references, if possible. It is not

always possible due to private identifiers within packages.

Pasting the code in the callee context is essentially forking the function into

two. The first downside is doing that means you are essentially forking the

dependency library and updates to the dependency will not be as straightforward

to use from then on. Second, even with a good version control system, the

updates and bug fixes to the original DFS would not propagate to the cloned

implementation.

Modifying the code in-place has the obvious downside of potentially breaking

the existing clients who are relying on the subtleties of the existing behavior of

the function.

With our system, this problem is easily fixable by right-clicking on the DFS

identifier in the programming environment. The system will let you specialize

DFS function for that specific call site. That way, you can modify the body at

will and add appropriate statements wherever needed. The language does not

even need to support function pointers.

If the original library changes upstream, the system will automatically try to

merge the specialized versions of the functions with the updates to them fetched

from the upstream package source. Should the merge succeed automatically, the

update would be seamlessly applied to all of the specialized versions of DFS.

Importantly, the visual footprint of the specialized DFS is confined to that

particular caller only. It would not be visible when browsing the source code of

the dependency package.
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4.3. Design and Realization

To experiment with building abstractions by program refinements, we de-

signed a prototype system, GOCLR (pronounced “go clear”). In this section, we

describe some of the design challenges we faced and how we tackled them and

the rationales behind our choices.

4.3.1. Programming Environment. GOCLR has its own custom pro-

gramming environment that is based on the Go programming language

[The Go Authors, 2009] and Git version control system [Torvalds, 2005] inter-

nally. Go was chosen as the programming language for the following technical

and conventional reasons:

• Go is designed to understand the need for external packages and tools

for package management.

• Go packages are conventionally distributed as source code and depen-

dencies are often compiled in a static binary at build time.

• Go is a simple language and lacks many of the conventional mechanisms

to build abstractions, like generics, making it a particularly suitable

testbed for building abstractions with program refinement, due to a

more acute need for alternate abstraction mechanisms, and minimal

potential complexity arising from interference with existing language

features.

• The Go community seems to strongly prefer lightweight abstractions

and has a tendency to more strongly resist overengineering than some

other mainstream languages.
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4.3.2. Projects and Build Strategy. For simplicity, the initial version of

GOCLR is not designed to actively interoperate with other development envi-

ronments. GOCLR normally stores program pieces as separate Git objects and

generates textual Go source files to be fed to the actual compiler toolchain only

when the project is going to be built. For practical purposes, and for seamless

working with dependencies, an import mechanism is provided. Importing ex-

isting Go source packages will parse and transform them to the internal data

format, while preserving the connection between the original location of to-

kens and the abstract syntax tree. This connection is necessary to identify and

propagate changes to the program when a dependency is updated, for instance.

4.3.3. Merging. A necessary feature for realization of our vision is support

for propagation of changes when a piece of code that serves as the base for one

or more refined specializations changes, either at the source code level in an

external Git repository serving the dependency, or within the current GOCLR

project.

The prototype implementation of GOCLR only supports simple automatic

syntactic merges by piggy-backing on Git itself. While accurate and sensible

automerging is a distinct problem from the general idea of abstraction with

program refinement, a smart merge subsystem is critical for a good programmer

experience, especially as the project and as a result, the quantity of specializa-

tions grow. To help solve this problem, we envision providing API hooks for

smart mergers that can understand semantics of the differences and the program-

mer intent behind changesets. Such smart merge tools can then automatically

reapply the modifications inferred on the new base version.
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Of course, it is possible for automatic merge tools to fail. When that happens,

the user has the option to manually do the merge—by effectively rewriting the

specialization on a new base—, or disentangle the specialization from the base

piece of code, thus creating a new copy of the code. Obviously, future changes

to the base piece will not be propagated to the distinct specialized copy anymore

and the new piece takes on its own independent life.

4.3.4. User Interface. The user interface is a critical piece of the solution.

Specialized versions of the code should be hidden from the programmer except

when they are explicitly looking for them or they are interested in a particular

specialization relevant to a specific call site. Otherwise, the clutter caused by

the visibility of many variations of a single procedure will make the system

unbearable: imagine C++ programmers having to see template expansions for

each specialized type.

It is also of utmost importance to properly highlight and indicate that a

callee is specialized for a particular call site. GOCLR will let you provide a short

comment when specializing a base template that will be visible to the reader

under a specialized function name in the call site.

4.4. Applications

Building abstractions by program refinement is helpful in various ways to the

programmer. In this section, we discuss a select few of its potential applications.

Debugging Aid. Often in debugging scenarios, the programmer might be

interested in temporarily customizing the functionality of a procedure in a

specific invocation, without having it behave differently for the program at

large. GOCLR lets the programmer do exactly the customization they need
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per individual call site. The programmer can choose to customize a specific

procedure when called from a specific location and add diagnostics and print

statements to aid debugging, for instance.

The changes will affect only calls originated from a specific call site and the

rest of the program executes as it normally would.

This debugging technique can be applied even if the programmer does

not expect to specialize the function permanently. To get back to the origi-

nal functionality, the programmer can just revert the specialization within the

programming environment.

Customizing Generated Code. Automatic program synthesis tools and code

generation tools expect the generated code file to not be edited manually,

because the edits would be lost if the code generation tool is run again. Therefore,

generated code is usually kept in a separate file and maintains a clean, minimal,

interface to the other pieces of the program that are non-generated. This style

may make sense for tools like parser generators, that have a very clear, isolated,

functionality, but they effectively discourage the use of a class of automatic

programming tools that require more customization on the output produced and

are more entangled with the host program.

Naturally, we can simply consider the generated code a separate dependency

and propagate changes in the output of the code generator to specialized versions

of functions that are based on pieces of the generated output.

Exposing Hidden State in Dependencies. There are times when excessive

focus on encapsulation cause problems. For instance, a concrete problem with

the TLS package in older versions of the Go runtime library was the lack of an

exposed connection identifier. In order to perform meaningful authentication
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over an established but unauthenticated TLS channel, while preventing man-in-

the-middle attacks, you need a way to bind the underlying TLS channel to the

higher level authentication sequence. There used to be no easy way to extract a

connection identifier from the Go runtime library’s TLS package. Forking that

piece of the library and manually adding a method that exposes the internal

state variable is a way to accomplish it, and it is a huge burden. Luckily, with

a simple program refinement technique, a method can be effectively added to

the package that reads the connection ID from the internal state variables and

returns the value for use by the caller, effectively circumventing the overly strict

encapsulation policies of the package, for good reason.

Lightweight Forking. Considering the vast variety of freely available source

code on the web, sometimes all the programmer wants is to write a program

whose functionality can leverage a subset of another program, with minor

additions and differences. For instance, a static analysis tool might be based on

a compiler toolchain that was not intended to be used as a library. GOCLR can

be used to help the programmer extend and manage the fork without severing

the ties to the original program, i.e. future changes and bug fixes in the original

program can still propagate through the derivative.

4.5. Open Issues

Refining programs is fundamentally a new way to define abstractions. The

GOCLR is in prototype stage and work should to be done to ensure seamless

cohabitation of this concept with other language features present in more

featureful languages. Furthermore, we must assess its utility and usability, work
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to identify the applications for which it is most useful and effective and how to

ensure we maintain a delightful user experience.

Effectiveness. The utility of programming languages, techniques, paradigms,

and tools are often subjective and difficult to evaluate. This is especially true

for new paradigms and ideas that have not been widely applied. Established

paradigms like Object-Oriented Programming and Aspect-Oriented Program-

ming [Kiczales et al., 1997] faced a similar issue. In section 4.4, we follow

their footsteps [Kiczales et al., 1997, Afshari et al., 2012] and illustrate the

utility of using program refinements to infer abstractions with a few case studies.

Empirical studies are needed to quantify the impact of availability of different

ways to build abstractions on programmer productivity. Unfortunately, a mean-

ingful empirical study is hard to do before widespread adoption of a paradigm.

While we believe there are compelling use cases for building abstractions on

top of program refinements, there are concerns about syntactic modifications

leading to the prolification of divergent specialized versions of a procedure

that hardly resemble their original base and it may prove to be hard to reason

about them as a general, unified, thing, which might lead to adverse effects on

programmer productivity. Quantifying such effects is an open issue.

Interaction with External Editors. In order to capture refinements, propagate

changes, and present the appropriate code specializations in their right context,

the programming environment needs to store some metadata. In our imple-

mentation of GOCLR, this metadata and the associated code is not meant to be

modified outside the environment, therefore the developer is mostly confined

to the GOCLR editor. In order to resolve this problem, a standard format for

persisting the specializations and the appropriate links and metadata should be
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developed. Even with such standard format that could be supported in alterna-

tive editors, some programmers strongly prefer sticking to their favorite plain

text editors without additional functionality. It is conceivable that a useful imple-

mentation of the concepts presented in this chapter would require a smart editor

to be effect. Not supporting plain text editors can hinder its adoption among

some programming circles, therefore research into adapting the techniques to a

text editor and command line tool-based environment remains an open issue.

Merge Conflicts. While syntax oriented merges can work well when the

changes are spread away, as they become more granular, too many conflicts start

to emerge. The burden of resolving conflicts is enough that if they are frequent,

it will discourage people from using the system.

Programming language-aware merge tools can help alleviate this problem

because they can take a more semantic oriented view at the language and do a

better job at merging. That said, the merge problem is definitely one that has a

lot of room for improvements.

4.6. Related Work

Kiczales [Kiczales, 1992] identifies the issue of leaky abstractions and the

necessity for being able to reach into them at times. He observes that in practice,

the implementation cannot always be hidden, citing performance characteristics

show through in significant ways as an example of how abstractions can leak.

This work discusses the deficiencies in mainstream abstraction frameworks and

suggest application of a metaobject protocol technology to resolve the problems.

The metaobject protocol is a reflection mechanism that lets the client reach

into an abstraction and alter its behavior. In dynamic environments like Ruby
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and JavaScript, the “monkey patching” technique is commonly used to swap a

value of an object property or a method body at run time to achieve the desired

results. Reflection is often limited in its power in more static environments and

commonly these all the prior techniques operate at the granularity of a method

at best. In comparison, program refinement can work by syntactic manipulation

of statements within method bodies. Since it is a syntactic tool, its power is

effectively only limited by the expressivity of the host language itself.

Domain specific languages [van Deursen et al., 2000] provide an alterna-

tive path to managing complexity without the need to build a deep hierarchy of

abstractions. Domain specific languages that are implemented as code generators

synergize well with program refinements.

Embedded domain specific languages [Bravenboer and Visser, 2004] are

basically language extensions for which the parsing is handled by some of

the objects used in the program, depending on the context. These languages

increase expressiveness and concision of programs, but still require careful

upfront thinking by the library author. Of course, program refinement is not

confined to any particular language, so in principle, the domain specific parts of

a program can also be refined and specialized.

There is a body of work related to detecting cloned code [Kim et al., 2005,

Jiang et al., 2007] and automatically propagating patches through them

[Toomim et al., 2004]. One distinction of these systems from our work is that

we do not increase the footprint of the codebase, whereas copying-and-pasting

excessively increases the code size and visually cluttering to the programmer.
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4.7. Conclusion

In this work, we have introduced a new, generic, way to build abstractions

by program refinements. Program refinement is a powerful tool for building

many forms of abstractions because it is limited only by the expressiveness of

the host language.

The key insight about basing abstractions on modifications at the syntactic

level is interpreting such changes in the context of the original definition, as

opposed to the caller’s scope, while the effect would be limited to a specific call

site. This gives the programmer implementing the caller an easy way to reach

into the implementation and customize the concrete code behind an abstraction

to achieve the desired effect that is executed when necessary.

We believe that the ability of building custom abstractions via arbitrary

syntactic manipulation of code is a powerful tool that can alleviate the need

for narrower, more specific, abstraction tools that exist in some programming

languages, and liberates the programmer from fighting with abstractions that

confuse the programmer down the line and hinder program understanding and

programmer agility.
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CHAPTER 5

Conclusion

Programming is one of highly leveraged human activities in the modern

society and it seems its importance is only increasing in the forseeable future,

as computers get more deeply integrated with the fabric of lives. Therefore it

is important that the programming experience keeps up with the new shapes

and forms of computers, be more accessible to a wider audience, and makes the

professional programmer more effective as well.

In this dissertation, we started by highlighting transforming ideas into soft-

ware as a high level, long-term mission for software engineering, surveyed

the work that has been done along that direction, and identified various paths

forward to realize this long term vision.

In the next chapters, we further explored three distinct technqiues to con-

cretely move forward in reimagining the modern programming experience.

In chapter 2, we introduced a new programming paradigm, prorogued pro-

gramming, to better fit the programmer’s workflow and reduce distractions.

In chapter 3, we described Live Symbols, an interactive technique to enhance
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the development environment to adapt itself to various context-specific tasks

that can potentially look little like traditional programming, thereby making it

easier for domain experts to leverage computing resources to accomplish their

domain-specific goals, making programming more accessible to a wider audience

beyond professional programmers. Lastly, we identified complicated layers of

black-box abstractions as a hinderance in writing code and reusing external

dependencies effectively and described program refinement as an alternative

mechanism to build abstractions that are easily malleable simply by editing code

snippets, relying on the programming system to propagate upstream changes to

the modified pieces of code automatically.

As mentioned before, there is no silver bullet that can help us achieve the

TIIS mission overnight, and ideas explored in this dissertation, together with

future research across many domains, will collectively help reimagining the

programming experience for the modern, connected, world with computers

everywhere.
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