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Abstract

Software is difficult to write and maintain. Much of the challenge in developing a program lies

in specifying it—understanding precisely what it should be doing. Both human-oriented tasks

(like fixing a bug) and automated tasks (like mechanical verification) require knowledge of a

program’s intended behavior. For the vast majority of software projects, though, complete and

well-documented specifications simply do not exist. Writing specifications—discovering and

codifying intent—is a time-consuming and largely manual process.

This dissertation presents research into easing this process through automation. The work has

focused on the problem of automatically “inferring” specifications directly from programs by

analyzing their behavior. This dissertation presents a family of related algorithms, frameworks,

and tools for reverse engineering a specific (but common) class of specification: temporal safety

properties. It also includes a presentation of OCD, a software tool that leverages these “inference”

techniques to both learn specifications and find bugs—simultaneously and fully automatically.

Each presented algorithm and tool is practical, finding useful specifications and previously

unknown bugs in large, widely-used software projects like Eclipse.

This dissertation concludes with a discussion of future work on this topic, including an outline

of my vision of a new research area I am calling Intelligent Program Analysis.
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1 Introduction

A software program is an implementation of ideas. In order to perform virtually any software

engineering task—indeed, to do anything nontrivial with software—a developer must understand

those ideas. This knowledge might be codified as, say, documents containing formal requirements

or source code comments detailing the code’s design. While superficially quite different, a general

idea underlies these examples: they are both forms of specifications.

Unfortunately, specifications are often missing, incomplete, or (perhaps worst of all) incorrect.

This raises a natural question: how, then, does software get built at all? The answer appears to

be “slowly, and full of mistakes.” Development and quality assurance tasks are crippled without

a clear idea of a program’s intent, with maintenance on larger systems approaching more art

than engineering. And the problem restricts research as well: program verification tools, which

are becoming eminently more practical of late, are useful only if we can feed them important

specifications to verify.

This problem—the lack of specifications in software—is the focus of this dissertation. This work

presents four distinct algorithms, frameworks, and tools for automatically reverse engineering,

or mining specifications directly from software projects.

This dissertation is organized into chapters, each of which forms a distinct set of contributions.

The material in chapters 2–4 has been peer-reviewed and previously published at ACM-sponsored

software engineering conferences, while the newest material in Chapter 5 is yet unpublished.

Chapters 2 and 3: Javert The next two chapters (Chapters 2 and 3) describe the components

of the Javert specification mining system. Javert is unique in that it requires very little actual

input from the user, whereas other approaches depend on daunting, error-prone user input like

templates to match (“specifications in my system should take this form”) and elements to focus



2

on (“specifications in my system should contain only x, y, and z”). In other words, Javert is

completely automated.

The heart of the Javert (Chapter 3) is a completely new way of looking at the problem, one

more mathematical in nature. Javert first mines small specification components we call “micropat-

terns.” With these axiomatic components in place, Javert then uses deductive inference rules

to assemble them into larger, more complete specifications—effectively allowing the expressive

forms of the specifications to emerge on their own.

Javert is highly practical, finding rich, accurate specifications in several large real-world

software applications. It owes a great deal of its scalability to the underlying technique used

to mine “micropatterns.” Existing algorithms lacked the scalability and expressiveness to mine

these foundational patterns, so we developed a highly scalable symbolic mining algorithm—the

first of its kind—and implemented it using Binary Decision Diagrams (BDDs) (Chapter 2).

Its practical effectiveness aside, Javert is proving to be a strong conceptual contribution as

well. A recent reimplementation and extension of our work by a group at UC Berkeley and

Microsoft Research [Li et al., 2010] successfully applied the Javert technique to an entirely

different domain: mining specifications in hardware designs.

Chapter 4: OCD The most visible effects of software development problems are bugs. Bugs—

errors in software—affect all software projects at some point, and they are difficult and costly to

find and fix. There is an opportunity here for automated tools to markedly improve the quality

of software and save countless hours of effort.

In order to find errors in our software, we must have an idea of what it should be doing.

There are a few things we know of all programs: they should not crash, for example. But many

(perhaps most) software bugs involve more domain-specific problems, like, say, a web browser

rendering a page incorrectly.

Finding these “semantic” bugs requires knowledge of an oft-missing specification. But—

fortunately—a specification is something our tools can provide. This is what led us to build

OCD, a tool that finds bugs in software by simultaneously mining and checking specifications

(Chapter 4). The tool is quite practical: it found previously-unknown defects in well-known

open source software projects.
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OCD works online and completely autonomously, learning about a program and self-tuning

its own parameters on the fly. The ability to maintain this level of automation while finding

“semantic” bugs is OCD’s most exciting property: it blurs the line between program verification

and artificial intelligence. we believe it to be the first step in what we are calling Intelligent

Program Analysis: a family of techniques and tools that actively comprehend software as they

work, automatically improving it in ways previously thought to be possible only by an experienced

human developer.

Chapter 5: DSI The final contribution of this dissertation is a new conceptual framework

for specification inference called Deductive Specification Inference (DSI). Nearly all other

work on specification inference—including the work presented in Chapters 2–4—is based on

inductive reasoning. Induction is the process of inferring general knowledge from examples.

Tools like Javert and OCD make general inferences about specifications based on observations (of

software) and beliefs (about software). Those tools are effective, but they both must grapple

with the issue of precision. A mined specification can satisfy all our prior “beliefs” about what

a good specification should be, including being concise, frequent, and satisfied, and still be

completely wrong.

DSI is a new way of approaching the problem that is designed around the fundamental essence

of a specification: if a program violates a specification, then that program should be “incorrect.”

An instance of DSI starts with a given potential specification—perhaps one mined by Javert—

and continues to explicitly define and build a design space of potential programs to which the

specification may apply. Within that design space, DSI systematically tests the hypothesis “a

violation of this specification leads to a failure.”

We implemented DSI for the domain of temporal specifications (the domain covered by the

earlier chapters). In our implementation, we generate an entire family of programs around

each specification through automated program transformations. We then perform our hypothesis

testing using traditional software testing. DSI is not only effective—it provides a much deeper

and more complete understanding of what it means to “infer” specifications from programs.
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2 Symbolic Inference of Temporal

Specifications

Program specifications are important in many phases of the software development process, but

they are often omitted or incomplete. An important class of specifications takes the form of

temporal properties that prescribe proper usage of components of a software system. Recent

work has focused on the automated inference of temporal specifications from the static or

runtime behavior of programs. Many techniques match a specification pattern (represented by

a finite state automaton) to all possible combinations of program components and enumerate

the possible matches. Such approaches suffer from high space complexity and have not scaled

beyond simple, two-letter alternating patterns (e.g. (ab)∗). In this chapter, we precisely define

this form of specification mining and show that its general form is NP-complete.

We observe a great deal of regularity in the representation and tracking of all possible

combinations of system components. This motivates us to introduce a symbolic algorithm,

based on binary decision diagrams (BDDs), that exploits this regularity. Our results show that

this symbolic approach expands the tractability of this problem by orders of magnitude in both

time and space. It enables us to mine more complex specifications, such as the common three-

letter resource acquisition, usage, and release pattern ((ab+c)∗). We have implemented our

algorithm in a practical tool and used it to find significant specifications in real systems, including

Apache Ant and Hibernate. We then used these specifications to find previously unknown bugs.
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2.1 Introduction

Accurate specifications are invaluable assets for the software development process. These

specifications often take the form of finite automata that describe temporal properties. These

properties formally specify the legal interaction patterns with specific components of a system.

Canonical examples include alternation properties, like lock acquisition and release, and resource

ownership properties, like the requirement that calls to read(fd) must all exist between calls to

open(fd) and close(fd).

When used prescriptively, temporal specifications can help to inexpensively prevent future

bugs. When used retroactively, these specifications are candidates for verification by model

checkers and static verifiers [Ball and Rajamani, 2001, Das et al., 2002, Flanagan et al., 2002, Xie

and Aiken, 2005], lighter weight static analysis techniques [Chen and Wagner, 2002, Hovemeyer

and Pugh, 2004], or manual inspection. These properties can also be verified through software

testing, where they can be verified as system invariants. The characteristics of these properties

can aid in the generation of test cases.

These specifications are often missing, incorrect, or otherwise incomplete. Researchers have

recognized this problem and have sought to develop methods for retroactively inferring specifi-

cations from systems based on their common behavior. Current techniques can be categorized

by the inputs and outputs of their respective algorithms. Most algorithms take as input some

type of program or program trace and produce one or more temporal specifications as finite

automata. More specifically, some techniques [Alur et al., 2005, Ammons et al., 2002, Whaley

et al., 2002] seek to produce a single, arbitrarily complex automaton based on a known alphabet.

For example, one might wish to learn the interaction patterns of a language’s socket API. The

user provides the algorithm with the API functions and a program representation (either the

source code or dynamic traces), and a finite automaton describing the probable correct behavior

is returned.

Other techniques [Engler et al., 2001, Ramanathan et al., 2007a, Weimer and Necula, 2005,

Yang et al., 2006] take as input a specification pattern in the form of an automaton. The user

provides the algorithm with a larger set of input symbols, often representing every function in the

system or event in the trace, and a program representation. The algorithm then enumerates the
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set of assignments of the input symbols into the automaton’s alphabet such that the automaton’s

interaction pattern holds over the program. Most previous work has focused on alternating

patterns. For example, the user can provide an alternating template representing the regular

expression (ab)∗, a program, and an alphabet of possible assignments. The algorithm returns a

set of properties that match this expression, including properties like lock acquisition and release.

One possible reason for this limitation to alternating patterns is the expense of tracking all

possible assignments into the input automaton’s alphabet. Basic algorithms track the state

of every possible assignment over the program’s execution. This approach has a large space

requirement: for n input symbols and a pattern alphabet of size k, these algorithms require

O(nk) space. Because there are only two participants in an alternating pattern, the computation

can be performed in quadratic space.

This work provides a novel symbolic technique for this type of specification inference that is

efficiently implemented using binary decision diagrams (BDDs) [Bryant, 1986]. Our technique

reduces both the space and time requirements by using the regularity of the problem space to

form an efficient symbolic representation.

Under empirical evaluation on real traces from large systems, we observe that our algorithm

is able to extend this approach to specification patterns with alphabets of at least three letters.

More importantly, this allows the inference of the previously mentioned common resource

acquisition/use/release protocol, which is described by the pattern (ab+c)∗. We have applied

our algorithm to traces from real systems and used the discovered properties to find previously

unknown bugs.

This chapter makes the following technical contributions:

1. We formalize the pattern-based specification mining problem and show that its general

form is NP-Complete.

2. We provide a symbolic algorithm based on Binary Decision Diagrams (BDDs) that greatly

expands the computational tractability of this problem.

3. We provide practical modifications to our algorithm to allow further scaling and tolerance

of imperfect input data.
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4. We implement a specification mining tool based on our algorithm and evaluate its perfor-

mance. We use this tool to mine several interesting specifications, which we use to locate

previously unknown bugs in real systems.

The rest of this chapter is structured as follows. We begin with a formal definition of the

pattern-based specification mining problem and an analysis of its computational complexity

(Section 2.2). We continue with the presentation of our symbolic algorithm (Section 2.3), which

includes the necessary background information on BDDs. We then discuss our implementation

and present the results of our empirical evaluation (Section 2.4). Finally, we discuss related

work (Section 2.5) and conclude with ideas for future work (Section 2.6).

2.2 Formal Analysis

In this section, we formalize the pattern-based specification mining problem and analyzes its

computational complexity. We also analyze its expressiveness to motivate our work.

2.2.1 The Specification Mining Problem

Our work focuses on mining properties from dynamic traces and is most related to the work of

Yang et al. [2006]. We begin with a precise definition of the problem.

Definition 1 (Specification Mining). Assume we have a specification template represented by

an automaton A over an alphabet Σ and an execution trace T over a disjoint alphabet Σ′, i.e.,

Σ ∩Σ′ = ;. The pattern-based specification mining problem is defined as the enumeration of

all satisfying total and one-to-one mappings ρ :Σ→Σ′ such that the projected trace of T over

the range of ρ is accepted by ρ(A), which is the same as A except each transition δ(s,a) = t is

replaced by δ(s,ρ(a)) = t.

Consider this example trace:

open, use, use, close, dispose, get, get, open, use, close, dispose

Suppose we mine the alternating automaton pattern in Figure 2.1 over this trace. In this

example, the assignments (a=open, b=close), (a=open, b=dispose), and (a=close, b=dispose)

are satisfied over the trace.
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2

10

b

a

ab

a,b

Figure 2.1: An automaton representing the alternating pattern.

To demonstrate the complexity of this problem, we show that its general, decision problem

counterpart is NP-Complete.

Definition 2 (SpecMine). Given a specification template represented as an FSA A over an

alphabet Σ and an execution trace T over a disjoint alphabet Σ′, i.e., Σ ∩Σ′= ;. The specification

mining question (SpecMine) asks whether there exists a total and one-to-one mapping ρ :Σ→Σ′

such that the projected trace of T over the range of ρ is accepted by ρ(A), which is the same as

A except each transition δ(s,a) = t is replaced by δ(s,ρ(a)) = t.

Note that for this to be of interest, it is clear that |Σ| ≤ |Σ′|. Our reduction is from the

Hamiltonian Path Problem. First let us recall the definition of the problem.

Definition 3 (HamPath). We consider the directed version of the problem: Given a directed

graph G= (V, E), does G have a path that visits each vertex v ∈ V exactly once?

The problem is well-known to be NP-complete [Karp, 1972]. We will give a polynomial-time

reduction from HamPath to SpecMine to show that SpecMine is NP-hard. Consider an instance

of HamPath G = (V, E). We construct a nondeterministic automaton A= (Σ,S,s0,δ, F) as follows:

• Σ= V ;

• S=
⋃

v∈V {sv} ∪ {s0,s∗};

• s0 is the start state;

• ∀(u, v)∈ E. δ(su,u) = sv;

• ∀u∈ V. δ(s0,ε) = su;
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• ∀u∈ V. δ(su,u) = s∗;

• F = {s∗}.

Let |V |= n. Let Σ′ be an arbitrary alphabet such that Σ′ and Σ have the same cardinality (i.e.,

|Σ′|= |Σ|) and are disjoint (i.e., Σ ∩ Σ′ = ;). We then construct a trace T = T1 . . . Tn over Σ′

such that Ti 6= T j for all 1≤ i 6= j≤ n.

Lemma 1. G= (V, E) has a Hamiltonian path if and only if SpecMine(A, T ).

Proof. (⇒) Assume G = (V, E) has a Hamiltonian path p. We construct a mapping ρ :Σ→Σ′ as

follows:

ρ(p[i]) = T[i]

where p[i] denotes the i-th vertex on the path p and T[i] denotes the i-th letter on the trace T

(1≤ i ≤ n). This mapping shows that T is accepted by A by considering the following path p

through A:

s0,sp[1],sp[2], . . . ,sp[n],s
∗

The path p causes A to accept the string

ε.ρ(p[1]).ρ(p[2]). . . . .ρ(p[n])

= ρ(p[1]).ρ(p[2]). . . . .ρ(p[n])

= T[1].T[2]. . . . .T[n]

= T

(⇐) Assume SpecMine(A, T). Then there exists a mapping ρ :Σ→Σ′ such that A has a path p

that accepts T . Since ρ is invertible, the path p must have the form:

s0,sψ(T[1]), . . . ,sψ(T[n]),s
∗

where ψ denotes ρ−1. Thus ψ(T[1]), . . . ,ψ(T[n]) is a path of G and it is Hamiltonian.

Theorem 1 (NP-completeness). SpecMine is NP-complete.
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3

1

a,b,c

2a b b

c

b,c

a,c

a

0

Figure 2.2: An automaton representing the resource usage pattern.

Proof. We first show that SpecMine is in NP. Its NP-completeness follows because it is clear

that the reduction from HamPath to SpecMine is polynomial. SpecMine is in NP because we

can generate in polynomial time a mapping ρ and check, also in polynomial time, whether the

projected trace is accepted by ρ(A).

2.2.2 The Need for Larger Automata

Consider the automaton in Figure 2.2. It represents the pattern (ab+c)∗, which describes

common programming tasks that involve acquiring a resource, using it, and properly releasing it.

It is desirable to mine this specification pattern from programs, but it is either costly (for small

examples) or impossible (for moderately sized examples) with current techniques.

In some cases, it is possible to exploit the transitive relationships between smaller proper-

ties to form larger properties. In our earlier example, the algorithm discovers the properties

(open,close)∗, (open,dispose)∗, and (close,dispose)∗. From these three 2-letter properties and

their transitive relationships, we may infer a 3-letter property: (open,close,dispose)∗. The inter-

section of the expansion of three discovered languages over their combined alphabet is precisely

the inferred property. As further motivation for our work, we show that the automaton in

Figure 2.2 has no two-letter decomposition.

Definition 4 (Expansion). The expansion of an automaton A with alphabet Σ over an arbitrary

alphabet Σ′, EΣ′(A), is an automaton, A′, that is equal to A with a looping transition δ(q,a) = q

added to each state q for each letter a ∈Σ′ \Σ.
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The expansion operator is essentially the inverse of projection. For example, the regular

expression corresponding to E{a,b,c}((ab)∗) is c∗(ac∗bc∗)∗. In the context of specification mining,

the expansion of a property over the alphabet of all possible trace events yields a language that

describes all possible program traces in which the property holds.

Definition 5 (Decomposition). A set of automata {A′1, . . . ,A′n} with alphabets {Σ′1, . . . ,Σ′n} is a

decomposition of a finite automaton A with alphabet Σ iff:

n
⋃

i=1

Σ′i =Σ
∧

n
⋂

i=1

L
�

EΣ(A
′
i)
�

=L (A)

Theorem 2. The resource usage automaton in Figure 2.2, R, represented by the regular expression

(ab+c)∗, has no two-letter decomposition.

Proof. Let Σ be the alphabet of R ({a, b,c}). We can assume without loss of generality that

the decomposition would consist of exactly
�3

2

�

= 3 automata, as any automata over the same

subset of the alphabet can be unioned. We refer to these three automata as R1, R2, and R3 with

respective alphabets Σ1= {a, b}, Σ2= {b,c}, Σ3= {a,c}.

It is clear from the definition of a decomposition that:

L (EΣ(R1))
⋂

L (EΣ(R2))
⋂

L (EΣ(R3)) =L (R)

It then follows that:

L (R)⊆L (EΣ(R1))

L (R)⊆L (EΣ(R2))

L (R)⊆L (EΣ(R3))

Applying the projection operator to both sides yields:
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L (R |Σ1
)⊆L (R1)

L (R |Σ2
)⊆L (R2)

L (R |Σ3
)⊆L (R3)

We then convert these projections into their associated regular expressions.

(ab+)∗⊆L (R1)

(b+c)∗⊆L (R2)

(ac)∗⊆L (R3)

The language of every two-letter decomposition of R must be included in the intersection

of the expansion of these three languages. However, the following trace is accepted by this

intersection but not by R.

a, b, b,c, b, b,a, b, b,c

It follows that R has no two-letter decomposition.

2.2.3 Current Approaches

Yang et al. describe a basic algorithm, Perracotta, for solving the specification mining problem for

input automata with alphabets of size two. The algorithm creates an n by n matrix that contains

the state of every possible assignment of the trace alphabet into the automaton alphabet, where

n is the number of unique input symbols. Each (i, j) entry in the matrix is initially set to the

starting state of the automaton A.

The algorithm then iterates through the input trace. Each time an input symbol s is seen, its

index i is retrieved. It then iterates through each row (corresponding to all (s,_) assignments)

and column (corresponding to all (_,s) assignments) and updates the state based on the transition

function of A. After each symbol in the trace has been processed, it iterates through the possible
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assignments and outputs those that are in the final state. The space requirement for this algorithm

is clearly O(n2), and the time complexity is O(nL), where L is the length of the input trace.

Consider a hypothetical extension of this algorithm to three dimensions. In order to track

all the assignments, O(n3) space is now needed. In addition, the scanning of an input symbol

s now requires updating all assignments for (s,_,_), (_,s,_), and (_,_,s), of which there are a

total of O(n2). This raises the time complexity to O(n2 L). In general, this approach uses O(nk)

space and O(nk−1 L) time, where k is the size of the alphabet of the template automaton. This is

prohibitively costly for alphabets with greater than two letters (Section 2.4).

2.3 Algorithm Description

In this section, we describe our algorithm in detail. We first give the generic, high-level version

(Section 2.3.1). We then provide some background on binary decision diagrams (Section 2.3.2),

a graph-based representation of Boolean functions that we then use to effectively implement the

algorithm (Section 2.3.3).

2.3.1 High-level Algorithm

Consider an automaton (Q,Σ,δ,q0, F) and a trace T over the larger, disjoint trace alphabet Σ′.

At a high level, our algorithm constructs a symbolic formula ϕ : (Σ→Σ′)→Q that represents

the current automaton state of each assignment of trace symbols into the pattern alphabet. It

then scans each letter in the input trace and symbolically applies the transition function of the

automaton to the original formula.

The formula representing the initial configuration maps each possible assignment to the initial

automaton state q0.

ϕ0≡





∧

x∈Σ





∨

a∈Σ′
x = a







∧ s= q0

We refer to this symbolic formula as a state configuration. In our algorithm, we only consider

assignments in Σ→Σ′ that are one to one; assignments of the same trace letter into two distinct

letters of the automaton do not represent interesting specifications.
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To apply the transition function δ on a trace letter a ∈Σ′, we update the state of all affected

assignments. Consider an arbitrary state configuration ϕ. We define a transition function,

t rans(ϕ,a) =ϕ′, that applies δ to ϕ on the input letter a. It is given by the following sym-

bolic formula:

t rans(ϕ,a)≡
∨

(q,x)→q′∈δ

�

�

ϕ∧¬(x = a∧ s = q)
�

∨
�

(∃s.ϕ∧ (x = a∧ s = q))∧ s = q′
�

�

The first term of the disjunction, ϕ∧¬(x = a∧ s= q), captures the state mapping of those

assignments that are unaffected by a transition (q, x)→ q′. The second term, (∃s.ϕ∧(x = a∧s=

q))∧ s= q′, captures the state mapping of affected assignments. It first projects the affected

assignments with an existential quantification and updates their corresponding state to q′.

To implement this algorithm, we now need a suitable representation for the symbolic formulas.

We use binary decision diagrams (BDDs) for this because they can compactly represent a large,

regular state space. Before presenting our BDD-based algorithm, we first introduce some basic

background on BDDs.

2.3.2 BDD Background

A Binary Decision Diagram (BDD) [Bryant, 1986] is a decision tree representation of a Boolean

function over a finite set of ordered Boolean variables. Each non-terminal BDD node is associated

with a Boolean variable and has exactly two outgoing edges: a true edge and a false edge. Every

BDD has exactly two terminal nodes: a zero node and a one node.

Given an arbitrary truth assignment into these variables, we can determine if the Boolean

function is satisfied by performing a traversal of the decision tree. Starting at the root node,

we follow the true and false edges, depending on our assignment into the associated Boolean

variable, until we arrive at a terminal node. If the final node is the one node, the function

accepts the truth assignment. Similarly, if the final node is the zero node, the function rejects

the assignment.

BDDs are used in reduced form, sometimes referred to as ROBDDs (reduced ordered BDDs).

Nodes that represent the same variable and have the same successors can be merged, and nodes

with both successor edges pointing to the same node can be removed entirely. ROBDDs are
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x
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z z z z

00 00 00

(a) Full

x

y

z

1 0

(b) Reduced

Figure 2.3: BDD example for (x⇒ y)∧¬(z⇒ y). True edges are solid; false edges are dotted.

canonical: given a specific variable ordering, there is exactly one minimal BDD for a given

Boolean formula.

It is because of this that BDDs are often adept at representing extremely large sets, as long as

they show a certain degree of regularity. In the programming languages and software engineering

fields, BDDs have been used to create scalable pointer analyses [Berndl et al., 2003, Whaley

and Lam, 2004] and represent dynamic traces [Zhang et al., 2004]. Given an efficient variable

ordering, the BDD can be sufficiently compressed. However, finding an optimal variable ordering

is problem dependent and NP-complete in general [Bollig and Wegener, 1996].

Efficient algorithms exist for performing basic Boolean operations on BDDs, and they run

in time proportional to the number of nodes. More importantly, the BDDs are maintained in

reduced form throughout the execution of the algorithms.

Consider the Boolean formula (x⇒ y)∧¬(z⇒ y). The decision tree representation of this

formula (with variable ordering x yz) appears in Figure 2.3a.

Note that there are several redundant nodes: the graph only requires one terminal node of

each type, and several of the z level nodes are identical and can be combined. When combined,

several tests become redundant (characterized by identical true and false edges) and can be

eliminated entirely. When all of these transformations have been applied, we are left with the

canonical reduced form in Figure 2.3b.
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Figure 2.4: State-tracking BDD example. Nodes are labeled with their corresponding variable
numbers. Solid edges are true edges and dotted edges are false edges.

2.3.3 BDD-based Algorithm

We implement the general symbolic approach described in Section 2.3.1 using BDDs. This section

describes the implementation of our algorithm in terms of BDD operations.

Running Example

We first give an example to illustrate the core steps of the BDD-based algorithm. Suppose we

wish to track the state of six possible assignments of the alphabet {a, b, c} into the two-letter,

three-state automaton in Figure 2.1. We can encode each letter and the state in two bits each

for a total of six Boolean variables. Using 01 for a, 10 for b, and 11 for c, Figure 2.4a depicts a

BDD representing the assignments in their initial state: {(a,b,0), (b,a,0), (a,c,0), (c,a,0), (b,c,0),

(c,b,0)}.

Suppose we wish to update all assignments that contain an a in the first position (a,_,_) to

state 2, i.e., we apply the transition1 δ(a,∗)=2. We can perform the update on our set as a series

of Boolean operations. Figure 2.4b is the BDD representing all assignments with an a in the first

position. Note the omission of the other variables: this indicates a “don’t care” assignment. To

1To simplify the example, we are not considering the current state.
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extract the set of affected assignments, we intersect this BDD with our state BDD, yielding the

BDD in Figure 2.4c.

To remove this extracted set from our main set, we intersect the complement of the BDD in 2.4b

with the state. The complement operation involves trading the inbound edges on the terminal

zero and one nodes.

We now wish to update the state on our affected set. We first remove the current state

assignment in Figure 2.4c through existential quantification over the state variables (Figure 2.4d).

We then intersect the BDD corresponding to the new state, 2 (Figure 2.4e), and union this

updated set into our main set. The final result, which represents the set {(a,b,2), (b,a,0), (a,c,2),

(c,a,0), (b,c,0), (c,b,0)}, is shown in Figure 2.4f.

Basic Algorithm

Our BDD-based algorithm appears as Algorithm 2.1. The inputs to our algorithm are 1) a finite

trace of symbols, 2) a total and one-to-one mapping of the trace’s unique symbols to an index,

and 3) an automaton pattern to mine.

On line 5, we iterate through the alphabet of the input automaton2 and allocate enough

Boolean variables to encode the unique symbols of the trace (line 6). On line 7, we build up the

Cartesian product of all possible assignments.

The function bddOf(vars,values) returns a BDD corresponding to the encoding of values on

variables vars. All other Boolean variables are considered to be in a “don’t care” state. On line

10, we place every assignment in our main set in the start state of the automaton.

In our implemented version, we add one additional step. Because assignments with duplicate

symbols are not interesting, we build up BDDs corresponding to the
�|Σ|

2

�

possibly equal variable

sets, i.e., the BDDs in which the two variable sets are equal. We intersect the negation of each of

these with our main set.

We then iterate through the trace and repeatedly apply the transition function. Line 18

builds a mask consisting of 1) the input symbol in the appropriate alphabet position and 2)

the appropriate current state. We intersect this mask with the global set to retrieve the set of

2For simplicity, we treat the states and alphabet of the automaton as zero-based integers.
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Algorithm 2.1 Pattern-based Specification Mining

1: function SPECMINE(T :Trace, µ:Symbol→m, A:(Q,Σ,δ,q0, F))
2: n←|µ|
3: asgnVars← []
4: set← True
5: for all i in [0..(|Σ|−1])] do
6: asgnVars[i]← bVars(n)
7: set← set

⋂

bddOf(asgnVars[i], 0..(n−1))
8: end for
9: stateVars← bVars(|Q|)

10: set← set
⋂

bddOf(stateVars, q0)
11:
12: for all symbol t in T do
13: i←µ(t)
14: old←;
15: new←;
16:
17: for all transition δ(q,a) = q′ do
18: affected← bddOf(asgnVars[a], i)

⋂

bddOf(stateVars, q)
19: affected← affected

⋂

set
20: old← old

⋃

affected
21:
22: affected←∃ stateVars . affected
23: affected← affected

⋂

bddOf(stateVars, q′)
24: new← new

⋃

affected
25: end for
26:
27: set← set

⋂

old
28: set← set

⋃

new
29: end for
30: return set
31: end function

all assignments that are affected by this transition. We union this set with the set “old” for

later removal.

We then delete the old state through existential quantification (line 22) and intersect in the

new state (line 23). We union this updated set with “new” for later addition.

After all relevant transitions have been applied, we subtract the previous assignments (line

27) from the main set and add the updated assignments (line 28).

After execution of the algorithm, the main set contains the state of every possible assignment

at the end of the trace. At this point, we intersect this set with the BDD corresponding to the

final state and iterate the satisfying assignments to retrieve the potential specifications.

The running state of this algorithm exhibits a high degree of regularity: the algorithm consists

of shuffling the numerous assignments into comparatively few partitions defined by the states
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of the automaton. In practice, BDDs proved to be an appropriate choice for implementation

(Section 2.4).

Practical Improvements

Algorithm 2.1 precisely and effectively solves the pattern-based specification mining problem as

defined in Section 2.2.1. However, there are several practical issues that must be addressed to

make the results more applicable to real systems.

Problem Size Although the use of BDDs greatly improves the tractability of this problem,

some traces may still have too many unique events to consider all possible assignments. In our

evaluation, the largest trace has 7000 unique events, and our precise algorithm completed its

scan in a reasonable amount of time. However, it is conceivable that there exist problems that

are too large to solve with this approach.

To reduce the state space, we can partition the original problem into a set of smaller problems.

Even a very coarse, conservative partitioning can significantly improve execution speed, and in

practice, partitioning is especially effective when using BDDs. Because we process the partitions

simultaneously, the BDDs can cache and share nodes between the otherwise unrelated state sets.

Large Solution Sets and Imperfect Traces In general, mining specifications through pattern

matching produces a large result set. Previous work [Engler et al., 2001, Ramanathan et al.,

2007a, Yang et al., 2006] on mining alternating specifications has largely focused on developing

efficient ranking and selection mechanisms. Weimer and Necula [2005] focus their search on

exceptional control flow paths, and they experiment with several ranking statistics. Yang et al.

[2006] develop a suite of heuristic filters that greatly reduce and refine the solution set.

Yang et al. also tailor their analysis to handle potentially imperfect traces. Imperfection in

traces can originate in flaws in the trace generation mechanism, the lack of context information

like threading or object identity, or simply from bugs. To address this, their tool ranks candidate

specifications based on the ratio of the number of times a specific assignment passes the final

state to the number of times it passes the error state (a failed assignment is reset to the start
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state on error). This allows the discovery of frequently occurring specifications from potentially

buggy or otherwise imperfect traces.

Unfortunately, we cannot directly apply this technique to our analysis. Storing a raw satisfac-

tion count or floating point ratio in the BDD is prohibitively expensive: the set quickly becomes

heterogeneous and the memory usage and computation time escalate, causing the computation

to diverge.

We address both of these issues with extensions to our basic algorithm. Algorithm 2.2 differs

from Algorithm 2.1 in that it allows the input traces to contain a certain amount of imprecision

and it only returns specifications that occur frequently.

We add an additional set of Boolean variables to our global state. These variables encode

a satisfaction count for each assignment that can rise and fall as the trace is processed. The

declaration of these variables occurs on line 11 of the modified algorithm.

The count is initialized to a specified value that is greater than zero (line 14). If it reaches zero,

the specification is dropped (line 35). If it reaches our threshold, we declare it to be satisfied

and set it aside (line 24). We no longer execute the transition function on specifications that

have either fully failed or have been fully accepted.

Each time an assignment enters an error state (line 33), we decrement this count. Each time it

enters a final state, we increment the count nondeterministically with a configurable probability.

In both cases, we reset the assignment’s state to the start state of the automaton so that execution

can continue.

We found that using a threshold of 7 (3 bits), a starting point of 2, and a probability of 0.5

worked well. The nondeterminism at line 29 effectively “amplifies” the count: with a probability

of 0.5, we can expect that an accepted specification reaches a final state twice as many times as

it would have if the probability was set to 1.

More importantly, we are able to enforce a stricter requirement–a larger satisfaction threshold–

without adding additional Boolean variables. We experimented with deterministic thresholds

of 16, 32, and 64, and found that even the first extra bit affected the scaling of this approach

significantly. The nondeterminism allows us to locate more frequently occurring specifications

without incurring this overhead.
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Algorithm 2.2 Approximate Pattern-based Specification Mining

1: function SPECMINE(T :Trace, µ:Symbol→m, A:(Q,Σ,δ,q0, F))
2: n←|µ|
3: asgnVars← []
4: set← True
5: for all i in [0..(|Σ|−1])] do
6: asgnVars[i]← bVars(n)
7: set← set

⋂

bddOf(asgnVars[i], 0..(n−1))
8: end for
9: stateVars← bVars(|Q|)

10: set← set
⋂

bddOf(stateVars, q0)
11: countVars← bVars(THRESHOLD+1)
12: NOTFAILED← bddOf(countVars, 1..THRESHOLD)
13: NOTSATISFIED← bddOf(countVars, 0..(THRESHOLD−1))
14: set← set

⋂

bddOf(countVars, STARTVAL)
15:
16: for all symbol t in T do
17: i←µ(t)
18: old←;
19: new←;
20:
21: for all transition δ(q,a) = q′ do
22: affected← bddOf(asgnVars[a], i)

⋂

bddOf(stateVars, q)
23: affected← affected

⋂

set
24: affected← affected

⋂

NOTSATISFIED
25: old← old

⋃

affected
26:
27: affected←∃ stateVars . affected
28: if q′ ∈ F then
29: if nondet ( ADVPROB ) then
30: increment( affected, countVars )
31: end if
32: affected← affected

⋂

bddOf(stateVars, q0)
33: else if isError(q′) then
34: decrement( affected, countVars )
35: affected← affected

⋂

NOTFAILED
36: affected← affected

⋂

bddOf(stateVars, q0)
37: else
38: affected← affected

⋂

bddOf(stateVars, q′)
39: end if
40: new← new

⋃

affected
41: end for
42:
43: set← set

⋂

old
44: set← set

⋃

new
45: end for
46: return set

⋂

bddOf(countVars, THRESHOLD)
47: end function

Note that we have abstracted away the increment and decrement operators on lines 30 and

34, respectively. Performing arithmetic operations on encoded values in a BDD is non-trivial. To
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increment the count, we actually need a second set of Boolean variables as temporary storage.

We build an “adder” BDD across the two sets that consists of the relation (n,n+1) ((n,n−1)

for subtraction) for all n in 0..THRESHOLD−1. Adding then becomes a sequence of Boolean

operations: we intersect the value to add with the “adder” BDD and remove the original value

by existential quantification. We then substitute the new value (now in the temporary values)

for the original with the BDD replace operation.

In practice, this modification scales well. We use this variant of the technique to locate

interesting specifications and find bugs.

2.4 Implementation and Results

We implemented both versions of our algorithm as part of a practical specification mining tool.

This section describes our implementation and presents the results of our empirical evaluation.

2.4.1 Implementation and Experimental Setup

Our specification miner is a Java application that uses the JavaBDD3 library to provide BDD

functionality. The JavaBDD library is a common Java-based abstraction layer for several common

BDD packages. We chose to configure the library to use the well-tested BuDDy library.4

We implemented the precise symbolic algorithm (Algorithm 2.1), the approximate symbolic

algorithm (Algorithm 2.2), and the explicit state tracking algorithm (Section 2.2.3) for com-

parison. As described in Section 2.3.3, we also implemented variants that partition the data

for scalability.

Our tool is wrapped in a front end that prescans the trace and identifies the unique symbols.

It then uses a hash function to build a mapping on to the natural numbers. For convenience,

this front end tracks the average execution time of a single element of the trace and provides a

progress meter and regular estimates of the time to completion.

Other BDD-based algorithms [Berndl et al., 2003, Whaley and Lam, 2004] can show great

variability in performance depending on the ordering of the Boolean variables within the BDDs.

3http://javabdd.sourceforge.net
4http://www.itu.dk/research/buddy

http://javabdd.sourceforge.net
http://www.itu.dk/research/buddy
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Compared to the sets represented in these algorithms, our sets are far more saturated and

homogeneous: we build the Cartesian product of every possible value. We found that a simple

interleaving of all assignment variables yielded the best general performance.

If the shape of the main set changes drastically at some point in the execution of the algorithm,

we allow BuDDy’s dynamic variable reordering to execute and shuffle the assignment variables

using a built in sliding window algorithm. This reordering is triggered with a pathological

operation causes a dramatic increase in the number of BDD nodes. In practice, we find that this

occurs relatively infrequently.

We collected traces for two large Java projects, Hibernate5 and Apache Ant6. Each trace

consists of a sequence of logged method invocations with their fully qualified class names.

We built a trace collection tool using Java bytecode instrumentation provided by the JRat7

toolkit. Our tool takes as input a Jar (Java archive) or directory and recursively instruments all

method calls with hooks into our logging code. We also slipstream our logging classes into the

instrumented Jar files to avoid the task of changing the projects’ runtime profiles.

Our traces are generated from both normal usage of each project and extensive testing using

each project’s respective system test suite.

2.4.2 Results for the Precise Algorithm

We first tested the scalability of our precise algorithm on four small to medium sized traces. For

comparison, we also tested the basic algorithm (Section 2.2.3) that maintains the state of every

assignment explicitly in a matrix. Figure 2.5a contains the results of mining the alternating

pattern found in Figure 2.1. On these smaller traces, the basic algorithm outperforms our

symbolic algorithm. However, the gap narrows as the number of unique events increase.

Figure 2.5b shows the results of mining the 3-letter resource usage pattern found in Figure 2.2.

When the extra dimension is added, the symbolic algorithm is orders of magnitude more

scalable. The basic algorithm quickly diverges in terms of memory usage and is three orders of

magnitude slower.

5An object-relational mapping tool.
6A make-like build tool for Java.
7http://jrat.sourceforge.net

http://jrat.sourceforge.net
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Trace Basic Algorithm Symbolic
Uniq. Evts. Length Time Max Mem. Time Max Mem.

338 24,470 0.17s 18 MB 0.84s 52 MB
591 94,789 0.79s 29 MB 2.7s 52 MB
664 227,595 3.0s 30 MB 5.6s 64 MB
981 1,435,613 18.4s 37 MB 28.8s 66 MB

(a) The alternating (|Σ|= 2) pattern.

Trace Basic Algorithm Symbolic
Uniq. Evts. Length Time Max Mem. Time Max Mem.

338 24,470 3m 31s 196 MB 10.4s 54 MB
591 94,789 42m 3s 942 MB 34.5s 54 MB
664 227,595 2h 8m 1.2 GB 68.4s 64 MB
981 1,435,613 27h 59m 4.0 GB 2m 53s 66 MB

(b) The resource usage (|Σ|= 3) pattern.

Figure 2.5: Results of mining patterns using the precise algorithm on four small traces.

Trace Basic Algorithm Symbolic
Uniq. Evts. Length Time Max Mem. Time Max Mem.

3821 21,055,090 22m 91 MB 7m 30s 68 MB
7000 49,779,538 3h 19m 238 MB 23m 119 MB

(a) The alternating pattern.

Trace Basic Algorithm Symbolic
Uniq. Evts. Length Time Max Mem. Time Max Mem.

3821 21,055,090 – – 5h 17m 302 MB
7000 49,779,538 – – 13h 34m 589 MB

(b) The resource usage pattern.

Figure 2.6: Execution of the precise algorithm on large traces.

We then tested the algorithms on our two largest traces. Figure 2.6 contains the results of

these tests. When mining the 2-letter pattern, the symbolic algorithm exploits the regularity of

the solution set and both executes faster and in less space than the basic algorithm.

We were naturally unable to mine the 3-letter pattern using the basic algorithm, as this would

involve individually tracking the states of over 50 billion and 300 billion potential assignments

for the two traces, respectively. The symbolic algorithm was able to complete this computation

in a reasonable amount of time and with low memory usage.

Overall, the symbolic approach greatly extends the tractability of this problem.
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Trace Data
Source Unique Evts. Partitions Max Partition Size

Ant 3821 32 1164 Events
Hibernate 7000 68 703 Events

(a) Partitioning.

Exact
Trace Time Max Mem. Count

Ant 21m 90 MB 1,383,532
Hibernate 41m 117 MB 55,374

(b) Exact, resource usage pattern.

Approximate
Time Max Mem. Count

27m 122 MB 7,724
48m 146 MB 13,608

(c) Approx, resource usage pat-
tern.

Figure 2.7: Results of running the precise and approximate versions on partitioned versions of
the larger traces.

2.4.3 Results for the Approximate Algorithm

Our approximate algorithm yields more practically relevant solution sets. In this section, we eval-

uate its performance and illustrate previously unknown bugs that we located using specifications

derived from this analysis.

We used the same two large traces, which were generated from executions of Apache Ant

and Hibernate, respectively. We evaluated both the precise and practical algorithms using a

package-level partitioning: we only considered assignments in which the involved methods were

defined in classes of the same package. Figure 2.7a describes the partitioning of the traces. Code

is seldom uniformly distributed into packages, so we have included the maximum partition size

as well. This value is closely related to scalability: the number of potential assignments is cubic

in the size of any given partition.

Performance

Figures 2.7b and 2.7c contain the results of executing our symbolic algorithms on these traces

using the package-level partitioning. Both algorithms execute in similar amounts of space

and time.

Executing the exact algorithm on the Apache Ant trace, however, produces an enormous

amount of potential specifications. This is likely because Ant’s overall build process emulates
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the resource usage pattern at a higher level: builds are characterized by several sub-builds

surrounded by a start and end. This causes the recognition of virtually every build process

method as a “usage” method between the build start and end methods.

The use of the approximate algorithm substantially prunes this result set. Although we

potentially admit more specifications by allowing failed specifications additional chances to

accepted, we restrict the set by admitting only frequently occurring specifications.

Result Quality

For the Hibernate project, we inferred several properties of the Session object of the form:

a: SessionFactoryImpl.openSession(Connection,...)

b: AbstractSessionImpl.createQuery(String)

c: AbstractSessionImpl.setClosed()

where the a) and c) assignments involved all combinations of the various signatures of openSes-

sion and the various close/setClosed methods, and the b) assignment consisted of frequently

executed methods of the Session class. These specifications are documented and have been

targets for previous automated specification tools [Weimer and Necula, 2005].

Most spurious specifications were either redundant or artifacts of control flow: we use flat

traces, so the execution of one method within the body of another appears as subsequent

invocations. To mitigate this issue, we can use a filtering step, like that of Yang et al. [2006],

that prunes assignments with a direct control flow relationship.

The Ant build system interacts with many types of resources that fit our pattern. These include

various archive formats, flat files, and resources defined by URLs. We inferred several properties

of the form:

a: ZipResource.getInputStream()

b: InflaterInputStream.read()

c: InflaterInputStream.close()

We inspected our results and the source code, and we discovered that each of these resources

inherits from a common class, Resource. Analyzing the usages of this class and specifically

searching for resource allocation bugs, we discovered the flaw in Figure 2.8.
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1 public static void copyResource(Resource source, Resource dest,
2 String inputEncoding, String outputEncoding,
3 Project project) {
4 BufferedReader in = null;
5 try {
6 InputStreamReader isr = null;
7 if (inputEncoding == null) {
8 isr = new InputStreamReader(source.getInputStream());
9 } else {
10 isr = new InputStreamReader(source.getInputStream(), inputEncoding);
11 }
12 in = new BufferedReader(isr);
13 // getToken() indirectly calls the read() method
14 String line = lineTokenizer.getToken(in);
15 while (line != null) {
16 line = lineTokenizer.getToken(in);
17 }
18 }
19 finally {
20 FileUtils.close(in); // null-safe close()
21 }
22 }

Figure 2.8: A previously unknown bug in Apache Ant 1.7.0. Only relevant lines are shown.

The parameter inputEncoding is an unsantitized user input string. Note that the allocation

and release of the resource are properly enclosed in a try/finally block. However, line 10 contains

a problem: the creation of an InputStreamReader with a user-supplied character set string can

fail, while the parameterless creation of Readers on lines 8 and 12 cannot. If the allocation on

line 10 does fail, the call to getInputStream will be eagerly evaluated and the resource will be

allocated. The variable in will never be assigned, and the null-safe close call on line 20 will not

close the resource, causing a leak.

Both of the listed patterns are alike in the sense that all participants are not necessarily of the

same type. This is a key advantage of the pattern-based approach in general: the scope of the

analysis is not limited to a small set of suspected methods that must be decided by a user.
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An interesting example that illustrates this advantage occurs in the Ant project:

a: MailMessage(String,int)

b: MailPrintStream.write(byte[],int,int)

c: MailMessage.sendAndClose()

A programmer utilizing the public interface of this class might be confused8 by the method

naming and assume that all socket connections are performed in the final sendAndClose method.

The frequency of the discovered pattern suggests that the methods of this class actually follow

an allocation pattern. On inspection of the source code, we noted that the first constructor call

does in fact allocate and connect a socket, the second MailPrintStream object uses it, and the

final sendAndClose closes it.

Figure 2.9 illustrates a usage of this class in the Ant source code. The proper allocation and

use of the MailMessage resource should be enclosed in a try/finally block, but all exceptions

are thrown to the caller. This could potentially cause resource leaks.

While evaluating the solution sets produced by our algorithms, we noted several instances

where transitive relationships might be used to chain smaller specifications into larger ones. As

discussed in Section 2.2.2, previous work has shown this to be useful for alternating properties.

Our work enables other new fundamental building blocks, including three-letter patterns with

loops. We leave for future work a study of these constructed properties.

2.5 Related Work

The literature on specification mining is varied, but many tools and techniques share similar

characterizations of properties: finite automata that describe correct behavior. Ammons et al.

[2002] develop a specification miner, Strauss, that mines specification by learning a probabilistic

finite state automaton. Unlike our approach, Strauss requires the input alphabet of the automaton

to be specified, but it does have the potential to find more complex specifications.

Whaley et al. [2002] present an alternative method: the user specifies the input alphabet of

the automaton (a Java API), and the algorithm identifies and prunes illegal transitions based

8For fairness, we point out that this proper usage pattern is documented in the code comments. It does not mention
the resource allocation issues, though.
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1 private void sendMail(String mailhost, int port, String from, String
replyToList, String toList, String subject, String message) throws
IOException {

2 MailMessage mailMessage = new MailMessage(mailhost, port);
3 mailMessage.setHeader("Date", DateUtils.getDateForHeader());
4

5 mailMessage.from(from);
6 if (!replyToList.equals("")) {
7 StringTokenizer t = new StringTokenizer(replyToList, ", ", false);
8 while (t.hasMoreTokens()) {
9 mailMessage.replyto(t.nextToken());
10 }
11 }
12 StringTokenizer t = new StringTokenizer(toList, ", ", false);
13 while (t.hasMoreTokens()) {
14 mailMessage.to(t.nextToken());
15 }
16

17 mailMessage.setSubject(subject);
18

19 PrintStream ps = mailMessage.getPrintStream();
20 ps.println(message);
21

22 mailMessage.sendAndClose();
23 }

Figure 2.9: Another previously unknown bug in Apache Ant 1.7.0.

on the existence state-checking code that throws exceptions on errors. This technique relies on

defensively-programmed components that imply correct usage through error checking.

More recently, Shoham et al. [2007a] present a technique based on abstract interpretation

that is capable of learning arbitrarily complex specifications. The abstract value is the automaton

itself, and it is constructed as the program is interpreted. This technique is accurate, but like

the previously mentioned tools, the alphabet of the automaton must be known before the

analysis begins.

Ramanathan et al. [2007a,b] create a static analysis that uses predicate mining to infer

function precedence protocols. These rules take take the form of “when b is called, a must have

been called at least once.” When viewed as a specification pattern, these rules take the form

of the regular expression (a+b). Our work is capable of locating more complex properties. In

addition, as we show in Section 2.2.2, it is generally impossible to assemble two letter properties

like this to form our more complex properties.
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Kremenek et al. [2006] use annotation factor graphs to probabilistically assign annotations to

functions and form specifications. This technique allows the user to incorporate other domain-

specific information into the analysis, like a belief in the overall ratio of allocators to deallocators,

as components in the factor graph. The user must still specify the set of annotations that can be

inferred, which is similar to the specification of the potential alphabet of an automaton in the

sense that it limits the results of the analysis.

One tool that does not follow this pattern of deriving automata-described temporal properties

is PR-Miner [Li and Zhou, 2005]. This tool, presented by Li and Zhou, mines association

properties from programs by correlating related function calls using frequent itemset mining. This

work, like ours, is highly scalable. However unlike our tool, PR-Miner requires no input from the

user other than the program (our technique requires a specification template). However, these

association properties are not as strict as temporal properties: the members of the properties are

only related by frequent association and not by the order or frequency of invocation.

There has been recent work on dynamic analysis as well. Ernst et al. [2000] have developed

Daikon (later refined for object oriented systems [Csallner and Smaragdakis, 2006]) and Hangal

and Lam [2002] have developed DIDUCE. These tools locate program invariants by monitoring

the runtime state of a program and attempting to match invariant templates to expressions.

These tools are able to infer simple properties, like a 6= 0, but at present do not infer temporal

properties. When viewed as an online algorithm, our work can be thought of as a Daikon-like

tool for temporal properties: we begin by setting up a large set of potentially valid properties

and prune them as execution continues.

2.6 Conclusion

In this chapter, we have precisely defined the pattern based specification mining problem and

shown that its general form is NP-complete. We have provided a novel symbolic algorithm

that greatly expands the computational tractability of this problem. Our algorithm exploits the

regularity of the running state and solution set of current approaches to form a compact, efficient

symbolic approach. We have implemented our algorithm as a practical tool using binary decision

diagrams and have used it to find meaningful specifications in real systems. These specifications
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led us to discover previously unknown bugs in large, real-world systems. For future work, we plan

to investigate the synthesis of larger specifications from our inferred properties, and we are also

interested in adapting our approach to locate other frequently-occurring specification patterns.
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3 Mining Richer Specifications Through

Composition

Program specifications are important for many tasks during software design, development,

and maintenance. Among these, temporal specifications are particularly useful. They express

formal correctness requirements of an application’s ordering of specific actions and events

during execution, such as the strict alternation of acquisition and release of locks. Despite their

importance, temporal specifications are often missing, incomplete, or described only informally.

Many techniques have been proposed that mine such specifications from execution traces or

program source code. However, existing techniques mine only simple patterns, or they mine a

single complex pattern that is restricted to a particular set of manually selected events. There is no

practical, automatic technique that can mine general temporal properties from execution traces.

In this chapter, we present Javert, the first general specification mining framework that can

learn, fully automatically, complex temporal properties from execution traces. The key insight

behind Javert is that real, complex specifications can be formed by composing instances of

small generic patterns, such as the alternating pattern ((ab)∗) and the resource usage pattern

((ab∗c)∗). In particular, Javert learns simple generic patterns and composes them using sound

rules to construct large, complex specifications. We have implemented the algorithm in a

practical tool and conducted an extensive empirical evaluation on several open source software

projects. Our results are promising; they show that Javert is scalable, general, and precise. It

discovered many interesting, non-trivial specifications in real-world code that are beyond the

reach of existing automatic techniques.
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3.1 Introduction

Temporal specifications of software systems describe requirements on the ordering of specific

actions or events. These specifications are often used to formally specify legal function call

sequences over module APIs. Temporal API specifications are useful for a number of reasons:

they can shorten development time by guiding the production of correct code; they can be used

as input to static analysis tools [Ball and Rajamani, 2001, Das et al., 2002, Flanagan et al., 2002,

Xie and Aiken, 2005] to find bugs automatically; and they can facilitate software maintenance

tasks by aiding program comprehension.

Despite these desirable characteristics, precise temporal specifications are often missing,

incomplete, or only informally stated. Recognizing this problem, researchers have developed

techniques that allow the automated reverse engineering—mining—of temporal specifications

from programs. Recent work has recognized that API usage patterns can be specified as regular

languages [Ammons et al., 2002]. This allows the compact representation of specifications as

regular expressions or finite state automata, and it allows the characterization of the specification

mining problem as a language learning problem.

Current approaches are fundamentally similar: each takes as input a static program or a

dynamic trace or profile and produces one or more compact regular languages that specify

temporal properties. However, the individual solutions differ in key ways.

Some techniques learn a single specification over a specific alphabet [Ammons et al., 2002,

Shoham et al., 2007a, Whaley et al., 2002]. For example, one might be aware that some

relationship occurs between the elements of a programming language’s relational database

query API. The specification miner would take as input a program and the elements of this API

and return a minimal finite automaton that represents the probable set of correct usages. One

particular advantage of these approaches is the ability to learn arbitrarily complex patterns; the

miner has no prior knowledge of the structure of the specification.

Unfortunately, these techniques suffer from scaling and precision problems. Finding a minimal

finite automaton for a set of input strings is NP-hard and cannot be approximated [Pitt and

Warmuth, 1989], and precision suffers from the inability to learn from negative examples: a

program is assumed to include entirely or mostly correct usages. Learned specifications must
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strike a careful balance between levels of generality. If a specification is too general, it can

capture dangerous behavior. If it is too restrictive, it merely encodes a particular usage instance,

not a prescriptive specification. In addition, the requirement of specifying the alphabet a priori

is limiting: it prevents the discovery of latent relationships between components that the user

does not anticipate.

Other algorithms learn multiple specifications over an arbitrary alphabet [Engler et al., 2001,

Gabel and Su, 2008a, Weimer and Necula, 2005, Yang et al., 2006]. For example, many of these

miners are capable of enumerating all pairs of events in a system that consistently alternate, like

the opening and closing of a file descriptor. These techniques are scalable, and the user is not

forced to select a small subset of the program’s events to consider: all events in the system are

considered simultaneously.

However, the structure of the specifications must be defined in advance as templates, which

makes learning an arbitrarily complex specification impossible. The specifications must also be

restricted in both alphabet size and number of states to maintain scalability: pattern matching of

a specification is NP-hard in general [Gabel and Su, 2008a]. Current miners can locate instances

of alternating patterns over event pairs [Engler et al., 2001, Weimer and Necula, 2005, Yang

et al., 2006], resource usage patterns over event triples [Gabel and Su, 2008a], and precedence

protocols [Ramanathan et al., 2007a,b] and partial orders [Acharya et al., 2007] over pairs of

function calls. These approaches suffer from precision issues as well: although one can soundly

enumerate instances of these small template patterns, it is often difficult to distinguish between

true and coincidental relationships in the voluminous result sets.

In this chapter, we present a new general approach to temporal specification mining that

addresses several of the limitations of current techniques. Our insight is twofold. First, we

recognize that instances of smaller specification template patterns can be composed into larger

specifications of arbitrary size. Second, we observe that the composition of a specific set of

pattern templates sufficiently captures most temporal specifications published in the literature.

We then leverage this insight to create the first scalable temporal specification mining algorithm

that mines specifications of arbitrary size over arbitrary alphabets. Unlike all previous approaches,

our algorithm requires no input beyond the program representation: neither a pattern nor an

alphabet must be specified. In short, we use our first insight to provide a general technique
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that increases the scope and power of pattern-based specification mining. We then create an

instance of this general technique that leverages general domain knowledge of software to mine

general temporal properties. We have implemented our algorithm as a practical tool and have

demonstrated it to be general, scalable, and accurate.

Specifically, this chapter makes the following contributions:

1. We introduce a new general technique for mining temporal specifications. Our technique

combines the generality of language learning-based approaches with the scalability of

pattern matching-based approaches by assembling instances of smaller patterns into

arbitrarily large specifications using sound inference rules.

2. We provide an instance of this general technique, consisting of specific sets of patterns and

rules, and demonstrate that its domain, a restricted class of regular languages, captures

most temporal specification instances in the literature. This instance thus defines an

algorithm for mining general temporal properties that requires no input beyond the

program representation.

3. We implement this algorithm in a practical tool, Javert1 and perform an empirical eval-

uation on several open source software projects. Our evaluation demonstrates that our

technique is scalable, general, and precise.

The following section (Section 3.2) illustrates our high-level technique through a motivating

example. Section 3.3 formalizes our general technique and describes our specific property mining

algorithm. It then argues that our algorithm is capable of finding a large body of temporal

properties. Section 3.4 provides details about Javert’s implementation. It then describes our

empirical evaluation and results. Finally, Sections 3.5 and 3.6 survey and compare related work

and conclude.

3.2 Motivating Example

In this section, we provide a motivating example and use it to describe the intuition behind our

technique. This example was discovered by our practical tool, Javert, during our experiments.

1Fr., Pronounced Jah·ver′, the relentless and obsessive inspector from Victor Hugo’s Les Misérables.
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MessageDigest.

getInstance(String)
MessageDigest.

reset()

DigestInputStream.

<init>(InputStream,

MessageDigest)

DigestInputStream.

close()

MessageDigest.

digest()

DigestInputStream.read()

Figure 3.1: Usage specification for Java’s MessageDigest class.

Consider the specification automaton in Figure 3.1. It describes the correct usage of Java’s

MessageDigest API, which is used to generate digests (e.g. MD5) of binary data. Assume that we

have one or more full program method traces that contain several instances of this pattern. As

in a typical program trace, the individual method calls that form this pattern may be interleaved

with several unrelated calls, and we do not know a priori that a pattern necessarily holds over

these method calls.

This pattern would be difficult to learn using a general language learning miner: as we do

not know the alphabet of the specification, we would have to consider many projections over

different subsets of interesting events of the trace or attempt to discover an interesting projection

by tracing the flow of data (e.g. “scenario extraction” in [Ammons et al., 2002]). The pattern is

also difficult to learn using a pattern matching approach: because this pattern has an alphabet

of size six, there are O(n6) potential specifications in a trace with n unique events—a potentially

intractable number to consider for even modestly diverse traces.

Despite this inability to mine the pattern directly, we can still mine the trace for instances of

smaller patterns. Current pattern-based miners [Engler et al., 2001, Weimer and Necula, 2005,

Yang et al., 2006] are capable of locating all instances of alternating events; that is, ones that

fall into the regular pattern (ab)∗. Recent advances [Gabel and Su, 2008a] have leveraged the

use of symbolic techniques to allow the mining of larger patterns, including ones with looping

transitions (e.g. (ab∗c)∗). Figure 3.2 contains a subset of these smaller patterns, which we call

micropatterns, that hold if this pattern exists.

Notice that several patterns appear to have intuitive transitive relationships. For example,

we know that all calls to MessageDigest.reset and DigestInputStream.<init> strictly

alternate, and we also know that there exists an alternating relationship between Message-

Digest.reset and DigestInputStream.close. From this, we can deduce that the first three
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DigestInputStream.

<init>()

MessageDigest.

reset()

DigestInputStream.read()

MessageDigest.

reset()

DigestInputStream.

<init>()

DigestInputStream.

close()

DigestInputStream.read()

DigestInputStream.

close()

MessageDigest.

reset()

DigestInputStream.

close()

DigestInputStream.

<init>()

Figure 3.2: Three micropatterns related to the MessageDigest API and the larger pattern yielded
by composition.

micropatterns in Figure 3.2 imply the existence of the fourth. In the following sections, we

formalize this notion.

This composition of patterns is the essence of our approach. In general, if we can infer enough

information from a given set of micropatterns, we can use them as building blocks for larger

temporal properties. This allows us to leverage the advantages of pattern-based approaches—

namely the ability to scalably enumerate all micropatterns for all possible combinations of trace

events—while still maintaining a form of generality. Figure 3.3 depicts our high level approach.

We use a pattern-based specification miner to mine an interesting set of templates. We then

take the discovered patterns and compose them into larger specifications. Finally, we optionally

perform filtering or ranking on the composed specifications. Note that the user provides no

templates or alphabet sets: we consider all possible combinations of trace events for micropattern

mining, and we compose arbitrarily large patterns without higher level templates.
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OutputJavert

FilteringPattern Mining
Pattern 

Composition
Temporal 
Properties

Pattern Templates Inference Rules

Micropatterns Composed Patterns

User Input

Program Traces

Figure 3.3: High-level architecture of Javert.

3.3 Technical Approach

In this section, we discuss the realization of our technique. In Section 3.3.1, we formalize the

idea of pattern composition. In Section 3.3.2, we present the specific patterns and composition

rules used in Javert. Section 3.3.3 argues that these rules and patterns are sufficient to locate a

large number of real specifications in software systems.

3.3.1 General Framework

In Section 3.2, we introduced the intuitive idea of pattern composition. We now present formal

definitions to more clearly illustrate this idea.

Definition 6 (Projection). The projection π of a string s over an alphabet Σ, πΣ(s), is defined

as s with all letters not in Σ deleted. The projection of a language L over Σ is defined as

πΣ(L) = {πΣ(s) | s ∈ L}.

Definition 7 (Specification Pattern). A specification pattern is a finite state automaton A=

(Q,Σ,δ,q0, F), where Q is a finite set of states, Σ is a set of input symbols, δ : Q×Σ 7→Q is the

transition function, q0 is the single starting state, and F is a set of final states. A pattern is

satisfied over a trace T with alphabet Σ′⊇Σ if πΣ(T )∈L (A).

A pattern-based specification miner takes as input one or more traces and one or more

templates of specification patterns. The alphabets of these templates contain abstract symbols in

place of concrete trace characters. The miner produces as output a set of satisfied instances of
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the templates; that is, it produces a set of concrete specification patterns with alphabets over

subsets of the trace alphabet.

Suppose two pattern instances, A1 and A2, are satisfied over a trace T . A1 and A2 may describe

different elements of the system. For example, A1 might describe an alternating property over

tryLock and lock methods, while A2 might describe the same alternating property over lock

and unlock. To compose these patterns into a single pattern over the same alphabet, we must

recognize that these patterns hold over projections of T on to their respective alphabets, and

thus any interleaving of other trace letters may occur between state transitions. To account for

this, we define the expansion operator, E, which widens a regular language with respect to a

larger alphabet.

Definition 8 (Expansion). [Gabel and Su [2008a, § 2.6]] Assume a regular language defined

by a finite state automaton A= (Q,Σ,δ,q0, F). The expansion of L (A) over an arbitrary alphabet

Σ′, written EΣ′(L (A)), is the maximal language over Σ∪Σ′ whose projection over Σ is L (A).

An automaton accepting EΣ′(L (A)) can be constructed by first duplicating A and then adding

a looping transition δ(q,a)= q to each state q for each letter a∈Σ′\Σ. For the remainder of this

chapter, we will overload E to denote this construction when applied to an automaton rather

than a language.

Expansion can be thought of as the maximal inverse of projection. For example, an expression

corresponding to E{a,b,c}((ab)∗) is c∗(ac∗bc∗)∗. Note that projecting this new language over

{a, b} yields the original language, (ab)∗.

The composition of two patterns is defined as follows:

Definition 9 (Composition). The composition of two specification patterns A1 and A2 is the

intersection of the expansion of each pattern over their combined alphabets, i.e.,

EΣ2
(A1) ∩ EΣ1

(A2)

Intuitively, the composition of two patterns defines a language of traces in which both pat-

terns hold.
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Figure 3.4: Micropatterns mined by Javert.

We could use this general definition to arbitrarily compose patterns by using standard algo-

rithms for finite state automaton manipulation. However, in general, performing these pairwise

compositions directly is undesirable. Given a reasonably large set of patterns, the finite state

expansion, intersection, and minimization operations become more expensive as the automata

grow. More importantly, we are interested in compact, concise specifications, and performing

arbitrary language intersections is not likely to maintain a solution set with those characteristics.

To address this, we recognize special cases of composition in which the result of the composi-

tion is compact and intuitive. We then formulate these cases as inference rules, which leads to

straightforward implementations in which composition is a constant time operation.

3.3.2 Javert

This section describes the specific micropatterns mined by Javert and the inference rules used to

compose them.

Javert mines two micropatterns: basic alternation and resource ownership. These patterns

correspond to the regular expressions (ab)∗ and (ab∗c)∗, respectively, and their representations

as finite automata appear in Figure 3.4.
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Branching Rule: The first rule describes the composition of two patterns with identical “end-

points,” i.e., the first and last letters of a single iteration of the pattern.

(aL1
∗b)∗ (aL2

∗b)∗

(a
�

L1|L2
�∗ b)∗

[BRANCH]

The preceding rule holds if L1 and L2 have disjoint alphabets. Note that either L1 or L2 may

represent the empty language.

Proposition 1 (Correctness of Branching). Defining Σ′ as {a, b}∪ΣL1
∪ΣL2

, the correctness of

the Branching Rule follows from the following fact:

EΣ′(aL1
∗b)∗∩ EΣ′(aL2

∗b)∗= (a
�

L1|L2
�∗ b)∗

This rule performs the composition of two patterns that describe legal operations at the same

logical state. For example, from the patterns:

[open read* close]*

[open seek* close]*

we can infer a third pattern:

[open (read|seek)* close]*

Sequencing Rule: The second rule describes the sequencing of two patterns with compatible

endpoints.

(aL1 b)∗ (bL2c)∗ (ac)∗

(aL1 bL2c)∗
[SEQUENCE]

As with the previous rule, L1 and L2 must have disjoint alphabets, which must in turn be

disjoint from {a, b,c}.

Proposition 2 (Correctness of Sequencing). Redefining Σ′ as {a, b,c}∪ΣL1
∪ΣL2

, the correctness

of the Sequencing Rule follows from the following fact:

EΣ′(aL1 b)∗∩ EΣ′(bL2c)∗∩ EΣ′(ac)∗= (aL1 bL2c)∗
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Continuing the earlier example, from the patterns:

[open (read|seek)* close]*

[connect open]*

[connect close]*

we can infer a fourth pattern:

[connect open (read|seek)* close]*

Both of these rules are general; they apply to both micropatterns or any intermediate assembly

thereof. Using these rules, Javert calculates the pattern closure for a given set of micropatterns;

it repeatedly applies the above rules until they are no longer applicable.

3.3.3 Generality of Javert’s Patterns and Rules

In this section, we argue that the two patterns and two inference rules presented in the previous

section can sufficiently capture a large class of temporal API relationships. In Section 3.4, we

present several examples of true, complex specifications that Javert finds in real software systems.

Our general temporal properties have similar structural characteristics: each consists of a

linear sequence of state changing operations. In each state, there are a number (possibly zero)

of legal operations that do not change the state. We believe that this generally models the

phasic behavior of most module interfaces. For example, resource APIs, usually related to input

and output, go through an initialization phase. At this point, a number of operations become

legal—usually operations with environmental side effects. Finally, the interface moves through

one or more state changing sequences; these often consist of finalization, deallocation, or other

forms of cleanup.

We believe that most well-defined software interfaces follow similarly structured temporal

patterns. Note, though, that the addition of other constraints, such as values on variables

(e.g. no reading from an empty stack) or context free behavior (e.g. three calls to push can

be followed by at most three calls to pop) are not captured by our technique. However, these

specifications lie outside the scope of general temporal properties; they are in fact not modeled

by any regular language.
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ServerSocket.<init>() ServerSocket.accept() Socket.close() ServerSocket.close()

Socket.getInputStream()

Socket.getOutputStream()

ServerSocket.close()

Figure 3.5: Socket API, Ammons et al. [2002]

We now demonstrate the expressiveness of our characterization by showing that it sufficiently

captures many complex examples of temporal properties in the recent literature. We naturally

omitted small patterns that are sufficiently captured by the micropatterns themselves. The

following examples, presented in chronological order, are from systems that are capable of

learning arbitrarily complex temporal properties.

A Socket API, Ammons et al.

Strauss, a tool developed by Ammons et al. [2002], mines arbitrarily complex specifications

from dynamic traces. Consider the socket API in Figure 3.5. This figure has been reproduced

from the original paper [Ammons et al., 2002] and translated to Java. Our approach is capable

of fully composing this specification from micropatterns.

The subpattern:

[ ServerSocket.accept()

( Socket.getInputStream() |

Socket.getOutputStream() )*

Socket.close() ]*

is formed by an application of our first (branching) rule.

The sequencing of all related events is handled by repeated applications of the sequencing

rule that make use of the pairwise alternating patterns that exist between all non-repeating

method calls.

Finally, the branching that occurs at the accept call is constructed through an additional

application of the branching rule, making use of the empty language.
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setProxyData connect authenticateWithPassword openSession

closeconnect

execCommand getStdout getExitStatus close

Figure 3.6: Ganymed APIs, Shoham et al. [2007a,b]

Ganymed APIs, Shoham et al.

More recently, Shoham et al. have developed a static specification miner that uses abstract

interpretation and regular language learning. The two examples (Connection and Session) in

Figure 3.6 are reproduced from their paper [Shoham et al., 2007a] and their online supplement

[Shoham et al., 2007b], respectively.

The first API, Session, is nearly completely composable: Javert is capable of capturing all

but the final repetition of close. Our inference rules operate on patterns with distinct, closed

bounds; neither of our micropatterns captures open-ended repetition. It it likely, however, that

our version of the specification (with a single call to close) is only slightly more restrictive and

not violated in the common case.

The second API, Connection, is clearly composable by our technique: it involves a linear

sequence of events. Javert would compute the pattern closure over the pairwise alternating

relationships and yield the larger, sequenced API.

3.4 Implementation and Results

In this section, we describe Javert’s implementation and empirical evaluation.

3.4.1 Implementation

Pattern Mining We implemented Javert in the Java programming language. The first phase

of Javert’s execution, which consists of mining the micropatterns, is performed by an existing

symbolic specification mining algorithm [Gabel and Su, 2008a]. This algorithm leverages Binary
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Decision Diagrams [Bryant, 1986] to maintain a compact state throughout its execution, despite

simultaneously tracking up to billions of potential micropatterns. This algorithm is currently the

most scalable pattern-based approach, and it is the only algorithm capable of scalably mining

micropatterns with alphabets of size three. This is critical for our current approach: without

this ability, we would be unable to mine our looping micropattern and introduce loops into our

composed specifications.

Pattern Composition Javert’s second phase is implemented in standard imperative Java. The

rules are applied in a simple iterative approach until no longer applicable. After composition,

Javert emits a dominating set of the composed specifications; that is, it refines the solution set

so that no returned specification is contained within another. We also include the ability to

filter the mined specifications by either alphabet size (e.g., emit only specifications with at least

four participants) or structural characteristics (e.g., emit only those specifications with at least

one loop). Note that while Javert is a Java application, it takes as input any finite sequence of

symbols. There are no requirements on the form of the input traces; they need not be sequences

of Java method calls.

Trace Collection To collect dynamic traces, we implemented a new method trace collection

tool for Java programs. This tool uses the ASM2 bytecode engineering framework along with

Java’s built in instrumentation capability to dynamically add tracing code to classes as they are

loaded. This tool can easily instrument any Java program; its invocation is performed via an

option to the parent virtual machine rather than the hosted application, obviating any need to

change application configurations. Our trace collection framework has two significant advan-

tages.

First, we log all method invocations before object-oriented dispatch is performed; that is, we

log the compile-time targets of method calls, not the run-time method body that is eventually

executed. We expect specifications to be most useful when they describe sequences of calls made

by the programmer, not the implementer of an abstract interface. For example, a specification

over Java’s Socket type is likely to be more general than one over SocketImpl.

2http://asm.objectweb.org

http://asm.objectweb.org
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Second, we log the static context (the calling function) of each method invocation. This allows

us to project our traces over interesting source and destination sets. For example, assume we

have a client application that uses several libraries in addition to the Java standard library. With

contextual information, we can project the trace to include only outbound calls, i.e., calls that

originate in client classes and call into any non-client class. Projected traces of this form exhibit

useful properties: the client can only escape its own classes through public interfaces—the

targets of specification miners. Using this simple approach, we are able to log all public API

calls without necessarily knowing what they are. The traces are also free of excessively “noisy”

methods, like private methods within either the client or one of the libraries.

In its current form, our trace collection framework does not log object identities or values of

primitive values. This adds a level of imperfection to the trace: nothing explicitly states that two

calls to the same type were necessarily made using related data values. There are a number of

justifications for this design decision.

First and foremost, we sought to avoid false negatives. Consider a hypothetical extension

to our trace collector in which we log the receiver object of each non-static method call. We

could then use this information to project our traces over all operations performed on a specific

object, or equivalently, treat (call, instance) pairs as our trace alphabet. This extension would

render Javert highly precise, but it would limit the discovered patterns to a single type. This

would be severely limiting: note that every example specification in this chapter describes

temporal relationships between two or more types. Attempting to address this by considering

more dataflow is non-trivial [see Ammons et al., 2002, Scenario Extraction], as the bounds of

a particular computation are unclear. If we greedily expanded our projected traces based on

dataflow between objects, we could easily converge on the entire trace.

Second, we wished to design a technique that was not intrinsically dependent on information

outside of the ordering of the trace events. This increases Javert’s generality: it can learn

patterns over unwieldy legacy traces, and it is more adaptable to environments where the trace

collection mechanism is fixed or otherwise limited, possibly by architectural or performance

constraints. Previous work on pattern-based specification mining has recognized this problem;

we rely on those techniques to generate a coherent set of statistically significant micropatterns

from imperfect traces.
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Execution Time
Project Description Traces Trace Events Pattern Mining Composition

Lucene Document Search Engine 1 63,755 3.6s 0.03s
JGnash Personal Finance Application 1 70,572 21.4s 25.7s
JEdit Source Code Editor 1 973,230 103.4s 0.6s
Columba Email Client 3 8,673,448 717.0s 87.4s
Findbugs Static Analysis 1 14,072,862 1151.1s 51.3s
Ant Build System 198 15,582,468 1295.9s 349.6s
Hibernate Object Persistence API 184 26,588,144 2151.0s 1.5s

Figure 3.7: Trace data and analysis times.

Note, though, that although Javert can handle buggy or imprecise traces, it would certainly

thrive with more accurate input. Techniques like SMArTIC [Lo and Khoo, 2006] perform

preprocessing and clustering on traces to isolate and remove false behavior, reducing the

incidence of false positives. Dynamic slicing [Agrawal and Horgan, 1990] over traces could also

serve to this end by removing unrelated flows of data. Any technique for improving the accuracy

of Javert’s input is compatible and likely to improve results, but we sought to design for the

common case.

3.4.2 Empirical Evaluation

To evaluate Javert, we collected traces from seven client applications and executed our analysis

on each. For examples with more than one trace, we scanned the traces sequentially and kept

the running union of the mined micropatterns from each. Javert then composed this larger set of

micropatterns. We performed our experiments on a 2.66 GHz Core 2 Duo workstation equipped

with Fedora Linux and the official Sun 1.6.0_04 64-bit server JVM.

Figure 3.7 lists our seven target projects, quantitative data about their respective representative

traces, and Javert’s execution time. Each trace consists of all outbound calls made by the client;

these include calls to the Java standard library and other third party libraries. For Ant and

Hibernate, we were afforded the luxury of complete test suites that automatically exercised

many parts of the client applications. This allowed us to generate close to 200 traces for each.

In each case, Javert was able to complete both phases of the analysis in a reasonable amount of

time; the overall execution time is usually dominated by the first phase and is roughly linear in

the size of the traces. The largest example completed in less than an hour.
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|Σ| ≥ 4 |Σ| ≥ 7 |Σ| ≥ 10
Project Total Real False Total Real False Total Real False

Lucene Indexer 4 2 2 0 0 0 0 0 0
JGnash 35 5 30 28 5 23 22 5 17
JEdit 13 4 9 4 3 1 2 2 0
Columba 12 2 10 7 2 5 4 0 4
Findbugs 29 10 19 23 10 13 13 9 4
Ant 46 34 12 27 16 11 4 3 1
Hibernate 18 13 5 10 8 2 5 4 1

Figure 3.8: Quantitative results.

Our quantitative results are displayed in Figure 3.8. For each project, we display the total

number of composed specifications, the number of “real” specifications, and the number of false

positives. This information is presented for three minimum size thresholds, |Σ| ≥ 4, 7, and 10.

Categorizing the results is a complex task: the definition of a real specification can be a subject

of opinion. Temporal specifications, when expressed as regular languages, are by nature an

overapproximation of the correct behavior of the system. In addition, the very motivation for

our work—the lack of well documented specifications—makes validating our findings difficult

and subjective.

If we assume a high level of precision of Javert’s first phase, pattern mining, the soundness

of our composition rules implies that we infer no “false” properties; every pattern we discover

does in fact describe a frequently occurring sequence of events in the input trace. Our quan-

titative evaluation thus seeks to differentiate between artifacts of control flow—correlated

method calls that form an incidental temporal property—and true temporal properties with a

dataflow relationship. To this end, we settled on the following mechanical definition of a “real”

temporal property.

Definition 10 (Real Temporal Property). A temporal property is real if it can be traced back to

a sequence of calls in the source code that are chained by a dataflow relationship.

In this definition, we traced the flow of data through parameters, return values, fields, and

static variables. This definition, in effect, evaluates the idea of frequent pattern composition as a

solution to the specification mining problem.
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document.Document.

<init>()

document.Field.

<init>(String,Reader)

index.IndexWriter.

addDocument(Document)

document.Field.

<init>(String,String,Store,Index)

Figure 3.9: Specification of the use of Lucene’s indexer.

We performed our first experiment on a trace from Apache’s Lucene indexer, a component of

the Lucene document search engine. We collected all calls made by the demo application into

any non-demo class, i.e., calls into the Lucene indexing library. From this, we discovered the

specification in Figure 3.9. This represents the structure that must be followed in order to add a

document to the search index: the Document object must first be created, and several instances

of metadata fields can be added. Next, the body of the document is filled in by instantiating a

particular Field instance with a Reader parameter. Finally, this Document object is used as the

parameter of the addDocument method of indexer.

The next three examples, JGnash, JEdit, and Columba, are user applications with graphical

interfaces. With these applications, we experienced a significant number of false positives. In all

three cases, the majority of false positives consisted of large aggregations of code that performed

the initialization of user interface elements. With Java’s Swing GUI interface, one creates a large

object model that conceptually mirrors the display. The creation of this model involves a large

amount of boilerplate code3 with a consistent (but not necessarily required) structure.

It is interesting to note, however, that Javert discovered large, distinct “clumps” of this code,

which both simplified their identification as false positives and possibly reduced the overall

number of false patterns. Figure 3.10 presents one particularly interesting specification from

Javert’s JGnash solution set. JGnash is a personal finance package; when saving bank account

3In fact, this code is often automatically generated using third party tools.
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crypto.spec.PBEParameterSpec.

<init>(byte[],int)
crypto.spec.PBEKeySpec.

<init>(char[])

crypto.SecretKeyFactory.

getInstance(String)

crypto.SecretKeyFactory.

generateSecret(KeySpec)

crypto.Cipher.

getInstance(String)

io.PrintWriter.

close()

io.PrintWriter.

<init>(Writer,boolean)

io.OutputStreamWriter.

<init>(OutputStream,String)

crypto.CipherOutputStream.

<init>(OutputStream,Cipher)

io.PrintWriter.write(String)

io.PrintWriter.print(String)

io.PrintWriter.println(String)

crypto.Cipher.

init(int,Key,AlgorithmParameterSpec)

Figure 3.10: A specification for the use of a symmetric cipher, extracted from JGnash.

data on a local hard drive, the application uses a symmetric cipher. Java’s cryptography API

is quite complex: each of several required objects must be accessed through separate factory

interfaces. The specification discovered by Javert correctly describes a general approach to using

a symmetric cipher to encrypt a stream of character data.

Executing the Apache Ant and Hibernate test suites yielded a wealth of trace data. The

Ant build system can interact with many external libraries as part of a project’s build process,

and Hibernate frequently uses structured APIs, including Java’s SQL API for interacting with

relational databases and various bytecode engineering frameworks for generating dynamic proxy

classes. On these examples, Javert discovered a number of interesting specifications with few

false positives. Figure 3.11 displays two compact properties discovered from Ant, including

the server-side TCP socket API. Figures 3.12 and 3.13 display three properties mined from the

Hibernate traces.

Note the size of the first: it describes the use of the javaassist library to perform an entire

transformation of a Java class. This involves reading it in as a byte stream, building the object

model, transforming the various objects, and rewriting it as a byte stream. Note, though, that

it is somewhat wide (not as restrictive as it could be) during the point at which the code of a

method is traversed: although our micropatterns capture the temporal relationships between

hasNext and next, our rules were unable to compose this embedded subpattern. As future

work, we are investigating other forms of inference rules to account for this.

Overall, the results of our analysis were precise, usable, and interesting. Although we

experienced a number of false positives on each example, the ratio of false positives to real

specifications remains reasonable, often below one. This is in sharp contrast to earlier work that

uses pattern matching in isolation: the ratio of false positives to significant specifications is often
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TestResult.init<>()

Test.countTestCases()

Test.run(TestResult)

TestResult.

addListener(TestListener)

ServerSocket.<init>()

ServerSocket.accept()

Socket.close()ServerSocket.close()

Socket.getInputStream()

Socket.getOutputStream()

Figure 3.11: Two properties extracted from executions of Apache Ant.

orders of magnitude greater than Javert’s. For example, large portions of papers [Weimer and

Necula, 2005, Yang et al., 2006] have been dedicated to filtering interesting sets of the large

number of simple alternating patterns in programs.

We believe that Javert’s precision is partly due to the way we compose patterns through

inference rules. Intuitively, a micropattern in isolation has a low probability of representing

a significant temporal property. However, if several related micropatterns exist that can be

composed or chained, the probability of significance increases. Evidence of this hypothesis exists

in Figure 3.8: note the decrease in the ratio of false positives to true specifications as we raise

the minimum size threshold. Our composition process is, in spirit, a form of natural selection:

unless a pattern can connect with one or more others, it does not survive the selection process.

Absent from this evaluation is a direct comparison with other specification miners. The primary

reason for this is that no other tool solves exactly the same problem: some tools enumerate

many small micropatterns, while others learn a single language. To our knowledge, Javert is

the only tool that can mine several complex, significant specifications from a trace in a single
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bytecode.ClassFile.
<init>(DataInputStream)

bytecode.ClassFile.
getConstPool()

bytecode.FieldInfo.
<init>(ConstPool,String,String)

bytecode.FieldInfo.
setAccessFlags(int)

bytecode.ClassFile.
addField(FieldInfo)

bytecode.ClassFile.
write(DataOutputStream)

bytecode.ClassFile.
getMethods()

bytecode.ClassFile.
getFields()

bytecode.ClassFile.
setInterfaces(String[])

bytecode.ConstPool.
       addFieldrefInfo(int,String,String)
bytecode.ConstPool.
       getThisClassInfo()
bytecode.Bytecode.
       addIndex(int)

bytecode.CodeAttribute.iterator()
bytecode.CodeIterator.hasNext()
bytecode.CodeIterator.next()
bytecode.CodeIterator.byteAt(int)
bytecode.MethodInfo.getCodeAttribute()
bytecode.MethodInfo.getName()

Figure 3.12: A larger temporal property of the JavaAssist bytecode framework, extracted from
its use by Hibernate.
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sql.DriverManager.

getConnection(String,Properties)

sql.Connection.

getTransactionIsolation()

sql.Statement.close()

sql.Statement.getWarnings()

sql.Statement.executeUpdate(String)

sql.Connection.

createStatement()

sql.Connection.

prepareStatement()

sql.PreparedStatement.

setString(int, String)

sql.ResultSet.close()

sql.ResultSet.next()

sql.PreparedStatement.

executeQuery()

Figure 3.13: Two specifications extracted from Hibernate.

pass—with no required input outside of the trace. Thus, the methodology for comparing Javert

with a regular language learner is not clear: for a trace with n unique events, we would have to

run 2n projected traces (over each subset of the trace alphabet) through the regular language

learner to allow it to consider all possibilities.

Javert is a dynamic analysis, and it carries with it most typical advantages and disadvantages

of all dynamic analyses. Javert’s precision is limited by the precision of the input traces, and

its recall is limited by the variety of data available in the input traces. However, Nimmer and

Ernst’s findings [Nimmer and Ernst, 2002] suggest that this may not be a major problem: they

found that a surprisingly small number of test runs are sufficient to capture most of a program’s

static behavior. It is not likely, however, that Javert misses an important specification that does

appear in an input trace. Javert’s pattern mining front end considers all possible instances

of micropatterns, and its composition engine computes the full pattern closure: every legal

composition is considered.
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3.5 Related Work

In this discussion, we present related work in the software specification mining and dynamic

analysis areas.

3.5.1 Temporal Specification Mining

Ammons et al. [2002] first characterized the inference of temporal specifications as a language

learning problem. In this work, the authors used a probabilistic finite automaton learner to

extract likely specifications. A key challenge with their approach was simplifying specifications to

an acceptable level of precision. The authors addressed this challenge in a later paper [Ammons

et al., 2003] by applying concept analysis to debug the learned specifications. Shoham et al.

recently presented a static analysis with the same general goal [Shoham et al., 2007a]. Both of

these techniques are limited in that they require the alphabet of the mined specification to be

known. Javert is capable of finding specifications of similar complexity in a much more scalable

manner.

Various static analyses [Alur et al., 2005, Henzinger et al., 2005, Whaley et al., 2002] take as

input a type and produce as output an automaton that encodes legal call sequences of operations

on that type. Call sequences are considered legal if they do not lead to an assertion failure or

another exceptional control path. These techniques are limited in that they find a specification

over a single type, and they may be too permissive: if the implementation of the type is not

programmed defensively, it may have illegal call sequences that lead to an inconsistent state but

do not throw an exception or violate an assertion. In contrast, Javert operates on the assumption

that common usage likely reflects the true specification.

Engler et al. first introduced the idea of matching an alternating pattern over a program to

produce possible specification candidates [Engler et al., 2001]. This approach suffered from

imprecision, so the authors used statistical methods to rank the possible properties. Weimer and

Necula [2005] built on this idea by restricting their search to alternating patterns that traverse

exceptional control flow paths. While this improved the precision of the approach, the patterns

were still fundamentally limited to simple two-letter alternating sequences. We later introduced
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a highly scalable symbolic technique that extends this approach to patterns of size three [Gabel

and Su, 2008a] and greater.

Yang et al. [2006] adopted a similar approach for locating alternating events, Perracotta,

that introduced novel methods for handling imperfect traces. Sources of imperfection include

interleaved concurrent executions, omitted information (like memory addresses), or bugs. In

this work, the authors briefly describe a heuristic for combining simple alternating patterns, but

the approach is limited to finding simple sequencing patterns. Our work provides a more general

mechanism for inferring a class of general temporal properties.

ADABU [Dallmeier et al., 2006] is similar to Javert in that it dynamically learns temporal spec-

ifications from Java programs. The temporal specifications have a similar structure: transitions

are labeled by method calls. However, the authors take a different approach to the problem: the

tool directly observes state changes by calling inspector methods, like isEmpty() on a collection

type, rather than inferring them from ordering information. In addition, like many other miners,

the tool is limited to finding specifications over a single type with a known alphabet.

Ramanathan et al. have developed a static analysis [Ramanathan et al., 2007a] for detecting

“function precedence protocols.” These specifications are of the form “function x is called on

all paths leading to an invocation of function y.” The authors later generalized this technique

to include other predicates like constraints on variables [Ramanathan et al., 2007b]. These

specifications are of limited expressiveness; they correspond to the simple pattern (b+a). Our

analysis is capable of finding more complex specifications of arbitrary size.

Acharya et al. recently introduced a static analysis that mines partial orderings on function

invocation sequences [Acharya et al., 2007]. The authors use a data mining technique, frequent

closed partial order mining, to enumerate possible specifications. These specifications are of

limited form—simple chains—and are not as strict; the partial orderings represent a “may”

requirement, not a “must” requirement like a strict temporal specification.

A similar technique, developed by Wasylkowski et al. [2007], uses a static analysis to extract

simple partial orders on function call sequences. The tool uses frequent itemset mining to both

recognize frequently occurring patterns and detect violations. When compared with Javert,

the mined patterns are more limited in complexity. However, a similar extension—combining

verification with mining—would be a valuable addition to Javert’s functionality.
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3.5.2 Other Specification Miners

Li and Zhou constructed an analysis, PR-Miner, that makes use of frequent itemset mining to

find highly correlated function calls [Li and Zhou, 2005]. They then used these correlated sets

as specifications; they analyzed the source code for instances of sets of function invocations that

omit a commonly correlated call. Lu et al. later extended this technique to find highly correlated

variable accesses, which they use to locate concurrency bugs [Lu et al., 2007]. These techniques

are orthogonal to our own: the correlated sets returned by these analyses do not contain any

temporal relationships.

Kremenek et al. have developed a general approach to specification mining that uses probabilis-

tic models called annotation factor graphs [Kremenek et al., 2006]. This analysis probabilistically

assigns annotations that denote a role to functions with a program. These flexible models allow

the user to add additional domain-specific information to the analysis. Unlike our analysis, this

technique locates instances of a very restricted type of property.

3.5.3 Dynamic Analysis

The Daikon project [Csallner and Smaragdakis, 2006, Ernst et al., 2000] is a dynamic technique

that is similar in spirit to our own analysis. Daikon locates invariants on the values of variables,

while we locate invariants on the sequencing of function invocations. DIDUCE is a similar

technique that also locates potential violations of invariants [Hangal and Lam, 2002].

Combining the ideas of invariant detection and temporal property mining, Lorenzoli et al. have

developed a dynamic analysis algorithm for extracting software behavioral models [Lorenzoli

et al., 2008]. The algorithm, GK-tail, builds an Extended Finite State Machine from a set of

dynamic traces. The transitions in these extended models include both a called function or

method and a set of constraints on the parameters or environment. For future work, we are

interested in investigating the compatibility of these extended models and our general approach.

3.6 Conclusion

In this chapter, we have presented a general specification mining framework, Javert, that

can fully automatically mine complex, real-world temporal specifications. It is based on the
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observation that software often operates in phases and that complex temporal specifications can

be constructed from smaller generic patterns. The framework is general; it is independent of

the method used to mine these smaller patterns, and any set of inference rules can be used to

compose them. We have introduced two intuitive, sound rules that are general enough to learn

most of the temporal specifications in the literature. We have implemented our framework as a

practical tool, and our empirical evaluation of it on several open source projects demonstrates

that Javert is scalable, general, and precise.

There are a few interesting directions for future work. First, we have considered two specific

rules for pattern composition in this chapter. It would be interesting to investigate whether

there are other suitable choices of composition rules for specification mining. Second, we plan

to investigate the effectiveness of incorporating additional dataflow information, such as the

information provided by program slicing, into our analysis. Third, we would like to investigate

how to adapt our technique and develop a static specification mining algorithm that operates

directly on source code. Pattern composition may help reduce the number of false positives by

composing many small patterns (as we have observed in this work). Finally, we have focused

on temporal specifications, and it would be interesting to consider more expressive properties

and investigate whether there are useful instantiations of our framework in these more general

settings.
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4 Directly Inferring Temporal Safety Errors

The interfaces of software components are often paired with specifications or protocols that

prescribe correct and safe usage. An important class of these specifications consists of temporal

safety properties over function or method call sequences. Because violations of these properties

can lead to program crashes or subtly inconsistent program state, these properties are frequently

the target of runtime monitoring techniques. However, the properties must be specified in

advance, a time-consuming process. Recognizing this problem, researchers have proposed

various specification inference techniques, but they suffer from imprecision and require a

significant investment in developer time.

This work presents the first fully automatic dynamic technique for simultaneously learning

and enforcing general temporal properties over method call sequences. Our technique is an

online algorithm that operates over a short, finite execution history. This limited view works

well in practice due to the inherent temporal locality in sequential method calls on Java objects,

a property we validate empirically. We have implemented our algorithm in a practical tool for

Java, OCD, that operates with a high degree of precision and finds new defects and code smells

in well-tested applications.

4.1 Introduction

The interfaces of software components are often paired with specifications or protocols that

prescribe correct and safe usage. If violated, software systems may crash or—perhaps worse—be

placed in an inconsistent state and behave nondeterministically. One important type of these

specifications is the class of temporal safety properties over function or method call sequences.

Common examples include locking disciplines, in which locking functions (e.g. lock, unlock)
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must be called in a strictly alternating fashion, and resource usage, in which all resource-like

objects (e.g. files, sockets) must be eventually closed or disposed and cannot be used thereafter.

Formalized by researchers as the typestate [Strom and Yemini, 1986] concept, these properties

capture a broad category of software defects and have inspired a diverse body of research. Many

static formal verification algorithms (in particular software model checkers [Das et al., 2002])

either specifically target these specifications [Fink et al., 2008] or use them as their primary

example. Similarly, dynamic tools, such as runtime monitoring frameworks [Chen and Rosu,

2007], often operate over these temporal properties as well. These tools and techniques have

advanced significantly in recent years, particularly in the areas of scalability and automation,

but they still must be supplied with temporal specifications to verify—generally a manual and

time-consuming task.

This dearth of enforceable properties has led in part to the development of automated specifi-

cation mining or inference techniques. These tools observe a system’s source code or its runtime

behavior and produce one or more temporal specifications as a result. Most of these tools

leverage potentially imprecise parameters, such as the frequency of a specification’s occurrence

in the source code or the number of times it was satisfied in a dynamic trace. Similar to data

mining (in fact, many specification mining tools directly use data mining algorithms), these

inexact parameters lead to a precision/recall tradeoff: a precise tool may fail to infer important

properties, while a more liberal tool may produce many false properties, requiring a large time

investment by the software developer.

In this chapter, we present a novel technique and a practical tool, OCD, for simultaneously

learning and enforcing general temporal properties over function or method call sequences.

Both tasks are tightly integrated and form a symbiotic relationship: the verifier benefits from

the abundance of inferred properties, and the learning algorithm benefits from the results of

continuous verification to learn and refine properties. Most importantly, the software developer—

our intended user—benefits from being removed from the center of the process: he or she can

use OCD as a turn-key dynamic online bug finding tool that requires no input beyond the program

to analyze.

OCD is a dynamic trace processor for Java programs: it analyzes Java method calls online

through load-time instrumentation. At a high level, our algorithm functions by using a predefined
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set of specification templates—two-letter regular expressions that represent components of larger,

more general temporal properties—and attempting to enforce them in a brute-force manner

over all possible combinations of method calls. Our experience with the Javert specification

miner [Gabel and Su, 2008b] provides evidence that the inference of these small properties

can yield a surprisingly complete and general class of temporal specifications, and we show in

this chapter that enforcing these smaller patterns is a safe approximation of enforcing the larger,

general properties. Our work is enabled by two key observations:

Temporal Locality From a scalability perspective, this brute-force approach would ordinarily

be intractable in both time and space. We solve this problem by operating over a relatively small

finite window of trace events, which greatly constrains the number of property instances that

we learn and enforce. Though we demonstrate that the verification of properties over a finite

window is a safe approximation of verification over a complete trace, a finite window may greatly

reduce the effectiveness of any learning algorithm: we may be unable to sufficiently speculate if

our view is too short-sighted. This effect is greatly mitigated—sometimes even completely—by

the fact that method calls in Java programs exhibit a high degree of temporal locality; that

is, operations on particular objects tend to be tightly clustered in time. We have stated this

observation anecdotally in previous work; we now evaluate it empirically in Section 4.3 and find

it to be true for a diverse set of commonly used Java programs.

Verification of Redundant Properties Dynamic specification miners attempt to synthesize

specifications by generalizing a program’s observed behavior. Unfortunately, “false” specifi-

cations often result from the inference of true properties of the trace (perhaps inferred from

coincidentally common behavior caused by control flow artifacts, for example) that are not

considered by the developer to be true specifications. While this poses a major precision problem

for specification miners, it affords us an interesting opportunity. As the goal of our technique

is to locate defects—not to produce human-usable specifications—the properties we infer are

seen by a human developer only if they are violated. Rather than applying coarse-grained

filtering heuristics (as is commonly done [Yang et al., 2006]) and likely losing many important

specifications, we can simply attempt to verify all learned properties without human validation.
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The vast majority of the “false” properties are verified and produce no output, thus trading

inexpensive CPU time for valuable human developer time.

We evaluated OCD on a set of commonly used Java programs and found that it learns and fully

verifies a large set of temporal properties with acceptable overhead. On a subset of our evaluated

programs, our tool revealed previously unknown defects and code smells. In all experiments,

OCD maintained a high degree of precision.

We make the following specific contributions:

1. The first online algorithm that simultaneously learns and enforces general temporal

properties of software systems. Our algorithm is an online trace processor that operates

over a short-sighted, finite window of trace events.

2. A practical tool for Java, OCD, which we use to demonstrate the effectiveness of our

algorithm. OCD learns and verifies a large number of properties with acceptable overhead

and high precision, and it finds previously unknown defects.

3. A demonstration of the generality of our work. In particular, we show that our tool can

be configured to discover and enforce function precedence protocols [Ramanathan et al.,

2007a] as well as temporal association rules of function calls and field accesses [Li and

Zhou, 2005].

4. An empirical evaluation of the temporal locality of Java method accesses in practice, which

we use to justify our use of a short-sighted trace window (as well as set its size).

This chapter is organized as follows. The following section (Section 4.2) describes our general

approach and algorithm, while Section 4.3 discusses the realization of our algorithm as a

practical defect detection system. Section 4.4 contains an empirical evaluation of our work, and

Sections 4.5 and 4.6 discuss related work and our plans for continuing this research, respectively.

4.2 Approach

This section describes our basic approach. We first describe our algorithm in its simplest

form (Section 4.2.1). We then expand on the basic definition with a series of generalizations

(Sections 4.2.2–4.2.4) that form the final algorithm implemented in our tool, OCD.
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Algorithm 4.1 Online inference and enforcement algorithm.

Constants: P : Two-letter pattern automaton over {a,b}
with states {INIT,. . .}

Types: Asgn : (a :τ, b :τ)
Spec :

�

asgn : Asgn,sat : int, fail : int,st : state of P
�

State: Q : Bounded Queue of τ
specs : Asgn 7→ Spec

Require: enew :τ

1: Q← ADD(Q,enew)
2: eold← REMOVE(Q)

3: for all efut in Q do
4: if (eold,efut) /∈ domain(specs) then
5: specs(eold,efut)←

��

eold,efut

�

,0,0,INIT
�

6: specs(efut,eold)←
��

efut,eold

�

,0,0,INIT
�

7: end if
8: end for

9: for all spec in specs(eold,∗)∪ specs(∗,eold) do
10: if spec.asgn.a= eold then
11: spec.st← NEXT(spec.st,a)
12: else
13: spec.st← NEXT(spec.st,b)
14: end if

15: if spec.asgn.a not in Q and spec.asgn.b not in Q then
16: if ISFINAL(spec.st) then
17: spec.sat← spec.sat+1
18: else
19: spec.fail← spec.fail+1
20: if ISENFORCING(spec.sat,spec.fail) then
21: REPORTANOMALY( )
22: end if
23: end if
24: spec.st← INIT
25: end if
26: end for

4.2.1 Basic Algorithm

Our algorithm, described in pseudocode as Algorithm 4.1, functions as an online trace processor

that receives traced events from an instrumented application as they occur. It is configured with a

pattern template—an abstract model of a specification—and produces as online output anomalies—

specific instantiations of the templates that likely represent defects in the monitored system.
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Figure 4.1: Execution of Algorithm 4.1 on two example traces.

Events In this basic incarnation of our algorithm, an event consists only of a type τ. When

tracing Java method calls, for example, τ represents a method’s fully qualified signature. (Sec-

tions 4.2.2 and 4.2.3 sections discuss generalizations that consider additional information, e.g.

receiver objects.) Two example traces appear in Figure 4.1.

Pattern Templates A pattern template is a two-letter regular expression describing the general

structure of specifications to infer. We refer to its alphabet as the symbolic alphabet, which for

the remainder of the chapter we will assume without loss of generality to be exactly {a, b}. For

this expository example, we will focus on the simple alternating pattern (ab)+, which describes

the family of two-event specifications in which the events must strictly alternate. A minimal

finite automaton that recognizes this pattern appears in Figure 4.1. A concrete assignment

{a 7→τ1, b 7→τ2} maps the symbolic alphabet to two (distinct) trace event types. In the first

example trace of Figure 4.1, one possible concrete assignment into the alternating pattern is
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{a 7→OS.lock, b 7→OS.unlock}, forming the potential specification (OS.lock OS.unlock)+.

Finite Window Our algorithm operates over a finite window: a bounded view of a trace’s

history. The window is a standard FIFO queue; we add each new event to its head while

simultaneously removing the oldest event from its tail, maintaining a fixed size. We formulate

our algorithm in terms of this “expiring” event; the queue in effect provides a short-sighted view

of the future. 1 Though omitted from this presentation for brevity, we populate the queue with

null events on startup and drain it completely on shutdown.

Our algorithm aims to a) learn concrete assignments of the pattern (i.e., specifications) that

“should” be enforced and b) report violations as anomalies. Though conceptually distinct, our

algorithm integrates the two processes such that they are indistinguishable. The following steps

describe our algorithm’s execution, and they serve to narrate the running example in Figure 4.1

and the pseudocode of Algorithm 4.1. As this is an online algorithm, we describe its execution

in terms of the steps we perform on a single event.

State Our algorithm maintains a collection of 4-tuples, each of which contains a) a concrete

assignment, defined earlier; b) a satisfied count, the number times the pattern was matched over

a substring of the trace; c) a failed count, defined similarly; and d) a pattern automaton instance,

which we encode as its current state.

Queue Maintenance (Lines 1-2) We add the newest event to the head of the queue and

remove the oldest for processing. In our example (Figure 4.1), our queue is of length four and

our newest and oldest events are the same for both traces: Map.get and OS.lock, respectively.

Lazy Instantiation (Lines 3-8) We observe the queue and identify any upcoming pairings—

concrete assignments of the pattern—that we have not yet seen. We then instantiate two patterns,

one for each symmetric assignment, in their initial state. In our example traces, Map.get and

OS.lock have not yet occurred within a span of four (our window size) events, so they are

1It is straightforward to reformulate the algorithm in terms of the “newest” event, in which case the window provides
the more standard view of the recent past. This formulation is more terse and intuitive, though.
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absent from the initial specification table. After this step, two concrete assignments are added to

the table.

Advancing Automata (Lines 9-14) We iterate through all specifications that our currently

processed event (eold) participates in (line 9) and advance their state machines (lines 10-14). The

test at line 10 “dereferences” the concrete assignment to its symbolic letter, and the state updates

on lines 11 and 13 access an external function NEXT, which is a simple accessor for the transition

relation of the pattern P. To improve performance, our implementation incrementally maintains

a mapped index from each seen trace element on to the set of all affected specifications. Trace 1

(left) of Figure 4.1 demonstrates this step: all four specifications (including the two instantiated

in their initial state) are advanced according to the pattern.

Bookkeeping and Enforcement (Lines 15-26) Line 15 inspects the queue, determining if

any forthcoming event is relevant to the current specification.2 If not, we have reached the

end of a time-clustered substring of the trace (with respect to the current specification) and we

inspect the last state of the automaton instance. If the automaton was left in a final state (i.e.,

this trace “scenario” matches the specification and is accepted), we increment the satisfied count.

If not, the we increment the failing count.

Line 20 accesses ISENFORCING, an external function (predicate) that takes as input the historical

statistics (i.e., the sat and fail counts) and determines according to a predefined algorithm if

the specification should be considered “real” and enforced. One simple implementation of

ISENFORCING might be based on a ratio:

ISENFORCING(sat, fail)≡
sat

sat+ fail
> THRESHOLD

We refer to such functions as learning strategies. The various implementations and the values

of their constants/thresholds are of great importance to our system’s performance; we discuss

them in detail in Section 4.3. Finally, in the event that ISENFORCING returns true, we report the

current instance as an anomaly.

2For performance, our implementation maintains an incremental set view of the queue.
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In Trace 2 (right) of our running example, both lock/unlock specifications must be counted

and reset as neither lock nor unlock appear in the window. This results in a failure of both

specifications, with the failure of the more intuitive of the two (lock/unlock) likely being flagged

as an anomaly; that is, ISENFORCING returns true for lock/unlock and false for unlock/lock.

Note that in this case our algorithm is conservative: it may be the case that an unlock event is

forthcoming, but our window is not appropriately sized to recognize it. This may result in both

unlearned properties (false negatives) and false anomalies (false positives), which highlights the

importance of setting the window to an appropriate size.

4.2.2 Separating Event Instances

The most crucial omission from our basic algorithm is its lack of support for separating and

tracking multiple instances of the learned specifications. When tracing Java method calls, for

example, it is often desirable to separate trace events that are generated from different receiver

objects; failing to do so can hurt both precision and recall. For example, if we consider a source

program in which all operations require two nested locks, all traces would appear to fail due

to the apparent “double locking.” Even if we somehow learned the specification (or supplied it

statically), we would generate false error reports.

We adapt our algorithm to accommodate differences in receiver objects—or, more generally,

any form of different instance—by extending the type of events from a simple type τ to a pair:

(τ, id), where τ is as defined previously and id is an integer identifier. The remaining changes

are straightforward:

• Rather than a single state st, each specification tuple now contains a map: instances : (id :

int) 7→ (st : state of P). Thus, the single-instance specification tuple becomes a specification

“schema” that tracks multiple instances.

• The predicates “(not) in Q” on lines 3 and 15 now operate only over the relevant queue

elements; i.e. those whose id= eold.id.

• Matching and anomaly reporting (lines 9-26) occurs on the specific relevant instance.



67

• Lazy instantiation (lines 5-6) is extended to build specific instances, and the “reset”

operation (line 24) is replaced with a full deletion from the specification’s instances map

to prevent unbounded memory usage. Note that our finite window allows a rather simple

solution to this problem, while other runtime monitoring tools must interact with the

target program’s runtime (e.g. Java’s garbage collector through weak references [Chen

and Rosu, 2007]).

The concrete assignment and statistics (sat and failure counts) are shared between all instances.

4.2.3 Event Contexts and Multiple Patterns

The basic algorithm does not track any information about the static source of the events. For

example, one may choose to represent the static source of a Java method call as its call site. This

information is not critical to our algorithm’s execution, but it does provide much more meaningful

error reports. In addition, it allows for new, more rich implementations of ISENFORCING (our

predicate that decides when a pattern is “learned”): we can now favor properties that are

satisfied in multiple, distinct source locations of the target program. The details of this extension

amount to straightforward bookkeeping and are omitted for brevity.

The final extension to our algorithm allows it to simultaneously learn and verify multiple

specification pattern templates. This is also straightforward: it essentially amounts to running

multiple copies of the algorithm, one for each of the pattern templates.

4.2.4 Additional Considerations

Caching Failing Instances In general, the question of recall—how many properties we

enforce—is an empirical one. However, for all specifications that are eventually learned and

chosen for enforcement, we do not miss the reporting of any anomalies. This is due to 1) our

conservative, eager error reporting and 2) the fact that our implementation caches all failing

instances for properties that are not (yet) enforced. If the targeted program exhibits a defect

while the relevant property is still being “learned,” we cache the failing instance and report it if

or when the property reaches maturity.
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Grouping and Ordering Patterns We observe that for any two event types (method calls),

there is at most one “best” property that should be enforced. For example, consider our earlier

example with methods OS.lock and OS.unlock, and the following simple trace:

lock, unlock, lock, unlock, lock, unlock, lock, unlock, lock, unlock

Using fuzzy criteria for learning (i.e., an implementation of ISENFORCING that admits failing

instances), it is likely that both alternating specifications (lock unlock)+ and (unlock lock)+

would be learned. To mitigate this effect, we group all specifications over the same trace

letters—including those from multiple pattern templates, discussed above—and restrict anomaly

reporting to the “best” enforcing specification. We find that using a simple “satisfied ratio” as a

total ordering works well in practice as an implementation of “best.”

4.3 System Design

This section presents the realization of our algorithm as a practical and effective defect detection

tool, OCD. We start with our methodology for selecting the default size for our finite window,

arguably the most important parameter in our system (Section 4.3.1). Next, we discuss the

various pattern templates we use (Section 4.3.2). We then discuss the design and implementation

of learning strategies (Section 4.3.3), which have thus far been presented in terms of the

predicate ISENFORCING. Finally, we discuss our automatic multivariate self-tuner (Section 4.3.4),

which allows OCD to function well on a wide variety of target programs without the danger of

“overtraining” its various parameters.

4.3.1 Window Size

The length of the finite window is a critical parameter of our algorithm. If aggressively set to

too low a value, we learn fewer properties and perhaps generate more false defect warnings.

If conservatively set to too high a value, the algorithm may exhibit a prohibitive amount of

time and/or space overhead. Our goal is to set a value that is as small as possible while still

capturing a large number of important properties. We set our default window size based on an

evaluation of the typical temporal locality of the method call sequences of several Java programs.
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Figure 4.2: An example of our methodology for measuring temporal locality.

Our notion of temporal locality is based on a measure of the trace distance between successive

method calls on individual objects; an example appears in Figure 4.2.

Our choice of trace distance as a metric (as opposed to an alternative measure of locality, such

as real time) is practical and driven by our algorithm. Note, though, our restriction to pairs of

successive method calls. It should not be immediately apparent that this is correct: if we consider

a typical trace corresponding to the usage of a resource containing the methods open(), read(),

and close(), for example, our definition omits any measure of distance between open() and

close(), which sounds like an “alternating” property we might hope to learn. However, we can

learn equally useful properties like “the string of read()s must occur after the call to open(), and

call to close() must occur after the string of read()s.” This is the essence of our reasoning: each

pair of successive method calls represents a transition in a pattern automaton, and we can learn

patterns over the most essential transitions by solely considering successive method calls.

We performed our study of temporal locality on the DaCapo workload [Blackburn et al.,

2006], which includes a wide variety of production Java applications. For each benchmark, we

evaluated the temporal locality of successive method calls with respect to two types of traces:

JDK A caller-side transformation that traces all calls originating in the benchmark and executing
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Figure 4.3: A histogram of the distances between successive method calls on the same object
during the execution of Eclipse.

in the Java standard library. This family of traces represents the benchmarks’ usage of

multiple external APIs.

Project A callee-side transformation that traces all methods declared as public within the

benchmark itself. We intend this family of traces to represent the manner in which a

project uses its own APIs.

Figure 4.3 displays a histogram of the trace distances between successive method calls for the

eclipse benchmark, the largest and longest-running of the suite, over the Project-typed traces.

We omit detailed histograms for the remaining benchmarks for brevity, but we assert that the

distribution is similar for all of the benchmarks and trace modes. Note that it is highly left-

skewed: the vast majority of successive method calls are clustered within the trace, suggesting

that we are justified in our use of a short-sighted window.
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Window Size
Benchmark 5 10 15 20 25 30 35 40 45 50

antlr 95.0 96.5 97.1 97.5 97.9 98.2 98.4 98.6 98.7 98.8
bloat 97.9 98.0 98.1 98.2 98.2 98.2 98.2 98.3 98.3 98.3
chart 82.4 88.3 100 100 100 100 100 100 100 100

eclipse 96.5 97.5 97.6 97.7 98.0 98.2 98.2 98.3 98.4 98.4
fop 88.5 89.9 91.0 91.2 91.3 91.5 91.7 92.9 93.4 93.8

hsqldb 99.5 99.7 99.8 99.8 100 100 100 100 100 100
jython 97.0 98.7 98.9 99.0 99.1 99.1 99.4 99.4 99.4 99.5

luindex 88.4 92.3 94.9 96.2 97.0 97.5 97.9 98.1 98.3 98.5
lusearch 93.1 94.5 95.5 96.1 96.3 96.4 96.5 96.6 96.7 96.8

pmd 97.9 98.1 98.1 98.3 98.4 98.4 98.5 98.5 98.5 98.5
xalan 82.5 87.8 90.5 92.4 93.7 94.6 95.8 96.2 96.4 96.6

Table 4.1: Percentage of same-object call pairs whose trace distance is less than or equal to
various potential window sizes. Traces consist of JDK method calls.

Window Size
Benchmark 5 10 15 20 25 30 35 40 45 50

antlr 87.4 89.0 90.3 93.5 94.4 95.5 96.9 97.1 97.3 97.6
bloat 96.4 96.9 97.2 97.3 97.4 97.4 97.5 97.5 97.5 97.6
chart 70.7 77.2 99.7 99.7 99.8 99.8 99.8 99.8 99.9 99.9

eclipse 52.9 77.3 82.3 86.2 88.7 90.4 92.0 93.1 94.3 95.1
fop 73.7 83.8 84.1 84.5 85.4 86.5 87.1 87.4 89.2 90.6

hsqldb 34.9 43.5 97.2 97.5 97.7 97.8 98.0 98.1 98.2 98.3
jython 65.9 88.5 90.3 93.3 94.3 94.8 95.3 96.1 96.4 96.4

luindex 70.1 75.8 81.8 85.8 87.8 88.7 89.0 89.2 89.4 89.5
lusearch 77.1 77.8 78.1 84.8 97.7 98.5 98.5 98.6 98.7 98.7

pmd 79.6 81.2 81.8 82.1 82.5 82.7 82.9 83.0 83.2 83.2
xalan 81.9 86.7 89.0 90.5 91.7 92.5 93.7 94.2 94.5 94.6

Table 4.2: Percentage of same-object call pairs whose trace distance is less than or equal to
various potential window sizes. Traces consist of intra-project method calls.

Tables 4.1 and 4.2 contain evaluations of the effectiveness of various potential window sizes for

the JDK and Project-typed traces, respectively. For a variety of sizes, we calculate the percentage

of pairs of successive method calls that fall at or under the given window size. In other words,

these data answer the question “If OCD is configured with the given window size, on what portion

of a program’s execution could we effectively operate?” Our chosen default window size (25) is

emphasized.

These results are general and encouraging. However, they may underestimate OCD’s potential.

We conducted additional analysis on the distribution of the problematic method calls within
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the traces, but for space reasons, we elide a full presentation of these experiments in favor of

short descriptions.

Application Phases The problematic method calls were not distributed uniformly throughout

the execution trace: most were concentrated during the startup and shutdown phases of each

benchmark. This suggests that our highly dynamic algorithm might perform much better in the

common case as it adapts to the common “phase” of execution.

Fully Verifiable Types The problematic method calls were also not distributed uniformly

throughout all types (Java classes): a majority of JDK types (and a sizable portion of project-

specific types) were fully verifiable with a window size of 25; that is, every pair of method

calls over these types occurred with fewer than 25 intervening trace events. In addition, the

distribution of these fully verifiable types was skewed toward the most frequently used classes;

that is, OCD has the potential to perform extremely well on those types whose method calls

occurred most frequently in the dynamic traces.

Our sound enforcement of all inferred properties (cf. Section 4.2.4) implies that OCD’s end-to-

end recall—the proportion of all temporal safety violations it finds—rests largely on its ability to

effectively learn temporal properties. The inference process is largely constrained by the finite

window, but this demonstration of temporal locality suggests that OCD is capable of inferring a

large subset of the relevant properties over any given execution.

Finally, note that we have specified a reasonable default window size based on this evaluation.

However, it is entirely configurable—even online—and the temporal locality evaluation module

is included within OCD itself for project-specific tuning.

4.3.2 Selecting Pattern Templates

In this section, we present OCD’s rich suite of default pattern templates. These patterns demon-

strate both our tool’s power and its generality. We first present three patterns that contain enough

expressive power to learn the phasic specifications, a general class of typestate specifications we

defined while developing the Javert specification miner [Gabel and Su, 2008b]. We then present

two patterns that form a dynamic version of function precondition mining, which we extend to its
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dual—operational postcondition mining—with two additional patterns. Two final patterns allow

OCD to be used as dynamic association rule miner.

Phasic Specifications In our previous work on the Javert specification miner [Gabel and Su,

2008b], we defined the set of phasic specifications and argued that it encompasses a large class

of relevant temporal properties in real software projects. Briefly, these specifications can all be

expressed as the composition—a generalized form of regular language intersection—of instances

of the patterns (ab) and (ab+c). For space reasons, we state without proof that the following

patterns sufficiently form an over-approximation of this set:3

ab SEQUENCING (4.1)

ab+ LOOPBEGIN (4.2)

a+b LOOPEND (4.3)

Note that OCD does not actually use these patterns to build larger specifications at runtime; it

instead simply learns and enforces these smaller building blocks. Any error that manifests itself

in any potentially composed specification also manifests itself as an error in at least one of these

smaller specifications, rendering this process safe.

Pre and Postconditions Several recently developed tools have focused on mining precon-

ditions in software systems and flagging violations as potential defects. In one particularly

relevant example, Ramanathan et al. [2007a] mine “function precedence protocols,” which are

preconditions of the form “function x is always called before function y .” We introduce the fol-

lowing patterns that extend this idea with the logical dual—postconditions, or function sequence

3We showed previously [Gabel and Su, 2008a] that it was generally impossible to precisely decompose three-letter
patterns into a set of two-letter patterns. However, safe approximations are possible.
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protocols—allowing OCD to function as a general, dynamic implementation of these tools.

ab? PRECONDITION (4.4)

a?b POSTCONDITION (4.5)

a+b∗ GENERALIZED PRECOND. (4.6)

a∗b+ GENERALIZED POSTCOND. (4.7)

The first two patterns are straightforward, while the second two provide more generalized

variants that allow strings of identical calls as preconditions and postconditions.

Association Rule Mining PR-Miner [Li and Zhou, 2005] is a tool that locates potential

software defects by learning temporal association rules between function calls or variable accesses.

An association rule miner infers instances of general temporal association—without a necessary

ordering relationship. An example might include the pairing of the methods setHost and setPort

on a socket: the two methods are always called together as a pair, but the calling sequence does

not matter. The following patterns allow our system to learn and find violations of general

association rules of method calls.

(ab|ba) ASSOCIATION RULE (4.8)

(a+b+)|(b+a+) GENERALIZED ASSOC. RULE (4.9)

We also add a generalized variant that allows for sequences of identical calls.

As with the configuration of the window size, the pattern suite is completely configurable:

should this suite be insufficient for a particular specialized domain, a developer may add or

remove patterns using the standard (academic) regular expression syntax.

4.3.3 Learning Strategies

Recall that a learning strategy is a function that decides if a given specification should be enforced.

We have previously introduced this concept in terms of the ISENFORCING predicate, which operates
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over historical statistics, namely the raw counts of the number of times the given specification

has been satisfied and has failed:

ISENFORCING : (sat : int, fail : int) 7→ (true|false)

OCD implements a slight generalization of this function:

ISENFORCING : (sat : int, fail : int) 7→ (ENFORCING|LEARNING|DEAD)

The previous values of true and false map to the new values of ENFORCING and LEARNING, respec-

tively. The addition of the third value—DEAD—allows OCD to aggressively remove specifications

that are showing strong evidence of being irrelevant. These stale specifications (e.g., those

that have failed a majority of the time) can cause a performance drain on the system and are

generally safe to prune. Note that a given implementation of a learning strategy is not required

to ever return DEAD; it can be conservatively omitted from the strategy’s range, thus preventing

any eager pruning.

We also allow learning strategies to be combined through a conservative join (OR) and a

more aggressive meet (AND) operator, which closely resemble the AND and OR operations in

ternary logic:

E L D

E E E E

L E L L

D E L D

E L D

E E L D

L L L D

D D D D

Join Meet

OCD includes three basic strategies, and its default consists of the “meet” of all three.

Count This strategy operates directly on the satisfying and failing counts, returning ENFORCING

if the satisfied count is above a threshold, DEAD if it is below a (different) threshold, and

LEARNING otherwise.

Ratio This strategy closely resembles our example ISENFORCING predicate in Section 4.2.1: it
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calculates the ratio of satisfying instances to total instances and returns DEAD, LEARNING,

or ENFORCING based on various constant thresholds.

Context This strategy considers the static calling contexts that have accumulated for the current

specification. It returns ENFORCING if the specification has recorded at least a certain

threshold number of unique calling contexts.

4.3.4 Self-Tuning

The inference of specifications directly from code is an inherently imprecise endeavor, and

attempting to automatically enforce these specifications only compounds the problem. We have

consolidated all of our “fuzzy” reasoning in our learning strategies, which operate implicitly

with a multitude of constant “thresholds.” Thus far, we have left the values of these constants

conspicuously undefined.

These thresholds have a profound impact on our tool’s output. When considering just a single

constant—the minimum ratio in our RATIO strategy, for example—the extremal value of zero

trivially produces an anomaly for all instances of every specification; the extremal value of one

produces no anomalies whatsoever; and other values have the potential to produce any number

in between.

A standard approach to setting these types of thresholds is to perform a series of exploratory

experiments to find reasonable, apparently general values and evaluate them using a form

of cross-validation. Unfortunately, we were unable to progress past the first step: seemingly

reasonable values that produced a handful of anomalies on one workload would cause a flood of

thousands on another.

Our solution to this problem is a multivariate self tuning module that allows OCD to actively

tune itself to the current execution. The module takes as input an objective function and one or

more tunable variables. The objective function is defined over the reals, and the “optimal” value

is defined to be zero.

Objective Function Tools that learn specifications from code often make the assumption that

code is mostly correct: common behavior represents correct behavior. With this in mind, we
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expect that an agnostic, dynamic fault detection tool like our own should not generally produce

voluminous output. Our standard objective function is thus defined in terms of a user-defined

“budget” of expected anomalies, which we currently set to a liberal default of 10:

OBJECTIVEFUNC¬ anomaly_budget−anomaly_count

We build the set of tunable variables by programmatically collecting all thresholds and other

constants accessed by the currently selected learning strategy.

The self tuner operates by conducting a sequence of experiments that simultaneously 1)

attempt to minimize the objective function and 2) reveal the relative “power” of adjusting any

given variable in terms of its observed effect on the objective function:

1. Pick a variable v from the set of tunable variables. Increment or decrement the variable’s

value according to its historical “power.” Log this change and the current value of the

objective function.

2. Wait for a specified interval or number of events to pass.

3. Observe the new value of the objective function and use the difference to refine our

knowledge of v’s “power.” Repeat from Step 1.

The selection operation (“pick”) of the first step is a randomized choice that favors the variables

most likely to minimize the objective function. We do not assume the objective function to be

stable: the self tuner calculates a variable’s current “power” as the mean of its last three observed

effects rather than an entire history. We also set the initial values of each constant to conservative

values (i.e., values that cause the learning strategy to admit large numbers of specifications).

This simple scheme works remarkably well in practice. It allows OCD to adapt well to programs

of different types and sizes, and it greatly improves the tool’s usability and general applicability.4

4We experimented with performance-tuning objective functions as well. As expected, OCD quickly learned that
the best way to minimize overhead was to aggressively increase all failing thresholds and prune every single
specification.
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Figure 4.4: Implementation architecture.

4.4 Evaluation

This section describes the implementation and evaluation of OCD. We start with a brief descrip-

tion of OCD’s architecture and continue with a brief description of a selection of its notable

components. Next, we report on our tool’s performance when run against the DaCapo workload,

primarily in terms of precision and overhead. We conclude with a selection of experiments on

other workloads that highlight OCD’s practicality and effectiveness.

4.4.1 Implementation

OCD’s high-level architecture is depicted in Figure 4.4. Our system is implemented as a pure-

Java agent that is invoked by the Sun Java Virtual Machine just prior to the execution of the

target application’s entry point. At load time, OCD adds tracing instrumentation to the target

application, which generates a stream of events. The analysis engine runs separately, decoupled

from the target application. We briefly describe a selection of its components.

Tracing Instrumentation We have implemented a flexible tracing library using bytecode

instrumentation. At load time, OCD transforms the target application’s classes. Our framework

is quite general: we have implemented a) both caller and callee tracing, b) the tracing of field

accesses, c) the ability to trace static calling contexts for all types of tracing, and d) the ability to

filter instrumentation points by signature and access.
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Event Stream The tracing instrumentation is added directly to the target application’s classes,

revealing a potential thread safety issue for multithreaded targets. We solve this with a straight-

forward decoupling of OCD and the target application: we run the analysis engine in a separate

thread that reads from an asynchronous event stream. This solution also allows for a modest

amount of parallelism.

Status/Control Web Server For our primary evaluation, our usage of OCD is similar to that

of most program analysis tools: we take a predefined workload, add our tool to its configuration,

and collect a final report of the results. During development, however, we found more interactiv-

ity necessary. OCD embeds a lightweight web server within the target application that allows

a) the viewing of the current collection of anomalies and specifications and b) the viewing and

online mutation of any of its parameters. We expect this feature to become more useful as we

explore more specialized uses of OCD, e.g. as a debugging tool for diagnosing known-failing

test cases.

We performed our first evaluation on the DaCapo workload [Blackburn et al., 2006], a

benchmarking suite consisting of several widely-used Java applications.5 Adding OCD to the suite

required no changes to the test harness, which conveniently verified that the benchmark suite

continued to produce correct output while instrumented by OCD. We performed our experiments

over two types of tracing: 1) tracing of all outgoing calls to Java’s standard library and 2)

tracing of all project-specific methods declared public. The results of these experiments appear

in Figure 4.5.

4.4.2 The DaCapo Workload

In this evaluation, we expected OCD to be largely silent. As well-tested CPU and memory

benchmarks with known inputs, we expected the executions to be relatively bug-free—at least

on the common code paths that we are limited to as a dynamic analysis. Our goals for these

experiments were to 1) verify that OCD effectively learns a wide variety of properties, 2)

investigate the error reports, if any and 3) measure our typical overhead.

5We used DaCapo version 2006-10-MR2 on Sun’s 64-bit Linux Server VM, version 1.6.0_16.
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Specifications Overhead
Benchmark Considered Enforced Anomalies (factor)

antlr 304 31 0 2.9
bloat 1,632 12 0 5.8
chart 368 4 0 5.1

eclipse 3,272 118 2 3.0
fop 256 2 0 2.5

hsqldb 48 0 0 1.6
jython 960 23 1 2.9

luindex 472 6 0 2.1
lusearch 168 9 0 1.9

pmd 320 11 0 3.8
xalan 464 14 0 4.6

(a) JDK method tracing.

Specifications Overhead
Benchmark Considered Enforced Anomalies (factor)

antlr 23,280 380 0 282.5
bloat 50,560 156 1 52.7
chart 1,472 13 0 6.5

eclipse 145,256 898 3 14.5
fop 6,568 100 0 21.0

hsqldb 1,088 24 0 8.2
jython 46,344 81 0 89.8

luindex 2,528 104 0 143.1
lusearch 1,432 30 0 321.9

pmd 30,568 97 0 30.4
xalan 7,824 22 0 31.1

(b) Project-specific method tracing.

Figure 4.5: Results on the “known good” DaCapo suite.

Specifications Throughout the suite, OCD inferred and verified a large number of properties.

These included many that were obviously relevant, a sampling of which we display in Table 4.3.

In addition to these patterns, our system inferred and verified a significant number of properties

that were not obviously relevant. This apparent waste of resources is a strength of our technique:

we used OCD as an end-to-end anomaly detection tool and did not manually verify any of these

properties before they were used. Because they produced no anomalous output, we effectively

sidestepped the task of manual validation.
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Java Type Pattern

Enumeration hasMoreElements() nextElement()?
Iterator hasNext() next()?

StringTokenizer hasMoreTokens() nextToken()?
Vector size() elementAt(int)?

BufferedReader readLine()∗ close()+

BufferedWriter write(String)∗ close()+

BufferedWriter write(int)∗ close()+

ResultSet next()∗ close()+

ListIterator hasPrevious() previous()?
Reader read(char[],int,int)∗ close()+

Table 4.3: A small sampling of JDK-related patterns learned and verified over the DaCapo suite.

Anomalies Our expectations of few error reports notwithstanding, OCD did produce three

JDK-related and four project-related anomalies. Despite originating in two different projects, the

JDK-related anomalies were all derived from an identical pattern: the precondition relationship

between Enumeration.hasMoreElements() and nextElement(). In two cases, the higher-level

precondition—that the Enumeration has an element—was satisfied in a different way: by testing

using the size method. In the third case, it was not immediately apparent that the enumerated

collection contained at least one element on all possible code paths.

Of the four project-specific anomalies, none were either obviously defects or obviously false

alarms. We did investigate the two highest-ranked anomalies reported in the Eclipse benchmark

and found them to be quite interesting but benign inconsistencies. Both cases were within

Eclipse’s compiler internals. In the first case, a particular Statement-typed object was processed

without first calling complainIfUnreachable. Our investigation revealed that the statement in

question was a member of the statement list of the “increment” portion of a for loop. We

consulted the Java Language Specification and found that these particular statements must be of

type “Expression Statement” and do not need to be individually checked for reachability in this

context. For brevity, we omit a detailed description of the second case; it was similar in scope

and depth.

These results are encouraging: not only did OCD verify a large number of properties, it also

produced very few false reports. The anomalies it did generate had intuitive causes, and—

especially the project-specific reports—were worth investigating.
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Overhead OCD incurs a significant amount of overhead, but it appears currently acceptable for

a development-time bug finding tool—especially on the JDK-based experiments. The overhead

on the project-specific experiments was much higher and highly variable, though still tractable

for this workload, taking minutes instead of seconds per benchmark.6 We investigated this

phenomenon and noted that over the same workload, the project-specific tracing causes nearly

an order of magnitude more events to be generated: it appears that the clearest path to

significantly less overhead is to reduce the number of instrumentation points. As Java provides

the ability to both add and remove instrumentation at runtime, something akin to Dwyer et al.’s

Adaptive Online Program Analysis [Dwyer et al., 2007] would be desirable, though it is yet

unclear how to adapt such techniques when the target analysis involves a learning component

in addition to verification. Finally, we note that other runtime monitoring tools intended for

production environments, with overheads in the tens of percents, do not instrument nearly as

much of the target program and they do not infer properties.

4.4.3 Bug Finding: Eclipse and Ant

We then ran OCD on the full, latest versions of two production Java applications: Eclipse (a

portion of which was already partially exercised by DaCapo) and Ant, a build system. Our goal

in these experiments was to reveal defects by providing more variable workloads. We restricted

our scope to JDK-based anomalies, as they do not generally require domain-specific knowledge

to investigate.

Our test input consisted of performing common tasks with each tool, using our own code base

as a dataset. For Eclipse, we a) launched the application and let the project build, b) performed

several edits and a renaming refactoring, and c) closed the application. For Ant, we performed

two invocations, one with our project’s clean target and one with the dist target, which involved

a full compile. We left the default anomaly “budget” (the number of anomalies the self tuner

strives for through indirect manipulations of the learning parameters) at its default of 10. We

sampled the set of anomalies after each operation.

6At present, the overhead of the system has substantially improved over these published figures due to optimizations,
with the project-specific values reaching near parity with the JDK values.
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Eclipse OCD produced a total of 10 anomalies, unioned across the three sampling points. Of

these 10, only three were “false positives” in the truest sense:

1. Two consisted of exactly the same false errors that manifested themselves under the

DaCapo Eclipse workload.

2. One was a violation of a clearly false property over two Collection methods. OCD learned

it as a result of a common idiom used during Eclipse’s initialization; it is likely that the

property would have dropped out of the “Enforcing” state with additional input.

3. Three involved minor performance issues relating to the toArray(T[]) method on various

Collection types. The violations involved calling this method with a freshly-allocated empty

array, a waste of resources. The more efficient idiom—used throughout the majority of

Eclipse’s code base—is to freshly allocate an array of the appropriate size. (The specific

property violated is that size() is a precondition for toArray(T[]).)

4. One was a certain resource leak, in which the contained InputStream of an InputStream-

Reader was closed without closing the enclosing instance.

5. Three involved abuses of the InputStream type’s interface in which the developers neglected

to call close() on instances that they (apparently) knew would be of a concrete subtype

whose close() method did nothing.

Ant OCD produced a total of five anomalies between the two sampling points. These con-

sisted of:

1. Three harmless violations of the general has∗, next∗ type specifications.

2. A neglected call to hasMoreTokens() on a StringTokenizer on an unprocessed user string

(though the runtime error is eventually handled through an uncaught exception handler, it

is somewhat careless).

3. A resource that was closed late, by the finalizer thread. Our system reported a “false”

error due to the lack of temporal locality in this situation. However, it is almost always

preferable to close resources in a timely manner; Dillig et al.’s CLOSER project [Dillig et al.,

2008], for example, aims to find and fix situations just like this one.
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Both Eclipse and Ant were quite usable while under instrumentation. Eclipse was especially

responsive: our decoupled design allowed “bursty” actions, like the opening of menus, to be

processed on the second core of our dual core test system, which reduced interface lag.

None of the reported anomalies resulted in immediate program crashes: each defect-indicating

anomaly either caused an inconsistent program state or hinted at different conditions—namely,

other inputs—under which the anomaly would have resulted in a crash. However, crashing bugs

are not outside OCD’s scope. If a program crash is the result of a violation of a temporal property,

then OCD will likely report its root cause.

4.4.4 Generality: Associated Field Accesses

Existing tools that search for inconsistent field accesses, e.g. MUVI [Lu et al., 2007], have

demonstrated impressive results. As an exercise in the generality of our tool, we performed an

informal experiment of our tool’s ability to find these kinds of bugs. For this experiment, we used

the FindBugs project as a workload7 (not as an analysis tool) and set our tracing framework

to log all field writes. To detect general inconsistent accesses, we used our “Association” and

“Generalized Association” patterns (Section 4.3.2).

Our tool produced five anomalies, all of which were highly domain-specific. However, we

were able to fully investigate one of them: the inconsistent updating of a size field in a data

structure. OCD had detected an association between this field and another field that were always

updated in tandem. However, in the clear() method, the fields were not updated consistently:

the size field was not cleared to zero, leaving the structure in an inconsistent state. This defect

has been confirmed and fixed.

4.5 Discussion and Related Work

Our algorithm is the first dynamic algorithm that simultaneously learns and verifies tempo-

ral properties. The most closely related work can be roughly categorized in three groups:

specification inference, runtime monitoring, and the detection of software anomalies.

7Due to its complexity and ease of configuration with batch-mode inputs, we utilized FindBugs as our “benchmark”
workload throughout OCD’s entire development. To avoid an obvious threat to validity, we have omitted it from
our standard evaluation but use it here for convenience—with a different form of tracing.
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Specification Inference Ammons et al. [2002] produced the seminal work on specification

mining. Their algorithm uses a language inference technique to learn a single, general specifica-

tion over a known alphabet. OCD requires no input beyond the monitored program. Dallmeier

et al.’s ADABU [Dallmeier et al., 2006] extracts specifications as finite automata with labeled

states, which improves their usefulness. In our case, such improvements are not necessary: our

properties are used mechanically without human validation. Acharya et al. [2007] present a

static tool that extracts patterns as partial orders. Our precondition patterns capture the idea

of a partial order, allowing our tool to learn and find violations of these patterns dynamically.

Le Goues and Weimer [2009] present a specification miner that leverages a statistical model

to drastically reduce the incidence of false specifications. In our experience, most dynamically-

mined “false” specifications describe “true” but useless properties, which are not a problem

for our fully automatic tool. However, integrating a technique like this could serve to reduce

OCD’s overhead.

More recently, Nguyen et al. present a new algorithm for mining specifications over multiple

objects [Nguyen et al., 2009]. As configured, OCD learns patterns over single objects; however,

it is not an inherent limitation: if the tracing framework could assign the same identifier to

multiple related objects, OCD could possibly learn and enforce multi-object patterns without

modification. We are investigating this line of improvement as ongoing work.

Thummalapenta and Xie present a technique for learning specialized instances of specifications

for exceptional code paths [Thummalapenta and Xie, 2009], on which OCD’s property inference

performance is possibly poor. We are investigating ways to overcome this inherent limitation

of dynamic analysis, including possibly leveraging additional information in the static code to

augment our traces.

Runtime Monitoring Runtime monitoring frameworks, such as Chen and Roşu’s MOP [Chen

and Rosu, 2007], have seen dramatic improvements in performance in recent years. Often with

the help of static information [Bodden et al., 2008, Dwyer and Purandare, 2007, Gopinathan

and Rajamani, 2008], these tools can verify properties in production programs with overhead in

the low tens of percents. Our problem domain is somewhat different: OCD must automatically

infer properties as well as enforce them. Nonetheless, we are working toward leveraging these
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insights to improve OCD’s performance: we do, for example, have access to at least some static

code when we perform instrumentation at load time.

Dwyer et al. [2008] improve the performance of runtime monitoring systems by breaking

larger specifications into smaller “sub-alphabet” properties and monitoring a sampled subset

to create an approximate verifier. This suggests an interesting avenue for investigation: an

empirical evaluation of the end-to-end effectiveness of our tool when verifying only a subset of

our smaller patterns, which resemble their “sub-alphabet” properties.

Detecting Anomalies The general idea of characterizing software bugs as anomalous program

behavior was codified by Engler et al. [2001]. Hangal and Lam’s DIDUCE [Hangal and Lam,

2002] hypothesizes and learns invariants over program values, much like Daikon[Ernst et al.,

2000], and includes a component that checks the learned invariants as well. In some sense,

our work is like DIDUCE, but our domain consists of temporal invariants. Chang et al. present

a tool that mines program dependence graphs for neglected conditions [Chang et al., 2007],

like missing null checks. Our tool is effective at finding neglected conditions that are sufficiently

abstracted as method calls.

Elbaum et al. investigate the ability for anomalies in execution traces to predict field failures

[Elbaum et al., 2007]. They measure the effectiveness of various anomaly detection algorithms,

with their “sequence” variant appearing similar to our own—but at a much finer granularity. In

our system, the anomalies are caused by violations of inferred temporal safety specifications,

which themselves are a form of field failure.

The tool perhaps most related to our own is Wasylkowski et al.’s JADET [Wasylkowski et al.,

2007], a static tool for finding general object usage anomalies. JADET uses concept analysis

to infer properties that are nearly always satisfied and it reports the failures as anomalies.

This technique is complementary to our own: OCD learns more general properties with higher

precision, but as a dynamic tool it has a limited view of the target program.
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4.6 Conclusion and Future Work

We have presented the first online algorithm that simultaneously learns and enforces temporal

properties. Our implementation, OCD, functions on production Java applications with acceptable

overhead and is effective in learning and validating a large number of important properties.

Many of the properties we learn and verify are from standard, well-tested libraries. While

convenient for validating our technique, these properties are effectively finite in number and

perhaps not necessarily the best targets for a fully automatic technique: it is conceivable that they

could be semi-automatically specified once, perfected, and shared for all tools to use. Instead,

we believe that the greatest strength of our online tool is the learning and enforcement of project

specific properties, which are likely being created—perhaps incidentally—faster than they can be

specified. The primary obstacle to validating and improving our tool for this purpose, though,

is that the time of domain experts is finite and expensive. To this end, we are working with

our industrial partners to validate and improve OCD by evaluating it on commercial enterprise

systems with full access to domain experts.
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5 Deductive Specification Inference

Specifications are necessary for nearly every software engineering task, but they are often

missing or incomplete. “Specification mining” is a line of research promising to solve this

problem through automated tools that infer specifications directly from existing programs. The

standard practice is one of inductive learning: tools make observations about software and

inductively generalize them into specifications. Inductive reasoning is unsound, however, and

existing tools commonly grapple with the problem of inferring “false” specifications.

In this work, we explore and define the conditions necessary for deductive inferences about

specifications: a well-defined design space and a notion of correctness. We extract these concepts

into a general framework, Deductive Specification Inference (DSI), which we implement in a

practical tool that extracts temporal specifications from Java programs. Our tool treats a “fact”

about a program as a hypothetical specification and attempts to prove its necessity and importance

systematically. It explores a design space through automated program transformations, and it

evaluates correctness through testing.

5.1 Introduction

Nearly all software engineering tasks require some form of a specification. Implementation,

debugging, and testing, for example, all involve reconciling a software program’s specified

and actual behaviors. Documentation and source code comments are standard sources of

specifications, but they are often incomplete, incorrect, or missing entirely. Worse yet, time-

saving software tools—our research focus—require formal, machine-readable specifications,

which are even rarer.
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Research in specification inference aims to solve this problem through tools that automatically

reverse engineer specifications directly from programs. Although reasoning soundly about

specifications from implementations is generally impossible, the intended behavior of a stable

software project can be somewhat evident. Leveraging meta-heuristics like “frequently-observed

behavior in a program is likely intended and important”, specification “mining” tools can

make observations about software and generalize them into specifications, albeit with a degree

of uncertainty.

That “degree of uncertainty” is a central issue in specification inference. A mining tool’s

performance is always an empirical question and generally cannot be taken for granted. The

programmer thus becomes responsible for validating each inferred specification manually, an

expensive and error-prone process. The unreliability of specification inference also hinders the

development of derivative tools, like a hypothetical “advanced debugger” that would both infer

specifications and localize and fix related faults.

The fundamental cause of imprecision in specification inference is the standard problem of

induction: generalizing from examples is unsound. Accordingly, current tools are at their most

effective when they broaden their learning base by using as many examples as possible [Gruska

et al., 2010] and, similarly, when they focus on widely-used specifications [Acharya et al.,

2007]. In our own recent work, we have attempted to scale specification inference “down” and

“out” to project-specific and highly “semantic” properties, which studies suggest are the largest

contributors to software problems [Li et al., 2006]. Unfortunately, we have encountered what

we are informally calling a “precision wall”: the deeper (and more domain-specific) an inference

tool looks, the less evidence it tends to have to work with.

In this chapter, we present a new specification inference methodology that avoids many of the

pitfalls of a purely inductive approach. Rather than generalizing a specification solely from an ex-

ample program, our approach involves defining, exploring, and experimenting within a program’s

design space. Specifications directly describe a design space, so—when performed carefully—this

methodology can allow one to make sound, deductive inferences about specifications.

While evaluating our prior work on specification inference, we were often faced with the task

of manually determining if an inductively-learned specification was “real and important” or a

“false positive”. Deductive Specification Inference (DSI) is a formalization and automation of
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that process. Briefly, DSI is the process of treating a “fact” about a program as a hypothetical

specification and experimentally testing whether or not it is is necessary for correct execution. In

our implementation, we use a combination of automated program transformations and testing.

This chapter includes the following contributions:

1. A new specification inference methodology, Deductive Specification Inference (DSI).

2. An implementation of our framework for a well-studied domain: temporal specifications

over the sequences of method calls in a program. This tool serves as a novel specification

inference tool as well as a case study for the DSI method.

3. A case study demonstrating our tool’s effectiveness on several open source Java programs.

The next section (Section 5.2) provides an overview of our approach through a set of examples.

Section 5.3 then presents the Deductive Specification Inference framework in detail. We then

present the design and implementation of a tool implementing DSI for the domain of temporal

properties of method calls (Section 5.4). Our experimental results and related discussions follow

in Section 5.5. In Section 5.6 we discuss DSI in the context of related work, and in Section 5.7

we conclude with a discussion of future work.

5.2 Overview

In this section, we provide an overview of our general approach through a series of examples.

We begin with an introduction to our target domain, temporal specifications, and continue with

a presentation of our general technique as well as our implementation.

5.2.1 Temporal Properties and Their Inference

The examples in this section are drawn from the domain of temporal specifications over program

elements. Here, “temporal” refers to the span of runtime execution and “program elements”

refers to executable code. A temporal specification extends traditional state assertions (“variable

x is always positive”) with the notion of time (“once x is positive, y will eventually become

positive as well”).
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1 CompilerTest test = ...
2 test.reset();
3 /* Set up ’prog’ variable */
4 test.execute(prog, out, err);

a. “Call CompilerTest.reset at some point
before calling

CompilerTest.execute.”

1 ResourceAttributes attr = ...
2 /* Other setup */
3 attr.setArchive(true);
4 attr.setSymbolicLink(false);

b. “ResourceAttributes.setArchive and
ResourceAttributes.setSymbolicLink must appear in

sequence.”

1 GeneratorAdapter gen = ...
2 /* Set up ’type’ and ’c’

variables */
3 gen.loadThis();
4 /* Other ’gen’ invocations */
5 gen.invokeConstructor(type, c);

c. “Call GeneratorAdapter.loadThis at
some point before calling

GeneratorAdapter.invokeConstructor.”

1 SaveManager sm = this;
2 /* Other state restoration actions */
3 try {
4 sm.restoreMarkers(resource, true, p);
5 sm.restoreSyncInfo(resource, true, p);
6 } catch (Exception e) { /* Ignore */ }

d. “SaveManager.restoreMarkers and
SaveManager.restoreSyncInfo

must appear in sequence.”

Figure 5.1: Four observed temporal properties and a selection of the Java source code that
generated them.

One commonly studied class of temporal properties involves ordering restrictions on function

calls. Functions are building blocks of software projects, and the order in which they are

composed is both critical and subtle—especially in imperative and object-oriented systems with

side effects. Common examples include locking disciplines, in which a specification might state

“calls to methods lock and unlock on each Lock object strictly alternate at runtime” and resource

usage rules, in which a partial specification might state “one should call close on a file descriptor

soon after its final use”.

Temporal properties are often much more domain-specific and subtle than these canonical

“locking” and “resource” examples, and they are rarely fully documented. Researchers have

recognized this problem and developed automated software tools capable of “mining” temporal

properties directly from programs. The predominant models are forms of inductive learning.

Many tools operate similarly in two high-level steps: 1) observing (at runtime or statically

approximating) the behavior of a program and 2) generalizing that behavior into a specification.

5.2.2 Validating Specifications

Figure 5.1 lists four examples of “potential” temporal specifications. They were synthesized from

observations of real software projects, simplified excerpts of which are listed as well. Mining



92

tools may report specifications like these for several reasons, including:

• The observed property is satisfied (or mostly so) by the observed program. This condition

is often trivially true.

• The tool observes the property frequently, with examples occurring frequently at runtime

or within the static source code. This encodes the belief that “common behavior is likely

to be correct.”

• Assorted heuristics. For example, the property listed in Figure 5.1a involves a method

named execute, which may match a “function name filter” that identifies naming patterns

that have often been important in the past.

Ultimately, a specification mining tool takes an inductive leap, essentially “lifting” observations

into specifications based on prior beliefs.

“Potential” specifications may not be true, though, which is a natural consequence of inductive

learning. When a programmer is presented with a mined specification, he or she must generally

validate and/or debug it before it becomes useful. Approaches include:

• Code inspection. If the specification is not followed, would it lead to an obvious error?

• Reconciling with known requirements. Is the specification clearly (in)consistent with

existing specifications?

• Consulting with experts and past software engineering data. Have the elements of this

specification been involved in any prior issues?

Note the lack of a complete and algorithmic solution. This is precisely what makes specification

inference difficult in practice and impossible in the limit. However, these validation techniques

do follow a common theme: they involve using disparate sources of information to answer the

following question as accurately as possible:

Given a potential specification ϕ, is ϕ necessary for my program’s correct execution?

Our current work can be framed as a method for solving this problem as completely and

automatically as possible.
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1 CompilerTest test = ...
2 //test.reset();
3 /* Set up ’prog’ variable */
4 test.execute(prog, out, err);
5 test.reset();

a. “Call CompilerTest.reset at some point
before calling

CompilerTest.execute.”

1 ResourceAttributes attr = ...
2 /* Other setup */
3 //attr.setArchive(true);
4 attr.setSymbolicLink(false);
5 attr.setArchive(true);

b. “ResourceAttributes.setArchive and
ResourceAttributes.setSymbolicLink must appear in

sequence.”

1 GeneratorAdapter gen = ...
2 /* Set up ’type’ and ’c’

variables */
3 //gen.loadThis();
4 /* Other ’gen’ invocations */
5 gen.invokeConstructor(type, c);
6 gen.loadThis();

c. “Call GeneratorAdapter.loadThis at
some point before calling

GeneratorAdapter.invokeConstructor.”

1 SaveManager sm = this;
2 /* Other state restoration actions */
3 try {
4 //sm.restoreMarkers(resource, true, p);
5 sm.restoreSyncInfo(resource, true, p);
6 sm.restoreMarkers(resource, true, p);
7 } catch (Exception e) { /* Ignore */ }

d. “SaveManager.restoreMarkers and
SaveManager.restoreSyncInfo

must appear in sequence.”

Figure 5.2: Transformed programs that should now be “wrong” if each specification is “real” or
“necessary.”

5.2.3 Automated Validation and Deductive Inference

Returning to the running examples, consider now the contrapositive of the “validation problem”:

If I violate ϕ, will my program be incorrect?

Phrasing the question this way suggests an experimental solution. Figure 5.2 reprises the

potential properties listed in Figure 5.1, but the code excerpts have now been transformed.

For the domain of temporal properties, we have a strong idea of what it means to “violate” a

specification, and in each case the code has been “minimally” and straightforwardly modified

to violate each property. If each of the potential specifications is true, then each program in

Figure 5.2 should now be wrong.

The problem now reduces to judging each “experiment” as “correct” or “wrong.” If we were

able to judge any as being correct—despite being transformed—we could say with some certainty

that the associated specification is unnecessary for correct execution and thus false. Similarly,

if one of those programs were now incorrect, we would obtain evidence that the associated

specification is necessary and true. Note the lack of the word “certainty" in the latter case: it is

rife with subtlety and will be discussed in more detail throughout this chapter.
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Judging a program “correct” or “wrong” is generally impossible, of course, and to do so actually

begs the question of a complete specification. However, correctness can often be approximated

through testing and analysis, giving us the final component we need to automatically (but

approximately) validate specifications. Our high-level technique is as follows:

1. Start with a proposed specification ϕ from a program P. For temporal function-call

specifications, this might be of the form “calls to function a always precede calls to

function b”.

2. Create a space of experimental programs around P andϕ, an explicit design space populated

with programs “like” P but violating ϕ. We accomplish this through automatic program

transformations. Continuing the earlier example, this space may consist of the family of

programs in which calls to a and b are reordered.

3. Test the design space by testing the experimental programs. If ϕ is found to be unnecessary

for correctness, then ϕ is not a specification.

On our example properties, this automated process is quite revealing.

• The experiment in Figure 5.2a crashes early: reset does in fact set up the precondition

for execute to run; the specification is true.

• Experiment 5.2b passes: the order in which these two fields are set is irrelevant.

• Experiment 5.2c fails, but not with an immediate crash: it ultimately causes operations

much later in the test suite to fail. GeneratorAdapter is a helper class within a Java

bytecode library. Not following this specification will actually result in the generation of

bytecode that violates the Java Bytecode Specification, which is what ultimately causes

the later test failure.

• Experiment 5.2d passes, but perhaps surprisingly so: each operation contains a substantial

amount of overlapping side effects. From a class-level perspective, though, the tests

demonstrate that the observed ordering is irrelevant.

Transforming this specification validation procedure into a specification inference algorithm is

straightforward, as validation and inference are fundamentally the same problem. In our case,
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Satisfies φ P 1. Select a Fact φ satisfied by P 

Violates φ 

Satisfies φ P 

P5 Violates φ P3 

Violates φ P4 

Violates φ P6 

Violates φ P1 Violates φ Pn 

Violates φ P2 

2. Expand P and φ into a Design Space:  {P, P1, … , Pn} 

Modify φ-related 
behavior 

3. Evaluate with a Correctness Oracle Γ:  
         Γ: {P, P1, … , Pn} ↦ {,} Is φ a specification? 

        Does the “correctness” of P imply φ? 
                If one violates φ, is P now incorrect? 

 Correct 

 Incorrect 

Violates φ 

Satisfies φ P 

P5  Incorrect 

Violates φ P3  Incorrect 

Violates φ P4 

 Incorrect 

Violates φ P6 

 Incorrect 
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 Incorrect 

Violates φ Pn 

 Incorrect 

Violates φ P2 

(P,φ) 
Design  
Space 

Figure 5.3: The Deductive Specification Inference process. Figure 5.4 presents the interpretation
of the results.

we can define a domain of specifications and systematically enumerate and validate each one .

For temporal specifications, we could simply enumerate every observed-true ordering of function

calls and systematically validate each one. Alternatively, we could bootstrap the process with an

inductive learning algorithm.

This section has provided an overview of what we mean by “Deductive Specification Inference”

and how we implement it for the domain of temporal function-call properties. The following

section presents the idea of Deductive Specification Inference more completely and domain-

agnostically. It explores the most relevant question: how sound are these “deductions”? In other

words, under what conditions do these “experiments” truly prove or disprove the existence of

a specification?

5.3 Deductive Specification Inference

Deductive Specification Inference (DSI) is a framework for reasoning about specifications. It

involves the use of a correctness oracle to reason about experimental, “alternate-world” programs

within a well-defined design space. Figure 5.3 provides an overview of the DSI process, and in

this section we present and discuss it in detail.
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5.3.1 Problem Statement

DSI provides a method for inferring specifications from an example program. Our high-level

problem statement is as follows:

Given a program P and a fact ϕ satisfied by P, determine whether or not ϕ is a

specification.

We purposefully leave the domain of ϕ unspecified. Note that P can be generalized to a finite

set of programs, but we focus on the simpler case of one single example program.

A minimal criterion for a program fact to be considered a program specification is necessity.

Introduced in the preceding section, a fact is necessary when any “violations” of it lead to an

incorrect program. Systematically evaluating necessity thus requires two components: 1) a

method of enumerating alternate, possibly “violating” programs and 2) a method of judging

programs correct or incorrect. Within DSI, one accomplishes the former by explicitly defining a

design space around a given program, which we discuss next.

5.3.2 The Design Space

A specification describes a constraint or requirement on a family of programs. Inductive speci-

fication inference reasons about that “program family” through generalization. If we wish to

reason deductively about that family of programs (and thus the specification) we must define it

explicitly.

A DSI instance must first define a design space.

Definition 11 (Design Space). A design space is an enumerable set of programs derived directly

from P that 1) varies the behavior governed by ϕ and 2) leaves non-ϕ behavior invariant.

This definition, though quite abstract, captures the idea of enumerating the “family” of ϕ-related

programs that coincide with P ’s intended behavior. Evaluating the correctness of programs

within this space constitutes controlled experiments that test the necessity of ϕ, and evaluating

it completely can allow us to make deductions about specifications. This concept is illustrated

in the left frame of Figure 5.3: a design space is “grown” around P by modifying P ’s ϕ-related

behavior.
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Remark. DSI inferences are sound with respect to a definition of a design space. The more

faithfully a design space adheres to Definition 11, the more “valid” from a software engineering

perspective the deductively inferred specifications become.

A perfect and exhaustive design space is challenging to define and implement in practice.

We will discuss our experiences with temporal function-call properties in the next section

(Section 5.4). Here, we present several higher-level conceptual requirements that follow from

Definition 11.

Complete The design space should contain examples that disrupt ϕ-related behavior in every

place it applies. For example, if ϕ describes a temporal restriction between two function calls,

the design space should include programs that “break” each use of the two functions.

Intent-Preserving, or Controlled One must violate ϕ in a way that otherwise preserves the

original intent of the program. In other words, the design space should focus expressly on

ϕ-related behavior. If ϕ specifies, say, a temporal relationship between functions a and b, a

sensible design space should not include examples in which the function calls are simply deleted:

ϕ restricts the ordering of the function calls, not their presence or absence.

Limited in Power, or Realistic Experimental programs in the design space should reflect

what a programmer might create. They should avoid, for example, modifications of the host

language’s runtime or other artificial faults. We are ultimately trying to deduce specifications

that programmers should care about, ones that they may violate in practice. If our reasoning is

based on a design space that a programmer would never have encountered in practice, then the

inferred “specifications” are irrelevant.

Beyond these requirements lies a great amount of flexibility. In our implementation, we

explicitly generate a finite design space through automatic program transformations and evaluate

it using traditional testing. However, nothing in this definition prevents one from implicitly

defining an infinite design space and reasoning about it statically.
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5.3.3 A Correctness Oracle

The design space provides us with a set of experimental programs in which our proposed fact ϕ

is the independent variable. In order to run these experiments, we need a method for judging

the correctness of programs. We factor this task into an unspecified correctness oracle.

Definition 12 (Correctness Oracle). A correctness oracle Γ is a deterministic procedure for

evaluating the correctness of a program P.

This requirement would superficially seem to be unrealistic and onerous. Reasoning about

programs at this level is not mathematically possible, and even if it were, a true oracle would

require a complete specification and thus negate any true usefulness of DSI.

In practice, incomplete and approximate oracles are effective. For one, an incomplete oracle is

entirely effective as long as it correctly evaluates the portion of P explored in the design space,

i.e. the ϕ-governed behavior. Other unsound or incomplete oracles may also be used, albeit with

the addition of a (controllable) degree of uncertainty to the overall DSI process. And in our

experiments we use an oracle as weak and incomplete as standard testing, and we are able to

soundly invalidate thousands of potential specifications.

Remark. Recall from our overview (cf. Section 5.2) our discussion of the methods that human

programmers use to validate specifications. In essence, they draw on numerous sources of

existing software engineering knowledge to confirm or deny a specification. DSI emulates this

process in an automated way, and the correctness oracle serves as a singular input point for

all “existing knowledge”. DSI can be viewed, in a sense, as a method for “converting” software

engineering knowledge embodied in one form into another. In our implementation, we “convert”

the knowledge stored in standard test oracles into correct and useful temporal specifications.

5.3.4 The Complete Framework

Deductive Specification Inference is the process of determining if a fact ϕ that is true of a

program P is a specification. At this point, we have defined 1) a design space around P and ϕ

and 2) a means of evaluating it. The final step, which completes the framework, is the actual

execution of these experiments, which is depicted in the right frame of Figure 5.3.
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Result:  
  All Violating programs are Incorrect. 
  All Satisfying programs are Correct. 

Conclusion:  
  φ is a Specification 
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Figure 5.4: Interpreting the results of a DSI run.

This process need not follow any specific algorithm. In our implementation, our design space

consists of explicit programs; we simply enumerate and test each one. If one, say, implicitly

defines a design space in some form like “the transitive closure of the following program

transformations” and uses a static analysis as a correctness oracle, it is conceivable that one

could evaluate entire groups of experiments simultaneously and efficiently.

Interpretation of the results is straightforward. Figure 5.4 enumerates the possible cases. In

the first case (left) we have validated ϕ as a specification: the implication “correct ⇒ ϕ” is

satisfied. Every “violating” program in our design space is an incorrect version of P. (Note that

the outcomes of the “satisfied” experiments are technically irrelevant to the implication. In

practice, P itself is our only “satisfied” experiment and it is trivially correct.)

The inference of ϕ as a specification is technically sound—with respect to the design space,

that is. From a software engineering perspective, however, problems with the design space may

later manifest themselves as potentially defective specifications. These problems mirror the

design principles we outlined earlier.

• An incomplete design space may result in a specification that lacks generality.

• An uncontrolled design space may cause truly false specifications to be inferred. This is

the standard problem of determining causality through controlled experimentation, and

in our setting it stems from our requirement that the design space explore only ϕ-related

behavior. If ϕ is inextricably linked to some critical non-ϕ aspect of P, it may be impossible

to create a controlled experiment that can precisely link ϕ and correctness.

• An unrealistic design space may result in technically true but unimportant specifications.
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In the second case (Figure 5.4, second from left) we have completely invalidated ϕ as a

specification: every program, “broken” or otherwise, is correct. We have a variation on the

same outcome in the third case (Figure 5.4, second from right). Here, some but not all of

our experimental “violating” programs are judged correct. This case highlights the fact that

specifications are universal: to invalidate a proposition ϕ as a specification we need only locate

as evidence one correct program that violates ϕ. This strict interpretation is intuitive, especially

in our implementation. An experiment that shows an observation to be irrelevant to correctness

is strong, programmer-comprehensible evidence.

That interpretation notwithstanding, there is an opportunity here for DSI to provide more

information to the user. It is plausible that individual application domains may find approximate

inferences useful. These could take the form “violating ϕ leads to failure approximately 50% of

the time”, for example.

The final case (Figure 5.4, right) is an anomaly that is surprisingly useful in practice. When a

well-designed DSI instance—and thus a programmer—cannot violate a proposed specification in

any reasonable way, that specification is likely to be unimportant even if strictly true.

An example will clarify this point. Our implementation works with the domain of temporal

function-call specifications and explores the design space by (sensibly) reordering function calls.

Consider the following code snippet:

1 public String getResult() {

2 return this.calc.compute();

3 }

A simple inductive inference tool may observe that getResult and compute always occur in

sequence at runtime and may present the relationship as a specification. Note, though, that the

structure of the program prevents any sensible violation. A programmer could not violate it, and

our DSI instance would produce an empty design space. A programmer would quickly dismiss

this specification as false for the very same reason that DSI would “fail” to (even begin to) prove

it true.

This problem of “false specifications caused by one function calling another” has been ad-

dressed in the literature through purpose-built heuristics, such as the “control-flow artifact filter”
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in Yang et al.’s Perracotta tool [Yang et al., 2006]. DSI’s natural “failure to violate” elegantly

generalizes and handles this and many other cases of “spurious specifications” without the need

for heuristics.

In summary, Deductive Specification Inference provides a means for deductively reasoning

about specifications. Its strength is drawn from explicit consideration of aspects of the specifica-

tion inference problem that are traditionally defined only implicitly and in general terms: the

meaning of a design space and the definition of correctness.

Finally, recall that DSI’s purpose is to provide a decision procedure for determining whether or

not a single fact is a specification. To transform this procedure into a full specification inference

algorithm, we need only to combine it with some method of enumerating facts from programs.

5.4 Deductively Inferring Temporal Properties

We have implemented Deductive Specification Inference for the domain of temporal function-call

properties of imperative and object-oriented systems. We realize a design space through the use

of automated program transformations and we implement a correctness oracle using testing. We

introduced the temporal function-call problem domain earlier (cf. Section 5.2.1) and continue

here in more depth.

5.4.1 Temporal Function-Call Properties

We address a common class of specification: ordering restrictions on function calls within a

software project. These specifications are common and error-prone, as they are not enforced by

the type systems within standard compilers. When they are defined formally, however, advanced

software tools can check them statically [Ball and Rajamani, 2001, Fink et al., 2008] or at

runtime [Chen and Rosu, 2007], preventing and eliminating errors.

The formalism we use to represent specifications is regular languages. While the most general

formalism for expressing these properties is some form of a temporal logic, many important

properties can be expressed as simple regular languages. The earlier examples of “locking”

and “resource disposal” are both regular: (lock unlock)∗ and (read∗ close), respectively. Each

specification is quantified over a domain of possible “scenarios,” which is a general way of
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capturing the notion that the properties only restrict related function calls, e.g. lock and unlock

calls on the “same Lock object” or read and close calls on the “same file descriptor.”

Our tool is implemented for programs written in the Java programming language. For

simplicity we focus on temporal properties of function calls on a single object; that is, our domain

of “scenarios” is the set of objects at runtime. Note that we use receiver objects solely as a

convenient and reliable way of relating sets of method calls through data. No aspect of our

implementation is fundamentally restricted to object-oriented systems.

Remark. A related concept is typestate [Strom and Yemini, 1986], the notion that individual

types have a high-level “state” that dictates when certain operations (e.g. method calls) are

“legal,” i.e. when they do not violate an internal class invariant. Because we focus on single-object

properties, it is tempting to view our implementation of DSI narrowly as a form of “typestate

inference.” Our technique certainly will infer typestate properties (the two examples above fall

into this category) but it is far more general. By using “overall system correctness” as an oracle

rather than “obeys a preexisting local class invariant”, our tool can (and frequently does) infer

interesting domain-specific properties like that shown in Figure 5.1c: the class does not crash

when used incorrectly—no local class invariant is violated—but it eventually causes a violation

of a higher-level system specification.

5.4.2 Temporal Function-Call DSI

Our temporal function-call implementation of Deductive Specification Inference takes as input:

1. a Java program, and

2. a regular temporal fact, or “hypothetical specification,” over a set of function calls.

It returns as output:

1. “specification”, or

2. “not specification” (along with supplemental details).

The high-level architecture mirrors that of the abstract DSI framework and appears in Figure 5.5.

Execution occurs in two phases: Preamble and Experiment. The first involves constructing a

set of “experiments” by defining a temporal property design space. We implement this process
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Figure 5.5: Implementation architecture.

using static program transformations that make use of a novel lazy evaluation framework for

Java programs. The second phase is dynamic, executing and evaluating these experiments with

respect to a correctness oracle, which we approximate through testing.

Generating a set of temporal facts to validate for a given program is straightforward (Figure 5.5,

top). We make use of an existing dynamic, inductive specification inference tool [Gabel and Su,

2008a] that has been stripped of its “inductive” characteristics. This specification “observation”

tool returns unfiltered results and uses no frequency data or other heuristics to limit its scope.

5.4.3 Preamble: The Temporal Property Design Space

Our temporal properties describe ordering relationships between sets of function calls. Our

implementation of a design space consists of transforming the input program, in various ways, so

that all relevant function calls are reordered in a way that violates the proposed fact.
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1 GeneratorAdapter gen = ...
2 /* Set up ’type’ and ’constr’ variables */
3 gen.loadThis();
4 /* Other ’gen’ invocations */
5 /* Possibly crossing procedure boundaries */
6 gen.invokeConstructor(type, constr);

a. Original source code.

1 Thunk t; // Global, known location
2 GeneratorAdapter gen = ...
3 /* Set up ’type’ and ’constr’ variables */
4 t = delay({gen.loadThis();});
5 /* Other ’gen’ invocations */
6 /* Possibly crossing procedure boundaries */
7 gen.invokeConstructor(type, constr);
8 force(t)

b. Transformed source.

Figure 5.6: The essence of our transformation. Delaying the first invocation until the second has
executed violates the hypothesized property.

Transforming Java Programs Reordering function calls in real software projects is problem-

atic. Highly local cases are simple: if two function calls appear on subsequent lines, for example,

their parameters tend to draw from the same variable scope, simplifying the actual transforma-

tion. High locality makes for more controlled experimentation as well. In our experience, though,

actual projects tend to form a complex and rigid “scaffolding” that is difficult to modify—and

the most important and subtle properties are likely to be those that are not confined to a pair of

sequential lines of code.

We solve this problem by implementing a robust lazy evaluation framework for Java programs.

It brings to Java the concept of promises in eager functional languages like Scheme. The entry

point is analogous to the delay() primitive in Scheme, but slightly generalized: given an

arbitrary sequence of (straight-line) Java bytecode, our framework 1) functionally abstracts it

and 2) creates a closure with its (eagerly-bound) parameters, thus converting it into a thunk.

This object may then be executed at any time, immediately or later, by an analogue of Scheme’s

force() primitive.

Lazy evaluation greatly simplifies the task of reordering function calls. Our transformation

occurs at the bytecode level, but it maps conceptually well on to source code. An example
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Figure 5.7: The complete DSI process for temporal function-call properties.

of the essence of our transformation appears in Figure 5.6. The higher level operation in the

figure is “delay the first function call until point p”. This operation is the basis of all of our

transformations, and the remaining questions are when and where to apply it.

Selecting Experiments Recall two of our guidelines for an ideal design space: completeness

and control. We respect completeness by generating test programs that violate each potential

binding of the property at runtime, which in our case means violating each individual runtime

object affected by the property. We maintain control by doing so in as minimally intrusive

manner as possible. That is, for any given usage “scenario”, we wish to delay the minimum

number of function calls by the minimum amount of (execution) time necessary to violate the

property.

We are able to generate this minimal set of transformations by proactively collecting informa-

tion about the runtime behavior of the program. Figure 5.7 provides an overview of the complete

DSI process; the left pane depicts this Preamble phase. Before creating the design space, we

execute the program’s test cases (the same tests that will be used during the Experiment phase)

twice: once unmodified and once “instrumented”, which collects a property-related trace. We

use this trace along with a straightforward brute-force algorithm to generate our minimal set

of transformations. In addition, these “pilot runs” allow us to perform various sanity checks,

including:

• Is the property exercised in these test cases?
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• Is the property satisfied by the program?

• Is the program’s behavior deterministic enough to allow experimentation? Note that this

requirement is not as strict as it sounds: we use a flexible form of execution indexing that

tolerates a great amount of variation in program behavior.

The execution of these initial runs, tests, and experiment selection algorithms form the entirety

of the Preamble phase. At its conclusion, we have produced a set of transformed experimental

programs that are ready to be evaluated.

Remark. The primitive “delay a call until time p” is powerful: for example, all functions can be

delayed and re-emitted in any order. In theory, though, this “delay primitive” is not powerful

enough to “break” (i.e. transform to rejecting) every accepting string of any arbitrary (non-total)

regular language. Fortunately, in practice, every valid trace of every regular specification pattern

we have encountered in our work can be “broken” by delaying just a single event, albeit by

varying amounts of time. We have performed a more thorough theoretical investigation of this

problem, which we have omitted for brevity.

Other Implementation Notes One complication to our otherwise simple process is caused

by the presence of explicit return values from the functions we “delay:” if a function is not

evaluated, we cannot know what it will return. We solve this problem by implementing a model

of what a novice programmer would do in this situation, inspired by our principle of “realistic”

experiments. We implement a simple type analysis that allows us to replace the return value

of a delayed call with the value of the “nearest-defined local variable of the appropriate type”

(or the language-defined default value if one is not found). This simple process works well in

practice. This general definition automatically captures many intuitive actions, including reusing

the return value from a previous call (among others).

Multithreaded programs caused complications as well. Avoiding any single-threaded assump-

tions handled most issues, but our early experiments revealed several fundamental challenges.

For one, we may “move” a function call to a program point at which an important lock is no

longer held. To solve this issue, our lazy analysis framework makes note of the locks held when

delay()ed and attempts to reacquire them, if necesary, when the thunk is force()ed. In another
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case, the delayed call was indirectly responsible for some event that, if omitted, would cause

the second call to block indefinitely, creating a deadlock. In this case, we instituted a global

“inactive timeout” on our experiments: if the subject program makes no forward progress after a

period of time, we forcibly terminate the program.

Remark. Testing for “necessity for correctness” is superficially similar to testing for control or

data dependencies, a heavily-studied subject. Lack of any control or data dependence is sufficient

cause to invalidate a specification, but it is far from neccesary.

5.4.4 Experiment: Testing with a Correctness Oracle

The Experiment phase is conceptually simple: we evaluate each experiment in the suite of

transformed programs and interpret the results.

Testing as an Oracle Our implementation of a correctness oracle is testing. This portion of

our tool is pluggable to allow the use of user-defined tests and test oracles. In addition, we

also provide a default implementation based on randomized regression testing. We first run the

unmodified, assumed-correct program on random inputs. We record the input/output behavior

on this inputs as a behavioral profile, which then becomes our test oracle. This process is similar

to Differential Testing [Evans and Savoia, 2007], which uses automatically generated tests to

test modified software for regressions.

Analysis of Results At a high-level, the only important output is the success or failure of

each individual test. However, exactly how a test executes and fails can be useful knowledge.

Regardless of the property—the precise relationship it defines or the number of functions it

references—the experimental process reduces to delaying a single function call until a second

call completes. This simplicity allows us to analyze a finite set of cases that may arise during

execution; these cases are depicted in the right pane of Figure 5.7.

• Normal: This is the standard, unmodified case for reference. Function f1 executes, followed

by f2, which is followed by normal execution.
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• Stage 0: f1 has been delayed, but execution failed before reaching f2. The experiment

failed at a very fundamental level: we could not violate this property using our standard

program transformations. Interpretation of this case could fall in either direction, but

there is a strong case here to be made for “not a specification” by way of the “empty design

space” case discussed in the previous section (Section 5.3).

• Stage 1: Execution fails while executing f2. This is indicative of a real specification, but

the circumstances also suggest additional information: f1, the delayed call, appears to

directly or indirectly establish f2’s precondition.

• Stage 2: Execution fails while forcing the execution of f1. Once again, this is evidence

of a real specification, but it also reveals that f2 puts the program in a state in which f1

cannot safely execute. An example might include f1 involving the “use” of a resource and

f2 “closing” it.

• Stage 3: The experiment fully completes and execution continues as in the normal case.

If the oracle decides the program has maintained its correctness, then we have strong

evidence that the fact is “not a specification.” If the program (eventually) fails, then we

have revealed what may be a particularly subtle and important true specification—one that

if violated silently puts the system in an undefined error state.

Other Implementation Notes Software testing is naturally incomplete. In the cases in which

we invalidate specifications, a weak test oracle (i.e. one that fails to identify incorrect programs)

may cause us to draw an incorrect conclusion. More plainly, any experiment over a part of a

program not covered by a test suite will lead to our tool concluding “not a specification.” We

avoid the more egregious cases of this problem in practice by 1) inferring our observed facts

from the same test suites we use for evaluation and 2) running our sanity checks during the

Preamble phase to ensure the property-related behavior is exercised. Note, though, that these

checks do not guarantee that the test suite is perfect.

Our implemented tool is robust, scalable, and general. In the following section, we present

the results of a case study of our tool on real, widely-used Java projects.
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5.5 Case Study: Specifying the DaCapo Suite

This section presents the results of a case study of our Deductive Specification Inference tool for

Java programs. We have sought to answer the following research questions.

1. Is our tool robust? Does it function on complex, real-world software?

2. What are the characteristics of a deductively inferred specification “space” on a set of

real-world Java programs?

3. What are the strengths and limitations of our tool, and how do they translate to the

Deductive Specification Inference methodology as a whole?

We continue with a discussion of our experimental setup, which is followed by a presentation

and analysis of our results.

5.5.1 Experimental Setup

Our test subjects are a set of Java programs drawn from the DaCapo benchmark suite (version

9.12-Bach). DaCapo differs from traditional “microbenchmarks” in that it is formed from real,

widely-used applications to create realistic workloads. The benchmarks are listed in the left

column of Figure 5.8 and comprise approximately 1.5 million lines of source code.

DSI requires “facts” to treat as hypothetical specifications. As we noted earlier, we modified

an inductive specification learning tool [Gabel and Su, 2008a] to serve as a “fact observer.” We

configured it to find all instances of simple sequences: pairs of method calls that appear to be

obeying a sequential ordering restriction between them. For brevity, we omit the implementation

and experimental details of this process.

Remark. The “sequence” template is simple, almost to the point of being simplistic. In practice, it

captures a surprisingly broad amount of specification behavior. Our previous work on the Javert

tool [Gabel and Su, 2008b] has demonstrated that almost all temporal function-call specifications

can be fundamentally decomposed into simple sequences and small loops. In addition, note that

our current tool is not inherently limited to simple patterns, even at the current implementation

level: it can work with any regular specification pattern over any number of distinct functions.
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Non- Mean Time/
Benchmark Facts Specs Specs Fact (s)

avrora 460 72 388 47.1
batik 2063 159 1904 69.4
eclipse 1426 145 1281 225.9
h2 497 57 440 102.8
jython 493 29 464 936.4
luindex 463 74 389 35.1
lusearch 167 23 144 91.4
pmd 911 50 861 79.1
sunflow 196 49 147 34.1
xalan 1172 79 1093 76.0

Total 7848 737 7111

Figure 5.8: Summary of results on the DaCapo benchmark suite.

We ran all experiments in parallel on several 64-bit Linux servers, each configured with with

Intel processors (Xeon and Core 2) and the 64-bit Oracle Java Virtual Machine, Server Edition,

version 1.6.0_25.

5.5.2 Results

A summary of our results appears in Figure 5.8. Our tool individually analyzed 7,848 facts,

systematically judging each as a specification or non-specification. In each case our tool performed

robustly, both validating and invalidating specifications within large, complex software projects.

Performance Performance was acceptable: the majority of facts were analyzed in under two

minutes. Our task is embarrassingly parallel as well, a fact we utilized fully in our study. Notable

exceptions were the Jython and Eclipse benchmarks. Jython and Eclipse contain many “facts”

whose violation hinders termination, forcing our system to often wait until a conservative timeout

had expired (five minutes) before proceeding. In practice, this timeout can be reduced to a value

more appropriate to a particular project.

Non-Specifications Figure 5.9 lists detailed results of our tool’s inferences on the 7,848 input

facts. The first group of four columns describes the facts our tool judged as non-specifications.

The first column (“Could Not Violate”) counts facts that yielded a truly empty design space

and were judged to be “unimportant”. Many of these cases were a result of the “control-flow
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N o n - S p e c i f i c a t i o n s S p e c i f i c a t i o n s
Bench- Could Not Stage 0: Stage 3: Stage 1: Stage 2: Stage 3:
mark Violate Failure Complete Total f2 Crash f1 Crash Complete Total

avrora 16 91 281 388 18 2 52 72
batik 190 543 1171 1904 27 5 127 159
eclipse 357 297 627 1281 25 45 75 145
h2 19 96 325 440 18 2 37 57
jython 135 129 200 464 10 8 11 29
luindex 8 125 256 389 10 32 32 74
lusearch 16 55 73 144 3 6 14 23
pmd 116 152 593 861 12 1 37 50
sunflow 4 79 64 147 13 0 36 49
xalan 102 278 713 1093 18 6 55 79

Total 963 1845 4303 7111 154 107 476 737

Figure 5.9: Detailed results of our case study. Each entry is a count of the number of “facts” our
tool judged to fall into the given column’s category.

artifact” specifications described earlier, but there were several other cases as well that were

elegantly captured by our tool’s “cannot-violate implies non-importance” principle. For example,

one case involved the type system preventing us from moving an object’s constructor call after

its first true method call, the more abstract principle here being “ordering restrictions involving

constructors cannot be violated by programmers.”

The second two columns correspond to “Stages” of execution described earlier and depicted

in Figure 5.7. In the second column (“Stage 0”), every experiment in each fact’s design space

resulted in a program crash soon after we “delayed” the first function call. Stage 0 results

generally fall into two categories:

1. The fact appears to be fully enforced at runtime and is thus impossible to violate on

tested code.

2. There is a more specific and relevant fact we should be analyzing instead. For example, if

functions a, b, and c all execute in sequence at runtime and a crucial relationship exists

between a and b, we will be unable to run a successful experiment involving a and c. In

our implementation, we test every possible fact and would eventually analyze the crucial

a/b fact, so discarding the a/c as a “non-specification” loses no information.
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The third column lists those facts whose experiments all fully completed, violating the property,

but continued to be judged correct by the relevant tests. The experiments serve as a form of

“certificate” demonstrating that the fact is truly unnecessary for correctness. Note the sheer

volume of this category: 55% of the hypothesized facts were invalidated—every one of which

had the potential to be called a “specification” by an inductive learning tool and to waste a

programmer’s time. We were surprised and encouraged by the fact that this level of interference

and experimentation was possible in large and complex software projects.

Specifications The second group of columns in Figure 5.9 contains counts of the facts our tool

judged to be specifications. Each column corresponds to a “stage” of execution described earlier

and depicted in Figure 5.7. The first two columns of this group correspond to fairly standard

“typestate” specifications:

1. Facts whose experiments all end in Stage 1 exhibit a precondition relationship: the first

function call establishes (a part of) the precondition of the second, and delaying it causes

the appropriate crash.

2. Facts whose experiments all end in Stage 2 exhibit a state transition relationship: the

first function call was legal in its original context, but it becomes illegal after the second

function executes (e.g. attempting to use a resource after it has been closed).

More interesting are the facts whose experiments all fully completed (Stage 3). In these

cases, each experiment silently corrupted the program state and caused the tests to fail at a

later—sometimes much later—time. A small, randomly sampled collection of these specifica-

tions follows:

• In Lucene, delaying a “commit” operation on an index until after it is closed corrupts the

index but causes no overt failure.

• In H2, a connection information object will silently return a bogus password hash from a

connection information if read before initialization is complete.

• Various XML parsers in the projects require handlers to be set before parsing begins and

will not warn the user if none has been set (our sample included two of these).
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• In Sunflow, the SunflowAPI object’s initialization is idiomatic. Moving any part of it until

after a call to render causes incorrect output but no obvious crash. Two other examples in

our sample followed a similar “idiomatic initialization” pattern.

We are continuing to analyze these results in depth, but thus far this case study has suggested

that this application of Deductive Specification Inference is a general and effective technique.

5.5.3 Discussion

Two salient points to discuss are the generality and validity of these deductively inferred specifi-

cations. Both issues relate to our definition of a design space for temporal specifications.

Generality concerns the applicability of the specifications to programs outside our (approx-

imated) design space. If we infer a relationship between two functions, must every future

use of those two functions necessarily follow it? If our design space is adequate then yes, the

specification is certainly general. However, if it is not, our tool essentially reduces to an inductive

tool (albeit one with a new kind of concrete evidence: a demonstration of necessity on the

current program). Nonetheless, we do believe our temporal property design space to be effective

in practice, especially for the more esoteric and project-specific specifications. As specifications

become more targeted toward a single software project, the “universe” of possible usages likely

shrinks as well. The entire “universe” of a project-specific property might simply be the current

code base, and our design space covers programs “like” the current code base quite well.

Validity concerns our ability to establish causality between a fact and correctness. In practice,

it can be hindered by a lack of control in our design space. If we violate a fact ϕ and the program

fails, can we be sure that it was precisely the ϕ-specified behavior that caused the failure?

In general, the level of control within a DSI instance is a continuum: specifications naturally

overlap and no part of a program is truly isolated. However, we believe that the specific domain

of temporal properties naturally lends itself toward controlled experimentation: the ordering

between function calls can be modified independent of whether or not the functions execute at

all. And this concern notwithstanding, the process of invalidating specifications is sound—at

least with respect to the tests.
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5.6 Related Work

This section discusses Deductive Specification Inference in terms of several lines of related work.

Inductive Specification Inference Inductive specification inference techniques have been

developed for a variety of domains. Kremenek et al. have presented a framework [Kremenek

et al., 2006] based on probabilistic inference that reflects the essence of the inductive process:

leveraging beliefs about software to infer general specifications from specific examples of

programs. Several targeted techniques infer temporal specifications, the subject of our own

implementation of DSI. Both dynamic [Ammons et al., 2002, Dallmeier et al., 2006, Gabel

and Su, 2008b, Yang et al., 2006] and static [Shoham et al., 2007a] techniques follow the

same general approach: they observe temporal relationships in programs and inductively

elevate them to specifications. Other successful application domains of inductive specification

inference are assertions over program state [Ernst et al., 2000, Henkel and Diwan, 2003],

determinism specifications for concurrent programs [Burnim and Sen, 2010], and function

contracts [Ramanathan et al., 2007b]. Less formal approaches include lightweight “programming

rules” [Chang et al., 2007, Li and Zhou, 2005], which have been particularly effective at revealing

programming mistakes.

These techniques all confront one central issue: precision. Generalization is unsound, and

the inductive leap from one program to a specification about an entire class of programs is

essentially an educated guess. This issue is not merely theoretical: a recent study [Polikarpova

et al., 2009] has shown that one third of inductively-learned code contracts are incorrect or

irrelevant (and in our experience, the temporal property domain can be worse). As a result,

specification inference research tends to contain an empirical component evaluating precision,

and specific techniques have also been proposed to help programmers debug [Ammons et al.,

2003] and filter [Le Goues and Weimer, 2009] erroneous mined specifications.

Deductive Specification Inference provides a new way of approaching the specification in-

ference problem. Rather than speculating about an entire class of programs, our framework

advocates defining it explicitly through our notion of a design space. When that is possible, one

can make sound, deductive inferences about specifications. And even when a design space must
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be approximated for practical reasons, DSI provides a sound framework for invalidating mined

specifications. Lastly, we note that DSI and inductive techniques are not fundamentally opposed:

inductive techniques are ideal sources of “facts” that can be more thoroughly (albeit expensively)

explored through DSI.

Non-Inductive Specification Inference Some specification inference techniques are non-

inductive. Work on extracting component interfaces [Alur et al., 2005, Henzinger et al., 2005,

Whaley et al., 2002] is superficially similar to inductive specification inference techniques, but

the processes are more well-defined and involve no inductive generalization. These techniques

require low-level specifications as input (or they are extracted from explicit assertions in the

code). They then solve the formal problem of extracting a sound, higher-level “model” of

component usage that avoids violating any of the given low-level specifications. In essence, DSI

takes this process and lifts it to entire programs. In place of a model of a specific component, we

define a design space for a complete program, and in place of low-level specifications, we leave

a placeholder for any form of correctness oracle.

Combining Testing with Specification Inference Our implementation of DSI leverages

testing to enhance specification inference, the general idea of which was originally proposed by

Xie and Notkin [Xie and Notkin, 2004]. Dallmeier et al.’s Tautoko tool [Dallmeier et al., 2010]

also uses testing in a similar way. Tautoko’s problem setup is similar to that of the “component

interface” tools described earlier: generate a component “model” that avoids errors. In Tautoko’s

case, the component is a Java class that is assumed to crash or otherwise raise an error if used

incorrectly. Tautoko starts with an inductively inferred model, but it then enhances it in a

feedback loop by generating targeted, exploratory tests. There is a parallel here to DSI: we start

with an inductively learned specification and essentially “generate tests” to validate it.

Experimenting with Software and Evaluating Necessity Our implementation of DSI uses

experimentation to infer properties of programs. A similar idea has been used by Renieris et al.

in their study of elided conditionals [Renieris et al., 2004]. In their work, the authors generate

experiments that test the whether or not the outcome of a conditional statement (i.e. a branch)
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affects the outcome of a test, much as we generate experiments that test the necessity of

proposed specifications.

Automatic parallelization tools make use of Commutativity Analysis [Aleen and Clark, 2009,

Rinard and Diniz, 1997], which evaluates the necessity of a given ordering of program statements.

This is similar to how we test the “necessity” of a temporal ordering constraint. Commutativity

analysis uses a far stricter criterion than DSI does in practice: that various orderings produce

semantically identical results. In our implementation of DSI, the fact that two functions commute

is only one of several reasons a specification might be invalidated, and the fact that two functions

do not commute does not imply a given ordering is necessary to correctness.

Our work is also similar to Mutation Testing [DeMillo et al., 1978, Hamlet, 1977]. In mutation

testing, modified programs (“mutants”) are used to experimentally test the validity to test

suites. In our work, we use programs in our design space, which are similar to mutants, to

experimentally test the validity of potential specifications.

5.7 Future Work and Conclusion

This chapter has presented Deductive Specification Inference (DSI), a new methodology for

inferring specifications from programs. DSI’s novelty lies in the explicit definition of a design

space of programs to which a potential specification might apply. Combining this notion with a

correctness oracle allows deductive reasoning about specifications. We have implemented DSI for

the domain of temporal function-call properties of Java programs. Our implementation creates a

design space by making use of fully automated program transformations, and it approximates a

correctness oracle through traditional software testing. In a case study, we demonstrated that

our tool is effective on real-world programs.

Our most immediate future work involves implementing Deductive Specification Inference for

other domains to further demonstrate the strengths of the method. Our early results in this area

have been promising.

We are also interested in exploring other aspects of the definition of importance of a specifi-

cation. We presently define “important” conservatively: if a programmer can feasibly violate

a specification it is important. Collecting more data on what it means for a specification to be



117

“important” might allow us to synthesize other effective and testable definitions like this “ability

to violate” concept introduced here.

Finally, we believe that deductively mined specifications are potentially strong and precise

enough in practice to be used directly by other software tools—without intervention by a human

programmer. We are exploring the construction of vertically-integrated derivative tools that

leverage this newly strengthened specification inference approach to automate other software

engineering tasks.
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6 Conclusion

INTELLIGENT PROGRAM ANALYSIS is a term we have coined to describe the work in this dissertation.

“Intelligent” relates to a certain level of insight we believe all the tools and algorithms exhibit—

especially Chapter 4’s OCD—and we believe this to be a fundamental difference that defines a

new research area, one we will pursue aggressively as we continue our research.

Traditional program analysis tools extract what we call “first-level facts” about programs. For

example, verification-oriented tools calculate the values a program “may” or “must” compute.

As close to perfect as these tools may become, they are still just a part of a process dominated

by expensive and potentially error-prone human labor. There is an analogy here to security

research: flaws in the ways secure systems are used are much more common than flaws in the

(well-researched) systems themselves, like, say, implementations of solid cryptography algorithms.

In the previous program verification example, a programmer is trying to accomplish a distinct

task: to find (or verify the absence of) errors in a program. But the verification tool cannot

work on its own: the programmer must 1) feed it knowledge (in this case, comprehension of

the program in the form of specifications to verify) and 2) act on its results (in this case, to

fix any bugs that may be blocking verification). Both of these steps are critical and arguably

as important as the verification tool itself, but automating them is quite difficult, as they so

frequently rely on the intuition and experience of developers—concepts that do not fit well in

our framework of computability.

Our results demonstrate that it is possible to automate some developer-oriented tasks, however.

The Javert (Chapters 2–3) and OCD (Chapter 4) systems, for example, successfully automate

specification inference (the “feeding of knowledge” step above) so adeptly that it becomes

effectively invisible to the developer: when scanning a program, OCD directly presents the
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programmer with domain-specific bugs. It is this behavior—this autonomy—that led us label

it Intelligent.

If program analysis is about exploring and interpreting a program, then Intelligent Program

Analysis is about exploring and interpreting a program and its design space—what it does and

what it intends to do, a concept we explored in Chapter 5. Program analysis works to retrieve

facts; an Intelligent Program Analysis retrieves facts and turns them into knowledge, while

inferring intent and possibly acting.

Our current research results have led us to envision a number of concrete ideas, including—

among several others—tools capable of finding design bugs; tools that leverage inferred designs

to provide intuitive, root-cause-oriented bug fixes; and tools that recognize emergent designs

within software before developers are even cognizant of them. This is just a sampling of what

we believe will be a defining characteristic of our continuing research: unprecedented levels of

automation in software development.
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