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Abstract

Component technologies have been widely adopted for designing and engineering software ap-

plications and systems, which dynamically integrate software components to achieve desired func-

tionalities. Engineering software in a component-based style has significant benefits, such as im-

proved programmer productivity and software reliability. To support component integration, oper-

ating systems allow an application to dynamically load and use a component. Although developers

have frequently utilized such a system-level mechanism, programming errors can lead to insecure

component integration and serious security vulnerabilities. The security and reliability impact of

component integration has not yet been much explored.

This dissertation systematically investigates security issues in dynamic component integration

and their impact on software security. On the conceptual level, we formulate two types of insecure

component integration—unsafe component loading and insecure component usage—and present

practical, scalable techniques to detect and analyze them. Our techniques operate directly on soft-

ware binaries and do not require source code. On the practical level, we have used them to discover

new vulnerabilities in popular, real-world software, and show that insecure component integration is

prevalent and can be exploited by attackers to subvert important software and systems. Our research

has had substantial practical impact and helped to mitigate unsafe component loadings on Microsoft

Windows applications.
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Abstract

Component technologies have been widely adopted for designing and engineering software ap-

plications and systems, which dynamically integrate software components to achieve desired func-

tionalities. Engineering software in a component-based style has significant benefits, such as im-

proved programmer productivity and software reliability. To support component integration, oper-

ating systems allow an application to dynamically load and use a component. Although developers

have frequently utilized such a system-level mechanism, programming errors can lead to insecure

component integration and serious security vulnerabilities. The security and reliability impact of

component integration has not yet been much explored.

This dissertation systematically investigates security issues in dynamic component integration

and their impact on software security. On the conceptual level, we formulate two types of insecure

component integration—unsafe component loading and insecure component usage—and present

practical, scalable techniques to detect and analyze them. Our techniques operate directly on soft-

ware binaries and do not require source code. On the practical level, we have used them to discover

new vulnerabilities in popular, real-world software, and show that insecure component integration is

prevalent and can be exploited by attackers to subvert important software and systems. Our research

has had substantial practical impact and helped to mitigate unsafe component loadings on Microsoft

Windows applications.
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1

Chapter 1

Introduction

Component-based software development has been a major paradigm for engineering software. It

allows developers to seamlessly reuse well engineered and tested software components. The benefits

of component-based development do come with a price—unsafe programming can lead to insecure

component integration and introduce security vulnerabilities. However, the security and reliability

issues involving component integration have not been much explored. The goal of this dissertation

is to systematically investigate these issues and how they impact software security.

In this chapter, we introduce component-based software development and describe the core

of component integration. We then formulate the concept of insecure component integration and

present relevant real-life security vulnerabilities. Finally, we survey previous research on component

security and discuss the structure of the rest of the dissertation.

1.1 Component-based Software

The size and complexity of modern software system have been significantly increasing [103]. For

example, the line of code (LOC) for Microsoft Windows NT products has been increased about

ten folds from 1993 to 2003. In particular, Windows NT 3.1 is about 5 million LOC, while Win-

dows Server 2003 is about 50 million LOC [138]. The increased software size and complexity

have led to several important challenges of software development. First, they led to significantly

increased effort for software development. Second, software also becomes much more expensive

to maintain [16]. Third, the increased software size and complexity provide additional surface for
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IExplore.exe
Internet Explorer Application

ShDocVw.dll
Web Browser Control

MSHTML.dll
Trident

HTML/CSS Parser and Renderer

Document Object Model (DOM) and DHTML

ActiveDocument (DocObject)

BrowseUI.dll
User Interface

URLMon.dll
Security and Download

WinInet.dll
HTTP and Cache

Figure 1.1: Internet Explorer architecture [78].

reliability and security concerns [103].

To mitigate these challenges, component-based software development has been widely adopted.

In particular, software is built from multiple components and operates by utilizing their functionali-

ties. This paradigm has made software development more productive and reliable. First, developers

can reuse components with designed functionalities to avoid writing redundant code. Second, com-

ponents may be developed in parallel because they usually serve as independent software modules.

Third, programs using reusable components may be more reliable [9]. Because of these advantages,

component-based development has been widely adopted to develop many real-world applications.

As an example, Figure 1.1 shows the architecture of Internet Explorer, which is composed of several

components and operates by invoking relevant functions of these components.

1.2 Component Integration

The essence of component-based software development is its support for integrating components.

To this end, modern operating systems typically support dynamic loading [47]. Figure 1.2 shows

a high-level overview of this typical mechanism with three phases: resolution, loading, and usage.

Suppose that component A needs to invoke a function foo exported by component B. In this case, the

operating system first determines the fullpath of component B (resolution phase) and incorporates

the component B into the client software’s memory address space (loading phase). Later component
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Component 

A

Component 

B

Component 

B

1. resolution

2. loading

3. usage

Software

Figure 1.2: Component integration.

A invokes foo of the loaded component B (usage phase).

A client can request component resolution and loading at either loadtime or runtime. If compo-

nent A calls foo through a standard API (e.g., foo()), it implicitly resolves and loads component B

at loadtime. In this case, when invoking foo at runtime, component A executes the code located at

the memory address corresponding to the entry point of foo. In this mechanism, even though foo is

not invoked at runtime, component B always resides in the memory space of the client, component

A. To mitigate this issue, operating systems support APIs that resolve and load components, and re-

trieve the addresses of the entry points of the desired functions at runtime. For example, Microsoft

Windows provides system APIs, LoadLibrary and GetProcAddress, to support component res-

olution and loading.

1.3 Insecure Component Integration

Component integration allows developers to effectively reuse components such as system and third-

party libraries at runtime. For component reuse, developers need (1) to specify the component

implicitly or explicitly, and (2) to determine how to use the loaded component. To this end, devel-

opers generally specify the component in terms of its filename and acquire knowledge on its secure

usage from the documentation. This standard development process can suffer from inherent secu-

rity concerns. First, malicious components with the specified filename can be loaded instead of the

intended one, because operating systems resolve the target component based on its filename. Sec-

ond, the documentation on a component may not be sufficient to fully understand how to securely
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Component 

A

Intended 

Component B

Malicious 

Component B

3. usage

Software

Malicious 

Component B 

1. resolution

2. loading

Figure 1.3: Unsafe component loading.

use the component, or even worse, documentation may not even be available. Thus, it is easy for

developers to misuse a component, leading to security vulnerabilities.

These concerns can lead to real-life security threats. In particular, unsafe programming can

cause insecure component integration, which can be misused by attackers to subvert software sys-

tems. This section introduces two types of insecure component integration, unsafe component load-

ing and insecure component usage, and presents several real-life attack vectors.

1.3.1 Unsafe Component Loading

For runtime safety and security, an application should only load its intended components. To this

end, it is necessary for the resolution phase to locate the correct component for use at runtime.

Operating systems generally provide two resolution methods, either specifying the fullpath or the

filename of the target component. With fullpath, operating systems simply locate the target from

the given full path. With filename, operating systems resolve the target by searching a sequence

of directories, determined by the runtime directory search order, to find the first occurrence of the

component.

Although flexible, this common component resolution strategy has an inherent security prob-

lem. Since only a file name is given, unintended or even malicious files with the same file name can

be resolved instead. Figure 1.3 illustrates such unsafe loading and its impact. Suppose that devel-

opers intend component A to resolve component B. In this case, attackers can hijack the loading of

component B by placing malicious component named B in a directory searched before the directory

where the intended component resides. When the malicious component is loaded, the attackers can
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execute arbitrary code.

This problem had been known for a while, but it had not been considered a serious threat because

its exploitation requires local file system access on the victim host. Recently, the problem has started

to receive more attention. In particular, our study shows that unsafe loadings on Microsoft Windows

are prevalent and can lead to remote code execution attacks [94]. Remote attacks are possible for

two main reasons: 1) the OS looks for a component with a given file name and cannot distinguish

malicious ones from benign ones with the same file name; and 2) the default directory search order

on Microsoft Windows contains the current directory (i.e., “.”), where remote attackers can trick a

victim user to download files to via social engineering or by exploiting other vulnerabilities.

Here is an example attack scenario on Microsoft Windows. An attacker sends a victim user via

email an archive that contains an arbitrary .asx file and a malicious file named rapi.dll. The user

extracts the archive file and runs Winamp 5.58 to open the .asx file, the rapi.dll is loaded, which

leads to a remote code execution attack [94]. Besides archive files, the Carpet-Bomb attack [114]

and the WebDAV protocol [6] can be exploited for launching remote attacks. This very issue has also

received considerable recent media coverage [50,107,111,125,160]. Microsoft released MS10-087,

rated “Critical,” to patch Microsoft Office [152]. To mitigate the issue, Microsoft also released a fix-

it tool to control the directory search order by introducing a new registry key [77, 108]. However, it

changes the default system-wide setting and leads to backward compatibility issues. Fundamentally,

this is a safe programming issue, and Microsoft provides programming guidelines for safe dynamic

loading [46] and is conducting an ongoing investigation to secure the loading procedure [105].

1.3.2 Insecure Component Usage

Software is commonly built from reusable components that provide desired functions. Although

component reuse significantly improves software productivity, insecure component usage can lead

to security vulnerabilities in client applications. Figure 1.4 depicts an example of insecure compo-

nent usage. Suppose that (1) software A and B reuse component C to execute insecure workloads

such as HTML rendering, and (2) the expert knowledge on the usage of component C is only avail-

able for developing software A. In this case, software A can be protected from malicious attacks

based on the insecure workloads, software B can be vulnerable to such attacks.

As real-life examples, we noticed that common IE-based browsers, such as IE Tab, disable
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Component 

C

Insecure

workload

Software A

(a) Blocked insecure workload.

Component 

C

Insecure

workload

Software B

(b) Bypassed insecure workload.

Figure 1.4: Insecure component Usage.

important security features that IE enables by default, even though they all use the same browser

components. First, IE enables an XSS filter by default [71]. However, IE-based browsers use

the same browser components as IE, but do not enable the XSS filter. This insecure compo-

nent usage makes these IE-based browsers vulnerable to XSS attacks. Second, while IE enables

FEATURE HTTP USERNAME PASSWORD DISABLE, IE-based browsers do not. The configuration of

this security policy is checked by both IE and IE-based browsers at runtime, but the inconsistent

configuration data lead them to behave differently. Specifically, IE-based browsers allow user names

and passwords in URL address, leading to potential attack vectors for phishing [79].

1.4 Previous Research

As discussed in Section 1.3.2, insecure component integration can lead to security vulnerabilities in

client software. However, this class of security issues has not yet been systematically investigated

in the literature. Instead, prior research has focused on security problems in a single component: (1)

analyzing vulnerabilities in software components, or (2) detecting malicious components.

1.4.1 Defect Detection in Components

Viewing each component as an independent piece of software, this line of work focuses on detecting

vulnerabilities in individual components. For example, many effective techniques based on concolic
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testing [55, 131] have been developed to test various types of software, such as C programs [27, 29,

55, 102, 131], binary executables [56, 128], and Web applications [7, 155].

The tools [10, 11, 36, 38, 44] for detecting vulnerabilities in ActiveX components have been de-

veloped in industry. Each tool adopts software testing techniques such as fault injection to generate

malicious inputs triggering errors in the components.

To predict which components may be vulnerable, Neuhaus et al. [117] propose to statistically

analyze the vulnerability history; function calls and imports of each vulnerable component are uti-

lized to characterize the corresponding vulnerabilities.

1.4.2 Malicious Component Detection

Detecting malicious software components has been mainly performed for (1) behavioral malware

clustering, (2) malware signature generation/matching, and (3) behavioral malware detection.

Behavior-based Malware Clustering Lee and Mody [97] model the behavior of a target process

with its event sequence and define the similarity metric as transform cost between two sequences,

which is based on the Levenshtein distance. Bailey et al. [12] utilize the Backtracker system [86] to

generate profiles about system state changes by target malware samples and apply a machine learn-

ing algorithm to cluster the profiles by using normalized compression distance. Rieck et al. [126]

collect behavior reports of target malware by using CWSandbox [65] and utilize the support vector

machine technique to classify numerical vectors determined by string analysis. Bayer et al. [22] per-

form advanced dynamic analysis based on information of system call traces, taint data and network

traffic, build behavior profiles based on OS objects and the set of all operations accessing them, and

present an efficient LSH-based hierarchical clustering algorithm based on the Jaccard index as a

similarity metric.

Malware Signature Generation/Matching Christodorescu et al. [33] construct, from dynamic

traces, a directed acyclic graph (DAG) where each node corresponds to a collected system call

and an edge to a dependency among the system calls. Kolbitsch et al. [89] improve this DAG-

based behavior model by considering dataflow dependency determined by system call arguments.

MetaAware [167] analyzes a sequence of system calls from disassembled malware binaries through

static control and data flow analysis. Sathyanarayan et al. [151] extract a signature of particular
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malware family by computing the mean frequency of critical API calls from malware binaries.

Kruegel et al. [91] proposes malware variant detection based on identifying common subgraphs in

two control flow graphs. This approach shows high detection rate (97 out of 100) on worm instances

in a single malware family. Christodorescu et al. [34] presents semantic-aware malware detector

using templates, which specify malicious behavior based on instruction sequences with variables

and symbolic constants. To detect malware, they developed two templates of loop decryption and

Massmailer and matched them existing in three kinds of malware variants.

Behavioral Malware Detection Yin et al. [164] propose the notion of taint graphs to represent

taint propagation from a source and utilized it to detect malware. For malware detection, they spec-

ify policies defining invalid accesses to introduced inputs and analyze taint graphs on introduced

inputs to check whether or not potential malware samples violate pre-defined policies. Types of

invalid accesses the authors utilize include anomalous information access, anomalous information

leakage, and excessive information access. Kirda et al. [87] describes behavioral invariant of spy-

ware of BHO and toolbar types. According to the paper, the spyware component leaks information

on user behavior monitored by interacting with the web browser. Based on this behavioral invariant,

they presented a spyware detection technique that can find browser COM functions and Windows

API calls executed in response to simulated browser events through a combination of dynamic and

static analysis. Kruegel et al. [93] proposes a technique to detect rootkits through static analysis

locating instruction sequences for data transfer for illegal memory access and a write operation us-

ing kernel-level address calculated by a forbidden kernel symbol reference, resulting in no false

positives/negatives. To detect drive-by download attacks usually exploited by spyware, Moshchuk

et al. [113] define five trigger conditions and monitor them during web browsing: process creation,

file system activity, suspicious processes that write to a file, registry activity and browser or OS

crash. Each condition specifies suspicious behavior that is not supposed to occur during normal

web-page rendering. Based on these conditions, a large set of spyware can be detected.

1.5 Dissertation Structure

This dissertation aims at understanding insecure component integration and analyzing its effect on

software security. We structure the remainder of this dissertation as follows:
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Formalizing insecure component integration Chapter 2 formulates insecure component integra-

tion by presenting formal definitions of unsafe component loading and insecure component usage.

Detecting unsafe component loadings Chapter 3 presents the first dynamic analysis for detect-

ing unsafe component loadings and the evaluation results on their prevalence and severity on both

Microsoft Windows and Linux. In particular, our results show that unsafe component loading is

prevalent in software on both OS platforms, and it is a more severe concern for Microsoft Windows.

Our tool detected more than 4,000 unsafe component loadings, some of which lead to remote code

execution.

Although the technique in Chapter 3 is effective in detecting real security errors, it suffers from

limited code coverage and may miss important vulnerabilities. Thus, it is desirable to develop ef-

fective techniques to detect all possible unsafe component loadings. To this end, Chapter 4 presents

the first static binary analysis aiming at detecting all possible loading-related errors, and evaluates

its effectiveness against the dynamic technique on popular Windows applications.

Detecting insecure component usage Chapter 5 presents the first practical framework for detect-

ing and analyzing vulnerabilities of insecure component usage. We have implemented our technique

for Windows applications and used it to detect and analyze insecure usage of popular software com-

ponents. Our evaluation results show that our framework is scalable and effective at detecting and

analyzing insecure usages. In particular, it enabled us to detect several serious, new vulnerabilities

and helped perform detailed analysis of insecure component usage.

Conclusion Chapter 6 summarizes this dissertation and discusses future research directions.
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Chapter 2

Formulation of Insecure Component

Integration

In this chapter, we formulate two types of the insecure component integration, unsafe component

loading and insecure component usage.

2.1 Unsafe Component Loading

This section describes dynamic loading of components and formulates its unsafety.

2.1.1 Dynamic Loading of Components

Software components often utilize functionalities exported by other components such as shared

libraries at runtime. This operation is generally composed of three phases: resolution, loading, and

usage. Specifically, an application resolves the needed target components, loads them, and utilizes

the desired functions provided by them.

Component integration can be achieved through dynamic loading provided by operating systems

or runtime environments. For example, the LoadLibrary and dlopen system calls are used for

dynamic loading on Microsoft Windows and Unix-like operating systems respectively. Dynamic

loading is generally done in two steps: component resolution and chained component loading.

Component resolution. In order to resolve a target component, it is necessary to specify it cor-

rectly. To this end, operating systems provide two types of target component specifications: fullpath
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Figure 2.1: Dynamic component loading procedure.

and filename. For fullpath specification, operating systems resolve a target component based on the

provided fullpath. For example, a fullpath specification /lib/libc-2.7.so for the libc library

in Linux determines the target component using the specified full path. For filename specification,

operating systems obtain the full path of the target component from the provided file name and a

dynamically determined sequence of search directories. In particular, an operating system iterates

through the directories until it finds a file with the specified file name, which is the resolved com-

ponent. For example, suppose that a target component is specified as midimap.dll and the direc-

tory search order is given as C:\Program Files\iTunes;C:\Windows\System32;. . .;$PATH

on Microsoft Windows. If the first directory containing a file with the name midimap.dll is

C:\Windows\System32, the resolved full path is determined by this directory.

Chained component loading. In dynamic loading, the full path of the target component is deter-

mined by its specification through the resolution process, and the component is incorporated into

the host software if it is not already loaded. During the process of incorporating the target com-

ponent, the component’s load-time dependent components are also loaded. Figure 2.1 illustrates

the general procedure of dynamic loading. Suppose component B is loaded by component A. B’s

dependent components (e.g., component C) are also loaded. We can usually obtain information on

B’s dependent components from B’s file description. This process of chained component loading is

repeated until all dependent components have been loaded.
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2.1.2 Formal Definition

Dynamic component loading is commonly supported by operating systems through specific system

calls that take as input a full path or file name for the intended component. For example, Microsoft

Windows provides component-loading system calls such as LoadLibraryA. Once such a system

call is invoked, the OS resolves the target component as follows:

• The target component can be specified by its full path or its file name.

• When full path is used, the OS directly resolves the target using the provided full path.

• Otherwise, if file name is used and known by the OS, the full path of the specified file is

predefined. For example, KERNEL32.DLL is known by Microsoft Windows and its full path is

predefined as "C:\WINDOWS\SYSTEM32\KERNEL32.DLL".

• If the given file name is unknown to the OS, it iterates through the predefined search directo-

ries to locate the first file with the specified file name.

To formalize the component resolution process, it is necessary to model the file system state,

because even the same component-loading code may result in different resolutions under different

file system states. We define a file system state s to be the set of full paths of all files stored on the

current file system.

Definition 2.1.1 (Component Resolution) A component resolution function R takes a component

specification f ∈ Σ∗, a directory search order d = 〈d1, . . . , dn〉 ∈ Σ∗ × . . .Σ∗ and a file system

state s, and returns a resolved full path π ∈ Σ∗, where Σ denotes the alphabet used to specify files

and directories.

• If f is a full path,

R(f, d, s) =

 f if f ∈ s;

ε otherwise.

where ε is the empty string.
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• If f is a file name,

R(f, d, s) =



π if f is known to the OS as π;

dk + \+ f if S = {i | di + \+ f ∈ s}

∧ S 6= ∅ ∧ k = min(S);

ε otherwise.

where “+” denotes string concatenation.

We next formalize component loading, for which we need to consider the currently loaded

components. The reason is that the OS does not load the same component multiple times. In our

formalization, we let Π denote the set of full paths of all the currently loaded components.

Definition 2.1.2 (Component Loading) Given the loaded components Π, a component loading

function L takes a component specification f ∈ Σ∗, a directory search order d = 〈d1, . . . , dn〉 ∈

Σ∗ × . . .Σ∗, a file system state s, and the set of loaded components Π, and returns a resolution

success or failure:

L(f, d, s,Π) =

 success if R(f, d, s) 6∈ {ε} ∪Π;

failure otherwise.

The formalized component loading mechanism in Definition 2.1.2 is commonly used on major

operating systems. However, as OS determines a target component only through its name, unsafe

programming can make software load an unintended component with the same name. Attackers can

exploit this security vulnerability by modifying the file system state. In particular, the loading of a

target component can be hijacked if a malicious file with the same name can be created in a directory

searched before the directory where the intended component resides. This component hijacking can

be misused for local or remote attacks [94].

To formalize unsafe component loading, it is necessary to determine the current file system

state as whether or not a component loading is safe is relative to a file system state. We first define

a normal file system state w.r.t. an application p.

Definition 2.1.3 (Normal File System State) A file system state s is normal w.r.t. an application p
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if no unintended components are loaded while p executes in state s. We use sp to denote a normal

file system state w.r.t. the application p.

We formalize two types of unsafe loadings: resolution failure and unsafe resolution. We use

Rp and Lp to denote component resolution and component loading performed by an application p,

respectively.

Definition 2.1.4 (Resolution Failure) For an application p, a resolution failure occurs at runtime

if Rp(f, d, sp) = ε. In this case, with a full path specification f , an arbitrary file with the same full

path f can hijack the component loading. If f is file name, an attacker can hijack this loading by

placing a file (or tricking the user to place a file) with the specified name f in any writable directory

di by the attacker under the search order d = 〈d1, . . . , dn〉.

Definition 2.1.5 (Unsafe Resolution) For an application p, an unsafe resolution occurs at runtime

if the following conditions hold: 1) f is the file name of the target component and unknown to the

OS; 2) Rp(f, d, sp) = dk + \ + f ∧ k > 1; and 3) Lp(f, d, ss,Π) = success. In this case,

an attacker can hijack the loading by placing a file (or tricking the user to place a file) with the

specified name f in any writable directory di by the attacker where i < k.

To avoid unsafe loadings, it is necessary for developers to specify the target component in a safe

manner. We define safe target component specifications as follows.

Definition 2.1.6 (Safe Component Spec) Under a given threat model, a loading specification for

an application p is safe if either of the following holds: 1) if f is a full path, R(f, d, sp) 6= ε and the

attacker cannot overwrite f or trick the user to overwrite f ; and 2) if f is an unknown file name to

the OS, R(f, d, sp) = di + \+ f and the attacker cannot place a file or trick the user to place a file

named f in any of the dj for 1 ≤ j ≤ i.

2.1.3 Dynamic Loading-related Remote Attacks

As we mentioned in Section 2.1.2, insecure component resolutions may cause an application to load

unintended components. This issue had been known for a long time, but it had not been considered

a serious threat because it requires local file system access on the victim host for exploitation.
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Recently, realistic attacks exploiting vulnerable component loading have been discovered, including

ones by us. In this section, we describe these attack vectors.

“Carpet Bomb”-based Attack

The Carpet Bomb attack [1] can lead to remote code execution in conjunction with unsafe DLL

loading on Microsoft Windows. In particular, when the Safari browser accesses a malicious web

page, attackers can make the browser automatically download arbitrary files to the user’s Desktop

directory without any prompting. This is referred to as the Carpet Bomb attack. This flaw leads to

remote code execution if a vulnerable application checks in the Desktop directory first for resolving

a DLL. For example, suppose sqmapi.dll is downloaded onto the victim’s Desktop directory

through the Carpet Bomb attack. When Internet Explorer 7 runs, it loads this DLL file and executes

arbitrary code [75]. Microsoft released software patches [109, 110] to fix this vulnerability.

“Shortcut with Component” Attack

Sending a victim an archive file containing a shortcut to a vulnerable program and a malicious com-

ponent can also cause remote code execution. If the vulnerable program starts up via the shortcut,

it loads the component and executes malicious code.

This flaw can be exploited through social engineering-based attacks. For example, Foxit PDF

Reader 4.2 running via its shortcut will load peerdist.dll placed in the same directory as the

shortcut on Microsoft Windows Vista. Attackers can deceive the victim to run Foxit Reader through

its shortcut to access interesting PDF documents. This way they can exploit this vulnerability by

making the PDF reader load the provided malicious DLL.

Furthermore, this attack vector can be combined with the Carpet Bomb attack. Because short-

cuts tend to be placed in the Desktop directory, running a vulnerable application such as Foxit

Reader via its shortcut can load the relevant components stored on the Desktop through the Carpet

Bomb attack.

“Document with Component” Attack

Opening a document can load particular files placed in the same directory as the document. This vul-

nerability can be exploited to launch remote code execution attacks by sending a victim an archive
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file containing a document and a malicious component.

For example, suppose that a user opens an arbitrary document for Microsoft Word 2010 on

Windows 7. In this case, IMESHARE.dll, located in the same directory as the document, is loaded

when the program runs. This flaw can lead to serious security threats in Microsoft Word 2010.

2.2 Insecure Component Usage

This section formalizes insecure component usage.

2.2.1 Security Policy-related Execution

A security policy configuration serves as a key part of software protection because it determines

whether or not certain malicious behavior is to be blocked (e.g., IE XSS filter). Figure 2.2 depicts

the runtime process of configuring and evaluating security policies: 1) software maintains its global

state and updates the global state to configure a security policy; and 2) when evaluating the policy,

the software reads data from the global state and checks whether or not the data match a specified

operand. Based on the above description, we formally define security policy-related execution.

Definition 2.2.1 (Configuration State) A configuration state M = [〈k1, v1〉, . . . , 〈kn, vn〉] is an

associative array whose key and value pair 〈ki, vi〉 corresponds to a configured security policy

identifier and its configuration data, respectively.
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We define the configuration and evaluation of a security policy in terms of accesses to a config-

uration state M .

Definition 2.2.2 (Security Policy Configuration) For a given configuration state M , a security

policy configuration function conf updates M based on a new policy configuration 〈k, v〉 where k

and v correspond to a policy identifier and its configuration data, respectively: conf (M,k, v) =

M ′ such that

M ′(k′) =

 v if k′ = k

M(k′) otherwise

Definition 2.2.3 (Security Policy Evaluation) Given a configuration state M , a security policy

evaluation function eval takes k (a policy identifier) and p (a specified operand for its evaluation):

eval(M,k, p) =

 matched if M [k] = p

unmatched otherwise

Based on the above definitions, we next define security policy-related execution.

Definition 2.2.4 (Security Policy-related Execution) A security policy-related execution for a work-

load w of a software S, denoted by π(S,w), is a sequence of policy configurations or evalua-

tions π(S,w) = 〈s1, . . . , sm〉 where si = conf (M,k, v) (i.e., a policy configuration) or si =

eval(M,k, p) (i.e., a policy evaluation).

Note that in Definition 2.2.4, the configuration state M changes at runtime, because S dynam-

ically configures new security policies during its execution over the workload w. Also note that

π(S,w) provides us with precise information on policy evaluations during S’s execution over w.

We now define security policy evaluation patterns.

Definition 2.2.5 (Security Policy Evaluation Pattern) For a given π(S,w), the security policy

evaluation pattern epat(π(S,w)) is the sub-sequence epat(π(S,w)) = [〈ki, pi, eval(M,ki, pi)〉]

extracted from the policy evaluations from π(S,w) where ki, pi, and eval(ki, pi) correspond to a
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policy identifier, an operand for its policy evaluation, and the evaluation result (either matched or

unmatched) respectively.

2.2.2 Formal Definition

For a reference R and a test subject T , we define two types of inconsistent policy configurations:

missing and incorrect configurations.

Definition 2.2.6 (Missing Configuration) The test subject T misses the configuration of a policy k

evaluated by the referenceR if ∃p, s(〈k, p, s〉 ∈ epat(π(R,w)) and ∀p, s(〈k, p, s〉 6∈ epat(π(T,w)).

Definition 2.2.7 (Incorrect Configuration) The test subject T incorrectly configures a policy k if

∃p, r1 6= r2(〈k, p, r1〉 ∈ epat(π(R,w)) ∧ 〈k, p, r2〉 ∈ epat(π(T,w))).

Inconsistent policy configurations can lead to unprotected software execution; we define it as

follows.

Definition 2.2.8 (Unprotected Software Execution) Suppose that a security policy k blocks a ma-

licious behavior Φ at runtime. Given a reference R, a test subject T , and a common workload w, T

is unprotected w.r.t. k if R blocks Φ but T does not.

Suppose that a component C maintains its configuration state M at runtime. If a client using C

configures a policy stored by M insecurely, it can be unprotected w.r.t. the policy. We next define

insecure component usage.

Definition 2.2.9 (Insecure Component Usage) Suppose that a component C maintains a security

policy k that blocks a malicious behavior Φ at runtime. For a reference R and a test subject T that

use C, T insecurely uses C w.r.t. k if T is unprotected w.r.t. k.
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Chapter 3

Dynamic Detection of Unsafe

Component Loadings

3.1 Introduction

Dynamic loading is an important mechanism for software development. It allows an application

the flexibility to dynamically link a component and use its exported functionalities. Its benefits

include modularity and generic interfaces for third-party software such as plug-ins. It also helps to

isolate software bugs as bug fixes of a shared library can be incorporated easily. Because of these

advantages, dynamic loading is widely used in designing and implementing software.

A key step in dynamic loading is component resolution, i.e., locating the correct component for

use at runtime. Operating systems generally provide two resolution methods, either specifying the

fullpath or the filename of the target component. With fullpath, operating systems simply locate

the target from the given full path. With filename, operating systems resolve the target by search-

ing a sequence of directories, determined by the runtime directory search order, to find the first

occurrence of the component.

Although flexible, this common component resolution strategy has an inherent security prob-

lem. Since only a file name is given, unintended or even malicious files with the same file name

can be resolved instead. Thus far this issue has not been adequately addressed. In particular, we

show that unsafe component loading represents a common class of security vulnerabilities on the
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Windows and Linux platforms (cf., Section 3.4). Operating systems may provide mechanisms to

protect system resources. For example, Microsoft Windows supports Windows Resource Protec-

tion (WRP) [3] to prevent system files from being replaced. However, these do not prevent loading

of a malicious component located in a directory searched before the directory where the intended

component resides.

The problem of unsafe dynamic loading had been known for a while, but it had not been con-

sidered a serious threat because its exploitation requires local file system access on the victim host.

The problem has started to receive more attention due to recently discovered remote code execution

attacks [50, 64, 94, 107, 125, 148, 160, 166]. Here is an example attack scenario. Suppose that an

attacker sends a victim an archive file containing a document for a vulnerable program (e.g., a Word

document) and a malicious DLL. In this case, if the victim opens the document after extracting

the archive file, the vulnerable program will load the malicious DLL, which leads to remote code

execution (cf., Section 2.1.3).

In this chapter, we present the first automated technique to detect unsafe dynamic component

loadings. We cast our technique as a two-phase dynamic analysis. In the first phase, which is

online, we use dynamic binary instrumentation to capture a program’s sequence of events related to

component loading (dynamic profile generation). In particular, we dynamically collect three kinds

of information: 1) system calls invoked for dynamic loading for information on target component

specifications, directory search orders, and the sequence of component loading behavior; 2) image

loading for information on resolved component paths, and 3) process and thread identifiers for

multi-threaded applications. In the second phase, which is offline, we analyze the captured profile

to detect unsafe component resolutions (offline profile analysis). We detect two types of unsafe

loadings—resolution failure and unsafe resolution—for each component loading from the profile.

A resolution failure corresponds to the case where the target component is not found, while an

unsafe resolution corresponds to the case where there exist other directories searched before the

directory containing the resolved target component.

To evaluate our technique, we have implemented a set of tools for detecting unsafe component

loadings on the Microsoft Windows family (i.e., XP SP3, Vista SP2, and Windows 7) and Ubuntu

10.04 (a popular Linux distribution). We conducted an extensive analysis of the prevalence and

severity of unsafe component loadings in popular software applications: 27 for Windows and 24 for
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Linux. Our results show that unsafe component loading is prevalent on all analyzed platforms—we

found 3,269 unsafe loadings on Windows and 752 on Ubuntu.

Our results also show that unsafe loadings on Windows cause more serious security concerns

over those on Linux. In particular, the unsafe loadings, commonly detected in the Windows appli-

cations, can be exploited for local or remote attacks. There are two main reasons for this difference.

First, most Windows users run with administrative privilege. Because of this insecurity, attackers

can gain write permission to the directories where malicious files are created for hijacking compo-

nent loadings. In comparison, Linux in general does not grant such permission to ordinary users.

Second, Windows searches the current directory, i.e.“.”, for component loading by default. This

Windows-specific mechanism can lead to remote execution attacks. For example, the current di-

rectory can be written by remote attackers via “Carpet Bomb” and social engineering-based attacks

(cf., Section 2.1.3). Indeed, we found 41 vulnerabilities (i.e., 41/3,269) that can be easily exploited

for remote code execution. Although Microsoft supports a mechanism to exclude the current direc-

tory from the directory search order, many Windows applications do not adopt it (cf., Section 3.5.2).

Besides these detected vulnerabilities, we describe additional remotely exploitable attacks in an

earlier version of this chapter [94]. We reported the most serious vulnerabilities to Microsoft and

collaborated with Microsoft engineers to address these issues.

We make the following main contributions:

• We present an effective dynamic analysis to detect vulnerable and unsafe dynamic component

loadings. To our knowledge, this work introduces the first automated technique to detect and

analyze vulnerabilities and errors related to dynamic component loading.

• We have realized our technique as a set of practical tools for detecting unsafe component

loadings on Microsoft Windows and Linux. We have conducted an extensive analysis of

unsafe component loadings on various types of popular software.

• We have discovered new remote attack vectors based on the findings from our analysis, which

Microsoft confirmed and had actively worked with us and other software vendors to develop

engineering solutions to patch. We also discuss and propose techniques to mitigate unsafe

component loadings.
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Figure 3.1: Framework for detecting unsafe component loadings.

The remainder of this chapter is structured as follows. In Section 3.2, we present our general

technique to detect unsafe dynamic loadings. In Section 3.3, we describe background on dynamic

component loading and implementation details of our tools for detecting unsafe component loadings

on both Windows and Linux. Section 3.4 presents the evaluation of our tools, including characteris-

tics and exploitability of the detected vulnerable and unsafe component loadings and our tools’ per-

formance. We also discuss techniques to mitigate unsafe component loadings (Section 3.5). Finally,

we survey related work (Section 3.6) and conclude with a discussion of future work (Section 3.7).

3.2 Detection of Unsafe Loadings

As we mentioned in Section 2.1.3, unsafe component loading can cause serious security vulnera-

bilities in software. In this section, we present a dynamic analysis technique for detecting unsafe

component loadings.

Figure 3.1 shows the high-level overview of our analysis process, which is composed of two

phases: dynamic profile generation and offline profile analysis. To detect unsafe component resolu-

tions, we first capture a sequence of system-level actions for dynamic loading during a program’s

execution. We use dynamic binary instrumentation to generate the profile on its runtime execu-

tion. We then reconstruct dynamic loading information from the profile offline and check safety

conditions for each resolution. Because our technique only requires binary executables, it is robust

and can be applied to analyze not only open source applications but also commercial off-the-shelf

products.

Alternatively, we could also detect unsafe component loading during the program execution.

However, we divide our analysis into two phases (i.e., the dynamic profile generation and the offline

profile analysis) to reduce the performance overhead incurred during dynamic binary instrumenta-

tion.
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3.2.1 Dynamic Profile Generation

Dynamic analysis has been widely used to understand software behavior [39]. We also adopt this

approach for detailed analysis of component loading. Specifically, we dynamically instrument the

binary executable under analysis to capture a sequence of system-level actions for dynamic loading

of components. During the instrumented program execution, we collect three types of information:

system calls invoked for dynamic loading, image loading, and process and thread identifiers. The

collected information is stored as a profile for the instrumented application and is analyzed in the

offline profile analysis phase.

System calls invoked for dynamic loading. System call analysis is a widely used analysis tech-

nique to understand program behavior because a sequence of invoked system calls (with names

of the invoked functions and their arguments) can provide useful information on program execu-

tion. To capture system-level actions for dynamic component loading, we instrument system calls

that cover all possible control-flow paths of the dynamic loading procedure, which enables us to

reconstruct the procedure offline.

Besides the name of an instrumented system call, we also collect its parameter information

for detecting unsafe component resolutions. Specifically, the target component specification (i.e.,

specified fullpath or filename) and the directory search order can be obtained from the system call

parameters. Although the directory search order can vary according to the underlying system and

program settings, it is computed by operating systems and provided as parameters to the relevant

system calls for dynamic loading. Furthermore, results of the instrumented system calls provide

both the control flow in the loading procedure and error messages generated by the operating sys-

tems. Such information is used for the reconstruction of the dynamic loading procedure and the

detection of unsafe loadings.

Image loadings. We also capture actual loadings of target components via dynamic binary instru-

mentation. The loading information is needed for reconstructing the loading procedure in combina-

tion with the information captured by system call instrumentation. It also indicates the resolved full

path determined by the loading procedure. We use this resolved path to detect unsafe component

loading.

Process and thread identifiers. Because our approach is based on system call instrumentation, it
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Type Conditions

Resolution failure 1. Target component is not found

Unsafe resolution
1. Target component is specified by its name
2. Target component is resolved by iterating through multiple directories
3. There exists another searched directory before the resolution

Table 3.1: Conditions for detecting unsafe component loadings.

is important to consider multi-threaded applications. If the target program uses multi-threads and

each thread loads a component dynamically, the instrumented system calls for each loading can be

interleaved, which makes it difficult to correctly reconstruct the loading procedure of each thread.

To solve this problem, we capture process and thread identifiers along with the other information on

instrumented system calls. Note that dynamic binary instrumentation engines such as Pin [100] sup-

port API calls to capture the identifiers. With this additional information, we can analyze dynamic

loadings of each thread by grouping its system calls using these recorded identifiers.

3.2.2 Offline Profile Analysis

In this phase, we extract each component loading from the profile and detect the unsafe loadings of

a target component and its dependent components (cf. Section 2.1.1).

In the first step of this offline phase, we extract each component loading from the profile. To

this end, we first group a sequence of actions in the profile by process and thread identifiers as the

actions performed by different threads may be interleaved due to context switching. This grouping

separates the sequences of dynamic loadings performed by different threads. Next, we divide the

sequence for each thread into sub-sequences of actions, one for each distinct dynamic loading. This

can be achieved by using the first invoked system call for dynamic loading (e.g., dlopen) as a

delimiter. After this step, we obtain a list of groups, each of which contains a sequence of actions

for loading a component at runtime. This gives the possible control-flows in the dynamic loading

procedure. Note that each group contains loading actions for both the target component and the

load-time dependent components (cf. Section 2.1.1).

Our analysis detects the two types of unsafe component resolution that we discussed in Sec-

tion 2.1.2: resolution failure and unsafe resolution. To this end, we check the conditions in Ta-

ble 3.1, which are directly derived from the definition of each unsafe component resolution, for
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Algorithm 1 OfflineProfileAnalysis
Input: S (a sequence of actions for a dynamic loading)
Auxiliary functions:

TargetSpec(S): return target specification of S
DirSearchOrder(S): return directory search order used in S
ImgLoad(S): return the image loadings in S
ResolutionFailure(S): return the resolution failures in S
ChainedLoading(S): return actions for the chained loadings in S
IsUnsafeResolution(filename, resolved path, search dirs): check whether the resolution is unsafe

1: img loads← ImgLoad(S)
2: failed resolutions← ResolutionFailure(S)
3: if |img loads| == 0 then
4: if |failed resolutions| == 1 then
5: Report this loading as a resolution failure
6: end if
7: else
8: spec← TargetSpec(S)
9: dirs← DirSearchOrder(S)

10: if spec is the filename specification then
11: resolved path← img loads[0].resolved path

// retrieve the first load
12: if IsUnsafeResolution(spec,resolved path,dirs) then
13: Report this loading as an unsafe resolution
14: end if
15: end if
16: chained loads← ChainedLoading(S)
17: for each load in chained loads do
18: OfflineProfileAnalysis (each load)
19: end for
20: end if

each component loading. Details of our offline profile analysis are given in Algorithm 1.

Resolution failure of a target component. To detect failed resolution of a target component, we

simply check the number of image loads and the number of failed resolutions during the dynamic

loading procedure. In particular, if no image is loaded and the resolution of the component failed, we

report the component loading as a resolution failure (lines 3–6). Note that an OS does not load the

same component multiple times. Thus, line 3 checks this necessary condition for resolution failure

because a program may attempt to load a component that is already loaded. To avoid reporting any

false resolution failures, we also explicitly check whether a resolution failure has occurred (line 4).

Unsafe resolution of a target component. Lines 10–15 describe how to detect unsafe resolution
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of a target component. We first check whether the target component is specified by its file name,

because a full path specification does not iterate through the search directories for resolution. If a file

name is used, we retrieve the resolved path of the target component by retrieving the first element

of a list of image loads in the dynamic loading procedure. Note that the first element of the list

corresponds to the target component, because 1) there exists no image load in the loading procedure

if the target component is already loaded or its resolution fails, and 2) the target component is

always loaded for the first time during its runtime loading. Based on the resolved full path, the

target component specification and the applied directory search order, we determine whether to

classify this as an unsafe resolution by checking the directories searched before the resolution.

Unsafe component resolution by chained loadings. In lines 16–19, we detect unsafe component

resolutions in the chained loading procedure by performing the offline profile analysis recursively.

In particular, we extract each component loading from the chained loadings and recursively apply

the aforementioned technique to detect unsafe component resolutions.

3.3 Implementation

To evaluate our proposed technique, we have developed tools to detect unsafe component loadings

on the Microsoft Windows family (XP SP3, Vista SP2, and Windows 7) and Ubuntu 10.04, a popular

Linux distribution. This section presents the implementation details of our tools.

3.3.1 Microsoft Windows Family

In this section, we provide background information on loading of Dynamic Link Libraries (DLLs)

on Microsoft Windows and the implementation details of our tool for Windows 7. Details on our

implementation for Windows XP and Vista can be found in an earlier version of this chapter [94].

Background on DLL Loading

Target DLL resolution. Microsoft Windows supports both types of target DLL specifications:

fullpath and filename. For filename specifications, there exist Windows-specific mechanisms to

resolve target DLLs. In particular, Microsoft Windows supports Side-by-Side Assembly [133] and
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maintains Known DLLs to determine the target DLL fullpath directories without performing iterative

directory searching.

Side-by-side assembly. This technique has been provided to mitigate DLL Hell [140]. Using this

technique, Windows stores multiple versions of a DLL in the WinSxS directory and loads the de-

sired DLL on demand. For example, when Microsoft Word 2007 loads the Microsoft C runtime

library by using its file name (i.e., MSVCR80.dll), its full path is determined by a sub-directory

of the Windows SxS directory (i.e., C:\WINDOWS\WinSxS\ . . . \MSVCR80.dll) without iteratively

searching a list of directories. In general, the full path is determined by the existence of its corre-

sponding Manifest, an XML document which is usually embedded in the executable. More details

can be found in an MSDN article [133].

Known DLLs. The Microsoft Windows operating systems maintain a set of known DLLs that cor-

respond to core system DLLs and their load-time dependent ones. The set of core DLLs is deter-

mined by the registry key HKLM\System\CurrentControlSet\Control \Session Manager\KnownDLLs.

If the target DLL is among the known DLLs, its full path is resolved by the directory specified in

the DllDirectory value located in the registry. In particular, the directory on 32-bit Microsoft

Windows family is %SystemRoot%\system32 by default.

Directory search order. As we mentioned in Section 2.1.1, dynamic component resolution based

on filename requires a directory search order, which is determined by system and program settings at

runtime. According to MSDN [45], the LOAD WITH ALTERED SEARCH PATH flag, the SafeDllSearchMode

registry key, and the SetDllDirectory system call determine five possible types of directory

search orders at runtime, which are standard search order (SafeDllSearchMode), alternate search

order (SafeDllSearchMode) and SetDllDire-ctory-based SearchOrder. Table 3.2 shows the search

orders when SafeDllSearchMode is enabled.

Standard search order. The standard search order is the default directory search order in Mi-

crosoft Windows, which has two types determined by whether SafeDllSearchMode is enabled. The

SafeDllSearchMode was introduced by Microsoft Windows 2000 SP4, and it has been enabled by

default since Microsoft Windows XP SP2. For the Standard Search Order of the SafeDllSearch-

Mode, there exist six types of directories to search for DLL resolution (see Table 3.2). If the

SafeDllSearchMode is disabled, the priority of the current directory is elevated to the second one.
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Search Type Order

Standard

1. The directory of the application loaded
2. The system directory
3. The 16-bit system directory
4. The Windows directory
5. The current directory
6. The PATH environment variable

Alternate

1. The directory specified by lpFileName
2. The system directory
3. The 16-bit system directory
4. The Windows directory
5. The current directory
6. The PATH environment variable

SetDllDirectory-based

1. The directory of the application loaded
2. The directory specified by lpPathName
3. The system directory
4. The 16-bit system directory
5. The Windows directory
6. The PATH environment variable

Table 3.2: DLL search types and their directory orders.

Alternate search order. The standard directory search order can be modified when software in-

vokes LoadLibraryEx [99] function with the flag LOAD WITH ALTERED SEARCH PATH (cf., Ta-

ble 3.2). Similar to the standard search order, it is possible to apply the SafeDLLSearchMode to the

alternate search order. However, it places the directory of the loading DLL to the first directory to

search; the target DLL is specified by its full path, which corresponds to an lpFileName parameter

of the LoadLibraryEx function.

SetDllDirectory-based search order. Microsoft has provided the SetDllDirectory system call

to enable developers to manipulate the search order since Microsoft Windows XP SP1. The Set-

DllDirectory function makes it possible to replace the current directory with an arbitrary directory

specified by an lpPathName parameter. Also, the current directory can be removed from the search

order by invoking the system call with the empty string as the parameter. Note that this search order

is independent from the SafeDllSearchMode; the search order is determined as shown in Table 3.2

regardless of the SafeDllSearchMode.

Chained DLL loading. According to Microsoft [4], there exist two types of load-time dependen-

cies among DLLs: implicit dependency and forwarded dependency.
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Name Description

LdrLoadDll Load a DLL
LdrpApplyFileNameRedirection Apply the redirection of the DLL specification
LdrpLoadImportModule Load a chained DLL of the target DLL
LdrpFindLoadedDllByName Check whether or not a target DLL is loaded
LdrpFindKnownDll Check whether or not a target DLL is known
LdrpSearchPath Resolve the fullpath of the target DLL specification

Table 3.3: Instrumented system calls in Windows 7.

Implicit dependency. If a DLL A and a DLL B are linked at compile/link time, and the source code

of DLL A calls one or more functions exported from DLL B, DLL A has implicit dependency on

DLL B. Note that implicit-dependent DLLs are determined by function calls invoked by the source

code of the loading DLL. Even though the function is not invoked at runtime, the DLL exporting

the function is also loaded. The loading DLL’s Import Directory Table, one entity of the PE

executable file format [106], contains its implicit-dependent DLLs.

Forwarded dependency. While this dependency is similar to implicit dependency, it differs in what

the DLL that implements the invoked functions is. For the load-time dependency, the functions that

a loading DLL invokes are directly implemented in its dependent DLLs. However, for forwarded

dependency, the implementation of the invoked function call simply forwards control to the actual

code implemented in another DLL. In this case, the loading DLL has forwarded dependency on

the DLL containing the forwarded implementation. For example, the GetLastError function of

Kernel32.DLL is forwarded to the RtlGetLastWin32Error function of ntdll.dll.

Implementation Details

In order to generate profiles for DLL loading behaviors, we utilize Pin [100], an open source dy-

namic binary instrumentation tool. We record a sequence of information on the system calls of

interest, image loading, and process/thread identifiers using the functions provided by the tool.

As we mentioned in Section 3.2, the system calls to instrument are determined to cover all

possible control-flow paths in the DLL loading procedure. Because this information is not well-

documented, we reverse-engineered the LoadLibraryExW function of KernelBase.dll and the

LdrLoadDll function of ntdll.dll using the IDA Pro Disassembler [69] based on detailed anal-

ysis of DLL loadings for Windows 2000 [158]. Table 3.3 describes the system calls instrumented in
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0x77EC0000

0x77EC1000

Image headers

.text section

LdrLoadDll code
0x77F1F625

Relative offset: 

0x5E625

Figure 3.2: Memory layout of ntdll.dll.

our implementation. We chose the name of each system call based on the analysis of the disassem-

bler, which uses the Windows symbol package.

Instrumenting a system call requires information about where it is located in the address space

such as its starting virtual address. However, this information is difficult to obtain reliably because

DLLs follow the PE format and can be relocated in the address space. Also, Address Space Layout

Randomization [159] is one of the default configurations of Windows 7, which can randomize the

base addresses of the loading images to mitigate memory corruption attacks. To address this prob-

lem, we identify the target virtual address by matching its relative offset from the base address of

the .text section of ntdll.dll. Figure 3.2 shows an example of the runtime memory layout of

ntdll.dll, and the LdrLoaddll is located at 0x77F1F625. In this case, the relative offset of the

LdrLoadDll is 0x5E625 (i.e., 0x77F1F625-0x77EC1000). In the matching, we only focus on the

instructions of ntdll.dll because all these system calls reside in the file. Because the base address

of the .text section can be obtained at runtime, we were able to reliably instrument these system

calls.

The return value of particular system calls determines the control flow in the loading procedure.

For example, if the LdrpFindLoadedDllByName returns zero, the specified DLL file has not been

loaded yet. To obtain the return value, we also capture the execution of return instructions of the

system calls in Table 3.3, and retrieve the value of the eax register.

To implement our offline profile analysis, we wrote a Python script to extract each DLL loading

from the profile and detect unsafe DLL loadings.
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1 (b5c,1114) LdrLoadDll dwmapi.dll

2 C:\Program Files\Mozilla Firefox;

3 C:\Windows\system32;C:\Windows\system;

4 C:\Windows;.;$PATH

5 (b5c,1114) LdrpApplyFileNameRedirection dwmapi.dll

6 NOT_REDIRECTED

7 (b5c,1114) LdrpFindLoadedDllByName dwmapi.dll NOT_LOADED

8 (b5c,1114) LdrpFindKnownDll dwmapi.dll UNKNOWN

9 (b5c,1114) LdrpSearchPath dwmapi.dll RESOLVED

10 (b5c,1114) IMG_LOAD C:\Windows\system32\dwmapi.dll

11 (b5c,1114) LdrpLoadImportModule msvcrt.dll

12 (b5c,1114) LdrpApplyFileNameRedirection msvcrt.dll

13 NOT_REDIRECTED

14 (b5c,1114) LdrpFindLoadedDllByName msvcrt.dll LOADED

15 (b5c,1114) ...

16 (b5c,1114) LdrpLoadImportModule GDI32.dll

17 (b5c,1114) LdrpApplyFileNameRedirection GDI32.DLL

18 NOT_REDIRECTED

19 (b5c,1114) LdrpFindLoadedDllByName GDI32.dll LOADED

Figure 3.3: An unsafe resolution of Firefox 3.6.11

DLL-loading Behavior Profile Example

Figure 3.3 shows part of a generated profile to describe runtime loading procedure of dwmapi.dll

in Firefox 3.6.11. The profile is composed of two parts. Lines 1–10 represent runtime loading

of dwmapi.dll, and lines 11–19 correspond to loadings of its load-time dependent DLLs such as

msvcrt.dll and GDI32.dll. The profile provides detailed information on DLL loading. The first

and second items in each line describe the process/thread identifier and the loading behavior repre-

sented by the corresponding system call name or a tag for image loading, IMG LOAD, respectively.

According to the type of the loading behavior, each line contains different information required for

the analysis: 1) lines 1–4 contain the target DLL specification given by its file name and the direc-

tory search order to be applied for the current DLL loading; 2) lines 5–8 show information on the

DLL redirection and the checks for the known DLL and the loaded DLL by the return value of the

corresponding system calls, respectively; 3) line 9 shows result of the DLL name resolution; 4) line

10 shows the resolved DLL path for the given DLL specification; and 5) lines 11 and 19 give the

scope of the behaviors performed for the chained loading due to the loaded target DLL. Based on

this information stored in the profiles, we perform offline analysis to detect unsafe DLL loadings.
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1 (dd0,98c) LdrLoadDll IMESHARE.DLL

2 C:\Program Files\Microsoft Office\Office14;

3 C:\Windows\system32;C:\Windows\system;

4 C:\Windows;.;$PATH

5 (dd0,98c) LdrpApplyFileNameRedirection IMESHARE.DLL

6 NOT_REDIRECTED

7 (dd0,98c) LdrpFindLoadedDllByName IMESHARE.DLL NOT_LOADED

8 (dd0,98c) LdrpFindKnownDll IMESHARE.DLL UNKNOWN

9 (dd0,98c) LdrpSearchPath IMESHARE.DLL FAILED

Figure 3.4: A resolution failure in Microsoft Word 2010.

Example Unsafe DLL Loading

We describe how our technique works by showing examples for each type of unsafe DLL loadings.

Resolution failure. Figure 3.4 shows a resolution failure type in Microsoft Word 2010. The ap-

plication tries to resolve a DLL specified by IMESHARE.DLL. However, the resolution fails be-

cause there does not exist a file in the directories determined by the applied directory search order.

LdrpSearchPath on line 9 is unable to locate the DLL and returns value corresponding to resolu-

tion failure.

Unsafe resolution. Figure 3.3 shows an example of unsafe resolution. The DLL specified by

dwmapi.dll is resolved to C:\Windows\System32\dwmapi.dll by checking the file of the spec-

ified name located in the directories based on the directory search order. Because the system di-

rectory is the second directory to be searched by the OS, placing an arbitrary file of the specified

name in the first searched directory (i.e., C:\Program Files\Mozilla Firefox) can lead to the

hijacking of the intended DLL loading.

3.3.2 Linux Distribution

This section presents necessary background on loading of Shared Object (SO) on Linux and the im-

plementation details of our tool for Ubuntu 10.04. Although we implemented our tool for Ubuntu,

our implementation technique can also be directly applied to other Linux distributions such as Fe-

dora as dynamic loading is governed by the Linux kernel.
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Order Description

1. DT RPATH .dynamic section attribute
2. LD LIBRARY PATH Environment variable
3. DT RUNPATH .dynamic section attribute
4. CACHED DIR Directories cached by /etc/ld.so.conf

5. PATH Environment variable

Table 3.4: Directory search order in Linux.

Background on SO Loading

The library ld-linux.so.2 [96] serves as a dynamic loader on Linux. Whenever a dynamic load-

ing is requested, the loader resolves the target file based on the specification and loads the file. The

loader resolves the target file based on the approach discussed in Section 2.1.1. If the fullpath is

specified, it simply determines the target file. If the filename is specified, the OS iterates through

the search directories to locate the file with the specified name. For more details on this resolution

process, please refer to the dl map object function in dl-load.c, which is part of the GNU C

library [54].

Directory search order. During dynamic loading, the OS determines the directory search order

based on the current system configuration and particular attributes of the running executable file at

runtime. Table 3.4 shows an example search order.

Environment variables. Linux has a number of environment variables (such as LD LIBRARY PATH

and PATH) that store a sequence of the directories searched by the loader. Thus, an application can

manipulate these variables to specify arbitrary directory search orders.

Cached SO directories. As Windows maintains the set of known DLLs, Linux caches a list of

the directories where known shared objects are located in the /etc/ld.so.conf file. When the

filename of a known object is given, the OS resolves its fullpath by using this information.

The .dynamic section attributes. The Executable and Linkable Format (ELF) [49] has been used

as the executable file format in Linux. An ELF file such as an SO file consists of a set of sections.

Each section contains important data for program execution. For example, the .text section stores

program code.

The ELF format has the .dynamic section, which provides the OS with dynamic loading in-

formation. In particular, this section has a set of attributes related to dynamic loading. Figure 3.5
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$ readelf -d /usr/bin/amarok

Dynamic section at offset 0xfed8 contains 30 entries:

Tag Type Name/Value

0x00000001 (NEEDED) Shared library: [libkdeui.so.5]

0x00000001 (NEEDED) Shared library: [libamaroklib.so.1]

0x00000001 (NEEDED) Shared library: [libQtGui.so.4]

0x00000001 (NEEDED) Shared library: [libkdecore.so.5]

0x00000001 (NEEDED) Shared library: [libQtCore.so.4]

0x00000001 (NEEDED) Shared library: [libstdc++.so.6]

0x00000001 (NEEDED) Shared library: [libgcc_s.so.1]

0x00000001 (NEEDED) Shared library: [libc.so.6]

0x0000000f (RPATH) Library rpath: [/usr/lib]

0x0000001d (RUNPATH) Library runpath: [/usr/lib]

...

Figure 3.5: The .dynamic section of Amarok 2.3.0.

shows a snippet of the .dynamic section of Amarok 2.3.0 (a free software music player).

To support user-defined search directories, the ELF format has two attributes in the .dynamic

section, DT RPATH and DT RUNPATH, which specify sequences of the directories searched by the

executable at runtime. In Figure 3.5, the /usr/lib directory is specified for both attributes tagged

with RPATH and RUNPATH.

Chained SO loading. As we mentioned in Section 2.1.1, when a shared object is loaded, its de-

pendent shared objects are also loaded. In Linux, the specifications of these dependent objects are

stored in the DT NEEDED attributes of the .dynamic section of the loaded object. For example,

/usr/bin/amarok has eight dependent objects tagged with NEEDED in Figure 3.5. Thus, the loader

recursively resolves the dependent objects based on the specifications for chained loading. More

details can be found in the ELF manual [49].

Implementation Details

To implement the tool for Linux, we adopt the same method as our Windows implementation. We

utilized Pin [100] to capture the system-level behavior for loading shared objects and implemented

the detection of unsafe loadings as Python scripts.

To determine which system calls to instrument, we reverse-engineered ld-linux.so.2 based

on the source code of the GNU C library [54]. Table 3.5 shows the system calls we instrumented to

generate the profiles. Besides the entry/exit points of these system calls, we also instrument call sites

to these system calls. For example, the dl map object has several call sites to open path, and
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Name File Description

dl open worker dl-open.c Perform dynamic loading
dl map object dl-load.c Perform dynamic loading (internal function)

open path dl-load.c Iterate through the search directories to locate the specified file
openaux dl-deps.c Perform chained loading

Table 3.5: Instrumented system calls in Linux

each of them corresponds to a directory search order in Table 3.4. To instrument a virtual address

of interest, we adopt a similar approach as in our Windows implementation—we match the relative

offset of the address from the .text section of ld-linux.so.2 at runtime.

Unlike Windows, Linux does not invoke a system call to check whether or not the specified

file is loaded. Instead, the dl map object iterates over a list of the loaded objects and returns

information of the matched file if the specified file exists on the search list. To record the result of

this search iteration, we instrumented the instruction to return the information: if the instruction is

captured at runtime, the specified SO is already loaded. We store such information in the profile by

using a keyword check loaded (cf., Figure 3.6).

SO-loading Behavior Profile Example

Figure 3.6 shows a snippet of the generated behavior profile for loading libnss compact.so.2 in

Evolution 2.28.3. This profile consists of two parts, lines 1–5 and lines 6–14. The first part performs

dynamic loading of libnss compact.so.2. To load this file, the OS first checks whether it has al-

ready been loaded (line 2). Because the file has not been loaded, the OS iterates through a sequence

of the directories determined by Table 3.4. Note that only DT RPATH and CACHED DIR affect the

runtime construction of the directory sequence. As the file is cached, the OS resolves it based on

the cached directory, /lib/tls/i686/cmov/. In the second part, the OS performs chained shared

object loading. In particular, libnss compact.so.2 has three dependent objects: libnsl.so.1,

libc.so.6, and ld-linux.so.2. During this chained loading, only the first dependent SO is

loaded, because the other two are already loaded.
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1 (9ce, 9ce) dlopen libnss_compat.so.2

2 (9ce, 9ce) check_loaded NOT_LOADED

3 (9ce, 9ce) open_path DT_RPATH /usr/lib/evolution/2.28/:

4 (9ce, 9ce) open_path CACHED_DIR CACHED

5 (9ce, 9ce) IMAGE_LOAD /lib/tls/i686/cmov/libnss_compat.so.2

6 (9ce, 9ce) openaux libnsl.so.1

7 (9ce, 9ce) check_loaded NOT_LOADED

8 (9ce, 9ce) open_path DT_RPATH /usr/lib/evolution/2.28/:

9 (9ce, 9ce) open_path CACHED_DIR CACHED

10 (9ce, 9ce) IMAGE_LOAD /lib/tls/i686/cmov/libnsl.so.1

11 (9ce, 9ce) openaux libc.so.6

12 (9ce, 9ce) check_loaded LOADED

13 (9ce, 9ce) openaux ld-linux.so.2

14 (9ce, 9ce) check_loaded LOADED

Figure 3.6: An unsafe resolution of Evolution 2.28.3.

1 (cac, cac) dl_open_worker libXfixes.so.1

2 (cac, cac) open_path CACHED_DIR NOT_CACHED

3 (cac, cac) open_path PATH /lib/:/usr/lib/:

/lib/i486-linux-gnu/:/lib/i486-linux-gnu/:

FAILED

Figure 3.7: A resolution failure of Konqueror 4.4.2.

Example Unsafe SO Loadings

Resolution failure. Figure 3.7 shows a failure to load libXfixes.so.1 in Konqueror 4.4.2. In

particular, the OS locates the non-cached file in the directories specified by the PATH variable. In

this case, if any file named libXfixes.so.1 exists in one of the directories, this loading can be

hijacked.

Unsafe resolution. Figure 3.6 is an example of unsafe resolution. As we discussed in Sec-

tion 3.3.2, the directory /usr/lib/evolution/2.28/, specified by DT RPATH, is checked by the

OS before resolving the fullpath of the specified file libnss compact.so.2. Thus, this loading

can be hijacked by placing an arbitrary file with the specified name in that directory.

3.4 Evaluation

In this section, we evaluate unsafe component loadings on Microsoft Windows and Linux. For each

platform, we detect unsafe component loadings in a diverse selection of popular applications. We

structure our analysis of the detection results to answer the following research questions:

RQ1: How prevalent and severe are unsafe component loadings on Microsoft Windows? (Sec-
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Software

Windows XP Windows Vista Windows 7

Failed Unsafe Failed Unsafe Failed Unsafe

Fullpath Filename Filename Fullpath Filename Filename Fullpath Filename Filename

T T C T C T T C T C T T C T C

MS Office
Excel 2010 0 1 0 10 14 0 1 0 6 8 0 2 0 14 9
OneNote 2010 0 0 0 7 12 0 1 0 26 21 0 0 0 34 8
Outlook 2010 2 2 0 27 24 2 2 0 22 20 2 1 0 15 23
PowerPoint 2010 1 2 0 16 20 1 2 0 16 16 1 2 0 19 13
Publisher 2010 2 1 0 17 20 2 2 0 11 23 2 1 0 18 16
Word 2010 2 2 0 10 17 1 1 0 16 11 15 2 0 18 10

Sub total 7 8 0 87 107 6 9 0 97 99 20 8 0 118 79

Web Browser
Chrome 6.0.472.63 1 1 0 22 17 1 1 0 9 8 1 1 0 30 13
Firefox 3.6.10 1 1 0 18 5 1 1 0 19 14 1 0 1 16 10
IE 8.0 / 9.0 Beta 0 0 0 20 17 0 0 0 17 15 0 0 0 21 6
Opera 10.63 2 1 0 9 8 0 1 0 6 22 0 1 0 14 9
Safari 5 0 1 0 13 59 0 0 0 9 36 0 0 0 19 30

Sub total 4 4 0 82 106 2 3 0 60 95 2 2 1 100 68

PDF Reader
Acrobat Reader 9.4.0 0 0 0 6 9 0 0 0 17 11 0 0 0 5 5
Foxit Reader 4.2 0 0 0 14 10 0 1 0 20 12 0 0 0 9 17

Sub total 0 0 0 20 19 0 1 0 37 23 0 0 0 14 22

Messenger
Google Talk Beta 0 1 0 21 10 0 0 0 14 8 0 1 0 28 19
Pidgin 2.7.3 0 0 2 11 30 0 0 2 10 33 0 0 2 13 35
Skype 4.2.0 0 0 0 35 20 0 0 0 26 23 0 0 0 34 11
Windows Live 2011 0 2 0 28 14 0 3 0 33 22 0 2 0 43 50
Yahoo! 10.0 0 0 0 24 20 0 2 0 38 28 0 1 0 45 35

Sub total 0 3 2 119 94 0 5 2 121 114 0 4 2 163 150

Image Viewer
Irfanview 4.27 0 0 0 8 10 0 0 0 16 6 0 0 0 2 2
Picasa 3.8 0 0 0 20 12 1 1 0 15 13 1 0 0 18 26

Sub total 0 0 0 28 22 1 1 0 31 19 1 0 0 20 28

Multimedia Player
iTunes 10.0.1 0 1 0 38 76 0 1 0 27 56 0 1 0 38 46
Media Player 12 0 2 0 27 19 0 1 0 20 14 0 1 0 31 7
Quicktime 7.6.8 0 0 0 26 33 0 1 0 20 41 0 0 0 27 30
RealPlayer SP 1.1.5 1 0 0 17 18 2 7 0 30 32 2 3 0 26 20
Winamp 5.58 4 2 0 16 9 1 0 0 21 20 4 1 0 12 9

Sub total 5 5 0 124 155 3 10 0 118 163 6 6 0 134 112

Others
Google Desktop 5.9 0 0 0 10 5 0 0 0 8 1 0 0 0 10 5
Google Earth 5.2.1 1 4 0 24 27 1 4 0 15 31 1 4 0 23 14

Sub total 1 4 0 34 32 1 4 0 23 32 1 4 0 33 19

Total 17 24 2 494 535 13 33 2 487 545 30 24 3 582 478

Table 3.6: Number of detected unsafe DLL loadings.

tion 3.4.1)

RQ2: How prevalent and severe are unsafe component loadings on Linux? (Section 3.4.2)

RQ3: What are the implications of our findings? (Section 3.4.3)

RQ4: How does our detection technique compare to related work? (Section 3.4.4)
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Software

Windows XP Windows Vista Windows 7

Target Chained Target Chained Target Chained

Fullpath Filename Filename Fullpath Filename Filename Fullpath Filename Filename

MS Office
Excel 2010 0 / 31 11 / 13 14 / 28 0 / 22 7 / 7 8 / 14 0 / 35 16 / 17 9 / 23
OneNote 2010 0 / 20 7 / 7 12 / 17 0 / 28 27 / 27 21 / 27 0 / 36 34 / 36 8 / 12
Outlook 2010 2 / 81 29 / 30 24 / 42 2 / 63 24 / 24 20 / 31 2 / 68 16 / 19 23 / 30
PowerPoint 2010 1 / 52 18 / 24 20 / 41 1 / 43 18 / 22 16 / 31 1 / 46 21 / 27 13 / 29
Publisher 2010 2 / 49 18 / 21 20 / 41 2 / 38 13 / 15 23 / 32 2 / 54 19 / 27 16 / 30
Word 2010 2 / 59 12 / 18 17 / 36 1 / 37 17 / 20 11 / 19 15 / 85 20 / 22 10 / 18

Sub total 7 / 292 95 / 113 107 / 205 6 / 231 106 / 115 99 / 154 20 / 324 126 / 148 79 / 142

Web Browser
Chrome 6.0.472.63 1 / 20 23 / 23 17 / 22 1 / 19 10 / 10 8 / 12 1 / 24 31 / 34 13 / 18
Firefox 3.6.10 1 / 16 19 / 20 5 / 27 1 / 24 20 / 20 14 / 39 1 / 32 16 / 17 10 / 30
IE 8.0 / 9.0 Beta 0 / 25 20 / 21 17 / 27 0 / 18 17 / 20 15 / 15 0 / 26 21 / 24 6 / 13
Opera 10.63 2 / 20 10 / 11 8 / 9 0 / 22 7 / 8 22 / 29 0 / 27 15 / 17 9 / 12
Safari 5 0 / 11 14 / 16 59 / 67 0 / 17 9 / 11 36 / 45 0 / 20 19 / 21 30 / 41

Sub total 4 / 92 86 / 91 106 / 152 2 / 100 63 / 69 95 / 140 2 / 129 102 / 113 68 / 114

PDF Reader
Acrobat Reader 9.4.0 0 / 17 6 / 9 9 / 15 0 / 22 17 / 26 11 / 29 0 / 14 5 / 10 5 / 12
Foxit Reader 4.2 0 / 12 14 / 14 10 / 26 0 / 24 21 / 21 12 / 30 0 / 14 9 / 9 17 / 19

Sub total 0 / 29 20 / 23 19 / 41 0 / 46 38 / 47 23 / 59 0 / 28 14 / 19 22 / 31

Messenger
Google Talk Beta 0 / 19 22 / 23 10 / 27 0 / 12 14 / 14 8 / 25 0 / 25 29 / 31 19 / 21
Pidgin 2.7.3 0 / 71 11 / 13 32 / 52 0 / 71 10 / 12 35 / 55 0 / 78 13 / 16 37 / 58
Skype 4.2.0 0 / 17 35 / 37 20 / 23 0 / 18 26 / 26 23 / 34 0 / 36 34 / 35 11 / 26
Windows Live 2011 0 / 33 30 / 40 14 / 63 0 / 44 36 / 39 22 / 70 0 / 54 45 / 48 50 / 70
Yahoo! 10.0 0 / 31 24 / 28 20 / 62 0 / 35 40 / 50 28 / 70 0 / 48 46 / 55 35 / 57

Sub total 0 / 171 122 / 141 96 / 227 0 / 180 126 / 141 116 / 254 0 / 241 167 / 185 152 / 232

Image Viewer
Irfanview 4.27 0 / 21 8 / 8 10 / 26 0 / 28 16 / 16 6 / 20 0 / 9 2 / 2 2 / 4
Picasa 3.8 0 / 20 20 / 22 12 / 41 1 / 21 16 / 17 13 / 52 1 / 40 18 / 18 26 / 38

Sub total 0 / 41 28 / 30 22 / 67 1 / 49 32 / 33 19 / 72 1 / 49 20 / 20 28 / 42

Multimedia Player
iTunes 10.0.1 0 / 46 39 / 41 76 / 102 0 / 45 28 / 29 56 / 70 0 / 49 39 / 42 46 / 57
Media Player 12 0 / 27 29 / 38 19 / 25 0 / 14 21 / 21 14 / 17 0 / 29 32 / 34 7 / 16
Quicktime 7.6.8 0 / 36 26 / 36 33 / 45 0 / 44 21 / 25 41 / 57 0 / 46 27 / 35 30 / 40
RealPlayer SP 1.1.5 1 / 31 17 / 17 18 / 26 2 / 141 37 / 43 32 / 39 2 / 59 29 / 31 20 / 26
Winamp 5.58 4 / 139 18 / 27 9 / 18 1 / 73 21 / 21 20 / 28 4 / 83 13 / 14 9 / 19

Sub total 5 / 279 129 / 159 155 / 216 3 / 317 128 / 139 163 / 211 6 / 266 140 / 156 112 / 158

Others
Google Desktop 5.9 0 / 11 10 / 13 5 / 12 0 / 7 8 / 11 1 / 6 0 / 13 10 / 17 5 / 9
Google Earth 5.2.1 1 / 20 28 / 32 27 / 38 1 / 21 19 / 22 31 / 42 1 / 21 27 / 30 14 / 22

Sub total 1 / 31 38 / 45 32 / 50 1 / 28 27 / 33 32 / 48 1 / 34 37 / 47 19 / 31

Total 17 / 935 518 / 602 537 / 958 13 / 951 520 / 577 547 / 938 30 /1071 606 / 688 480 / 750

Table 3.7: Ratio of unsafe to total DLL loadings.

3.4.1 Evaluation Results on Windows

We evaluate the prevalence and severity of unsafe DLL loadings in 27 popular applications on

Windows XP SP3, Vista SP2, and Windows 7. The conference version [94] of this chapter reports

our evaluation results on older versions of the test subjects on Windows XP SP3 and Vista SP1.
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Analysis of Unsafe DLL Loadings

In our evaluation, the detection of unsafe DLL loadings is performed with the administrator privilege

because 1) we aim to detect all possible unsafe DLL loadings to evaluate the worst case, and 2) most

Windows users have the administrator privilege [141], in contrast to Unix/Linux-based operating

systems.

To collect the runtime traces, we installed the applications and necessary drivers (e.g., printer)

on the default configurations of the operating systems. Afterwards, we executed them one by

one with relevant inputs (e.g., .docx file for Microsoft Word 2010) and collected a single trace

per application. For example, we extracted the runtime traces of the web browsers by accessing

http://www.google.com.

Table 3.6 shows the number of unsafe DLL loadings detected from a few different types of

major applications on Microsoft Windows family. In particular, we classify detected failed and

unsafe resolutions in terms of the specification type (i.e., fullpath or filename) and the phase at

which the unsafe loadings happen. The columns labeled T and C correspond to target and chained

component loadings, respectively. Note that the C column is missing for fullpath. This is because

components for the chained loading are specified by their filenames. According to the table, unsafe

DLL loadings are common programming mistakes in developing these applications. We found

more than 3,200 instances of unsafe dynamic loadings: 1,072 under XP, 1,080 under Vista, and

1,117 under Windows 7. Considering the types of these unsafe DLL loadings, unsafe resolution

is responsible for almost all of them. In particular, unsafe resolution in Windows XP, Vista, and

Windows 7 corresponds to 95.9% (1,029/1,072), 95.5% (1,032/1,080), and 94.9% (1,060/1,117) of

the total unsafe loadings, respectively. Next we give a detailed analysis of each type of the unsafe

DLL loadings.

Table 3.7 illustrates the ratio of unsafe to the total number of DLL loadings captured during our

evaluation. Similar to Table 3.6, we classify each DLL loading in terms of the specification type and

the phase and specify corresponding ratio in the table. One interesting finding is that filename-based

target specifications are generally unsafe. For example, 90% (520/577) of the filename-based target

specifications in Windows Vista lead to unsafe component loadings. Thus, to mitigate this issue, it is

necessary to exert care in specifying filenames for dynamic loading. Section 3.5 discusses possible
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DLL Type
FULLPATH FILENAME

XP Vista 7 XP Vista 7

Application 6 7 7 6 7 9
Third-party component 7 4 7 13 13 12
Language support 2 2 16 0 0 0
Unsupported 2 0 0 7 15 6

Table 3.8: Types of target DLLs whose resolutions fail.

mitigation techniques in detail.

Resolution failures. Table 3.8 shows types of target DLLs whose resolutions fail. In particular,

for the fullpath and filename specifications, there exist four types of target DLLs: application DLL,

third-party component DLL, language support DLL, and unsupported system DLL.

Application DLL. Many applications do not include application-specific DLLs in their releases,

which can cause resolution failures of these libraries. For example, Google Earth 5.2.1 tries to

load collada.dll in the application directory when it starts up, but such a library is not included

in the release.

Third-party component DLL. Third-party components embedded in applications can also cause

DLL resolution failures. There are two main reasons for this: 1) difference in the directory search

order between the application and the component, and 2) the loadings of missing DLLs by the

components.

For the first reason, when an application loads a third-party component, the applied directory

search order for the resolution is determined by the setting of the running application. Because the

intended directory search order for the component can be different from the applied one, the DLL

resolution by the component can fail. For example, Google Desktop registers a Google Desktop

Office Addin to Microsoft Word and PowerPoint, and it is loaded when these applications run.

During the loading procedure, the component tries to load a DLL file GoogleDesktopCommon.dll,

which is located in the directory of Google Desktop. However, because the applied directory

search order does not contain this directory, this resolution fails.

Similar to resolution failures of an application, third-party components may attempt to load

DLLs that do not exist on the system due to careless programming. For example, Microsoft Pow-

erPoint 2010 tries to load driver files of the printers installed on the system during their startup.
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DLL-Hijacking Directory
XP Vista Windows 7

T C T C T C

Application 494 488 487 477 582 430
Application library 81 122 63 103 94 82
System 1 4 1 3 1 14
Part of $PATH 1 2 1 1 1 10
Plug-in 0 6 0 7 0 9
WBEM 0 11 0 11 0 6
Driver 0 13 0 11 6 6
System-hook source 0 11 0 20 0 13

Table 3.9: Types of DLL-hijacking directories.

However, some HP printer drivers try to load the non-existing HPProfiler.dll during the driver

loading process, which causes the resolution failure.

Language-support DLL. Many applications load resource files for language-support, but these

files may not exist on the system. For example, when Microsoft Outlook 2010 runs on the Ko-

rean version of Microsoft Windows XP Professional SP3, it loads SOCIALCONNECTORKOR.dll in

its application directory. However, the release of Microsoft Outlook does not contain such a file.

Unsupported system DLL. Newer versions of Windows provide some DLL files to support new

features. Because these DLLs do not exist on older versions of Windows, it is necessary to consider

the version of the current operating system when loading these files. However, many applications

developed for the Windows platforms usually do not consider this issue. The examples of these

cases are as follows:

• Many applications for Windows Vista try to load peerdist.dll, which is a DLL for Branch-

Cache Client Library in Windows 7.

• Winamp 5.58 loads DWMAPI.dll, a DLL for Windows Manager API in Windows Vista, even

if the current operating system is Windows XP.

Unsafe resolution. Tables 3.9 and 3.10 show distributions of types of DLL-hijacking and resolved

directories. These results indicate that most unsafe resolutions of system DLLs can be hijacked from

the directories of the applications loading them.

Table 3.9 also shows that there exist types of DLL-hijacking directories that are not related to

the application such as the plug-in directory. This is because the target DLL is specified by its full
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Resolved Directory XP Vista 7

System directory 953 956 975
Application library directory 76 76 85

Table 3.10: Types of resolved directories.

path, and the alternate search order in Table 3.2 is applied to load its load-time-dependent DLLs,

which searches the directory of the target DLL first. For example, Yahoo! Messenger 10.0 loads

C:\Windows\System32\Macromed\Flash\

Flash10k.ocx to use Flash. After loading the Flash10k.ocx, its load-time dependent DLLs such

as DSOUND.dll are resolved to the file in the system directory. In this case, the Flash directory can

serve as a DLL-hijacking directory, because the directory is searched before the resolution of the

target DLL based on the applied search order.

Severity

In this section, we evaluate exploitability of unsafe component loadings in terms of local and remote

attacks. Local attacks assume that attackers can access the local file system on a victim host, while

remote attacks assume that attackers can only send data to the victim user.

Local attacks. As we mentioned in Section 2.1.1, unsafe DLL loading can be performed by plac-

ing a file with the specified name in the DLL-hijacking directories. To exploit this security vulner-

ability for local attacks, attackers require write permission to the DLL-hijacking directory. Accord-

ing to Tables 3.8 and 3.9, most of the directories are not writable by non-admin users. Therefore,

if attackers do not have administrator privilege, most local attacks can be prevented. However, ac-

cording to Microsoft [141], most Windows users run with administrative privilege. Because of this

fact, unsafe DLL loadings should still be considered serious security issues.

Remote attacks. To accomplish remote attacks exploiting unsafe component loadings, attackers

need to place malicious files in the DLL-hijacking directories from remote sites. However, accessing

the file system of a remote host is generally prohibited. For example, the system directory is not

accessible remotely unless the directory is shared to the remote user or the system is exploited

by other vulnerabilities to enable this. Because of the difficulty in remote exploitation, unsafe

component loadings have not been considered serious security threats. However, as we mentioned in
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Section 2.1.3, several remote attack vectors based on unsafe component loading have been recently

discovered.

To find remote attacks on Microsoft Windows, we focus on unsafe DLL loadings caused by

the following three conditions: resolution failure, filename specification, and standard or alternate

search order. According to the directory search orders discussed in Table 3.2, this type of unsafe

DLL loading makes the OS check the current directory corresponding to “.” during DLL resolution.

In this case, the directory may be writable from the remote site because of software bugs. The

blended threat combined with the Safari’s Carpet Bomb attack discussed in Section 2.1.3 exploits

this flaw. In particular, when Internet Explorer 7 tries to resolve sqmapi.dll, the current directory

is checked before the resolution and corresponds to the Desktop directory. This makes the program

load and execute malicious DLL files on the Desktop directory, which are downloaded through the

Carpet Bomb attack.

Based on this observation, we detect potential remote attacks by checking whether or not the

current directory is writable by remote users when a resolution failure based on the filename spec-

ification happens. In this evaluation, we consider the following two types as remotely writable

directories: directory sent by remote users and the Desktop directory. For the first directory type, at-

tackers can send arbitrary directory structures by using archive files similar to malware propagation

via e-mail. Considering the Desktop directory, we assume that the Carpet Bomb attack is possible.

Table 3.11 shows detailed information on the detected attack vectors. In the table, the o corresponds

to the exploitable case, while the x corresponds to the non-exploitable case.

Shortcut with component. The current directory of applications run via their shortcuts may be the

same directory as the shortcuts at the point of the resolution failure. In this case, the shortcut direc-

tory can serve as the DLL-hijacking directory for remote code execution. For example, RealPlayer

SP 1.1.5 run via its shortcut on Windows Vista and 7 has a flaw where it loads SHDOCLC.DLL lo-

cated in the same directory as the shortcut. This vulnerability can lead to remote code execution

attacks through social engineering attacks. Furthermore, this type of attack can be combined with

the Carpet Bomb attack because the usual location of the shortcut is the desktop directory.

One interesting discovery is the attack caused by third-party component loading. For example,

when Opera 10.63 runs via its shortcut on the host where Google Desktop is installed, it loads
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Application OS Filename Shortcut Document Third-party component

Foxit Reader 4.2 Vista peerdist.dll o o

MS PowerPoint 2010 XP, Vista, 7
HPProfiler.dll o o HP printer driver

GoogleDesktopCommon.dll o o Google Desktop

MS Publisher 2010
XP, Vista, 7 HPProfiler.dll x o HP printer driver

Vista peerdist.dll x o

MS Word 2010

XP, Vista GoogleDesktopCommon.dll o o Google Desktop

7 GoogleDesktopCommon.dll x o Google Desktop

XP HPProfiler.dll o o HP printer driver

7 IMESHARE.DLL x o

Opera 10.63 XP, Vista, 7 GoogleDesktopCommon.dll o o Google Desktop

RealPlayer SP 1.1.5
Vista, 7

SHDOCLC.DLL o x

rio500.dll o x

rio300.dll o x

Vista peerdist.dll o x

Windows Live Messenger 2011 XP
dwmapi.dll o x

GoogleDesktopCommon.dll o x Google Desktop

Table 3.11: Remote attacks based on unsafe component loadings.

GoogleDesktopCommon.dll on its startup. This vulnerability shows that third-party components

can cause software hosting them to perform unsafe component loading, which can be exploited by

attackers for remote code execution.

Document with component. Opening arbitrary document files can lead to serious security holes

for the remote attacks based on the unsafe component loadings. For example, if a user opens a

document for MS Word 2010 in Windows 7, IMESHARE.DLL located in the same directory as the

document is loaded. This flaw can be exploited in various types of social engineering attacks (e.g.,

malicious email attachment).

As we mentioned above, third-party components can cause serious security vulnerabilities in

software. According to Table 3.11, Microsoft Word and PowerPoint 2010 suffer from security

vulnerabilities caused by third-party components, which lead to remote code execution attacks. In

particular, loading the Google Desktop Office Addin and the HP printer driver fails to

resolve particular DLLs when the programs open documents, and the current directory at that point

is the same directory as the opened documents. This security hole allows attackers to make the

software load the DLLs from remote sites when the victim opens the document. According to our

analysis, Microsoft Word and PowerPoint 2007 also have the same security holes [94]. We reported

this issue to the Microsoft Security Response Center and have been working with Microsoft in
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Software Generation (s) Analysis (ms)

Excel 2010 51 31
OneNote 2010 36 13
Outlook 2010 116 35
PowerPoint 2010 61 23
Publisher 2010 51 26
Word 2010 83 28

Table 3.12: Execution time for analyzing MS Office 2010.

collaboration with Google and HP to develop security patches.

For Foxit Reader 4.2, the directory containing the opened PDF document can be considered the

DLL-hijacking directory due to a resolution failure of peerdist.dll in Windows Vista. This flaw

allows attackers to perform remote code execution attacks by sending archives of a PDF document

and a malicious peerdist.dll to remote users.

Performance

To evaluate the performance of our technique, we measure the execution time of each phase for an-

alyzing MS Office products on Windows 7 running on a Core2 Duo 2.40GHz processor with 4GB

RAM. Table 3.12 shows the execution time for the profile generation and analysis phases of the

analyzed applications. In the evaluation, we use default documents as inputs to the analyzed pro-

grams. Our results show that our technique is practical and can be effectively applied for analyzing

real-world programs such as MS Office.

3.4.2 Evaluation Results on Linux

This section discusses our evaluation of the prevalence and severity of unsafe loadings of SO files

on 24 popular applications on Ubuntu 10.04. To collect the runtime traces, we installed the applica-

tions under the default configuration of the OS and adopted the same strategy as our evaluation on

Windows (cf., Section 3.4.1).
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Software

Failed Unsafe

Fullpath Filename Filename

T T C T C

Email Client
Balsa 2.4.1 0 0 0 0 0
Evolution 2.28.3 1 1 0 4 155
Kmail 1.13.2 0 36 0 2 10
Thunderbird 3.0.8 0 0 0 0 67

Sub total 1 37 0 6 232

Web Browser
Chrome 6.0.472.63 0 0 0 0 0
Firefox 3.6.10 1 0 0 5 103
Konqueror 4.4.2 0 39 0 4 8
Opera 10.62.6438 0 1 0 0 0
Seamonkey 2.0.8 0 0 0 3 113

Sub total 1 40 0 12 224

PDF Reader
Acrobat Reader 9.3.4 0 0 0 5 70
Foxit Reader 1.1 0 0 0 0 0

Sub total 0 0 0 5 70

Messenger
Empathy 2.30.2 0 0 0 0 0
Pidgin 2.6.6 0 1 0 0 1
Skype 2.1 0 36 0 0 0

Sub total 0 37 0 0 1

Multimedia Player
Amarok 2.3.0 34 38 0 2 9
RealPlayer 11.0.2.1744 1 0 0 0 0
Rhythmbox 0.12.8 0 0 0 0 0
Totem 2.30.2 0 0 0 0 0

Sub total 35 38 0 2 9

Text Editor
Emacs 24.3.1 0 0 0 0 0
Gvim 7.2 0 0 0 0 0

Sub total 0 0 0 0 0

Others
Brasero 2.30.2 0 1 0 0 0
Cheese 2.30.1 0 0 0 0 0
Filezilla 3.3.1 0 1 0 0 0
Gimp 2.6 0 0 0 0 0

Sub total 0 2 0 0 0

Total 37 154 0 25 536

Table 3.13: Number of detected unsafe SO loadings.
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Software
Target Chained

Fullpath Filename Filename

Email Client
Balsa 2.4.1 0 / 0 0 / 0 0 / 1
Evolution 2.28.3 1 / 32 5 / 5 155 / 178
Kmail 1.13.2 0 / 35 38 / 94 10 / 179
Thunderbird 3.0.8 0 / 0 0 / 0 67 / 74

Sub total 1 / 67 43 / 99 232 / 432

Web Browser
Chrome 6.0.472.63 0 / 15 0 / 5 0 / 96
Firefox 3.6.10 1 / 58 5 / 5 103 / 112
Konqueror 4.4.2 0 / 33 43 / 100 8 / 126
Opera 10.62.6438 0 / 8 1 / 6 0 / 67
Seamonkey 2.0.8 0 / 73 3 / 3 113 / 125

Sub total 1 / 187 52 / 119 224 / 526

PDF Reader
Acrobat Reader 9.3.4 0 / 14 5 / 5 70 / 84
Foxit Reader 1.1 0 / 3 0 / 2 0 / 70

Sub total 0 / 17 5 / 7 70 / 154

Messenger
Empathy 2.30.2 0 / 9 0 / 2 0 / 124
Pidgin 2.6.6 0 / 81 1 / 5 1 / 137
Skype 2.1 0 / 14 36 / 97 0 / 96

Sub total 0 / 104 37 / 104 1 / 357

Multimedia Player
Amarok 2.3.0 34 / 101 40 / 102 9 / 172
RealPlayer 11.0.2.1744 1 / 67 0 / 2 0 / 70
Rhythmbox 0.12.8 0 / 32 0 / 2 0 / 118
Totem 2.30.2 0 / 35 0 / 2 0 / 109

Sub total 35 / 235 40 / 108 9 / 469

Text Editor
Emacs 24.3.1 0 / 9 0 / 3 0 / 80
Gvim 7.2 0 / 9 0 / 2 0 / 104

Sub total 0 / 18 0 / 5 0 / 184

Others
Brasero 2.30.2 0 / 35 1 / 4 0 / 90
Cheese 2.30.1 0 / 8 0 / 2 0 / 77
Filezilla 3.3.1 0 / 8 1 / 4 0 / 81
Gimp 2.6 0 / 74 0 / 2 0 / 85

Sub total 0 / 125 2 / 10 0 / 333

Total 37 / 753 179 / 451 536 / 2455

Table 3.14: Ratio of unsafe to total SO loadings.
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SO-hijacking Directory
Failed Unsafe

Fullpath Filename Filename

/lib/* 0 616 0
/opt/* 13 0 138
/usr 0 0 16
/usr/lib/* 7 620 835
/usr/lib64/* 4 0 0
/usr/local/lib/* 7 0 0
/usr/local/lib64/* 4 0 0
∼/* 2 0 0

Table 3.15: Types of SO-hijacking directories.

Order Configured Failed Unsafe

DT RPATH T 2 140
LD LIBRARY PATH T 0 366
RUNPATH T 2 35
CACHED DIR F 310 0
PATH T 308 0

Table 3.16: Insecure configuration for unsafe SO loadings.

Analysis of Unsafe SO Loadings

Tables 3.13 and 3.14 illustrate the prevalence of unsafe SO loadings and the ratio of unsafe to the

total number of SO loadings, respectively. The columns labeled T and C in Table 3.13 correspond

to target and chained component loadings respectively. According to the table, unsafe SO loadings

are also prevalent in Linux applications. During the evaluation, we detected 752 instances of unsafe

SO loadings in 14 out of the 24 test subjects. Also, we analyzed the detected unsafe loadings and

show the types of the SO-hijacking directories in Table 3.15. Note that multiple directories can be

used for hijacking the loading of an SO file.

As discussed in Section 3.3.2, developers can control the directory search order by adapting

current system configuration and particular attributes of the running executable file at runtime. Ta-

ble 3.16 describes what configuration leads to the unsafe SO loadings in Table 3.13. For example,

the insecure configuration of DT RPATH causes unsafe resolutions that have 140 SO-hijacking direc-

tories.

Resolution failure. According to Table 3.13, most of the resolution failures happen in a few ap-

plications. Specifically, 95.8% of the resolution failures (i.e., 183/191) are detected from only four
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Type Frequency

Incorrect spec.: prefix and suffix 41
Incorrect spec.: prefix only 29
Incorrect spec.: suffix only 62
Incorrect directory search order 1
Unsupported file 21

Table 3.17: Analysis of resolution failure: filename.

applications.

Our evaluation shows that we detected most of the resolution failures caused by unsafe full-

path specification from Amarok 2.3.0 (i.e., 34/37). The main reason of these failures is that

Amarok 2.3.0 tries to load the libraries provided by applications that are not installed. For ex-

ample, the application assumes that RealPlayer 8 is installed on the current system. How-

ever, this does not always hold, in which case a resolution failure happens when it tries to load

drvc.so from /usr/lib/RealPlayer8/Codecs. Besides Amarok 2.3.0, Evolution 2.28.3

and Firefox 3.6.10 try to load libnssckbi.so from some particular sub-directories of the

current user’s home directory. However, the file does not exist in these directories. Similarly,

RealPlayer 11.0.2.1744 tries to load a nonexistent log.so file from its plugin directory (i.e.,

/opt/real/RealPlayer/plugins).

Table 3.17 analyzes the filename-based resolution failures. According to our analysis, the de-

tected resolution failures are generally caused for the following reasons: incorrect specification,

incorrect directory search order, and unsupported shared library.

Incorrect specification. The filename of the shared library in Linux generally consists of three

parts: prefix, soname, and suffix. The prefix is the string ‘lib’, and the soname is the name of the

library. The suffix often consists of a file extension and an optional version number. For example,

the filename of the X.Org X11 library, libX11.so.6, has the following prefix, soname, and suffix:

lib, X11, and .so.6.

To perform safe dynamic loading, it is necessary to correctly specify these three parts of the

target file name. However, programming mistakes often happen. In particular, the prefix or the suffix

can be incorrect, or even missing, leading to resolution failures. For example, Skype 2.1 tries to

load the X.Org X11 libXcursor runtime library by specifying Xcursor.so.1. However, this loading
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fails because the correct file name of the library is libXcursor.so.1 and the specification misses

the prefix. Similarly, Kmail 1.13.2 fails to load the X.Org Xfixes library libXfixes.so.3,

because it specifies the library name with incorrect suffix. In particular, the correct name of the

library on the current system is libXfixes.so.2.

Incorrect directory search order. Pidgin 2.6.6 tries to resolve the libnssckbi.so file. To this

end, the OS checks the following four directories: /lib, /lib/i486-linux-gnu, /usr/lib, and

/usr/lib/i486-linux-gnu. The resolution fails, because the file resides in the /usr/lib/nss

directory on the current system.

Unsupported shared library. Loading shared libraries unsupported by the current system leads

to resolution failures. For example, Brasero 2.30.2 tries to load libdvdcss.so.2 to access

encrypted DVDs, but the file is not included in many Linux distributions [98].

Unsafe resolution. According to Table 3.15, the sub-directories of the two directories, /opt/*

and /usr/lib/*, account for most of SO-hijacking directories (i.e., 973/989). This shows that

such unsafe loadings can be hijacked in the directories related to optional application packages such

as Acrobat Reader and user libraries.

We also analyzed how filename is resolved when unsafe resolution happens. Our analysis shows

that most of the filename specifications are determined by cached directories. In particular, we

observed that 558 out of 561 filename specifications are resolved by cached directories. Thus, most

of the detected unsafe resolutions can be avoided by not specifying DT RPATH, LD LIBRARY PATH,

and RUNPATH when loading the cached libraries (cf. Table 3.16).

As an example of unsafe resolution for non-cached files, Evolution 2.28.3 tries to load

a calendar component by specifying its filename, libevolution-calendar.so. In this case,

the component is resolved by checking the directories specified by DT RPATH. In this case, the

component is resolved by sequentially checking the directories specified by DT RPATH, which are

/usr/lib/evolution/2.28 and /usr/lib/evolution/2.28/components.Because the first di-

rectory is checked before the resolution, the loading of the calendar component can be hijacked from

this directory.
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Browser Generation (s) Analysis (ms)

Chrome 6.0.472.63 44 5.68
Firefox 3.6.10 92 14.68
Konqueror 4.4.2 74 22.40
Opera 10.62.6438 46 3.40
Seamonkey 2.0.8 89 33.30

Table 3.18: Execution time for popular Linux browsers.

Severity

Although unsafe SO loadings on Linux platform happen frequently, its severity is relatively low

compared to Windows. In particular, root privilege is generally required to hijack loadings. Ac-

cording to Table 3.15, write privileges for most of the SO-hijacking directories are only assigned to

the root user. In our evaluation of severity of unsafe loadings on Linux, we assume that a regular

user does not have root privilege, which is the typical setup of user privileges on Linux.

During our evaluation, we only detected two SO-hijacking directories with non-root write priv-

ilege (cf. Table 3.15). For example, Evolution 2.38.3 fails to load libnssckbi.so from the

∼/.evolution directory, which can be exploited to hijack the loading.

Comparing to our evaluation on Windows, it is difficult to exploit the detected resolution failures

for remote attacks on Linux. This is mainly due to two reasons. First, as we mentioned earlier, most

of the SO-hijacking directories are only writable by the root user. It is difficult for attackers to place

malicious files in such directories remotely. Second, by default, Linux does not check the current

directory to resolve a fullpath specification. Note that the current directory on Windows can be

easily written by remote attackers through social-engineering attacks (cf. Section 3.4.1).

Performance

To evaluate the performance of our tool, we measured the execution time for detecting unsafe SO

loadings of five browsers on Ubuntu 10.04 running on Core2 Duo 2.4GHz processor with 2GB

RAM. Table 3.18 shows the execution time of each phase for all analyzed browsers. According

to our results, our technique is practical to detect unsafe SO loadings of large, complex software

applications, such as web browsers.
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3.4.3 Implications of Our Findings

In Sections 3.4.1 and 3.4.2, we have analyzed the prevalence and severity of unsafe loadings on

Windows and Linux. This section discusses the implications of our analysis results.

Windows vs. Linux. One interesting discovery is that unsafe SO loadings in some applications on

Linux rarely happen. For example, we only detected one resolution failure out of 129 instances of

dynamic SO loadings captured from Brasero 2.30.2. Furthermore, we could not detect any unsafe

loadings out of 152 dynamic SO loadings by Rhythmbox 0.12.8. The loading safety of the tested

Linux applications is mainly due to flexible runtime construction of the directory search order on

Linux. In particular, some configurations shown in Table 3.4 to determine the directory search order

are optional. For example, if LD LIBRARY PATH is not specified, the OS determines the search order

without considering it. Such flexibility can lead to safe dynamic SO loading. These Linux appli-

cations mostly load the cached SO files, and no elements before CACHED DIR in Table 3.4 (such as

LD LIBRARY PATH) affect the directory search order for each loading. In this case, CACHED DIR de-

termines the first search directory to resolve the fullpath of the cached SO file. If /etc/ld.so.conf

is configured correctly, the resolution of the cached file is safe.

Compared to Linux, Windows adopts a less flexible mechanism to construct the directory search

order. Specifically, checking particular directories for component resolution is mandatory (cf. Ta-

ble 3.2). Although Windows supports the SetDllDirectory-based Search Order, it is not sufficient.

For example, the directory of the application loaded is always checked at first. This inflexibility of

Windows causes it to have much more unsafe DLL loadings than Linux. Recall that the application

directory serves as the most prevalent type of DLL-hijacking directories (cf. Tables 3.9).

Resolution failure vs. unsafe resolution. According to Tables 3.6 and 3.13, unsafe resolution is

much more prevalent than resolution failure on both Windows and Linux.

Although resolution failure occurs less frequently, it can lead to remote attacks on Windows.

In particular, Windows searches the current directory (i.e. “.”) to resolve nonexistent components,

and the directory can be written from remote sites via social engineering-based attacks (cf., Sec-

tion 3.4.1). This type of vulnerabilities can be remotely exploited. Although resolution failure also

happens on Linux, the SO-hijacking directories shown in Table 3.15 are difficult to be written by

remote users.
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To exploit the unsafe resolution, attackers should have the write privilege to the DLL- or SO-

hijacking directories. However, it is difficult for remote attackers to have such privilege and access

the local file system on the victim host.

Filename-based dynamic loading on Windows. Table 3.7 shows that dynamic component load-

ings using filename specifications are often unsafe on Windows. In particular, 67.6% (1,055/1,560),

70.4% (1,067/1,515) and 75.5% (1,086/1,438) of the filename-based target component loadings are

unsafe on Windows XP, Windows Vista, and Windows 7, respectively. The main reason for this

is that Windows iterates through predefined sequences of directories to locate a target component

when its filename is specified (cf., Table 3.2). This inflexibility makes dynamic loading of system

libraries unsafe because the System directory is not the first one checked by the OS. Thus, the first

searched directory can be exploited by an attacker to hijack the dynamic loading of a system library

(cf., Tables 3.9 and 3.10). Note that unsafe resolutions can be significantly reduced by specify-

ing the fullpaths of the target components. In particular, developers can secure all filename-based

component loadings in Table 3.7 by specifying the target components’ fullpaths.

OS flaws vs. application flaws. Resolution failures on both platforms are mainly caused by pro-

gramming errors. In particular, developers may load a target component without checking whether

it exists on the current system. However, the main reasons for having unsafe resolutions differ on

each platform.

Windows. According to Table 3.7, unsafe loadings happen in all the test subjects on Windows,

among which unsafe resolutions are especially common. As we mention earlier, their main cause

is the inflexible resolution mechanism on Windows. Although Microsoft supports mechanisms

such as side-by-side assembly [133] to control the directory search orders, they are not adopted

by default. Also, Windows performs chained loading based on filename specifications [106]. This

insecure OS-level mechanism can make chained loadings unsafe. For example, Table 3.7 shows that

56.0% (537/958), 58.3% (547/938), and 64.0% (480/750) of the total chained loadings are unsafe

on Windows XP, Windows Vista, and Windows 7, respectively.

Linux. Section 3.3.2 shows that, on Linux, developers can control the directory search order as

needed. Thus, we can consider any unsafe resolution to be a flaw in the application. According

to Table 3.14, unsafe resolutions are not very common in Linux-based applications. For example,



54

Chrome has no unsafe loadings on Linux, while it has many unsafe loadings on Windows (cf.,

Tables 3.6 and 3.13).

Privilege assumption on Windows. Our evaluation on Windows assumes that users have the ad-

ministrative privilege. If this assumption does not hold, the severity of unsafe loadings is signifi-

cantly reduced. In particular, all the local attacks exploiting unsafe resolutions can be prevented.

For example, Table 3.9 shows that only administrators can write to the DLL-hijacking directories.

However, remote attacks are still feasible because malicious files sent by an attacker are generally

stored in the directories writable by the current normal user. For example, suppose that a user re-

ceives a malicious archive file from a “Document with Component” attack. The user should have

the write privilege to the directory that stores the file.

3.4.4 Comparison to Related Work

Our tool detects unsafe component loadings from runtime traces (cf., Figure 3.1). Thus, the de-

tection results depend on code coverage of the captured traces. In particular, our approach detects

unsafe loadings from the code covered by the traces. This limited code coverage is the standard lim-

itation of dynamic analysis. To evaluate our tool’s completeness, we compare our technique with a

recently-released tool that detects unsafe DLL loadings [50].

Moore’s Approach

Although our earlier work [94] is the first to automatically detect unsafe component loadings and

demonstrate their prevalence and security implications, there are two related recent efforts. In Au-

gust 2010, Moore and Acros Security announced that unsafe DLL loadings are prevalent and can

lead to remote code execution [148, 166]. They referred to unsafe loadings as “DLL Preloading”

and “Binary Plating”, and came to the same conclusion as in our earlier published work [94]. We

disclosed our work and results to Microsoft in August 2009 and issued a technical report in January

2010.

Moore released a tool to detect unsafe DLL loadings in August 2010 [50]. The tool works in a

few phases: 1) test case generation, 2) file system access monitoring, and 3) exploitation check. In

order to generate the test cases, the tool creates text files whose extensions are known by the OS.
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Application Approach Test cases

Failed Unsafe
Remote attacksFullpath Filename Filename

T T C T C Shortcut Document

iTunes 10.0.1
Ours mp3 file 0 1 0 38 46 0 0

Moore’s text file with the mp3 extension 0 0 0 0 0 0 0

Media Player 12

Ours wmv file 0 1 0 31 7 0 0

Moore’s
text file with the mp3 extension 0 0 0 0 0 0 0
text file with the asx extension 0 0 0 0 0 0 0
text file with the wmv extension 0 0 0 0 0 0 0

Quicktime 7.6.8
Ours mp3 file 0 0 0 27 30 0 0

Moore’s text file with the mp3 extension 0 0 0 0 0 0 0

RealPlayer SP 1.1.5

Ours rm file 2 3 0 26 20 3 0

Moore’s

text file with the rm extension 0 0 0 0 0 0 0
text file with the amr extension 0 1 0 0 0 0 0
text file with the awb extension 0 1 0 0 0 0 0
text file with the divx extension 0 2 0 0 0 0 1

Winamp 5.58

Ours mp3 file 4 1 0 12 9 0 0

Moore’s
text file with the mp3 extension 0 0 0 0 0 0 0
text file with the asx extension 0 3 0 0 0 0 1
text file with the b4s extension 0 3 0 0 0 0 1

Table 3.19: Comparison between our approach and Moore’s one.

For example, a text file with the .rm extension serves as a test case for RealPlayer. The generated

test cases determine the test subjects by choosing the applications associated with the correspond-

ing extensions. Afterwards, the tool detects resolution failures by monitoring runtime file system

accesses of each test subject. Once all the test subjects are analyzed, the tool checks whether or not

the detected resolution failures can lead to remote attacks. To this end, it adopts an approach similar

to ours for detecting the “Document with Component” attack (cf. Section 3.4.1).

Our Approach vs. Moore’s One

To evaluate our technique’s relative completeness, we detect unsafe loadings of the five multimedia

players using our and Moore’s tools on Windows 7 and compare their detection results. Table 3.19

shows the detailed comparison.

As mentioned earlier, our tool can detect both types of unsafe component loadings, while

Moore’s tool focuses on the detection of resolution failures by monitoring file system accesses

performed by the test subjects. For example, our tool detects 46 unsafe resolutions from RealPlayer

SP 1.1.5, while Moore’s tool does not detect any unsafe resolutions.

According to Table 3.19, both approaches are not complete. In particular, our tool can detect

unsafe loadings missed by Moore’s tool (and vice versa). For example, only our tool detects the
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security vulnerabilities in RealPlayer that can be exploited by “Shortcut with Component” attacks.

On the other hand, Moore’s tool detects two unsafe loadings in Winamp that can lead to “Document

with Component” attacks, but our tool does not.

The main reason for our tool’s incompleteness is the selection of test cases. For example, our

tool can also detect the unsafe DLL loadings of Winamp when we use the test cases generated by

Moore’s tool. In addition, both approaches may miss unsafe loadings in code that is not exercised

by the selected test cases. To mitigate this issue, one needs to develop techniques to achieve better

code coverage (e.g., test case generation or static analysis), which we leave for future work.

3.5 Mitigation Techniques

This section discusses general and platform-specific techniques to mitigate unsafe component load-

ings.

3.5.1 General Techniques

Use fullpath. Because the filename specification resolves the target component by iterating through

the directories, it may lead to unsafe resolution. This problem can be solved by specifying the target

component based on its full path, because the fullpath specification determines its target file directly

without iteratively searching a set of directories. In order to generate correct fullpath specifications,

system calls that return full paths of the target directories can be used. For example, suppose a de-

veloper wants to load a DLL in the system directory at runtime on Microsoft Windows. In this case,

GetSystemDirectory function can be used to determine the full path of the DLL. In particular, af-

ter obtaining the path of the system directory through the system call, the developer can concatenate

the path with the filename of target DLL to obtain its full path. For instance, if a developer wants to

load WS2HELP.DLL in the system directory, safe DLL resolution can be achieved by concatenating

WS2HELP.DLL with the system directory path obtained by the GetSystemDirectory function (i.e.,

C:\Windows\System32).

Resolve system call at runtime. According to Section 3.4, chained loading of components also

causes unsafe resolution. This can be mitigated by resolving system calls at runtime as much as

possible. In particular, if we resolve the address of the target system call exported by a compo-
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nent and invoke it at runtime, the component file is not considered a dependent component and

is not loaded at load-time. For example, suppose we want to invoke the db create function of

libdb.so.3, we can obtain the function’s address by using the dlopen and dlsym functions at

runtime, and invoke the target function based on this address. Note that this mechanism makes

software safer but less efficient.

Confirm file existence. As we mentioned in Section 3.4, resolution failures can cause serious se-

curity vulnerabilities in software. The main reason is that many programs make the false assumption

that the target component exists in the system. Therefore, to avoid resolution failures, it is important

to check existence of the target files before loading them.

Check validity of loaded components. Because a program resolves a target component based on

its name, it is difficult to determine whether the resolved component is the file intended by the

program. To address this problem, application developers can provide the signature of the target

file to determine the validity of the loaded component. For example, the hash value and the RSA

signature can be used for validation. However, this approach makes software less flexible. Also,

malicious users can reverse engineer the validity check and bypass it. Therefore, OS-level protection

mechanisms are necessary to adopt this mitigation technique.

Check current OS version. As we discussed in Section 3.4, a set of system libraries depends

on the version of the operating system. Because many applications are developed to be executed

under different platforms, they should check the version of the OS and load only the supported

components.

Provide tools for checking third-party components. Unsafe component loadings performed by

third-party components can lead to serious security holes in the applications hosting them. Because

of this issue, although the applications resolve the components safely, they can be attacked by

exploiting vulnerabilities in the third-party components. To mitigate this problem, it is necessary

for application developers to provide the developers of the third-party components with tools to

check the safety of their components.
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3.5.2 Windows-specific Techniques

Use SetDllDirectory function. As we mentioned in Section 3.4.1, the current directory at the point

of a resolution failure may cause remote code execution attacks. To mitigate this type of attacks, we

can use the SetDllDirectory function which can add an arbitrary directory instead of the current

directory. Especially, this function can remove the current directory from the directory search or-

der. This approach can effectively block remote code execution attacks discussed in Section 2.1.3.

In particular, Microsoft adopts this approach to fix the blended attack combined with the Safari’s

Carpet Bomb attack [114].

Install applications in the admin-writable directory. According to Table 3.9, the application

directories are the most vulnerable ones to unsafe resolution. Therefore, unsafe resolutions per-

formed by non-admin users can be significantly reduced by installing applications in directories

only writable by administrators (e.g., the Program Files directory on Microsoft Windows).

Do not disable User Account Control (UAC). Microsoft Windows platforms have supported User

Account Control (UAC) [149] since Windows Vista to prompt the confirmation dialogs whenever

users perform security-related tasks. This UAC feature prevents the unintended copy of arbitrary

files to particular DLL-hijacking directories such as the Program Files, which mitigates the ex-

ploitation of unsafe DLL loadings. However, many users have complained that the UAC dialogs

frequently show up [146], and thus have disabled UAC. This unsafe setting makes users vulnerable

to the attacks exploiting unsafe component loadings. Therefore, it is necessary not to disable the

UAC feature to mitigate such attacks.

3.5.3 Linux-specific Techniques

Configure safe directory search order. As we mentioned in Section 3.4.2, Linux provides a

flexible mechanism to configure the directory search order at runtime. In particular, the attributes

in Table 3.4 determine the directory search order. Thus, it is possible for programmers to configure

the safe directory search order such that the first checked directory contains the target file.

Cache SO files. The fullpath of the SO file on Linux can be cached by setting the configuration

file /etc/ld.so.conf. This feature allows us to specify the intended fullpath for any filename

specification. Thus, if we cache the target file without specifying any attributes before CACHED DIR
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in Table 3.4, the fullpath of the file can be safely resolved. Note that we could not detect any unsafe

SO loading from some of our test subjects adopting this technique (cf. Section 3.4.2).

3.6 Related Work

We survey additional related work besides those on detecting unsafe DLL loadings discussed in

Section 3.4.4. We divide the related work into four categories: safe component resolution, safety

improvement of browser plugins, vulnerability analysis and detection, and non-control-data attacks.

Safe component resolution. Chari et al. [31] presents a mechanism, safe-open, to prevent un-

safe component resolutions in Unix by detecting modifications to path names by untrusted users on

the system. In comparison, we propose a dynamic analysis to discover unsafe component loading

vulnerabilities in the software itself.

Safety improvement of browser plugins. Secure browsers [59,61,62,153] have been introduced to

mitigate risks caused by unsafe usage of third-party plug-ins. Gazelle [153] and OP [62] browsers

adopt OS-level sandboxing techniques to reduce damages introduced by unsafe plugin usage. In-

ternet Explorer utilizes a kill-bit [84] to prevent malicious ActiveX components from being loaded.

Grier et al. [61] propose security policies for secure plugin execution. These techniques aim at pro-

viding software platforms with secure plugin usage, while our technique aims at detecting unsafe

loadings of general software components.

Vulnerability analysis and detection. Testing and analysis techniques for detecting software vul-

nerabilities have been well explored. Most of the previous approaches have focused on detecting

low-level, unexpected program behaviors such as memory corruption errors [28, 29, 42, 57, 95, 127,

129, 163] and integer overflows [26, 112, 154]. Although these approaches have shown promising

results in detecting such vulnerabilities, none has targeted the detection of unsafe component load-

ings; our work formulates the problem and introduces the first effective automated technique to

detect such vulnerabilities.

Non-control-data attack. Unsafe component loading can also be considered an example of non-

control-data attacks because it does not alter the control data of the target program. Chen et al. [32]

surveyed attack techniques that corrupt application data, which includes user identity data, config-

uration data, user input data, and decision-making data, and presented a detailed analysis and de-
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fense mechanism. Compared to those non-control-data attacks, unsafe dynamic loading is mainly

due to defects in the component loading procedure, while they are originated from unsafe handling

of application data. In addition, the attack vectors are different. In particular, unsafe component

loading can be exploited by placing malicious files in the component-hijacking directories, while

non-control-data attacks corrupt certain application data to exploit unsafe processing of the data.

3.7 Conclusions and Future Work

In this chapter, we have described the first analysis technique to detect unsafe dynamic component

loadings. Our technique works in two phases. It first generates profiles to record a sequence of

component loading behaviors at runtime using dynamic binary instrumentation. It then analyzes the

profiles to detect two types of unsafe component loadings: resolution failures and unsafe resolutions.

To evaluate our technique, we implemented tools to detect unsafe component loadings on Microsoft

Windows and Linux. Our evaluation shows that unsafe component loadings are prevalent on both

platforms and more severe on Windows platforms from a security perspective. In particular, our

tool detected more than 4,000 unsafe component loadings in popular software on both platforms. It

also discovered 41 potential remote code execution attacks on Microsoft Windows.

For future work, we are interested in developing static binary analysis techniques to detect un-

safe component loadings. Although our dynamic analysis is effective, it may suffer from the stan-

dard limitation of dynamic analysis, namely the code coverage problem. Specifically, our approach

may miss unsafe component loadings that can happen. We plan to develop sound, practical static

analysis techniques to complement the dynamic analysis we introduced here.
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Chapter 4

Static Detection of Unsafe Component

Loadings

4.1 Introduction

Dynamic loading of software components is a commonly used mechanism to achieve better flexibil-

ity and modularity in software. For an application’s runtime safety, it is important for the application

to load only its intended components. However, programming mistakes may lead to failures to load

a component, or even worse, to load a malicious component. The proposed dynamic technique in

Chapter 3 has shown that these errors are both prevalent and severe, sometimes leading to remote

code execution attacks. The work is based on dynamic analysis by monitoring and analyzing run-

time component loadings. Although simple and effective in detecting real errors, it suffers from

limited code coverage and may miss important vulnerabilities. Thus, it is desirable to develop ef-

fective techniques to detect all possible unsafe component loadings.

Although the proposed dynamic technique is effective at detecting real unsafe loadings, it may

miss errors because of limited code coverage, an inherent weakness of dynamic analysis. We illus-

trate this issue using delayed loading, an optimization to postpone the loading of infrequently used

components until their first use. Delayed loading is challenging for dynamic detection because it is

difficult to trigger all delayed loadings at runtime. Figure 4.1 shows a code snippet that uses delayed

loading in Microsoft Windows. The code shows two functions f1 and f2 that use components regis-
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1 void f1() {

2 ...

3 pDelayDesc1 = &WINSPOOL_DRV_DelayDesc;

4 // WINSPOOL_DRV_DelayDesc.dllname = "WINSPOOL.DRV"

5 func_addr = __delayLoadHelper2(

6 pDelayDesc1, "OpenPrinter"

7 );

8 ...

9 }

10 void f2() {

11 ...

12 pDelayDesc2 = &COMDLG32_DLL_DelayDesc;

13 // COMDLG32_DLL_DelayDesc.dllname = "COMDLG32.DRV"

14 func_addr = __delayLoadHelper2(

15 pDelayDesc2, "GetSaveFile"

16 );

17 ...

18 }

19 int __delayLoadHelper2(pImgDelayDesc, funcName) {

20 hMod = pImgDelayDesc->hMod; // init value = 0

21 if (hMod == 0) {

22 target_dllname = pImgDelayDesc->dllname;

23 hMod = LoadLibrary(target_dllname);

24 pImgDelayDesc->hMod = hMod;

25 }

26 func_addr = GetProcAddress(hMod, funcName);

27 return func_addr;

28 }

Figure 4.1: Motivating example.

tered for delayed loading. In particular, f1 and f2 retrieve the addresses of OpenPrinter exported

by WINSPOOL.DRV and GetSaveFile exported by COMDLG32.DLL respectively. Although the ex-

ample only shows two functions f1 and f2, in practice, there are often many more. The infrequent

use of the components makes it difficult, if not impossible, to trigger all possible loadings at runtime.

Although we have illustrated the problem using delayed loading, poor coverage of dynamic analysis

is a general concern for detecting unsafe loadings, as our results also confirm (cf. Section 4.4).

In this chapter, we present the first static analysis to detect unsafe loadings from program bina-

ries. Two pieces of essential information are needed: 1) all components that may be loaded at each

loading call site, and 2) the safety of each possible loading. While the second part is straightforward,

the key challenge lies in the first part—how to precisely and scalably compute the possible load-

ings. Our key observation is: for a given invocation of the loading system call, the set of possible

loaded components is determined by the system call’s parameter values, which are often determined

through computations that originate not far from the call site. From these observations, we design
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a two-phase analysis: extraction and checking. The extraction phase is demand-driven, working

backward from each loading call site to compute the set of possible loadings; the checking phase

determines the safety of a loading by examining the relevant directory search order at the call site.

Context-Sensitive Emulation. To realize the backward computation of parameter values during

the extraction phase, we introduce context-sensitive emulation, a novel combination of slicing and

emulation. For a given call site, we extract its context-sensitive executable slices w.r.t. its parame-

ters, one for each execution context. We then emulate the slices to compute the parameter values.

Incremental and Modular Slicing. One technical obstacle is how to compute backward slices scal-

ably. Standard slicing techniques [5, 23, 66, 119, 124, 134] are based on computing a program’s

complete system dependence graph (SDG) a priori and are thus limited in scalability. Because we

only need to consider loading call sites and the execution paths to compute the parameter values to

the calls are usually relatively short, only a small fraction of the complete SDG is relevant for our

analysis. This motivates the use of an incremental and modular slicing algorithm (cf. Section 4.3)—

incremental because we build the slices lazily when necessary; modular because when we encounter

a function call foo(x,y), we use an inferred summary of what dependencies foo’s parameters and

return value have in analyzing the caller. At the end, we connect the function-level slices in the

standard way by linking formal and actual parameters.

Emulation of Context-sensitive Slices. Once we have computed the backward slice s w.r.t. a given

loading call site, we need to compute possible values for the relevant parameters. One natural solu-

tion is to perform standard symbolic analysis on the slice to compute the values. The main challenge

for this approach is the difficulty in reasoning symbolically about system calls because the relevant

parameters often depend on complex, low-level system calls. For example, many Windows applica-

tions invoke the system call RegQueryValueExW to retrieve the fullpath of the target specification

stored in the registry key. The system call invokes more than 100 distinct system calls exported by

five libraries. To symbolically analyze the system call, it is necessary to symbolically execute its

invoked system calls as well, leading to path explosion. Thus, it is difficult in practice to engineer

and scale symbolic analysis to compute the possible values of the parameters.

To overcome this difficulty, we use emulation. In particular, we generate, from the backward

slice s, a set of context-sensitive executable sub-slices, which we then emulate to compute the pa-
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rameter values (cf. Section 4.3). Essentially, we inline callees’ function-level slices in each execu-

tion context to produce s’s sub-slices s1, . . . , sn. Instructions in each sub-slice si are next emulated

topologically, respecting their data- and control-flow dependencies.

For evaluation, we implemented our technique in a prototype tool for Windows applications.

We evaluated our tool’s effectiveness against the dynamic technique in terms of precision, scalabil-

ity, and coverage. Results on nine popular applications show that our tool is precise and scalable

(cf. Section 4.4). For example, it took less than two minutes to analyze each of the nine test subjects,

including large applications such as Acrobat Reader, Quicktime, and Safari. The results also show

that our proposed context-sensitive emulation achieves orders of magnitude reduction in the size

of the code needed to be analyzed and crucially contributes to the scalability of our technique. In

terms of coverage, our tool detected many more possible unsafe loadings and nicely complements

the dynamic technique.

Main Contributions:

• We have developed the first static binary analysis to detect unsafe component loadings. Be-

cause of its scalability and higher code coverage, our technique effectively complements the

existing dynamic technique.

• We have proposed context-sensitive emulation, an effective approach that combines slicing

and emulation for the precise and scalable analysis of runtime values of program variables.

• We have implemented our technique and evaluated its effectiveness by detecting unsafe load-

ings in nine popular Windows applications.

The rest of this chapter is organized as follows. Section 4.2 illustrates our technique with a

running example. Section 4.3 presents a detailed description of our static detection algorithm. We

describe our implementation and evaluation in Section 4.4. Finally, Section 4.5 surveys additional

related work, and Section 4.6 concludes with a discussion of future work.
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3 pDelayDesc1 = &WINSPOOL_DRV_DelayDesc;

22 target_dllname = pImgDelayDesc->dllname;

23 hMod = LoadLibrary(target_dllname);

pDelayDesc1 pImgDelayDesc S1

12 pDelayDesc2 = &COMDLG32_DLL_DelayDesc;

22 target_dllname = pImgDelayDesc->dllname;

23 hMod = LoadLibrary(target_dllname);

pDelayDesc2 pImgDelayDesc S2

B2

B1

Figure 4.2: Example context-sensitive backward slices.

4.2 Overview

This section illustrates our technique with the example shown in Figure 4.1. Our technique works

on binaries, but for presentational purposes, we show the example in C-like pseudo code.

Extraction Phase. We first identify call sites for component loading. In the example, line 23

corresponds to a call site because of the LoadLibrary system call. The system call’s only param-

eter target dllname determines which component should be loaded. We use context-sensitive

emulation to compute its possible values.

Incremental and Modular Slicing. We start with the call site on line 23 as the slicing criterion

and extract its caller’s function-level slice. Program slicing generally considers data and control

flow dependencies to extract a slice. In our setting, since the main goal is to compute possible

values of target dllname, we focus on data dependencies and produce the slice: lines 22 and

23. To compute the possible values of target dllname, we need to extract the code that com-

putes pImgDelayDesc, the first parameter of the delayLoadHelper2 function. To this end, we

continue the backward slicing w.r.t. a new slicing criterion, which is determined based on caller-

callee relationship and the callee’s function prototype. In our example, there exist two call sites
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for delayLoadHelper2, lines 5–7 in f1 and lines 14–16 in f2. Thus, we continue with two

instances of intraprocedural backward slicing w.r.t. two new slicing criteria: pDelayDesc1 on line

6 and pDelayDesc2 on line 15. Two slices are generated for f1 and f2. We produce two context-

sensitive interprocedural slices by instantiating twice the slice for delayLoadHelper2 and link-

ing each instance with its respective caller’s slice. We also maintain the mapping between each of

the new slicing criteria and the callee’s corresponding parameters for the later emulation phase. Be-

cause neither f1 nor f2 takes any input, we terminate the slicing computation. Figure 4.2 displays

the two computed context-sensitive backward slices w.r.t. target dllname.

Emulation of Context-sensitive Slices. To compute possible values for target dllname, we em-

ulate the two slices in Figure 4.2. We need to schedule the instructions in the slices before they can

be emulated. We do so respecting the data and control flow dependencies among the instructions.

Specifically, we first schedule the basic blocks in topological order with respect to the data flow

dependencies among them. We then determine the ordering of the instructions in each scheduled

basic block in terms of their ordering in the original code. More concretely, if i1 precedes i2 in the

original code, we emulate i1 before i2.

For example, the instructions in the first slice in Figure 4.2 are scheduled as follows: 1) two

basic blocks, B1 and B2, contain the instructions of the slice: B1 for line 3 in f1 and B2 for lines

22 and 23 in delayLoadHelper2; 2) B2 depends on B1 because pImgDelayDesc used by B2 on

line 22 is initialized on line 3 in B1, leading to the following scheduling: B1→B2; 3) we schedule

the instructions of each basic block in terms of their control flow dependencies: lines 3, 22, and 23.

For parameter passing, we initialize the formal parameter with the corresponding actual parameter’s

value. In our example, the value of the formal parameter pImgDelayDesc of delayLoadHelper2

is provided by f1 through the value of pDelayDesc1.

After successfully emulating B1 and B2 for the first slice, we obtain the possible value of

target dllname: "WINSPOOL.DRV". Similarly, we obtain its other possible value after emulat-

ing the second slice: "COMDLG32.DLL".

Checking Phase. In our example, "WINSPOOL.DRV" and "COMDLG32.DLL" are potentially loaded

at runtime. When the OS loads these components, it iterates through a sequence of directories, de-

termined at runtime, to locate the specified files. In this case, these loadings are unsafe, if the OS
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Program

1 void foo2() {

2 ...

3 }

1 void foo1() {

2  C = LoadLibrary( C );

3  C.foo2();

4 }

1 int main() {

2  x = rand()%2;

3  if (x == 0) {

4   A = LoadLibrary( A );        

5   A.foo1();

6  } 

7  else {

8   B = LoadLibrary( B );

9   B.bar1();

10  }

11 }

Component A

1 void bar2() {

2 ...

3 }

Component DComponent B

1 void bar1() {

2  D = LoadLibrary( D );

3  D.bar2();

4 }

Component C

Figure 4.3: Component-integrating code.

checks multiple directories to resolve these components on default configuration. This is because

these loadings can be hijacked by placing an arbitrary file named WINSPOOL.DRV or COMDLG32.DLL

in the directories checked before the intended resolution. We check whether or not the specified

files exist in the first directory searched. Because Microsoft Windows searches first in the directory

where the program is installed [45], the loadings for these two components are unsafe if they do not

exist in the program directory.

4.3 Static Detection Algorithm

We now present the details of our analysis. Our technique statically detects unsafe component

loadings to achieve high coverage. It first extracts the target component specifications from possible

code region executed at runtime and check their safety based on Definition 2.1.6.

The executed code region is determined by loaded components. Figure 4.3 depicts the compo-

nent loading code whose execution path controlled by a random variable x. If x is zero, foo1 of

component A and foo2 of component C are executed. Otherwise, bar1 of component B and bar2

of component D are executed. Our observation is that each execution path covers the partial code

region of the loaded components. For example, if x is zero, the partial code regions of components

Program, A, and C are executed. From these observations, we design our static detection as shown

in Figure 4.4: extraction and checking. From the extraction phase, we obtain a set of the target com-

ponent specifications from the components that can be loaded at runtime. In the checking phase, we

evaluate the safety of each target specification based on Definition 2.1.6.
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Disassemble the 

target file
Check safety

Unsafe target 

component spec.

Extract target 

component spec.

Resolve potentially-

loaded components

Program 

binary

Extraction Checking

A set of 

target 

component 

spec.

Figure 4.4: Detection framework.

4.3.1 Extraction Phase

A component can load other components at loadtime or runtime. This loading introduces load-

time and runtime dependencies among components [4]. Based on these dependencies, we deter-

mine components that can be loaded during program execution. Specifically, we recursively re-

solve the components from the program file based on their loadtime and runtime dependencies.

To resolve the dependent components, the corresponding target specifications, i.e., full path or file

name, are needed. For loadtime dependencies, compilers specify the dependent components in the

executable format. For example, the names of the loadtime dependent components are stored in

IMAGE IMPORT DIRECTORY with the PE format [106]. To obtain the specifications of the runtime

dependent components, we compute values of parameters to component-loading system calls. This

suffices for our setting because program dynamically loads components via the system calls and

their parameters determine the loaded components.

As an example of recursive resolution, we search the components that are potentially loaded by

Program in Figure 4.3. Suppose that components E and F, which have no loadtime and runtime

dependent component, implement the rand and LoadLibrary functions, respectively. In this case,

Program loads components E and F on its startup. Regarding runtime dependencies, Program

dynamically loads components with the specifications, "A" on line 4 and "B" on line 8. From this

information, we can detect the potentially-loaded components by simulating component resolution.

Similarly, we can infer that C, D and F, which are loaded by A and B. Because C and D have no
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1 PUSH EAX

2 PUSH EAX

3 PUSH offset 0x7D61AC5C; "xpsp2res.dll"

4 CALL DWORD PTR DS:[LoadLibraryExA]

(a) Memory indirect.

1 MOV EBX, DWORD PTR DS:[LoadLibraryW]

2 PUSH offset 0x65015728; "CABINET.DLL"

3 CALL EBX

(b) Register indirect.

Figure 4.5: Two types of component-loading call sites.

loadtime and runtime dependent components, we stop the resolution process. Thus, we detect the

seven components potentially loaded at runtime: Program, A, B, C, D, E, and F.

The key step of the extraction phase is to obtain the target specification for component loading

in a binary. The specification of a loadtime dependent component can be easily obtained from

the binary file format. However, extracting the specification of a runtime dependent component is

nontrivial because it often requires to locate the code relevant to the value of the specification and

analyze its execution. For example, the target component specification for system libraries under

Microsoft Windows is sometimes determined by concatenating the system directory path and the

file name. To obtain the specification, it is necessary to extract the related code and analyze its

execution result.

The concrete value of the parameter to the component-loading system call serves as the speci-

fication for the runtime dependent component. From this observation, we extract the specification

by searching for the program variable for the specification and then computing its value via context-

sensitive emulation, a novel combination of backward slicing and emulation. We describe details of

the extraction in the following sections.

4.3.2 Searching Program Variable for Specification

In binary code, invoking the component-loading system calls follows the stdcall calling conven-

tion [161]. When parameters are passed to the call site, they are pushed from right to left. For ex-

ample, Figure 4.5(a) represents the binary code corresponding to LoadLibraryExA(0x7D61AC5C,

EAX, EAX). Based on the parameter passing mechanism, we locate the program variable, e.g., a

register or a memory chunk, which stores the target specification. In particular, we detect the call
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site for component loading via static taint data analysis and then extract the input operands of the

instructions passing the parameter to the call site. We describe details of each step in the rest of this

section.

Locating Component-loading Call Sites. In this phase, we aim at finding the call site for com-

ponent loading in a binary. Our observation is that software stores the address of the system call

implementation in its memory space and utilizes it in the call sites for component loading at runtime.

Figure 4.5 shows the two types of component-loading call sites in a binary, which are memory indi-

rect and register indirect. The main difference between them is what type of the program variable

stores the address of the component-loading system call at the call site. While the memory indirect

type stores the address in a memory chunk, the register indirect type stores the address in a register,

e.g., line 4 in Figure 4.5(a) and line 3 in Figure 4.5(b).

Based on this observation, we locate the component-loading call sites through static taint data

analysis. In particular, we define the taint sources and the taint sinks as follows:

• Taint source: an instruction that references a memory chunk that stores the address of the

component-loading system call.

• Taint sink: a branch instruction, e.g., call, whose target address is tainted. We consider the

taint sink instructions as the call sites.

We now present examples on how to detect call sites. In Figure 4.5(a), line 4 serves as not

only the taint source but also the taint sink, i.e., the component-loading call site, because it is the

branch instruction, accessing a memory chunk that stores the address of LoadLibraryExA. For

Figure 4.5(b), line 1 is the taint source, accessing the address of the LoadLibraryA, and line 3 is

the taint sink, because it is the call instruction whose target is the address, stored in EBX.

Extracting Parameter Variables. Once a call site is located, we extract the program variables for

the target specification from the predefined number of the instructions to pass the parameters to the

call site. In particular, we detect the instructions, e.g., PUSH, to initialize the top of stack backward

from the call site. Because the number of parameters of a component-loading system call is known,

we can precisely extract all the variables to define this target specification. For example, the call

site in Figure 4.5(a) invokes LoadLibraryExA, and it has three parameters, i.e., 0x7D61AC5C, EAX,

and EAX, via the instructions on lines 1–3.
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4.3.3 Context-sensitive Emulation

In this phase, we compute the concrete values of the parameter variables extracted in Section 4.3.2.

The computation may seem trivial at first. For example, the memory chunk at 0x7D61AC5C in

Figure 4.5(a) contains the target specification, "xpsp2res.dll". However, the computation is in

fact challenging because it is necessary to extract the code to compute the variable, requiring inter-

procedural data flow analyses (cf. Figure 4.1). Also, we need the runtime information of the code

to obtain the concrete values of the variable. Symbolic analysis can serve as a potential solution.

However, symbolic analysis suffers from poor scalability and is limited in handling system calls,

which are often complex.

To address this problem, we introduce context-sensitive emulation, which novely combines

backward slicing and emulation. Based on this combination, we can scalably and precisely compute

the values of the variables of interest. We describe its details in the rest of this section.

Backward Slicing. This phase performs the interprocedural backward slicing w.r.t. the parameter

variable, extracting the instructions to compute the variable. This problem has been extensively

studied, and many slicing algorithms [5,23,66,119,124,134] have been proposed. These algorithms

commonly solve the graph reachability problem over a System Dependence Graph (SDG) [66], a set

of Program Dependence Graphs (PDGs) [51] and edges capturing data flow dependencies among

them. In particular, a SDG is constructed beforehand based on an exhaustive data flow analysis over

the subject program. Then, the slicing outcome is determined by traversing the SDG from the given

slicing criteria. Although the approach has been widely used, it is not appropriate for our problem

setting. The reason is that binary files are generally composed of a large number of instructions,

and an exhaustive data flow analysis over all the instructions is very expensive, leading to limited

scalability.

Our key observation is that the parameter values are often locally determined, that is the execu-

tion paths to compute the variables are relatively short. Thus, exhaustive data flow analysis is not be

necessary to extract backward slices w.r.t. the given slicing criteria. Figure 4.6 shows the examples

of the unnecessary data flow analysis during intraprocedural and interprocedural backward slicing.

Figure 4.6(a) shows an example of the CFG for constructing the PDG. Suppose that we perform

intraprocedural backward slicing w.r.t. the instruction D. In this case, the bold instructions often only
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A

D

B

C

E

F

(a) Intra-backward.

Program 

main

bar1

bar2

foo1

foo3foo2

: PDG : Data flow dependency

(b) Inter-backward.

Figure 4.6: Unnecessary data flow analysis.

affect the instruction D in terms of control flow. It is possible that the instruction D can be affected

by the instructions without control flow dependencies. For example, the instruction E initializes a

variable and the instruction B reads it. However, this case rarely happens in our problem setting

in practice, because the parameters for the specification are generally computed by the instructions

executed before the component-loading call sites.

Suppose that Figure 4.6(b) depicts the SDG for the interprocedural backward slicing. If the

instructions of the bold PDGs for bar1 and bar2 are only traversed during slicing, is it not necessary

to perform data flow analysis on the instructions of the grayed PDGs. Because the SDG consists of

a large number of PDGs in binary and the target specifications are often locally determined, most

of the PDGs are not relevant for interprocedural backward slicing w.r.t. the parameter variables for

the target specifications.

Based on this insight, we design our slicing technique as demand-driven, reducing the unneces-

sary analysis of data flow dependencies. In particular, we perform interprocedural backward slicing

by incrementally combining the intraprocedural backward slices whose slicing criteria are deter-

mined when necessary.

Intraprocedural backward Slicing. For each intraprocedural backward slicing, we analyze only

the data flow dependencies among the instructions that are control dependent on the given slicing

criteria. To this end, we construct the PDG based on the predecessor subgraph w.r.t. the slicing

criterion under the CFG. Thus, we can avoid the analysis of the data flow dependency among the
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instructions not traversed during slicing. Suppose that we perform intraprocedural backward slicing

w.r.t. the instruction D in the CFG shown in Figure 4.6(a). If we construct the PDG based on the

CFG, the data flow dependencies among all the instructions in the CFG are analyzed. However,

the grayed instructions do not affect the instruction D in terms of control flow dependencies. By

constructing the PDG based on the subgraph composed of the bold instructions, i.e., the prede-

cessor subgraph w.r.t. the instruction D, we can avoid some unnecessary data flow analysis when

performing slicing.

One challenge for PDG construction is caused by the call site instructions. Because functions

are not generally monolithic, it is necessary to identify which call sites affect the slicing criteria.

Although traversing the SDG provides such information, it requires the computation of significant

amount of unnecessary data-flow dependencies (cf. Figure 4.6(b)). To address this problem, we

utilize the prototypes of the functions invoked at the call sites. Specifically, we consider a call

site instruction as a non-branching instruction during our PDG construction, and analyze the data

flow dependencies related to the call site in terms of the prototype of the callee function. For

example, a call site invokes a function foo whose prototype is int foo(in,inout). In this case,

the foo is considered an instruction that uses the first/second parameters and defines the second

parameter and the return variable. Based on this information, we can effectively determine the data

flow dependencies between the call site instructions and the slicing criteria without a whole SDG

traversal.

Interprocedural backward Slicing. As aforementioned, an exhaustive SDG construction often leads

to significant amount of the unnecessary data flow analysis for interprocedural backward slicing. To

address this problem, we construct the interprocedural backward slices incrementally combining

the intraprocedural backward slices whose slicing criteria are chosen in a demand-driven manner.

There are two key challenges for this demand-driven combination. First, it is necessary to deter-

mine the new slicing criteria if the interprocedural backward slice consists of multiple intraprocedu-

ral backward slices. For example, we construct the interprocedural backward slice in Figure 4.6(b)

by combining the two intra-backward slices extracted from functions bar1 and bar2. In this case,

we need to determine the new slicing criteria in the bar1 function. Second, the composed interpro-

cedural backward slice needs to be easily handled for the later emulation phase.
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Our basic idea for building the new slicing criteria is that the interprocedural data flow depen-

dencies are captured by parameter passing. In SDG-based slicing, the PDGs are connected using

the edges that model parameter passing, which are traversed to analyze the dependencies. Based

on this idea, we choose the slicing criteria as follows. Suppose that an intraprocedural backward

slice s is extracted from an instruction whose input operand is initialized through parameter p of

the function f . In this case, we determine the new slicing criterion as the parameter variable cor-

responding to the parameter p. To locate this parameter variable, we use caller-callee relationship

and the callee’s function prototype. In particular, we detect the call site for function f and analyze

f ’s function prototype to obtain the index of the parameter corresponding to p. For example, the

intraprocedural backward slice w.r.t. the target dllname in Figure 4.1 uses the first parameter,

i.e., pImgDelayDesc, of delayLoadHelper2. As two call sites on lines 5–7 and lines 14–16

invoke delayLoadHelper2, we choose their first parameter variables, i.e., pDelayDesc1 on line

6 and pDelayDesc2 on line 15, as the new slicing criterion.

Once the new slicing criterion is determined, we construct the interprocedural backward slice

by composing the intraprocedural backward slices and use the composed slice in the emulation

phase. One simple method for composing the intraprocedural slices is to collect the instructions

of each intraprocedural backward slice. For example, the interprocedural backward slice w.r.t. the

target dllname in Figure 4.1 consists of the instructions of three intraprocedural backward slices

w.r.t. the slicing criteria, i.e., target dllname, pDelayDesc1, and pDelayDesc2. However, this

simple method produces context-insensitive slices, making the emulation phase complex. In partic-

ular, when emulating each instruction of the context-insensitive slice, we have to assume that the

values of its operands are determined under all of its calling contexts.

To better support emulation, we combine the intraprocedural backward slices to construct a

set of context-sensitive interprocedural backward slices. In particular, for a given intraprocedural

backward slice s, if multiple new slicing criteria, p1 . . . pn, are determined, the set of the context-

sensitive slices are constructed as {si∪s|si = ∪pi intraprocedural backward slice w.r.t. pi where 1 ≤

i ≤ n}. Thus, we can more straightforwardly use the context-sensitive slices to compute possible

concrete values of the target component specification. For example, we can compute the possible

values of target dllname by emulating these slices in Figure 4.2. We describe more details of our

backward slicing phase in Algorithm 2.
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Algorithm 2 Backward Slicing Phase
Input: sc (a slicing criterion)
Output: Slices (a set of backward slices for sc)
Assumption: no recursion
Auxiliary functions:

Func(P ): return the function that contains p ∈ P
UsedParms(f , s): return f ’s parameters used by s
CallSites(f ): return call sites that invoke f
PredSubG(f , p): return a predecessor subgraph w.r.t. p over f ’s CFG
SubPDG(f , P ): return the PDG based on ∪p∈P PredSubG(f , p)
BSlice(P , pdg): return ∪p∈P an intra-backward slice w.r.t. p, which is computed by

traversing pdg
UsedParmVars(cs, s): return parameter variables w.r.t. a call site cs that are used by a slice s

1: Slices = {}
2: WorkList = {({sc}, ∅)}
3: while WorkList 6= ∅ do
4: Select and remove a (P , S) from WorkList
5: f ← Func(P )
6: g← SubPDG(f ,P )
7: S′← BSlice(P ,g) ∪S
8: if UsedParms(f ,S′) 6= ∅ then
9: CS ← CallSites(f )

10: for all cs ∈ CS do
11: SC ← UsedParmVars(cs, S′)
12: Insert (SC, S′) into WorkList
13: end for
14: else
15: Insert S′ into Slices
16: end if
17: end while

Function Prototype Analysis. The backward slicing phase relies on function prototypes, but such

information is often unavailable in binary code. Our solution to this problem is as follows. For a

given function f , its parameters are stored in fixed locations during f ’s execution. Thus, we infer

its prototype by analyzing how the instructions of the function access the memory chunks for the

parameters, i.e., read or write.

Figure 4.7 shows an example of our proposed prototype analysis for the foo function. Sup-

pose that Figures 4.7(a) and 4.7(b) show part of foo and the stack layout at the beginning of

the function’s execution, respectively. In this case, the idx-th parameter is stored at the address

ebp + 4× (idx + 1) where the stack is aligned by four bytes. From this observation, we can infer
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foo:

1  ...

2  mov eax, [ebp+0xc] ; 2nd

3  ...

4  mov [ebp+0x8], eax ; 1st 

5  

6  mov eax, [ebp+0x10] ; 3rd

7  

8  mov [ebp+0x14], eax ; 4th

9  

(a) Parameter access.

Low

High

EBP

Return Address

Parameter 1

Parameter 2

Parameter 3

Parameter 4

ebp

ebp+0x8

ebp+0xc

ebp+0x10

ebp+0x14

(b) Stack layout.

Figure 4.7: Function prototype analysis.

foo’s prototype. It reads data from the memory chunks for its second and third parameters, and

initializes the memory chunks for its first and fourth parameters, i.e., its function prototype is "eax

foo(inout,in,in,inout)". Here we assume that its result is returned through the eax register.

To improve the precision of our prototype inference, we use the following effective heuristic. If

the effective address of the memory chunk, obtained by the lea instruction, is passed to the function,

we consider it as the inout parameter. The effective address corresponds to a pointer variable and

the memory chunk that it points to is often initialized during function execution. Although this

heuristics may increase the size of the computed slice, it is sufficient to compute possible values of

the slicing criteria via emulation.

Emulation Phase. In this phase, we compute the possible values of the target component specifi-

cation by emulating its corresponding context-sensitive slices. There are three challenges for slice

emulation. The first challenge is how to schedule the instructions because we do not know their run-

time execution sequence. If the instructions are incorrectly scheduled, they may violate the data and

control flow dependencies among them, which may lead to imprecise results or emulation failures.

The second challenge is how to pass function parameters. Although parameter passing captures use-

ful data flow dependencies, the context-sensitive slices do not explicitly specify the dependencies.

The third challenge is how to handle the call site instructions. Because we perform the data flow

analysis by considering a call site as an instruction, the backward slice does not contain detailed

code of the callee function.

Scheduling Algorithm. To develop a practical scheduling algorithm, we have analyzed all 682
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i1: push offset WINSPOOL_DRV_DelayDesc

i2: mov esi, [arg_0]

i3: mov ecx, [esi+4] i4: mov eax, offset __ImageBase

i5: add ecx, eax

i6: mov [target_dllname], ecx

i7: push [target_dllname]; lpLibFileName

B1

offSet WINSPOOL_DRV_DelayDesc [arg_0]
f1
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Figure 4.8: Data-flow dependency among basic blocks.

backward slices extracted from nine popular Windows applications (cf., Table 4.1). We have ob-

served that all the extracted slices form directed acyclic graphs. Therefore, we schedule the basic

blocks in their topological order w.r.t. dataflow dependency. We then determine the order of the

instructions of each basic block w.r.t. their sequence in the original code. For example, Figure 4.8

shows the data flow dependency among the basic blocks of the first slice in Figure 4.2. In this

case, we schedule the basic blocks as B1, B2, and B3. For each basic block, the sequence of its

instructions is determined as follows: i1, i4,i2,i3,i5,i6, and i7. The scheduled sequence of

the instructions does not violate the data- and control-flow dependency among them.

Parameter Passing. To handle parameter passing, we initialize the stack frame before emulating

the callee function. In particular, suppose that a parameter p is passed to a function f . In this case,

before emulating f ’s basic blocks, we reserve the stack frame and initialize its memory chunk for

the parameter with the concrete value of p. The location of the memory chunk is determined by

the index of the passed parameter. For example, the address of the memory chunk for the idx-th

parameter can be computed by ebp + 4× (idx + 1), (cf. Figure 4.7).

For example, we handle the parameter passing from f1 to delayLoadHelper2 in Figure 4.8.

When B1 is emulated, offset WINSPOOL DRV DelayDesc is stored on top of the call stack for

f1. Assuming that the initial value of esp for emulating B2 is equal to 0x13f258, the stored value
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i1: mov edi, 122h

i4: push eax

i3: lea eax,[LibFileName]

i2: push edi

i5: call GetSystemDirectoryW

i6: push offset Src; \kernel32.dll

i7: lea eax, [LibFileName] i8: push edi

i9: push eax

i10: call wcscat_s

i11: lea eax, [LibFileName]

i12: push eax; lpLibFileName

B1

B2

B3

Figure 4.9: Backward slice with external library calls.

initializes a memory chunk at arg 0=0x13f258+4×2, because it corresponds to the first parameter

to delayLoadHelper2. The instructions use arg 0 to reference the first parameter (e.g., i2).

Call Site Instruction. To obtain the possible values of the target component specification, it is

necessary to emulate the call site instruction. If the code of the invoked function resides in the

current file, we can simply emulate the corresponding code. However, if the call site invokes a

system call, we may not be able to obtain the code from the current file. Figure 4.9 shows an

example slice with external library calls where each edge represents data flow dependency between

two instructions. The slice determines the fullpath of the target component by concatenating the path

to the system directory with a string \kernel32.dll. In this case, the instructions invoked by i5

and i10 are not available in the current file. In particular, GetSystemDirectoryW and wcscat s

are implemented in KERNEL32.DLL and MSVCRT.DLL, respectively.

One natural solution is to perform instruction-level emulation over the system call implementa-
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Figure 4.10: Side effects of i5 in Figure 4.9.

tions obtained from the corresponding libraries. However, this is not practical because system call

implementations typically have a large number of instructions and lead to poor scalability.

Thus, we do not emulate the system call code at the instruction-level. Instead, we use code to

model the side effects of system calls and execute the models. For example, Figure 4.10(a) and

Figure 4.10(b) show the stack layout before and after processing i5 shown in Figure 4.9. The

example models the side effect of GetSystemDirectoryW: 1) retrieve the two parameters from

the stack; 2) obtain the system directory path by invoking GetSystemDirectoryW; 3) write the

directory path to the memory chunk pointed to by the first parameter; 4) copy the system call’s

return value to eax register and adjust the esp register to clean up the stack frame.

Based on the technique discussed above, we can emulate the context-sensitive slices to compute

the possible values of the target component specification. For example, we can compute the value,

"C:\Windows\System32\KERNEL32.DLL", of lpLibFileName by emulating the backward slice

in Figure 4.9.

4.3.4 Checking Phase

In this phase, we evaluate the safety of the target component specifications obtained from the ex-

traction phase. To this end, for each specification, we check whether or not the safety conditions

in Definition 2.1.6 are satisfied. In particular, when the fullpath is specified, we check whether

or not the specified file exists in the normal file system. For the filename specification, we con-

sider that a specification can lead to unsafe loading if the target component is unknown and the
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OS cannot resolve it in the directory that is first searched on the normal file system. Note that the

names of the known component and the first directory searched by the OS for the resolution are

predefined [43, 45, 94].

As an example of this phase, we check the component loading discussed in the attack scenario

in Section 4.1. When opening the .asx file, Winamp 5.58 tries to load rapi.dll. In this case, OS

iterates through a list of predefined directories [45] to locate the file named rapi.dll. However, no

such file is found during the iteration. Thus, this loading is unsafe, because attackers can hijack this

loading by placing malicious rapi.dll files in the checked directories. In particular, the current

working directory, one of the directories, is determined as the same directory as the .asx file,

leading to the remote code execution attack. Suppose that the file named rapi.dll exists in the

directory first searched, i.e., the Winamp program directory. In this case, this loading is safe, because

there is no directory such that attackers can misuse for hijacking.

4.4 Empirical Evaluation

In this section, we evaluate our static technique in terms of precision, scalability, and code coverage.

We show that our technique scales to large real-world applications and is precise. It also has good

coverage, substantially better than the proposed dynamic approach in Chapter 3.

4.4.1 Implementation

We implemented our technique on Windows XP SP3 as a plugin to IDA Pro [69], a state-of-the-

art commercial binary disassembler. Our IDA Pro plugin is implemented using IDAPython [70]

and three libraries: 1) NetworkX [116] for graph analysis, 2) PyEmu [121] for emulation, and 3)

pefile [120] for PE format analysis.

For the precise analysis of binaries, it is important to map between C-like variables and memory

regions accessed by instructions. We adapt the concept of a abstract location (a-loc) [13], which

models a concrete memory address in terms of the base address for a memory region and a relative

offset. For example, the a-loc for &a[4] is mem 4 where mem is the base address of the array a and

4 is the relative offset from the base address. Refer to Balakrishnan and Reps [13] for more details.

Backward slicing phase in our technique uses function prototypes of system calls. To this end,



81

we analyzed the files in the system directory and collected prototypes for 3,291 system calls.

To emulate the code modeling side effects of system calls, we need to determine what system

call is invoked through a given call site instruction. We have extended the set library handler

function of PyEmu so that it can register callback functions for external function calls. We imple-

mented the callbacks for 68 system calls used by the extracted slices.

To implement our tool, it is necessary to extract CFGs and call graphs from binaries. We lever-

age the disassemble result of IDA Pro in our current implementation. It is well-known that indirect

jumps can be difficult to resolve for binaries. Although IDA Pro does resolve certain indirect jumps,

it may miss control-flow and call dependencies, which is one source of incompleteness in our im-

plementation.

4.4.2 Evaluation Setup and Results

We aim at detecting unsafe component loadings in applications. Because the detection of unsafe

loadings from the system libraries is performed by the operating system, we only resolve the appli-

cation components in the extraction phase.

The checking phase for a target specification requires the information on the first directory

searched by the OS for the resolution and the relevant normal file system state (cf., Definition 2.1.6

and Section 4.3.4). We obtain this information by analyzing the extracted parameters and the ap-

plications. For example, suppose that an application p loads an unknown component by invoking

LoadLibrary with the component’s filename. In this case, we can infer the directory where p is

installed because Microsoft Windows first checks the directory where p is loaded. Regarding the

normal file system state, we installed the applications with the default OS configuration and detected

unsafe loadings for each application. In this setting, we assume that 1) the default file system state is

normal, and 2) the installation of a benign application does not cause installed applications to have

unintended component loadings.

Detection Results and Scalability

Table 4.1 and Table 4.2 show our analysis results on nine popular Windows applications. We chose

these applications as our test subjects because they are important applications in wide-spread use.
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Resolved files Context-sensitive Emulation

# Size (MB) Disasm. time Call sites Slices Slice inst. (#) Failuresmean max

Acrobat Reader 9.3.2 18 38.2 34m 12s 85 145 5.1 40 34
Firefox 3.0 13 12.5 10m 48s 21 25 2.7 26 3
iTunes 9.0.3 2 25.1 11m 32s 53 128 13.7 187 74
Opera 10.50 3 11.6 12m 46s 28 30 3.0 29 2
Quicktime 7.6.5 17 40.5 9m 15s 70 119 13.5 54 58
Safari 5.31 24 37.5 11m 03s 72 137 5.8 48 33
Seamonkey 2.0.4 15 14.5 20m 44s 34 40 1.7 24 2
Thunderbird 3.0.4 15 15.0 19m 38s 34 40 1.7 24 2
Foxit Reader 3.0 2 10.2 5m 20s 18 18 2.1 13 5

Table 4.1: Analysis of the static detection.

Loadtime Runtime

Acrobat Reader 9.3.2 12 / 109 40 / 111
Firefox 3.0 9 / 77 12 / 22
iTunes 9.0.3 18 / 36 31 / 54
Opera 10.50 8 / 28 11 / 28
Quicktime 7.6.5 19 / 109 19 / 61
Safari 5.31 16 / 158 67 / 104
Seamonkey 2.0.4 9 / 88 20 / 38
Thunderbird 3.0.4 9 / 88 20 / 38
Foxit Reader 3.0 10 / 24 6 / 13

Table 4.2: Ratio of unsafe to total specifications.

The results show that our technique can effectively detect, from program binaries, unsafe compo-

nent loadings potentially loaded at runtime. One interesting finding to note is that the results of

the extraction phase for Seamonkey and Thunderbird are identical. This is likely because both

applications are part of the Mozilla project and use the same set of program components.

We rely on IDA Pro for disassembling binaries, and Table 4.1 includes the time that it took

IDA Pro to disassemble the nine applications. This time dominates our analysis time as we show

later. These are large applications, and also we only need to disassemble the code once for all the

subsequent analysis.

According to our analysis of context-sensitive emulation, the number of slices is generally larger

than that of the call sites. This indicates that parameters for loading library calls can have multiple

values, confirming the need for context-sensitive slices. The average number of instructions for the

slices is quite small, which empirically validates our analysis design decisions.
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Software Open (s) Call site (s) Slicing (s) Emulation (s) Total (s)

Acrobat Reader 9.3.2 95.68 0.03 3.11 6.17 104.93
Firefox 3.0 41.69 0.03 0.19 0.22 42.13
iTunes 9.0.3 15.47 0.03 23.53 16.80 55.83
Opera 10.50 15.35 0.03 0.20 0.57 16.15
Quicktime 7.6.5 46.70 0.02 4.65 25.64 77.01
Safari 5.31 48.34 0.02 1.96 3.70 54.02
Seamonkey 2.0.4 37.51 0.02 0.19 0.52 38.24
Thunderbird 3.0.4 37.22 0.02 0.22 0.53 37.99
Foxit Reader 3.0 12.08 0.01 0.17 0.28 12.54

Table 4.3: Detection time.

Software

# of analyzed functions # of inst. of analyzed functions

Demand-driven Static Demand-driven Static
mean max total total mean max total total

Acrobat Reader 9.3.2 1.4 3 205 264,551 48.4 220 7,019 9,907,069
Firefox 3.0 1.0 1 25 63,550 34.4 158 859 3,071,548
iTunes 9.0.3 2.2 5 280 42,689 222.3 7,017 28,460 3,612,724
Opera 10.50 1.0 1 30 54,387 28.1 140 843 2,789,126
Quicktime 7.6.5 1.9 7 221 63,995 84.4 1,542 10,038 4,885,911
Safari 5.31 1.5 7 201 80,899 49.5 500 6,788 5,058,285
Seamonkey 2.0.4 1.0 1 40 79,636 30.9 125 1,236 3,840,465
Thunderbird 3.0.4 1.0 1 40 78,520 30.9 125 1,236 3,782,799
Foxit Reader 3.0 1.2 3 22 56,439 22.8 72 411 2,032,545

Table 4.4: Relative cost of slice construction.

We now discuss the evaluation of our tool’s scalability. To this end, we measure its detection

time and the efficiency of its backward slicing phase. Table 4.3 shows the detailed results of detec-

tion time. The results show that our analysis is practical and can analyze all nine large applications

within minutes. To further understand its efficiency, we compared cost of our backward slicing with

one of standard SDG-based slicing. Although we do expect to explore fewer instructions with a

demand-driven approach, we include the comparison in Table 4.4 to provide concrete, quantitative

data. For a standard SDG-based approach, one has to construct the complete SDG before perform-

ing slicing. We thus measured how many functions and instructions there are in each application

as these numbers indicate the cost of this a priori construction (cf. the two columns labeled “Static

total”). As the table shows, we achieve orders of magnitude reduction in terms of both the number

of functions and the number of instructions analyzed.
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Software
Component loadings Unsafe loadings Static reachability

Dynamic Static ∩ Dynamic Static ∩ Reachable Unknown

Acrobat Reader 9.3.2 14 111 11 2 40 1 32 7
Firefox 3.0 16 22 11 6 12 4 1 7
iTunes 9.0.3 5 54 2 3 31 1 29 1
Opera 10.50 20 28 13 9 11 4 7 0
Quicktime 7.6.5 6 61 4 2 19 1 9 9
Safari 5.31 27 104 24 17 67 15 52 0
Seamonkey 2.0.4 24 38 12 9 20 6 0 14
Thunderbird 3.0.4 25 38 11 6 20 5 0 15
Foxit Reader 3.0 6 13 1 0 6 0 6 0

Table 4.5: Static detection versus dynamic detection in Chapter 3.

Comparison with Dynamic Detection

To evaluate our tool’s code coverage, we compare unsafe loadings detected by the static and dy-

namic analyses. In particular, we detected unsafe component loadings with the existing dynamic

technique [94] and compared its results with our static detection. To collect the runtime traces, we

executed our test subjects one by one with relevant inputs (e.g., PDF files for Acrobat Reader) and

collected a single trace per application. Please note that the dynamically detected unsafe loadings

are only a subset of all real unsafe loadings.

In this evaluation, we focus on application-level runtime unsafe loadings as loadtime dependent

components are loaded by OS-level code. Table 4.5 shows the detailed results. We see that our

static analysis can detect not only most of the dynamically-detected unsafe loadings but also many

additional (potential) unsafe loadings, most of which we believe are real and should be fixed. Next

we closely examine the results.

Static-only Cases.

Our static analysis detects many additional potential unsafe loadings. We carefully studied

these additional unsafe loadings manually. In particular, we analyzed whether they are reachable

from the entry points of the programs, i.e., whether there exist paths from the entry points to the

call sites of the unsafe loadings in the programs’ interprocedural CFGss (ICFGs). In this analysis,

we consider the main function of an application and the UI callback functions as the entry points

of the application’s ICFG. Table 4.5 shows our results on this reachability analysis. Note that those

loadings marked as “Unknown” may still be reachable as it is difficult to resolve indirect jumps
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in binary code, so certain control flow edges may be missing from the ICFGs. All the statically

reachable unsafe loadings lead to component-load hijacking if 1) the corresponding call sites are

invoked and 2) the target components have not been loaded yet.

Although it is difficult to trigger the detected call sites dynamically (due to the size and com-

plexity of the test subjects), we believe most of the call sites are dynamically reachable as dead-code

is uncommon in production software. As a concrete example of unsafe loading, Foxit Reader 3.0

has a call site for loading MAPI32.DLL, which is invoked when the current PDF file is attached to

an email message. This loading can be hijacked by placing a file with the same name MAPI32.DLL

into the directory where Foxit Reader 3.0 is installed.

Dynamic-only Cases. According to Table 4.5, our technique misses a few of the dynamically

detected unsafe loadings. We manually examined all these cases, and there are two reasons for this:

system hook dependency and failed emulation, which we elaborate next.

First, Microsoft Windows provides a mechanism to hook particular events (e.g., mouse events).

If hooking is used, a component can be loaded into the process to handle the hooked event. This

component injection introduces a system hook dependency [4]. Such a loading may be unsafe, but

since it is performed by the OS at runtime and is not an application error, we do not detect it.

Second, our extraction phase may miss some target component specifications due to failed em-

ulations. If this happens, we may miss some unsafe loadings even if their corresponding call sites

are found. Emulation failures can be caused by the following reasons.

External Parameters. A target specification may be defined by a parameter of an exported func-

tion, which is not invoked. For example, suppose that a function foo exported by a component

A loads a DLL specified by foo’s parameter. If foo is not invoked by A, the parameter’s concrete

value will be unknown. One may mitigate this issue by analyzing the data flow dependencies among

the dependent components. However, such an analysis does not guarantee to obtain all the target

specifications, because the exported functions are often not invoked by the dependent components.

Uninitialized Memory Variables. The slices may have instructions referencing memory variables

initialized at runtime. In this case, our slice emulation may be imprecise or fail. To address this

problem, it is necessary to extract the sequence of instructions from the dependent components that

initialize these memory variables and emulate the instructions before slice emulation. Although it
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is possible to analyze memory values, such as the Value Set Analysis (VSA) [123], it is difficult to

scale such analysis to large applications.

Imprecise Inferred Function Prototypes. Our technique infers function prototypes by analyzing

parameters passed via the stack. However, function parameters may be passed via other means such

as registers. For example, the fastcall convention uses ECX and EDX to pass the first two param-

eters. Therefore, when function parameters are passed through unsupported calling conventions, the

inferred function prototypes may omit parameters that determine the new slicing criteria. For ex-

ample, suppose that we extract a context-sensitive sub-slice s from a function foo, and ECX is used

as a parameter variable of s. In this case, we do not continue the backward slicing phase, because

the inferred prototype does not contain ECX. Although imprecisely inferred function prototypes may

lead to emulation failure, our results show that this rarely happens in practice—we observed only

14 cases out of a total of 213.

Unknown Semantics of System Calls. Detailed semantics of system calls is often undocumented,

and sometimes even their names are not revealed. When we encounter such system calls, we cannot

analyze nor emulate them. When information of such system calls becomes available, we can easily

add analysis support for them.

Disassemble Errors. Our implementation relies on IDA Pro to disassemble binaries, and some-

times the disassemble results are incorrect. For example, IDA Pro sometimes is not able to disas-

semble instructions passing parameters to call sites for delayed loading. Such errors can lead to

imprecise slices and emulation failures.

4.5 Related Work

We survey additional related work besides the one on dynamic detection of unsafe loadings [94],

which we have already discussed.

Our technique performs static analysis of binaries. Compared to the analysis of source code,

much less work exists [5,13,14,35,37,90,92,123,137]. In this setting, Value Set Analysis (VSA) [13,

123] is perhaps the most closely related to ours. It combines numeric and pointer analyses to

compute an over-approximation of numerical values of program variables. Compared to VSA, our
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technique focuses on the computation of string variables. It is also demand-driven and uses context-

sensitive emulation to scale to real-world large applications.

Starting with Weiser’s seminal work [157], program slicing has been extensively studied [143,

162]. Our work is related to the large body of work on static slicing, in particular the SDG-based

interprocedural techniques. Standard SDG-based static slicing techniques [5, 23, 66, 119, 124, 134]

build the complete SDGs beforehand. In contrast, we build control- and data-flow dependence in-

formation in a demand-driven manner, starting from the given slicing criteria. Our slicing technique

is also modular because we model each call site using its callee’s inferred summary that abstracts

away the internal dependencies of the callee. In particular, we treat a call as a non-branching instruc-

tion and approximate its dependencies with the callee’s summary information. This optimization

allows us to abstract away detailed data flow dependencies of a function using its corresponding

call instruction. We make an effective trade-off between precision and scalability. As shown by

our evaluation results, function prototype information can be efficiently computed and yield precise

results for our setting.

Our slicing algorithm is demand-driven, and is thus also related to demand-driven dataflow anal-

yses [67,122], which have been proposed to improve analysis performance when complete dataflow

facts are not needed. These approaches are similar to ours in that they also leverage caller-callee

relationship to rule out infeasible dataflow paths. The main difference is that we use a simple pro-

totype analysis to construct concise function summaries instead of directly traversing the functions’

intraprocedural dependence graphs, i.e., their PDGs. Another difference is that we generate context-

sensitive executable program slices for emulation to avoid the difficulty in reasoning about system

calls.

As we discussed earlier, instead of emulation, symbolic analysis [85, 130] could be used to

compute concrete values of the program variables. However, symbolic techniques generally suffer

from poor scalability, and more importantly, it is not practical to symbolically reason about system

calls, which are often very complex. The missing implementation for undocumented system calls

is the challenge for emulation, while for symbolic analysis, complex system call implementation

is an additional challenge. We introduce the combination of slicing and emulation to address this

additional challenge. Our novel use of context-sensitive emulation provides a practical solution for

computing the values of program variables.
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4.6 Conclusion and Future Work

We have presented a practical static binary analysis to detect unsafe loadings. The core of our

analysis is a technique to precisely and scalably extract which components are loaded at a particular

loading call site. We have introduced context-sensitive emulation, which combines incremental and

modular slice construction with the emulation of context-sensitive slices. Our evaluation on nine

popular Windows application demonstrates the effectiveness of our technique. Because of its good

scalability, precision, and coverage, our technique serves as an effective complement to dynamic

detection [94]. For future work, we would like to consider two interesting directions. First, because

unsafe loading is a general concern and also relevant for other operating systems, we plan to extend

our technique and analyze unsafe component loadings on Unix-like systems. Second, we plan to

investigate how our technique can be improved to reduce emulation failures.
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Chapter 5

Automatic Detection of Insecure

Component Usage

5.1 Introduction

Component-based development has been a major paradigm for engineering software. In particular,

a client application can perform desired functionalities by invoking interface calls of a component.

This paradigm allows better code reuse and makes software development more productive. For

example, Trident [145], a browser layout engine developed by Microsoft, has been used in IE and

many other Windows applications.

Although component reuse has significant benefits, it may lead to security vulnerabilities if

a component is not used properly in its client software. The following example, which we first

discovered through a manual examination, inspired this research. IE 9 enables an XSS filter by

default [71]. However, IE-based browsers, such as IE Tab, use the same browser components as IE,

but do not enable the XSS filter. This insecure component usage makes these IE-based browsers

vulnerable to XSS attacks. As this example shows, insecure component usage can cause serious

vulnerabilities in component-based software. However, this problem has not been much explored.

Previous work on component security has focused on designing and developing frameworks for

secure component usage [18,61,62,88,139,153], detection of insecure components [15,41,63,118],

and surveys on component security issues [40, 58].
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In this chapter, we present a differential analysis framework [104] to detect and analyze insecure

component usage in component-based software. Here is the key idea behind our framework. Sup-

pose that two applications, a reference A (which we assume to be correct and secure w.r.t. component

usage) and a test subject B, reuse components that check security policies to block malicious activ-

ities. If A and B configure or evaluate the policies inconsistently, B may have unprotected runtime

execution. In the XSS filter example earlier, IE acts as the reference, and IE Tab uses URLMON.dll

insecurely because it neither configures the built-in security policies for XSS filter nor utilizes them

to block XSS attacks.

To realize our framework, there are two main technical challenges: 1) how to extract the con-

figurations of security policies maintained by a component, and 2) how to detect potential insecure

component usage of a client software.

Extracting Policy Configurations. To extract a policy configuration, we monitor the writes to

component memory space that potentially stores security policy configurations. The memory writes

provide us with the following important information: 1) instructions that configure relevant security

policies, 2) locations of the buffers to store the policies, and 3) concrete configuration data. For

example, URLMON.dll maintains a memory buffer in its global data region to store the URL action

policies. IE configures the policies via memory writes.

To check a security policy, an application retrieves its configuration data from the relevant mem-

ory buffer and uses the data for comparison. In this case, if a reference and a test subject configure

the same security policy in an inconsistent manner, the comparison results are different, making

them take different execution paths. Based on this idea, we define missing and incorrect configura-

tions that can lead to insecure component usage.

A missing configuration corresponds to the case where the reference only configures and checks

a particular set of security policies. Thus, the test subject is vulnerable to attacks that can be blocked

by these policies. The XSS filter example belongs to this category. An incorrect configuration

corresponds to the case where both the reference and the test subject configure and check a particular

set of security policies but their different configuration data cause inconsistent subsequent execution

paths. For example, while IE enables FEATURE HTTP USERNAME PASSWORD DISABLE, IE Tab does

not. The configuration of this security policy is checked by both IE and IE Tab at runtime, but
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the inconsistent configuration data lead them to behave differently. Specifically, IE Tab allows user

names and passwords in a URL address, leading to potential attack vectors for phishing [79]. We

provide a detailed analysis of this issue in Section 5.2.

Detecting Inconsistent Policy Configurations. As we discussed earlier, the inconsistent config-

uration of a security policy leads to inconsistent subsequent execution patterns. For detection, we

capture control flows triggered by the configuration data from the reference and the test subject at

runtime and compare them. To capture control flow information, we determine conditional branches

whose evaluations are potentially affected by the configuration data via static binary analysis and

capture information regarding whether or not each conditional branch has been taken at runtime.

From these observations, we design our differential analysis framework as a three-phase anal-

ysis: (P1) detecting potential policy evaluation, (P2) extracting policy-related execution, and (P3)

detecting inconsistent policy configurations.

P1: Detecting Potential Policy Evaluation. This phase detects information related to policy eval-

uation from dynamic execution of the reference and static properties of a target component. To this

end, we detect instructions that read data from component memory space at runtime. Afterward,

we perform static forward data slicing to detect conditional jumps that can be affected by the data.

If such conditional jumps exist, the data can control the subsequent execution paths at runtime.

Thus, the detected instructions potentially read the configuration data and evaluate relevant security

policies. We use this information to perform subsequent analyses scalably.

P2: Extracting Security Policy-related Execution. This phase extracts software execution related

to the policy configuration and evaluation performed by the reference and the test subject. To

capture the policy configuration, we detect memory writes to component memory space at runtime.

Regarding policy evaluation, we log the memory reads and the comparison results on the conditional

jumps detected in the previous phase.

P3: Detecting Inconsistent Policy Configurations. This phase analyzes inconsistency of policy-

controlled executions between the reference and the test subject to detect missing and incorrect

configurations. In particular, we determine whether or not the conditional jumps relevant to a par-

ticular security policy are evaluated consistently.
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For evaluation, we implemented our framework for Windows applications and applied it to de-

tect inconsistent policy configurations in reusing popular software components. Our results show

that inconsistent policy configurations happen frequently and lead to security vulnerabilities. In

particular, we detected several insecure usages of the browser components that disable default pro-

tection mechanisms of IE 9. Our framework can also precisely locate root causes of the detected

insecure usages, which can help developers fix any detected vulnerabilities and securely reuse soft-

ware components. The results also show that our framework is scalable. For example, it took less

than 15 minutes total to detect inconsistent policy configurations in reusing URLMON.dll across all

six analyzed browsers.

This chapter makes the following main contributions:

• We introduce and formalize insecure component usage in terms of inconsistent configurations

and evaluations of security policies.

• We develop the first practical framework based on differential analysis to detect inconsistent

policy configurations. Our framework works directly on software binaries; source code is not

needed.

• We implement our framework as a practical tool and evaluate its effectiveness by detecting

and analyzing insecure usage of widely-used components in real-world software.

The remainder of this chapter is structured as follows. We describe our differential analysis

framework for detecting inconsistent policy configurations in Section 5.2. Section 5.3 discusses

implementation details of our framework for Microsoft Windows applications. We then evaluate

effectiveness of our framework by using it to detect and analyze insecure component usage (Sec-

tion 5.4). Finally we survey related work (Section 5.5) and conclude (Section 5.6).

5.2 Detection Framework

In this section, we present a framework to detect inconsistent policy configurations defined in Sec-

tion 2.2.
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Figure 5.1: Detection framework.

5.2.1 Overview

To detect inconsistent policy configurations formalized in Definitions 2.2.6 and 2.2.7, it is necessary

to analyze how security policies are set and enforced in code. However, it is challenging, because 1)

most components are distributed as binaries, and 2) it is difficult to know which memory locations

are used for security policy configuration and evaluation. To address this issue, at the high-level,

we design our framework as two phases: runtime extraction and offline detection. In the runtime

extraction phase, we instrument runtime executions of a reference and a test subject to capture secu-

rity policy-related executions (Definition 2.2.4). We perform an offline analysis to detect insecure

component usage in the captured executions.

Although the high-level approach appears straightforward, the main challenge is how to perform

scalable and precise analysis. For example, IE performs millions of memory accesses at runtime,

and it is practically infeasible to instrument and analyze all of them.

To address this scalability issue, our framework uses the following optimizations: 1) instru-

menting target component execution, 2) filtering irrelevant memory accesses, and 3) performing

preliminary analysis on policy evaluation.

Instrumenting Target Component Execution. Instrumenting all instructions executed by an ap-

plication at runtime suffers from poor scalability. To mitigate this issue, our framework only instru-

ments components of interest at runtime, because the configuration state maintained by the compo-

nents is generally accessed by their code. Suppose that the configuration state M is maintained by

a component A. When other components access M , they generally invoke relevant interface calls

of A that access M .

It is possible that other components can directly access M . However, this cannot be used in
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component-based software development because the location of M cannot be reliably resolved. For

example, the base addresses of the components loaded at runtime often change [132, 159], making

locations of their global data regions inconsistent.

Filtering Irrelevant Memory Accesses. As we discussed, capturing all accesses to arbitrary mem-

ory space is not feasible. To mitigate this issue, we filter the memory accesses that are unlikely to

be relevant to security policy-related executions.

Our key insight is that the code executed by any thread can access the configuration state main-

tained by a component at runtime. Suppose that two different threads configure and evaluate a

particular security policy, respectively. In this case, both threads should access the same memory

location. Otherwise, integrity issues on the configuration data would arise. Based on this observa-

tion, we filter the logging of accesses to thread-specific memory space such as the stack.

Performing Preliminary Analysis on Policy Evaluation. According to Figure 2.2, policy evalua-

tions are conducted by 1) reading data from the configuration state and 2) determining whether or

not the data is matched with a specified operand. In order to detect inconsistent policy configurations

(Section 2.2.2), it is necessary to capture the results of policy evaluations at runtime. However, it

again suffers from scalability problems, because the policies are generally evaluated by conditional

jumps such as JNE, which are executed frequently to determine program flow at runtime. Thus,

instrumenting all conditional jumps at runtime is not feasible in practice.

To address this problem, we perform a preliminary analysis to detect those conditional jumps

affected by data reads from the configuration state. Our observation is that the evaluation of the

conditional jumps are affected by the data reads from the configuration state (see Figure 2.2). We

detect these conditional jumps via dynamic and static binary analyses. Specifically, we dynamically

capture the memory reads from the configuration state under a given workload. Then we extract the

conditional jumps potentially affected by them via static binary analysis. We use information on the

memory reads and the conditional jumps to reduce logging of policy evaluations in the subsequent

phase.

Based on these optimizations, we present our framework in Figure 5.1. The following sections

illustrate details of each phase in our framework using a running example. In particular, we de-

tect insecure component usage to allow potentially malicious URL addresses in IE-based browsers.
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...

i1 cmp _GlobalProcessDisableUserPswdForHttp, 0

i2 jz i6

i3 xor eax, eax

i4 inc eax

i5 call GetUrlAddress(*,*,*,*,*,*,*,*,*,eax,*,*)

...

i6 xor eax, eax

i7 jmp i5

...

(a) Evaluation.

...

i1 push offset g_FEATURE_HTTP_USERNAME_PASSWORD_DISABLE

i2 call _CoInternetIsFeatureEnabledInternal

i3 dec eax

i4 neg eax

i5 sbb eax, eax

i6 neg eax

i7 mov _GlobalProcessDisableUserPswdForHttp, eax

...

(b) Configuration.

Figure 5.2: Policy-related code example.

In the example, we access http://www.microsoft.com as the workload for detection and use

WININET.dll as a target component.

5.2.2 Instrumentation Point Analysis

Preliminary Analysis on Policy Evaluation. As discussed, instrumenting all memory reads and

conditional jumps is not feasible. To address this problem, we detect them in advance and instru-

ment their executions in the subsequent analysis. Our key observation is that there exists data flow

between the memory reads and the conditional jumps. According to Figure 2.2, the policy evalua-

tion is affected by the configuration data read. Based on this, we locate the instructions relevant to

the policy evaluation via dynamic and static program analyses. In particular, we 1) dynamically in-

strument the execution of target components to detect reading data from the configuration state and

2) perform static forward data slicing w.r.t. the detected memory reads to locate relevant conditional

jumps. Note that we consider that heap or global data regions of target components can contain the

configuration state, because they are not thread-specific (Section 5.2.1).

Figure 5.2(a) shows an example of policy-controlled execution by WININET.dll. Specifically,
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i1 reads the configuration data GlobalProcessDisableUserPswdForHttp stored in the global

data region of WININET.dll and determines whether or not the data is equal to zero. The evaluation

result affects the invocation of the GetUrlAddress function at i5 by deciding one of its parameters,

i.e., the value of eax.

To detect the instructions relevant to policy evaluation, we capture the instructions to read data

from the global data region in WININET.dll during the workload via dynamic binary instrumen-

tation (i.e., i1). Then we extract the static forward slice w.r.t. the data read by i1. In this case,

the slice contains i1 and i2, because the cmp instruction at i1 sets ZF according to the comparison

result, and the jz instruction takes ZF to determine the next instruction to execute.

Once the slices w.r.t. the detected memory reads are extracted, we analyze them to locate the

instructions relevant to the policy evaluation. In particular, suppose that S is a forward data slice

w.r.t. a memory read instruction I . In this case, we consider I relevant to the policy evaluation only

if S contains conditional jumps. This is because policy evaluations are generally performed by both

memory reads and relevant conditional jumps (see Figures 2.2 and 5.2(a)). Based on this idea, we

determine the memory reads and the conditional jumps in its forward slice as the instrumentation

points in the subsequent analysis.

Note that we only perform this preliminary analysis for the reference software. This is because

our framework does not detect security policies configured only in the test subject (Definitions 2.2.6

and 2.2.7). To detect them, we swap the test subject with the reference and repeat the analysis.

Extracting Interface Entries. As we have discussed, when a component A maintains the con-

figuration state M , other components generally access M by invoking interface calls exported by

A. Thus, information on the invoked interface calls provides us with detailed insight on insecure

component usage.

To capture the information, our framework dynamically instruments the entry points of the inter-

face calls exported by the target components. To this end, it is necessary to determine the interface

entries as the instrumentation points. However, it is difficult to locate them at runtime, because the

instructions at the entries are also frequently executed by non-entry code at runtime. For example,

while the push instruction is often executed at the entry point as part of a function prologue, it

is also used for parameter passing. To address this problem, we perform static binary analysis to
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extract the interface call entries and pass them into the subsequent analysis as the instrumentation

points.

Our key observation is that the addresses of the interface call entries are generally stored in

data tables that can be read from outside of the component. Because components are developed as

position-independent code, they generally support memory chunks that can be accessed by other

components to resolve the virtual addresses of desired interface calls at runtime. For example, the

PE [106] and ELF [49] formats have Export Table and Procedure Linkage Table to provide dynamic

linking, respectively. We statically analyze data reference to the entries of all functions in the target

components. We consider the function entries that have such data references as the instrumentation

points to capture interface call invocations.

5.2.3 Runtime Trace Extraction

This phase extracts detailed information on security policy-related executions of the target compo-

nents during the workload run by both the reference and the test subject.

In particular, we instrument the runtime execution of the target components to record the fol-

lowing: the policy configurations, their evaluations, and the invocations of the interface calls to the

target components. We store the captured information to files for use in our offline analysis.

Policy Configuration. According to Definition 2.2.2, an application specifies security policies via

memory writes to its configuration state. To capture policy configurations, we instrument the run-

time information of the target components that perform data writes to non-thread specific memory

regions (see Section 5.2.1). During instrumentation, we log the following information: addresses of

the memory writes, values of the data written, and addresses of the memory written.

Figure 5.2(b) shows a policy configuration example by WININET.dll with the given work-

load. In particular, the code operates as follows. First, i1-i6 initialize eax by determining whether

FEATURE HTTP USERNAME PASSWORD DISABLE is enabled. Next i7 writes the value of eax to a

memory buffer GlobalProcessDisableUserPswdForHttp in the global data region of WININET.dll.

To capture the security policy configuration, our framework instruments the execution of i7 and logs

the following information: address of i7, value of the eax, and address of GlobalProcessDisableUserPswdForHttp.

Policy Evaluation. To capture information on policy evaluations, our framework only instruments
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executions of those instructions detected by the preliminary analysis from the previous phase. Note

that this allows us to significantly reduce the instrumentation points for capturing policy evaluations

(see Section 5.2.1).

Regarding the information to be captured, consider the following code execution for evaluating

a policy: an instruction I reads a dataD from a non-thread specific memory region Mem , andD de-

termines whether a conditional jump Cond is taken or falls through. In this case, our framework logs

1) the address of I , 2) the value ofD, 3) the address of Mem , 4) the address of Cond , and 5) the eval-

uation result of Cond (i.e., taken or fall-through). For example, when instrumenting Figure 5.2(a),

we capture the address of i1, the value of GlobalProcessDisableUserPswdForHttp, the ad-

dress of the memory read, and the evaluation result of i1.

Interface Call Entries. We capture invocations of the interface calls to the target components

by instrumenting their statically-detected entry points. However, it is possible for a component

to invoke its interface call at runtime. To detect this, we analyze the return addresses of invoked

interface calls, which are stored on the top of the stack. In particular, suppose that we instrument

an interface call entry f of a component C. In this case, we log f only if the return address of f is

not part of the memory space corresponding to C. Based on this approach, we can precisely detect

invocations of the interface calls to target components at runtime.

5.2.4 Offline Detection

From the previous analyses, we obtain the execution traces of the target components by the ref-

erence and the test subject under the given workload. Each trace contains a sequence of detailed

information for each software with the following runtime information: 1) the policy configurations,

2) the policy evaluations, and 3) the invocations of the interface calls on the target components. Our

offline phase detects inconsistent policy configurations from the traces as follows:

Extracting Policy Configurations and Their Evaluations. For each trace, we extract information

on the configuration and the evaluation for each security policy. To this end, we first track the

memory access patterns for each captured data address. For example, i7 in Figure 5.2(b) writes a

configuration data to GlobalProcessDisableUserPswdForHttp, and i1 in Figure 5.2(a) reads

the data. Based on this memory access pattern, we can infer the instructions for configuring security
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policies and reading their configuration data.

Once the instructions that read the configuration data are located, we can extract the evaluation

results of their relevant conditional jumps. In particular, we sequentially search for the relevant

conditional jumps, starting from the instructions, until the next read access of the configuration data

is found. Next we retrieve their evaluation results captured during the instrumentation. Note that the

result of the preliminary analysis provides us with the conditional jumps relevant to the instructions.

For example, because i1 affects the evaluation of i2 (see Section 5.2.2), i2 can be located by

checking the instructions that follow i1 in the trace.

Detecting Inconsistent Policy Configurations. The previous analysis step provides us with the

policy configurations and their evaluation results for the reference and the test subject. We use

this information to detect inconsistent policy configurations formalized in Definitions 2.2.6 and

2.2.7. Missing configurations are detected by finding those policy configurations and the associ-

ated evaluations that are only present in the reference, and incorrect configurations are detected

by finding inconsistent evaluations of the relevant conditional jumps. In particular, a security pol-

icy is configured incorrectly in the test subject if the following conditions are satisfied: 1) both

the reference and the test subject configure the same security policy and read its configuration

data; 2) the policy evaluation results on the data are different. For example, while IE Tab takes

a jump at i2 in Figure 5.2(a), IE just continues the execution. This inconsistency shows that IE Tab

does not enable FEATURE HTTP USERNAME PASSWORD DISABLE whose configuration is stored in

WININET.dll. This incorrect configuration makes IE Tab allow user names and password in URL

address, which is blocked by IE [79]. Thus, IE Tab misuses WININET.dll w.r.t. the security policy

FEATURE HTTP USERNAME PASSWORD DISABLE, making it vulnerable to phishing attacks [79].

Helping Developers to Securely Use Components. Our framework can extract interface calls for

policy configurations and their evaluations. Because we capture all invocations of the interface calls

to the target components, we can infer which interface calls perform policy configurations or their

evaluations. For example, IE Tab invokes the InternetSetOptionA function to execute i7 in

Figure 5.2(b) for policy configuration.

This interface-level information can help developers to use components securely. For exam-

ple, IE configures its policy by invoking the InternetQueryOptionW function, leading to its



100

correct policy configuration. Although both IE and IE Tab evaluate the policy while invoking

HttpSendRequestW, the interface calls that configure the policy are different. This information

can guide developers of IE Tab to securely use WININET.dll.

5.3 Implementation

To evaluate our technique, we have implemented it for Microsoft Windows applications. This sec-

tion presents details on our implementation.

Overview. According to Figure 5.1, our framework consists of three phases: 1) instrumentation

point analysis, 2) runtime trace extraction, and 3) offline detection. The main components for the

first two phases are dynamic binary instrumentation and static binary analysis. To this end, we

use Pin [100] for runtime instrumentation and have developed plugins for IDA Pro [69] (a state-

of-the-art commercial binary disassembler) by using IDAPython [70] for binary analysis. When

instrumenting each policy-related execution, we record not only the information of the captured

instructions but also process and thread identifiers at runtime. This makes our offline analysis inde-

pendent of thread interleavings. For the offline phase, we have developed Python scripts to analyze

the traces obtained from the earlier phases.

Runtime Trace. As we discussed in Section 5.2.1, an application performs many memory accesses

and conditional jumps. Although we filter those irrelevant ones, the number of captured instructions

is still large. For example, when IE accesses the Google web page, we dynamically captured a

large number (332,756) of memory accesses and conditional jumps. To store this large amount

of information efficiently, we dump the captured information as binary data. As an example, we

designed a data structure to store conditional jumps that contains the following information: an

identifier for the conditional jump, process and thread identifiers, the address of the conditional

jump, and its evaluation result. When capturing this information on a conditional jump, we fill

the data structure and stores it as binary data of twenty bytes. Using this optimization, we can

effectively analyze the large captured information in practice.

Instrumenting Component Code Execution. Our framework only instruments executions of tar-

get components at runtime. To this end, we dynamically instrument the loading of each image and
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Figure 5.3: Memory address space of loaded target component.

determine whether or not the image is one of the target components. If so, we use the base and end

addresses of the image (see Figure 5.3(a)) to determine the instructions to instrument. In particu-

lar, we instrument executions of those instructions whose virtual addresses are part of the memory

spaces of the target components. Note that a target component is loaded before its instructions are

executed.

Filtering Irrelevant Memory Accesses. To capture policy configurations and evaluations, we fo-

cus on memory accesses to the global data region of a target component. To this end, when the

target component is loaded, we extract the base and end addresses of its global data region (see Fig-

ure 5.3(a)). We use this information to detect those instructions that access the global data region.

Logging Virtual Address Information. Our framework captures information on virtual addresses

for use by our offline detection. For example, we log information on the virtual addresses that

read or write the configuration data. However, we cannot use the virtual address alone for offline

detection because the same virtual address may not refer to the same location of interest in the target

component. For example, suppose that a componentC is loaded by the reference and the test subject

at the memory spaces starting with different base addresses [132,159]. In this case, the same virtual

address in the offline phase does not refer to the same instructions or memory buffers.

To address this issue, when capturing a virtual address at runtime, we compute its relative offset
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from the base address of the loaded target component (e.g., Figure 5.3(b)) and log it. Using this

approach, we can precisely extract the virtual address information independent of the base address

of the loaded target component.

5.4 Empirical Evaluation

In this section, we evaluate how effective our technique is for detecting and analyzing insecure

component usage in popular Windows applications. We show that 1) our framework can auto-

matically detect inconsistent policy configurations in real-world software, and inconsistent policy

configurations are prevalent and constitute a general security and reliability issue (Section 5.4.1);

2) our in-depth study of selected inconsistencies reveal new, serious vulnerabilities in widely-used

software (Section 5.4.2); and 3) our framework can be effectively used for root-cause analyses to

understand the detected inconsistent policy configurations and vulnerabilities (Section 5.4.3).

5.4.1 Prevalence of Inconsistent Policy Configurations

To evaluate our framework, we have first applied it to detect inconsistent policy configurations in

real-world software. In particular, we have analyzed applications using widely-used components

(such as the IE browser components and the Flash Player) and evaluated how our chosen refer-

ence programs and test subjects differ in terms of policy configurations under various workloads.

Table 5.1 gives the detailed information, in particular how many detected inconsistent policy con-

figurations in the test subjects w.r.t. their respective reference programs and workloads. Our results

show that inconsistent policy configurations frequently occur in real-world, widely used applica-

tions. Note that all the reported inconsistencies are real and detected fully automatically by our tool

by capturing and comparing inconsistent security policy evaluation patterns.

According to Definition 2.2.9, inconsistent policy configurations can lead to insecure compo-

nent usage. Our framework automatically detects inconsistent policy configurations. A detailed

analysis is needed to understand how security relevant they are. We perform such a detailed analy-

sis of insecure component usages of major IE components [145] (i.e., MSHTML.dll, URLMON.dll,

and WININET.dll) in real-world IE-based browsers. We consider IE as a reference and the fol-

lowing browsers as test subjects: IE Tab 2 [72], Lunascape 6 [101], Slim Browser 5.01 [135],
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Reference Workload Component Test subject Inconsistent policy configuration Total
Missing Incorrect

Internet Explorer 9

connect to microsoft.com

URLMON.dll

IE Tab 2 176 28 204
Lunascape 6 167 33 200
Slim 5.01 197 36 233
Green 5.8 188 26 214
WebbIE 3.14 175 27 202
Enigma 190 25 215

WININET.dll

IE Tab 2 215 18 233
Lunascape 6 272 21 293
Slim 5.01 229 19 248
Green 5.8 235 14 249
WebbIE 3.14 217 11 228
Enigma 187 20 207

login to gmail.com

URLMON.dll

IE Tab 2 43 12 55
Lunascape 6 81 10 91
Slim 5.01 45 16 61
Green 5.8 83 12 95
WebbIE 3.14 112 13 125
Enigma 33 17 50

WININET.dll

IE Tab 2 151 4 155
Lunascape 6 102 5 107
Slim 5.01 148 3 151
Green 5.8 138 6 144
WebbIE 3.14 153 3 156
Enigma 128 3 131

MSHTML.dll

IE Tab 2 16 1 17
Lunascape 6 16 1 17
Slim 5.01 14 1 15
Green 5.8 15 1 16
WebbIE 3.14 16 1 17
Enigma 16 1 17

Adobe Flash Player 11

open an ActionScript file Flash11c.ocx

RealPlayer 14 40 8 48
Winamp 5 Video 32 7 39
IrfanView 4.27 plugin 21 3 24
Microsoft PowerPoint 2010 (embedded SWF) 18 3 21
Gom Player 2 11 2 13
PotPlayer 1.5 24 6 30

open a Flash Video file Flash11c.ocx

RealPlayer 14 38 6 44
Winamp 5 Video 44 6 50
IrfanView 4.27 plugin 34 3 37
Microsoft PowerPoint 2010 (embedded SWF) 30 7 37
Gom Player 2 22 2 24
PotPlayer 1.5 36 8 44

open a Flash Audio file Flash11c.ocx

RealPlayer 14 94 4 98
Winamp 5 106 2 108
IrfanView 4.27 plugin 26 1 27
PotPlayer 1.5 32 1 33

QuickTime Player 7

open a QuickTime MOV file QuickTime.qts

Internet Explorer 9 97 10 107
Mozilla Firefox 7 98 8 106
IrfanView 4.27 plugin 98 24 122
RealPlayer 14 5 29 34

open a QuickTime VR file QuickTime.qts

Internet Explorer 9 1 18 19
Mozilla Firefox 7 2 27 29
IrfanView 4.27 plugin 505 0 505
RealPlayer 14 2 40 42

Windows Live Mail 2011 render an HTML email

URLMON.dll
DreamMail 4 16 2 18
IncrediMail 10 3 13

WININET.dll
DreamMail 4 3 2 5
IncrediMail 3 0 3

MSHTML.dll
DreamMail 4 10 0 10
IncrediMail 10 0 10

Microsoft WordPad open an RTF file msftedit.dll Jarte 6 6 12

Table 5.1: Inconsistent policy configurations in test subjects w.r.t. given workloads.
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Green Browser 5.8 [60], WebbIE 3.14 [156], and Enigma Browser [48]. The tested Trident-based

browsers are in wide use. For example, IE Tab is among the most popular plugins for both Firefox

and Chrome, and has millions of downloads and users [73, 74, 144], and Lunascape has more than

20 million downloads and millions of users.

We next describe the new security vulnerabilities we discovered. We have reported these prob-

lems to the affected software vendors, and Lunascape has already acknowledged our findings. Since

we were able to manually trigger all these reported vulnerabilities, they constitute real, and some of

which very serious, security concerns. We also provide further discussions in Section 5.4.5.

5.4.2 New Vulnerabilities Discovered

As discussed in Section 5.2, we can utilize our framework to detect the security vulnerability where

the test subjects allow an insecure URL scheme that can be exploited by phishing attacks [79]. This

section illustrates the effectiveness of our framework by detecting additional security vulnerabilities.

Our high-level approach is as follows. We first capture inconsistent policy configurations from

a given workload. Next we analyze them for detecting potential insecure component usage and

then manually trigger them for validation. For evaluation, we consider the accesses to the URLs

for Microsoft homepage and gmail account as workloads. Table 5.1 shows the inconsistent policy

configurations our tool detected in the test subjects under the given workloads. Next we describe

the security problems caused by them and our analysis approach.

Insecure Configuration of URL Security Zone

As a protection mechanism, IE categorizes URL namespaces into five types of URL security zones

(i.e., Local Intranet, Trusted Sites, Internet, Restricted Sites, and Local Machine). Each zone has a

different trust level [2] to determine whether or not a URL action is allowed. For example, while

Internet zone allows the execution of script code, Restricted Site zone does not.

This privilege-based protection mechanism can cause security vulnerabilities. Suppose that a

web page on a particular zone accesses resources on less restrictive zones. In this case, when access-

ing the web page, privilege escalation happens, called Zone Elevation. This security vulnerability

has been exploited by real-life attacks1 based on Cross Zone Scripting [30]. To mitigate this issue,
1Examples include MS05-001, MS05-014, MS08-048, and CVE-2008-2281.
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...

i1 push 2 // GET_FEATURE_FROM_PROCESS

i2 push 1 // FEATURE_ZONE_ELEVATION

i3 call CoInternetIsFeatureEnabled

i4 cmp eax, 1

i5 setnz byte_6402C6C4

...

i6 cmp byte_6402C6C4, 0

i7 jz short loc_6397DAB1

...

(a) Zone elevation.

...

i1 mov edi, offset g_FEATURE_ALLOW_LONG_INTERNATIONAL_FILENAMES

i2 push edi

i3 call CoInternetIsFeatureEnabledInternal

i4 neg eax

i5 sbb eax, eax

i6 inc eax

i7 mov _GlobalAllowLongIntlFileNames, eax

...

i8 cmp _GlobalAllowLongIntlFileNames, 0

i9 jz i10

...

(b) Long filename handling.

Figure 5.4: Policy configuration and evaluation.

IE blocks the Zone Elevation [81]. However, the test subjects do not block it and are vulnerable to

these attacks. We next describe how to use our framework to detect these security vulnerabilities in

the test subjects.

Under the gmail workload, MSHTML.dll stores the configuration of the security policy on Zone

Elevation and checks it at runtime. Figure 5.4(a) illustrates its detailed code and operates as follows.

First, i1–i3 invoke an interface call CoInternetIsFeatureEnabled to URLMON.dll, which de-

termines whether or not the current process enables a security policy FEATURE ZONE ELEVATION [82].

Then i4–i5 initialize the memory buffer byte 6402C6C4 based on the result of the function. The

stored value is evaluated to check the configuration of the feature in i6–i7. In particular, if the

feature is enabled, the conditional jump in i7 falls through in the execution. Otherwise, it takes the

jump.

For IE and the test subjects, we analyzed inconsistencies in i7 to detect incorrect configurations.

According to our analysis, only IE enables this feature, and the test subjects allow Zone Elevation.

To validate our findings, we developed a trusted web site having an <iframe> tag to a local HTML
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file. When accessing the site, we observed that the zone elevation is indeed only successful for the

test subjects.

In order to launch the cross zone scripting attacks, it is necessary to run script code in a local

HTML file. To block this malicious behavior, IE adopts a default protection mechanism, called

Local Machine Zone Lockdown (LMZL) [80], which configures security policies on particular URL

actions in a more restrictive manner. For example, IE disallows the execution of any script code in

local HTML files by default. During our validation, we identified that the test subjects do not adopt

LMZL, allowing the execution of local script code.

Thus, this insecure component usage can lead to serious security vulnerabilities. In particular,

the disabled FEATURE ZONE ELEVATION and the missing LMZL make the test subjects vulnerable

to cross zone scripting attacks.

Incorrect Handling of Long File Name

When IE 9 beta and the test subjects connect to microsoft.com, they configure and evaluate a secu-

rity policy on FEATURE ALLOW LONG INTERNATIONAL FILENAMES at runtime. Figure 5.4(b) illus-

trates the relevant code of WININET.dll for this policy configuration and evaluation. In particular,

i1–i6 determine whether or not the feature is enabled by invoking CoInternetIsFeatureEnabledInternal.

Later i7 writes the result to the memory buffer GlobalAllowIntlFileNames in the global data

region of WININET.dll. For evaluation, i8 reads the configuration data from the GlobalAllowIntlFileNames,

and i9 evaluates the configuration by comparing its value of the data with zero. According to our

analysis, the test subjects take the branch at i9, but IE 9 beta falls through. This shows that only IE

9 beta enables the feature.

This feature is related to the maximum path length limitation [115]. In particular, for a given

file, its fullpath length cannot be longer than 256. Suppose that IE downloads and opens a file

whose name having non-ASCII characters. In this case, the previous IE releases store the file to the

temporary folder by encoding its name based on UTF-8 [150] and opens it based on the encoded

fullpath. However, the length of its fullpath is often longer than the given limit. For example, when

a .xlsx file whose name is composed of 17 ASCII and 12 Korean characters is downloaded, the

length of its encoded fullpath is larger than 256. In this case, Microsoft Excel 2010 cannot open

the downloaded file [165]. To mitigate this issue, Microsoft released a hotfix KB982381, and recent
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IE releases changed the encoding scheme for international file names. We confirmed the detected

inconsistent configuration because the test subjects cannot download and open the .xlsx file. Thus,

incorrect policy configurations may also cause compatibility issues.

5.4.3 Root-Cause Analysis of Newly Discovered Vulnerabilities

As we discussed in Section 5.4.2, the insecure configuration of the URL zones leads to security

vulnerabilities. To mitigate this issue, it is necessary to configure and evaluate the URL action

policies in a secure manner. However, we observe that third-party developers often insecurely reuse

the IE browser components without considering this issue, which makes the test subjects disable

these protection mechanisms of IE. For example, although IE supports XSS and Phishing filters [71,

136] by default, the test subjects neither configure relevant security policies nor block the malicious

behavior. To address this problem, it is necessary to understand the root cause of this insecurity. In

this section, we present how to use of our framework to analyze insecure URL action policies.

Evaluation of URL Action Policies

According to MSDN, the evaluation of URL action policies is performed by certain interface calls

exported by URLMON.dll. For example, ProcessUrlAction [76] determines whether or not a

specified action for a particular URL is allowed. Based on this information, we reverse engineered

such interface calls to analyze the detailed process of evaluating URL action policies.

Figure 5.5 shows the high-level overview of this evaluation. In particular, URLMON.dll main-

tains URL action policies as a list of memory buffers in its global data region. Each buffer contains

information on a URL zone, a URL action (e.g., downloading signed ActiveX), and its policy (e.g.,

allow). The evaluation of the URL action policies is performed by an internal function, which is

invoked by several interface calls at runtime. In particular, the function takes three parameters (i.e.,

a URL zone, a URL action, and a policy to check) and iterates through the memory buffers to locate

the configuration whose data are matched with the parameters. If such a memory buffer is found, the

function returns true, showing that the specified URL action policies are matched with the current

configuration setting. To extract the URL action polices checked by the reference and the test sub-

jects at runtime, we can use our framework to infer the detailed information on policy evaluation.
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Figure 5.5: Evaluation of URL action policies.

This is because 1) the configuration data is stored in the global memory space, and 2) matching the

parameters with the configuration data is performed by conditional jumps affected by the data read.

Based on the above observations, we analyze the runtime traces obtained in the second phase

of Figure 5.1 to extract the evaluations performed by the reference and the test subjects. To this

end, we first locate the matched conditional jumps on the target policy. Then we traverse the traces

backward to find the consecutive conditional jumps that check the target action and URL zone.

According to Figure 5.5, the data reads for evaluating the detected conditional jumps correspond

to the target URL zone, action, and its policy. Using this approach, we can extract the evaluations

of URL action policies performed by the reference and the test subjects. In the following sections,

we discuss and analyze the security vulnerabilities caused by insecure configurations of URL action

policies.

Disabled XSS and Phishing Filters

Recent IE releases have supported the XSS filter [71] and the Phishing (or SmartScreen) filter [136]

by default. These mechanisms can effectively protect users from unknown XSS and phishing at-

tacks. We confirmed that the test subjects do not enable these protection mechanisms even though

they use the same browser components. To analyze these security vulnerabilities, we access ma-

licious web sites that trigger these filters (i.e., our workloads). Then we apply our framework to
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URL action
XSS filter (Internet) Phishing filter (Internet) Script execution (Local machine)

Reference Test subjects Reference Test subjects Reference Test subjects

URLACTION DOWNLOAD SIGNED ACTIVEX 3 7 3 7 7 7

URLACTION DOWNLOAD UNSIGNED ACTIVEX 3 7 3 7 7 7

URLACTION ACTIVEX OVERRIDE OBJECT SAFETY 3 3 3 7 7 7

URLACTION SCRIPT RUN 3 3 3 3 3 7

URLACTION SCRIPT XSSFILTER 3 7 7 7 7 7

URLACTION HTML INCLUDE FILE PATH 3 7 7 7 7 7

URLACTION SHELL VERB 3 7 3 7 7 7

URLACTION SHELL EXECUTE HIGHRISK 3 7 3 7 7 7

URLACTION COOKIES ENABLED 3 3 7 7 7 7

URLACTION BEHAVIOR RUN 3 3 3 7 7 7

URLACTION FEATURE MIME SNIFFING 3 7 3 7 7 7

URLACTION FEATURE DATA BINDING 3 3 3 3 3 7

URLACTION ALLOW APEVALUATION 7 7 3 7 3 7

URLACTION INPRIVATE BLOCKING 3 3 3 3 3 7

URLACTION ALLOW STRUCTURED STORAGE SNIFFING 7 7 3 3 7 7

Table 5.2: Evaluated URL action policies for XSS and Phishing filters / local script execution.

capture the runtime traces of the reference and the test subjects running under the given set of work-

loads. We next extract the evaluations of these URL action policies using our approach discussed

in Section 5.4.3. Table 5.2 shows the evaluated URL action policies for the Internet zone under our

workloads, where 3 represents the case that the corresponding policy has been evaluated, and 7

represents the case that the corresponding policy has not been evaluated. It is interesting that the

URL action policies relevant to XSS and Phishing filters are evaluated only when these filters are

enabled. This information helps us pinpoint the code relevant to the evaluations of the policies.

In the case of XSS filter, MSHTML.dll calls an internal function IsXssFilterEnabled, which

invokes an external function ProcessUrlAction exported by URLMON.dll, to check whether or

not the XSS filter is enabled. Considering the Phishing filter, MSHTML.dll calls an internal func-

tion CMarkup::ProcessUrlAction2 to invoke ProcessUrlActionEx2 to URLMON.dll, which

checks whether or not the Phishing filter is enabled. The information on the caller-callee relation-

ship can be a starting point for analyzing software behavior relevant to these URL actions. Note

that the top of the stack at the interface entries contains the address to be returned after invoking the

interface call.

Disabled Local Machine Zone Lockdown

As we have discussed in Section 5.4.2, the test subjects allow local script execution, making them

vulnerable to cross zone scripting attacks. To analyze this security vulnerability, we run local script

code using an external script file as workload and repeat the analysis steps in Section 5.4.3.
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Workload Target component IP analysis (s)
Runtime trace extraction (s)

Offline phase (s)IE 9 IE Tab 2 Lunascape 6 Slim 5.0.1 Green 5.8 WebbIE 3.14 Enigma

microsoft.com
URLMON.dll 73.8 169.7 264.6 792.0 865.4 354.7 444.8 288.5 152.2
WININET.dll 108.2 265.6 483.9 290.1 165.2 247.0 300.2 267.2 237.7

gmail account
URLMON.dll 201.1 249.0 197.7 221.4 159.9 258.4 238.8 188.8 518.5
WININET.dll 270.5 583.1 348.0 327.0 315.8 282.8 384.0 349.2 536.5
MSHTML.dll 1,852.2 1,902.2 1,909.2 1,774.7 1,698.6 1,462.1 1,774.2 1,436.0 59.6

XSS filter URLMON.dll 82.3 79.8 111.6 92.5 142.9 78.4 74.7 117.2 106.0

Phishing filter URLMON.dll 76.5 104.6 179.6 89.3 75.8 71.4 71.3 79.8 98.6

Local script run URLMON.dll 190.9 105.5 67.1 86.9 83.7 67.7 79.6 66.5 89.3

Table 5.3: Execution time for each analysis phase.

Table 5.2 shows the evaluated URL action policies for Local Machine during the workload.

According to our result, all test subjects execute the local script code without evaluating any se-

curity policy on its action. However, IE evaluates the security policies on the potentially ma-

licious behavior and blocks it. For example, IE blocks the execution of local script code, pro-

tecting IE from the cross zone scripting attacks. Similar to the Phishing filter case, the function

CMarkup::ProcessUrlAction2 of MSHTML.dll invokes ProcessUrlActionEx2 to evaluate the

security policy on URLACTION SCRIPT RUN at runtime.

5.4.4 Performance

Table 5.3 shows the execution time for each phase of our analysis discussed in Section 5.4.2. All

experiments were done on a Core2 Duo 2.40GHz processor with 4GB RAM. The results show that

our framework can easily scale to the analysis of real-world applications. For example, it can detect,

in about two hours, inconsistent policy configurations of the three components by the six real-world

IE-based browsers accessing a complex web sites such as microsoft.com.

Detecting insecure component usage from the gmail workload is relatively more time consum-

ing. In particular, the analysis of MSHTML.dll took about four hours. The main reasons are as fol-

lows. First, the user login is necessary to access the gmail account, and MSHTML.dll is heavily used

for this [78]. Second, when an instruction is executed, the second phase in our framework checks

whether or not the instruction is to be instrumented. Because MSHTML.dll is a large file whose size

is about 12MB, a large number of checking is necessary, even though the number of instrumented

instructions is relatively small. Despite the additional performance overhead, the analysis time for

each browser is reasonable. For example, the analysis of MSHTML.dll used by IE Tab 2 took about
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thirty minutes.

It is interesting to note that the offline analysis phase for MSHTML.dll is relatively fast. This

is because the size of the traces extracted is much smaller. For example, while the analysis on

URLMON.dll generates runtime traces of 335MB during the gmail workload, the analysis on MSHTML.dll

only generates runtime traces of 7.53 MB. The main reason is that the accesses to the global data re-

gion of MSHTML.dll is rare at runtime. For the gmail workload performed by IE Tab 2, URLMON.dll

and MSHTML.dll access their global data regions 800,120 times and 1,585 times, respectively.

5.4.5 Further Discussions and Analysis

We now further discuss two natural questions: 1) Are the other detected inconsistent policy config-

urations security relevant? and 2) How about Gecko- and WebKit-based Browsers?

Analyzing the Other Detected Inconsistencies. Our framework provides useful information on

inconsistent configurations and evaluations of security polices. As we have discussed, such infor-

mation is effective at detecting and analyzing insecure component usage. However, the detected

inconsistent executions may not all be security relevant. For example, WININET.dll maintains a

configuration of Autodial [8] in its global data region, and only IE enables it. Also, while IE ini-

tializes User-Agent String [147] whose configuration is stored in URLMON.dll, the test subjects do

not. Although these configurations are inconsistent, they may not introduce security issues for the

test subjects. However, such information can still be valuable for improving the functionalities of

the client software using the components.

To determine the importance of the detected inconsistencies, domain knowledge of the test sub-

jects is typically needed. Sometimes we are not able to determine whether or not the detected in-

consistencies may cause security vulnerabilities. For example, an internal function of URLMON.dll

takes the data stored in the global data region as a parameter, and a conditional jump is affected by

the return value of the function. We observed that IE falls through and the test subjects take the

branch at the conditional jump. Although this inconsistency may lead to a security problem, it is

difficult for us to analyze it as we do not know the precise semantics of this function.

Also, the inconsistent policy configurations detected from the non-IE components (such as

Adobe Flash Player and QuickTime Player) can also lead to security vulnerabilities. However,



112

because we lack domain-expert knowledge on these components, we have focused our analysis on

the IE components. In particular, the source code and the detailed documentation for the non-IE

components are not publicly available. On the other hand, our results have clearly demonstrated

that inconsistent policy configuration is a general concern that affects many applications.

Analyzing Gecko- and WebKit-based Browsers. Besides Trident-based browsers, Gecko- and

WebKit-based browsers, such as Firefox and Google Chrome, are also widely used. This section

analyzes and discusses their usage of the Gecko and WebKit engines.

Gecko [52] is an open source browser engine developed by Mozilla. It is used as the HTML

rendering engine by many Mozilla and third-party browsers; notable ones include Firefox, SeaMon-

key, and Lunascape [53]. Perhaps less known is that Gecko-based browsers do not reuse the same

binary Gecko components. Instead, Gecko’s source code is modified and reused. First, developers

often adapt the same source code of the engine for use in their own applications. For example, both

Firefox 5.0 and SeaMonkey 2.2 are based on Gecko 5.0, but their versions of xul.dll are modified

and different. Second, developers may choose to use different versions of the engine. For example,

Firefox 5.0 and Lunascape 6.5, the latest releases of the browsers as of July 2011, use Gecko 5.0

and 1.9.2, respectively [53]. Different versions of the same component can be significantly different.

The size of xul.dll for example has increased from 90KB to more than 13MB.

For evaluation, we chose two commonly used, security relevant Gecko components, nss3.dll

and ssl3.dll, and analyzed their usage by Firefox 5.0 (reference) and Lunascape 6.5 (test subject).

We used the same workloads as shown in Table 5.1. Our evaluation results indicate that the two

components are used consistently by Firefox and Lunascape for the given workloads.

WebKit [142] is another open source browser engine that has been used by many browsers.

Although it is well-known that both Google Chrome and Safari use WebKit, how it is used is quite

different. Chromium is an open source version of Google Chrome, and developers have adapted

the WebKit code for their own use [68]. In addition, the rendering code is not an independent

component, but part of chrome.dll, the large main executable of Google Chrome. In particular,

chrome.dll contains the code for web browsing and is over 25MB. In contrast, Safari uses WebKit

for rendering (i.e., WebKit.dll) and dynamically uses the component.
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5.5 Related Work

This section surveys closely related work, which we divide into four categories: bug detection via

inconsistent software behavior detection, detection of component insecurity, framework for secure

component usage, and detection of violated browser policies.

This section surveys closely related work, which we divide into four categories: bug detection

via inconsistent software behavior detection, detection of component insecurity, frameworks for

secure component usage, and detection of violated browser policies.

Bug Detection via Inconsistent Software Behavior Detection. Brumley et al. [25] present a bug

detection technique to discover deviations among different implementations of the same protocol

specification. The technique is related to ours because it is also based on the general differential

analysis concept. It analyzes different software and detects inconsistent behavior that is supposed to

be consistent. However, the technique has a different goal from ours. Their goal is to detect incon-

sistent implementations of the same protocol, while ours is to detect inconsistent policy evaluations

that may lead to insecure component reuse.

Detection of Component Insecurity. The detection of insecure software components has been

actively studied. Neuhaus et al. [118] propose a technique that performs statistical analysis on vul-

nerability history; the function calls and the imports of each vulnerable component are utilized to

characterize the corresponding vulnerabilities. Bandhakavi et al. [15] present a static analysis to de-

tect information flow vulnerabilities in Firefox extensions. Dhawan et al. [41] dynamically track the

execution of JavaScript extensions in Firefox to detect information flow violations. Guha et al. [63]

statically check security of the browser extensions by using software verification techniques. In

comparison, while these techniques detect the insecurity of target components, we focus on detect-

ing insecure usage of the components. In particular, we model insecure usage of a component as

inconsistent evaluations of security policies maintained by the component. With this model, we are

able to, for example, detect and analyze browser components insecurely used by IE-based browsers

(see Section 5.4).

Framework for Secure Component Usage. Because malicious or vulnerable components can in-

troduce security problems to software, extensive research has been conducted on protecting software
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against them. For example, secure browsers [62, 139, 153] apply sandboxing techniques to protect

them from crashed plugins. Grier et al. [61] present security policies to use browser plugins in a

secure manner. Barth et al. [18] propose a technique to mitigate the damage caused by the exploita-

tion of vulnerable extensions by designing least privilege, privilege separation, and strong isolation.

Kirda et al. [88] detect malicious browser components by monitoring spyware-like behavior. These

techniques aim at detecting and protecting against insecure execution of target components, while

our purpose is to detect insecure usage of components.

Detection of Violated Browser Policies. A browser’s security policy serves as a key part for safe

web browsing. Thus, modern browsers support a number of policies to improve their security [24].

Based on this insight, many researchers [17, 19–21, 83] have focused on detecting violations of

browser security policies. Although our framework also detects the violation of browser security

policies (Section 5.4), its goal is different from that of these previous techniques. We aim at detect-

ing security policies incorrectly configured by insecure browser component usage. In contrast, the

aforementioned techniques detect subversions of the enforced security policies.

5.6 Conclusion and Future Work

We have presented an effective framework to detect and analyze insecure component usage. Our

key idea is to detect inconsistent security policy configurations. Suppose that both a reference and

a test subject use a component that maintains the configuration of a security policy. If they use the

component in ways that make the policy inconsistently evaluated, the test subject can be vulnerable

to attacks intended to be blocked by the policy. We model component usage relevant to the policy as

memory access patterns and the conditional jumps affected by them. Based on this model, we have

presented a program analysis technique to locate inconsistent policy configurations at runtime. Our

evaluation results show that our technique is effective at detecting and analyzing insecure component

usage. In particular, it detected inconsistent policy configurations of real-world applications and

discovered several new security vulnerabilities of IE-based browsers. We have also shown that our

framework can be used effectively to conduct detailed analysis of security vulnerabilities related to

insecure component usage.

For future work, we would like to analyze insecure usage of other widely-used components.
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Our current implementation focuses on analyzing the global data region to detect component usage

relevant to security policies. We plan to expand the work’s scope by handling other types of non-

thread specific memory regions (e.g., the heap) to detect and analyze general inconsistent component

usage.
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Chapter 6

Conclusion

This dissertation has formulated insecure component integration and empirically evaluated its effect

on software security. In particular, we have examined unsafe component loading and insecure

component usage, and have developed effective techniques to detect and analyze them. This chapter

summarizes the dissertation and discusses future research directions.

6.1 Summary

Unsafe Component Loading and Its Detection (Section 2.1 and Chapters 3–4). Dynamic load-

ing of software components (e.g., libraries or module) is a widely used mechanism for improved

productivity and reliability. Correct component resolution is critical for reliable and secure software

execution. However, programming mistakes may lead to unintended or even malicious components

to be resolved and loaded. In particular, dynamic loading can be hijacked by placing an arbitrary

file with the specified name in a directory searched before resolving the target component.

We have presented the first automated technique to detect unsafe component loadings. We cast

our technique as two phases: 1) apply dynamic binary instrumentation to collect runtime infor-

mation on component loading (online phase); and 2) analyze the collected information to detect

vulnerable component loadings (offline phase). For evaluation, we implemented our technique to

detect unsafe component loadings in popular software on Microsoft Windows and Linux. Our eval-

uation results show that unsafe component loading is prevalent in software on both OS platforms,

and it is more severe on Microsoft Windows. In particular, our tool detected more than 4,000 unsafe
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component loadings in our evaluation, and some lead to remote code execution on Microsoft Win-

dows. The issues uncovered in our work and two related efforts had also been the topic of extensive

media coverage in August 2010.

Although our dynamic detection is simple and effective in detecting unsafe component loadings,

it suffers from limited code coverage and may miss important vulnerabilities. Thus, it is desirable

to develop effective techniques to detect all possible unsafe component loadings. To this end, we

present the first static binary analysis aiming at detecting all possible loading-related errors. The

key challenge is how to scalably and precisely compute what components may be loaded at relevant

program locations. Our main insight is that this information is often determined locally from the

component loading call sites. This motivates us to design a demand-driven analysis, working back-

ward starting from the relevant call sites. In particular, for a given call site c, we first compute its

context-sensitive executable slices, one for each execution context. Then we emulate the slices to

obtain the set of components possibly loaded at c. This novel combination of slicing and emulation

achieves good scalability and precision by avoiding expensive symbolic analysis. We implemented

our technique and evaluated its effectiveness against the existing dynamic technique on nine popular

Windows applications. Results show that our tool has better coverage and is precise—it is able to

detect many more unsafe loadings. It is also scalable and finishes analyzing all nine applications

within minutes.

Insecure Component Usage and Its Detection (Section 2.2 and Chapter 5). The lack of expert

knowledge can make developers utilize a component in an insecure manner. For example, we

noticed that common IE-based browsers, such as IE Tab, disable important security features that

IE enables by default, even though they all use the same browser components. This insecure usage

renders these IE-based browsers vulnerable to the attacks blocked by IE. To our knowledge, this

important security aspect of component reuse has largely been unexplored.

We have presented the first practical framework for detecting and analyzing vulnerabilities of

insecure component usage. Its goal is to enforce and support secure component reuse. Our core

approach is as follows. Suppose that component C maintains a security policy configuration to

block certain malicious behavior. If two clients of component C, say a reference and a test subject,

handle the malicious behavior inconsistently, the test subject uses C insecurely. In particular, we
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model component usage related to a policy based on (1) accesses to the configuration state inside

the component and (2) the conditional jumps affected by the data read from the state. We utilize

this model to detect inconsistent policy evaluations, which can lead to insecure component usage.

We have implemented our technique for Windows applications and used it to detect and analyze

insecure usage of popular software components. Our evaluation results show that our framework is

scalable and effective at detecting and analyzing insecure component usages. In particular, we de-

tected several serious, previously unknown vulnerabilities in Internet Explorer 9 and helped perform

detailed analysis of insecure component usage.

6.2 Future Work

For future work, it would be interesting to consider the following two research directions: (1) inves-

tigating other types of insecure component integration, and (2) exploring security issues in source

code reuse.

Other Types of Insecure Component Integration. We have focused on examining unsafe com-

ponent loading and insecure component usage. Although it is evident that they can lead to security

vulnerabilities, there may exist other issues of insecure component integration. Thus, it would be

interesting to investigate security vulnerabilities caused by other types of insecure component inte-

gration and evaluate their prevalence and severity in real-life software.

Security Issues in Source Code Reuse. In Chapter 5, we have shown how to detect insecure

reuse of binary components. Although software generally reuses desired components based on their

binary releases, source code adaptation and reuse are also common. Specifically, developers may

reuse or customize the source code of a component to better fit their needs. For example, the source

code of Gecko and the WebKit components have been reused for rendering HTML documents in

a number of popular software projects. Although source code reuse is very common, its security

impact has not been much explored. It would be interesting to systematically explore this direction,

similar to what we have done in this dissertation for binary components.
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