
Program Synthesis for Empowering End Users
and Stress-Testing Compilers

By

VU MINH LE

B.Eng. (University of Technology, Vietnam National University) 2006
M.Sc. (University of California, Davis) 2011

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Zhendong Su, Chair

Sumit Gulwani

Premkumar Devanbu

Committee in Charge

2015

-i-



Copyright © 2015 by

Vu Minh Le

All rights reserved.



Vu Minh Le
September 2015

Computer Science

Program Synthesis for Empowering End Users

and Stress-Testing Compilers

Abstract

Since 2012, the number of people with access to computing devices has exploded.

This trend is due to these devices’ falling prices, and their increased functionalities and

programmability. Two challenges arise from this trend: (1) How to assist the increasing

number of device owners, most of whom are non-programmers, yet hope to take full

advantage of their devices, and (2) how to make critical software, which is relied upon

by other software running on these devices, more reliable? Our vision is that program

synthesis is the solution for the above arising challenges. This dissertation describes

various program synthesis techniques to synthesize programs from natural languages,

input/output examples, and existing programs to tackle these challenges.

We present SmartSynth, a natural language interface that synthesizes smartphone

programs from natural language descriptions. SmartSynth enables users to automate

their repetitive tasks by leveraging various phone sensors. It is the first system that

combines the advances in both natural language processing (NLP) and program synthesis:

it uses NLP techniques to parse a given command, and applies program synthesis

techniques to resolve parsing ambiguities. We have adapted and extended SmartSynth’s

algorithms to integrate it into TouchDevelop, a popular touch-based programming

environments for end users.

We develop FlashExtract, a system that extracts data from semi-structured document

(such as text files, webpages, and spreadsheets) using examples. Natural language does

not work well in this domain because the tasks are complicated and users usually do

not know how to perform them. In FlashExtract, users only need to highlight some

sample regions to be extracted, the system will learn a program to select similar regions
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automatically. They can also provide nested examples to extract structured, hierarchical

data. FlashExtract has been shipped as the cmdlet ConvertFrom-String of PowerShell in

Microsoft Windows 10 and as the Custom Fields feature in Microsoft Azure Operational

Insights.

While it is important to make programming accessible to end users, it is also vital

to improve the correctness of critical software because they impact other software

products. We introduce Equivalence Modulo Inputs (EMI), a novel, general methodology

to synthesize valid compiler test programs from existing test cases. Given a test program

and a set of its inputs, we profile the program’s execution over the inputs. We then

generate new test variants by randomly removing code that is unexecuted under the

provided inputs. The expectation is that these new variants should behave exactly the

same as the original program under the same inputs; any observed discrepancy indicates

a compiler bug. Our technique is simple to realize yet very effective. In total, we have

reported more than 400 bugs in GCC and LLVM, most of which have already been fixed.

Many compiler vendors have adopted EMI to test their compilers.

We also believe that cross-disciplinary solutions can increase the impact of program

synthesis techniques. We therefore further explore program synthesis in the following

three dimensions. First, we introduce two novel user interaction models to help users

resolve ambiguities in programming-by-example systems like FlashExtract. One model

allows users to effectively navigate among the large set of programs consistent with

the provided examples. The other model uses active learning to ask questions to help

differentiate the outputs of these programs. Second, we present a guided, advanced

mutation strategy based on Bayesian optimization to synthesize EMI variants more

effectively. Our improved technique supports both code deletions and insertions in the

unexecuted regions, and uses Markov Chain Monte Carlo (MCMC) optimization to guide

the synthesis process. Finally, we apply program synthesis to find bugs in a new domain:

the link-time optimizer components in compilers.
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Chapter 1

Introduction

We have entered a new era for computing in recent years with the sharp increase in

availability and popularity of multi-functional mobile devices. These devices are equipped

with more and more sensors, which radically multiplies the ways people interact with

them. Unfortunately, most people who have or will have access to these devices are non-

programmers who are unable to make full effective use of their devices. The application

market is unlikely to meet the personalized needs of device users. The economic model

in the application market favors the presence of only those applications that would be

used “as-is” by a large number of people. This has created a significant opportunity to

cater to the needs of the long tail of people looking for personalized applications that

only they, or very few other people, would want to use.

At the same time, the massive amount of data generated by users, applications,

and devices have resulted in the big data revolution. However, such data are usu-

ally embedded in documents of various types such as text/log files, spreadsheets,

and webpages. Although these documents offer their creators great flexibility in stor-

ing and organizing hierarchical data by combining presentation/formatting with the

underlying data model, they are not suitable for data manipulation tasks. As a re-

sult, one challenge in the data revolution is to bring unstructured data embedded in

such documents into structured format, from which big data algorithms can be ap-

plied. The task, often referred as data cleaning or data wrangling, is tedious and

time consuming. Studies show that data scientists spend 50-80% of their time for this
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task [Times, 2014]. There are some early efforts in solving this bottleneck of the big-data

workflow [Kandel et al., 2011, Metaweb Technologies, Inc., 2015], but they only focus

on CSV (Comma Separated Values) files. These techniques also require users to have

some knowledge in programming. This is not the case for business users, who have to

perform data cleaning tasks occasionally. We need a more general and user-friendly

solution to extract data from various sources and to help users without any programming

background complete their tasks.

The abundant of devices and applications have put more pressure to critical software,

such as compilers, on which all these applications depend. Despite of decades of extensive

research and development, production compilers still contain bugs, and in fact quite a

few. What makes compiler bugs distinct from other application bugs is that compiler

bugs often manifest only indirectly as application failures, which makes them harder

to recognize. When compiler bugs occur, they frustrate programmers and may lead to

unintended application behavior and disasters, especially in safety-critical domains. It is

therefore critical to make compilers more robust.

Our vision is that program synthesis is the solution for the above arising challenges.

We have developed various program synthesis techniques to synthesize programs from

natural languages, input/output examples, and existing programs to tackle these chal-

lenges. In particular, we develop SmartSynth, a system that synthesizes smartphone

scripts from natural language descriptions. SmartSynth lets users exploit various phone

sensors and functionalities to automate their repetitive tasks. We have integrated Smart-

Synth into TouchDevelop [Tillmann et al., 2011]. Our solution to the data cleansing

problem is FlashExtract, a system that synthesizes data extraction programs from in-

put/output examples to extract data from semi-structure documents (e.g., text files,

webpages, spreadsheets). FlashExtract has been shipped as part of PowerShell in Mi-

crosoft Windows 10 and as the Custom Fields feature in Microsoft Azure Operational

Insights. Finally, we introduce Equivalence Modulo Inputs (EMI), a novel and general

methodology to synthesize valid compiler test programs from existing programs, as part

of our efforts to improve the quality of compilers. EMI has helped improved the quality
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of compilers significantly. In total, we have reported more than 400 confirmed bugs in

GCC and LLVM, most of which have already been fixed. Many compiler vendors have

adopted EMI to test their compilers.

SmartSynth: Synthesizing Smartphone Programs from Natural Language In the

first part of this dissertation, we study the problem of developing smartphone automation

scripts, those that execute some tasks automatically under certain conditions (e.g.,

the phone turns off network connections automatically when its battery is low, the

phone sends the user’s spouse a text saying “Kids are dropped” when he is at the

location of their kids’ school). The abundance of such scripts on popular smartphone

platforms like Locale [Two forty four a.m. LLC., 2013], Tasker [Crafty Apps, 2015], and

On{x} [Microsoft Research, 2013] motivate our problem domain.

The current state of the art in end-user programming of smartphones is far from sat-

isfactory. General-purpose languages such as Java, C#, and Objective C are clearly

not suitable for most end user. Visual programming systems such as App Inven-

tor [MIT Center for Mobile Learning, 2015] and Tasker [Crafty Apps, 2015], which visu-

alize programming constructs into building blocks, still require end users to consciously

think about programming like typical programmers. Digital assistants like VoiceAc-

tions [Google, 2013] and Siri [Apple, 2013] only support limited smartphone features.

Our goal is to be (1) natural so that users can interact with the system through

natural language (NL) and (2) general so that, unlike Siri, our system allow arbitrary

combination of smartphone features. To this end, we introduce SmartSynth, a new

end-to-end NL-based programming system for synthesizing smartphone scripts. The

key conceptual novelty of SmartSynth is the methodology to decompose the problem

into: (1) designing a domain-specific language (DSL) to capture automation scripts

users commonly need, and (2) combining natural language processing (NLP) and

program synthesis [Gulwani, 2010] techniques to synthesize scripts in the DSL from

NL. Our technical novelties include: (1) a carefully designed DSL that incorporates

standard constructs from smartphone programming platforms and balances its ex-

pressivity and the feasibility for automatic script synthesis from NL descriptions, (2)
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techniques adapted from the NLP community to translate English descriptions into

relevant components (i.e. script constructs) and a partial set of dataflow relations

among the components, and (3) techniques inspired by the program synthesis com-

munity to complete the partial set of dataflow relations via type-based program synthe-

sis [Gulwani et al., 2011, Mandelin et al., 2005, Perelman et al., 2012] and construct

the desired scripts via reverse parsing [Aho et al., 2006].

FlashExtract: Synthesizing Data-Extraction Program from Examples Existing pro-

grammatic solutions to data extraction have three key limitations. First, the solutions are

domain-specific and require knowledge/expertise in different technologies for different

document types. Second, they require understanding of the entire underlying document

structure including the data fields that the end user is not interested in extracting and

their organization (some of which may not even be visible in the presentation layer

as in case of webpages). Third, and most significantly, they require knowledge of pro-

gramming. The first two aspects create challenges for even programmers, while the

third aspect puts these solutions out of reach of the vast majority of end users who lack

programming skills. As a result, users are either unable to leverage access to rich data or

have to resort to manual copy-paste, which is both time-consuming and error prone.

In the second part of this dissertation, we address the problem of developing a

uniform end-user friendly interface to support data extraction from semi-structured

documents of various types. Our methodology includes two key novel aspects: a uniform

user interaction model across different document types, and a generic inductive program

synthesis framework.

Uniform and End-user Friendly Interaction Model Our extraction interface supports

data extraction via examples. The user initiates the process by providing a nested

hierarchical definition of the data that he/she wants to extract using standard structure

and sequence constructs. The user then provides examples of the various data fields

and their relationships with each other. An interesting aspect is that this model is

independent of the underlying document type. This is based on our observation that

different document types share one thing in common: a two-dimensional presentation
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layer. We allow users to provide examples by highlighting two-dimensional regions on

these documents. These regions indicate either the fields that the user wants to extract

or structure/record boundaries around related fields.

Inductive Program Synthesis Framework To enable data extraction from examples,

we leverage inductive program synthesizers that can synthesize scripts from examples

in an underlying domain-specific language (DSL). The key technical contribution is

an inductive program synthesis framework that allows easy development of inductive

synthesizers from mere definition of DSLs (for data extraction from various document

types). We describe an expressive algebra containing four core operators: map, filter,

merge, and pair. For each of these operators, we define its sound and complete generic

inductive synthesis algorithms parameterized by the operator’s arguments. As a result,

the synthesis designer simply needs to define a DSL with two features: (a) It should

be expressive enough to provide appropriate abstractions for data extraction for the

underlying document type, (b) It should be built out of the operators provided by our

core algebra. The synthesis algorithm is provided for free by our framework. This is

a significant advance in the area of programming by examples, wherein current litera-

ture [Gulwani et al., 2012, Gulwani, 2012] is limited to domain-specific synthesizers.

EMI: Synthesizing Compiler Test Programs from Existing Programs In the third

part of this dissertation, we introduce a simple, yet broadly applicable concept for

validating compilers. Our vision is to take existing real-world code and transform it in a

novel, systematic way to produce different, but equivalent variants of the original code.

Equivalence Modulo Inputs We introduce equivalence modulo inputs (EMI) for a

practical, concrete realization of the vision. EMI crucially leverages the connection

between dynamic program execution and static compilation to synthesize program

variants. These EMI variants can specifically target compiler optimization phases, and

stress-test them to reveal latent compiler bugs.

The key insight behind EMI is to exploit the interplay between dynamically executing

a program P on a subset of inputs and statically compiling P to work on all inputs. More

concretely, given a program P and a set of input values I from its domain, the input set I
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induces a natural collection of programs C such that every program Q∈ C is equivalent to

P modulo I: ∀i∈ I,Q(i) = P (i). The collection C can then be used to perform differential

testing [McKeeman, 1998] of any compiler Comp: If Comp(P )(i) 6= Comp(Q)(i) for some

i ∈ I and Q ∈ C, Comp has a miscompilation.

EMI is effective because although an EMI variant Q is only equivalent to P modulo

the input set I, the compiler has to perform all its (static) analysis and optimizations to

produce correct code for Q over all inputs. Moreover, P ’s EMI variants, while semantically

equivalent w.r.t. I, can have quite different static data- and control-flow. Since data-

and control-flow information critically affects which optimizations are enabled and how

they are applied, the EMI variants not only help exercise the optimizer differently, but

also demand the exact same output on I from the generated code by these different

optimization strategies.

Orion Given a program P and an input set I, the space of P ’s EMI variants w.r.t. I is

vast, and difficult or impossible to compute. Thus, for realistic use, we need a practical

instantiation of EMI. We propose a “profile and mutate” strategy to systematically

synthesize a subset of a program’s EMI variants. In particular, given a program P and

input set I, we profile executions of program P over the input set I, and derive (a

subset of) P ’s EMI variants (w.r.t. I) by stochastically pruning, inserting, or modifying

P ’s unexecuted code on I. These variants should clearly behave exactly the same on the

same input set I as the original program P . We then feed these variants to any given

compiler. Any detected deviant behavior on I indicates a bug in the compiler.

We have implemented our “profile and mutate” strategy for C compilers and fo-

cused on pruning unexecuted code. We have extensively evaluated our tool, Orion1, in

testing three widely-used C compilers—namely GCC, LLVM, and ICC—with extremely

positive results. We have used Orion to generate variants for real-world projects, ex-

isting compiler test suites, and much more extensively for test cases generated by

Csmith [Yang et al., 2011]. In eleven months, we have reported, for GCC and LLVM

alone, 147 confirmed, unique bugs.

1Orion was a giant huntsman in Greek mythology.
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Other Dimensions of Program Synthesis The last part of this dissertation is dedicated

to discussing other dimensions of program synthesis to demonstrate the breath and depth

of this technique.

New User Interaction Models: Program Navigation and Conversational We inves-

tigate two user interaction models to improve the usability of systems that synthesize

programs from examples such as FlashExtract. The first model, called Program Naviga-

tion, allows users to navigate among all programs synthesized by the underlying synthesis

engine (as opposed to displaying only the top-ranked program) and to pick one that is

intended. We also paraphrase these programs in English for easy readability. The second

model, called Conversational Clarification, is based on active learning. It asks questions

to users to resolve ambiguities in the their specification with respect to the available test

data. We generate these questions from the discrepancies in outputs of our synthesized

programs (note that these programs agree on the output of the examples but may dis-

agree on the rest of the file). We have implemented the above two user interaction models

in a generic user interface framework called FlashProg. The FlashProg framework support

several synthesis engines related to data manipulation, such as FlashFill [Gulwani, 2011],

FlashRelate [Barowy et al., 2015], FlashExtract [Le and Gulwani, 2014].

New Technique: Guided Stochastic Program Synthesis We propose novel, effective

techniques to address limitations in Orion, our first realization of EMI. Besides deletion

(the only mutation supported in Orion), we support code insertion into unexecuted

program regions. Because we can potentially insert an unlimited number of statements

into these regions, we can generate an enormous number of variants. More importantly,

the synthesized variants have substantial different control- and data-flow, therefore

helping exercise the compiler much more thoroughly. Our experimental results show

that the increased variation and complexity are crucial in revealing more compiler bugs.

Furthermore, we introduce a novel method to guide the synthesis process to uncover

deep bugs. We formulate our bug finding process as an optimization problem whose goal

is to maximize the difference between a variant and the seed program. By synthesizing

substantially diverse variants, we aim at testing more optimization strategies that may
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not be exercised otherwise. We realize this process using Markov Chain Monte Carlo

(MCMC) techniques, which help effectively sample the program space to allow diverse

programs. Our evaluation results show that our realization Athena is very effective in

finding deep bugs that require long sequences of sophisticated mutations on the seed

program. Our results also demonstrate that most of these bugs could not be discovered

by Orion, which only uses a much simpler, blind mutation strategy.

New Domain: Stress-Testing Link-Time Optimizers Finally, we illustrate the general

applicability of program synthesis by applying it to finding bugs in a new domain: link-

time optimizers. We propose Proteus2, a randomized differential testing technique to

stress-test link-time optimizers, and the first extensive effort to stress-test LTO in GCC

and LLVM. Two key challenges are to find LTO-relevant test programs (which typically

involve multiple compilation units), and to reduce the bug-triggering test programs

effectively.

To tackle the first challenge, we use Csmith to generate single-file test programs. We

then automatically transform each test program in two semantics-preserving manners.

First, we extend Orion to inject arbitrary function calls to unexecuted code regions to

increase function-level interprocedural dependencies. The increased dependencies stress-

test LTO more thoroughly. Second, we split each test program into separate compilation

units. We compile each of these compilation units at a random optimization level,

and finally link the object files also at a random optimization level. As for the second

challenge, we develop an effective procedure to reduce multiple-file test programs that

trigger bugs. Our key observation is that the bug-triggering property of our splitting

function is preserved under reduction, which allows us to perform reduction on the

original single-file test program. Indeed, after reduction, we split a reduced test program

into separate compilation units, and check for bug-triggering behavior. This approach

works very well in practice. Most of our tests were reduced within several hours. In

comparison, existing reduction techniques take days or weeks, or never terminate, and

produce invalid reduced tests.

2Proteus is a Greek sea god who can assume different forms.
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Contributions We make the following contributions:

• We introduce SmartSynth, an end-to-end system that synthesizes smartphone

automation scripts from natural language descriptions. The underlying algorithm

of SmartSynth combines advances in both natural language processing and program

synthesis. Our evaluation on 50 different tasks collected from smartphone help

forums shows that SmartSynth is effective. It can synthesize the intended scripts in

real time for over 90% of the 640 descriptions collected via a user study.

• We present FlashExtract, a system that lets users extract data from semi-structure

documents using examples. FlashExtract eliminates the need to learn domain-

specific scripting technologies and understand the document’s internal data model.

We also introduce a rich algebra of operators for data extraction DSLs and a mod-

ular inductive synthesis strategy for each of these operators. This allows rapid

development of data-extraction synthesizers. In our evaluation that involves ex-

tracting data from 75 real-world documents, FlashExtract only needs 2.36 examples

to extract a field, and it completes within 0.84 seconds on average.

• We present a generic framework called FlashProg that implements two novel

user interaction models: (1) Program Navigation that lets users browse the large

space of satisfying programs by selecting ranked alternatives for different program

subexpressions, and (2) Conversational Clarification that perform conversations

with users to resolve ambiguity. Our user study shows that both models significantly

reduce the number of errors without any difference in completion time.

• We introduce the novel, general concept of equivalence modulo inputs (EMI) for

systematic compiler validation. We propose the “profile and mutate” strategy to

realize Orion, a practical implementation of EMI for testing C compilers. We report

our extensive evaluation of Orion in finding numerous bugs (147 unique bugs) in

GCC and LLVM.

• We implement a new EMI mutation strategy that allows inserting code into unexe-

cuted regions. This helps synthesize more diverse variants that have substantially
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different control- and data-flow. We propose a novel guided bug-finding process

that uses MCMC sampling to find more diverse test variants to trigger deep bugs

that otherwise could not be triggered using existing techniques. Our tool Athena

has found 72 new bugs in GCC and LLVM in 19 months (68 have been fixed).

• We introduce Proteus, the first randomized differential testing technique to stress-

test link-time optimizers. We propose a practical procedure to reduce LTO bugs that

is efficient (i.e. significantly shortening reduction time) and effective (i.e. reliably

rejecting invalid tests). We demonstrate that Proteus is effective. In 11 months

of continuous testing, we have reported 37 bugs, among which 21 have been

confirmed, and 11 have been fixed.

We structure the remainder of this dissertation as follows. Chapter 2 discusses pro-

gram synthesis using natural language and its instantiation SmartSynth. Chapter 3

introduces program synthesis using input/output examples and its instantiation FlashEx-

tract. Chapter 4 presents program synthesis using existing programs and its instantiation

EMI. Chapter 5 discusses various extensions of our program synthesis techniques. We

survey related work in Chapter 6 and conclude in Chapter 7.
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Chapter 2

SmartSynth: Synthesizing Smartphone
Programs from Natural Language

In this chapter, we study the problem of developing smartphone automation scripts,

those that execute some tasks automatically under certain conditions (e.g., the phone

turns off network connections automatically when its battery is low, the phone sends

the user’s spouse a text saying “Kids are dropped” when he is at the location of their

kids’ school). The abundance of such scripts on popular smartphone platforms like

Tasker [Crafty Apps, 2015] and Locale [Two forty four a.m. LLC., 2013] motivate our

problem domain.

The current state of the art in end-user programming of smartphones is far from

satisfactory. General-purpose languages such as Java, C#, and Objective C are clearly not

suitable for most end user. The other alternatives are visual programming systems such as

App Inventor [MIT Center for Mobile Learning, 2015] and Tasker [Crafty Apps, 2015],

which visualize programming constructs into building blocks. In these systems, users

program by identifying blocks and composing them visually. Although these systems are

more user-friendly, they still require end users to consciously think about programming

like typical programmers, such as introducing variables and deciding when/how to use

conditionals, loops, or events.

Because of the deluge of mobile devices and their underlying systems, we believe in

the promising direction toward general programming systems with natural interfaces for
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meeting end users’ needs. Two notable examples are VoiceActions [Google, 2013] and

Siri [Apple, 2013] for controlling smartphones via speech. However, they only provide

support for limited smartphone features. Siri, for example, only matches speech to

pre-defined patterns. Our goal is to be (1) natural so that users can interact with the

system through natural language (NL) and (2) general so that, unlike Siri, our system

does not simply match NL descriptions to pre-defined patterns.

To this end, we introduce SmartSynth, a new end-to-end NL-based programming

system for synthesizing smartphone scripts. The key conceptual novelty of SmartSynth

is the methodology to decompose the problem into: (1) designing a domain-specific

language (DSL) to capture automation scripts users commonly need, and (2) combining

natural language processing (NLP) and program synthesis [Gulwani, 2010] techniques

to synthesize scripts in the DSL from NL. Our technical novelties include: (1) a carefully

designed DSL that incorporates standard constructs from smartphone programming

platforms and balances its expressivity and the feasibility for automatic script synthesis

from NL descriptions, (2) techniques adapted from the NLP community to translate

English descriptions into relevant components (i.e. script constructs) and a partial set of

dataflow relations among the components, and (3) techniques inspired by the program

synthesis community to complete the partial set of dataflow relations via type-based

program synthesis [Gulwani et al., 2011, Mandelin et al., 2005, Perelman et al., 2012]

and construct the desired scripts via reverse parsing [Aho et al., 2006].

Indeed, we combine and refine recent advances in both the NLP and program synthesis

areas. A recent, emerging trend in NLP is semantic understanding of natural languages.

There have been recent, although limited, successes in translating structured English

into database queries [Androutsopoulos, 1995] and translating NL statements into logic

in specific domains [Kate et al., 2005, Finucane et al., 2010]. As for program synthesis,

the traditional goal has been to discover new or complicated algorithms from complete

logical specifications. There is recent, renewed interest in this area of synthesis because

of (1) interesting applications (such as end-user programming [Gulwani et al., 2012]

and intelligent tutoring systems [Gulwani, 2012]), and (2) the ability to deal with
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Figure 2.1: SmartSynth’s system architecture.

under-specifications (such as examples [Gulwani et al., 2012], and a set of APIs or

keywords [Gulwani et al., 2011, Little and Miller, 2007]). Our combination of NLP and

program synthesis is synergistic since NLP is used to “partially understand” natural

language and program synthesis is then used to refine this understanding and generate

the intended script.

Figure 2.1 illustrates SmartSynth’s process of synthesizing scripts. The user communi-

cates her intent via natural language (Step 1). The “Component Discovery” box contains

two algorithms that are inspired by the NLP area: (i) a mapping algorithm that maps

the description into script components such as APIs and literals (Step 3), and (ii) an

algorithm that asks the user to refine parts of the description that SmartSynth does not

understand (Step 2). The “Script Discovery” box first uses an NLP-based algorithm to

detect dataflow relations among the identified components. If these relations do not

fully specify the dataflow relationships between components, SmartSynth invokes our

algorithm (inspired by type-based synthesis) to complete the missing dataflow relations.

If there are multiple equally high-ranked relations, SmartSynth initiates an interactive

conversation with the user to resolve the ambiguities (Step 5). As the final step, it
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Figure 2.2: A visual program for Example 1 written in AppInventor.

constructs the intended script from the identified components and relations using an

algorithm akin to reverse parsing.

An interesting feature of SmartSynth is the NLP-Synthesis feedback loop in Steps 3-4.

Although our NLP algorithm has its own mapping feature set to perform component

mapping, it might not precisely capture the mapping in some cases, due to irregularities

of natural language. SmartSynth uses program synthesis technique to gain confidence

about the quality of the generated script and as another metric for the quality of NLP

mapping. In particular, SmartSynth repeatedly requests the NLP-based algorithm for

the next likely interpretation of the description, if the current interpretation is deemed

unlikely (i.e., the interpretation does not translate to a high-confidence script).

2.1 Motivating Example

We motivate our system via the following running example, taken from a help forum for

Tasker [Crafty Apps, 2015].

Example 1 The user wants to create a script to do the following when she receives an SMS

while driving: (1) read the content of the message and (2) send a message “I’m driving” to

the sender. Since the user always connects her car’s bluetooth to the phone when she is in the
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car, she uses this fact to denote that she is driving1. One possible description of this script is:

When I receive a new SMS, if the phone is connected to my car’s bluetooth, it

reads out loud the message content and replies the sender “I’m driving.”.

Users of both conventional and visual programming systems have to deal with all

the low-level details and make several decisions, often unintuitive to them, during the

process of creating a new program. In contrast, users of SmartSynth only need to give

the system their problem description in NL, and interact with it, if necessary, in natural

language. Below we compare traditional programming systems with SmartSynth using

our example.

Identifying Components Users of conventional and visual programming systems have

to conceptualize their ideas into script components (i.e., script constructs such as APIs),

potentially under several refinement steps [Wirth, 1971]. This is a non-trivial task as it

assumes that users should understand all script constructs’ specifications. As shown in

Figure 2.2, users of AppInventor have to conceptualize and identify various components

while transforming the idea in Example 1 into a running script.

In comparison, SmartSynth automatically decomposes the description into disjoint

text chunks and matches each chunk to its supported components (details in Sec-

tion 2.3.1). For the description in Example 1, SmartSynth is able to decompose and

match the description to the components shown in Table 2.1. When any chunk of the

description cannot be mapped to a component, SmartSynth will ask the user to refine it.

However, as is often the case in NLP, mapping a chunk to components can be

ambiguous. For example, we can map “if the phone is connected to” to any of the three

candidates shown in Table 2.1. Similarly, we can map “replies” to either SendMessage or

SendEmail. One can look at API arguments to resolve these ambiguities. In the first case,

since the argument is a bluetooth device, it is very likely that the mapping component is

IsConnectedToBTDevice. But this approach does not work as well for the second case,

where the ambiguity can only be resolved by considering the global context that may

indicate receipt or sending of an SMS.
1 This is a clever workaround to avoid using the GPS sensor, which drains the battery power very quickly.
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Description Possible Mappings

When I receive a new SMS MessageReceived

if the phone is connected to

IsConnectedToBTDevice

IsConnectedToWifiNetwork

IsConnectedToDataService

my car’s bluetooth Car_BT

reads out loud Speak

the message content MessageReceived.TextO

replies
SendMessage

SendEmail

the sender MessageReceived.NumberO

“I’m driving” "I’m driving"

Table 2.1: Possible mappings from text chunks to components in Ex. 1. TextO and
NumberO are return values of MessageReceived.

SmartSynth takes a different approach. Instead of manually encoding many disam-

biguation rules, it relies on the techniques inspired by type-based synthesis to automat-

ically disambiguate mapping candidates. Specifically, from each mapping candidate

that needs to be resolved, SmartSynth generates a script and assigns it a score indi-

cating how likely the script is. The best mapping is associated with the script that has

the highest score. In Example 1, SmartSynth is able to select the right mapping set

(IsConnectedToBTDevice, SendMessage and the others) because together they form the

highest ranked script.

Synthesizing Scripts Besides identifying all necessary components, users of conven-

tional systems also need to understand the components’ low-level details in order to

assemble them meaningfully.

To create the script in Figure 2.2, the users must understand that MessageReceived

is an event and returns a phone number and a message content, which may be stored

in two temporary variables. They need to understand that IsDevicePaired is the guard
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Figure 2.3: The graph showing all possible dataflow relations among components
identified by the Component Discovery algorithms.

of the conditional and it must be linked with the car’s bluetooth. Also, the APIs Speak

and SendMessage must be configured with arguments of types Text and Number & Text

respectively. Finally, the users need to pass the temporary variables/literals to those APIs

and arrange them in the correct order.

In contrast, users of SmartSynth are not required to understand those low-level details

because the system knows the signatures of all those APIs. The challenge is to generate

additional script constructs such as loops, conditionals and assignments to combine these

components together into a script reflecting the user’s intent. SmartSynth solves this

challenge in the following steps (details in Section 2.3.2). First, it builds a special data

structure that represents all possible dataflow relations among the components. We call

each of them a (dataflow) relation. Figure 2.3 shows the data structure for the right

component mapping set. An edge in this figure represents a relation, which specifies a

possible dataflow from a value (source) to an API’s parameter (sink). The value from

a source might be assigned to multiple sinks (if they have the same type), and a sink

might receive a value from different sources (also of the same type). For example, the

sink denoting the message content in SendMessage can be assigned to the argument
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Return value or Literal API Parameter

Car_BT
IsConnectedToBT-

Device.BluetoothI

MessageReceived.TextO ReadText.TextI

MessageReceived.NumberO SendMessage.NumberI

"I’m driving" SendMessage.TextI

Table 2.2: Relations detected from Example 1’s description. Subscripts I/O characterize
the field of an API as a parameter or a return value.

from either the received message of MessageReceived, or the string literal “I’m driving”

because they have the same type String.

Next, SmartSynth uses classic NLP techniques [Jurafsky and Martin, 2008] to detect

likely relations from the NL description. These relations must be derived from the set

of all possible relations embedded in the graph. Table 2.2 shows the relations that

SmartSynth has detected from the description. A row in this table represents a relation

defining which source is assigned to a sink. For example, the last row states that the

message content to be sent by SendMessage is the string literal “I’m driving”. SmartSynth

generates and returns the final script to the user if it is able to detect all necessary

relations from the NL description (Figure 2.4).

when (number, content) := MessageReceived()

if (IsConnectedToBTDevice(Car_BT) then

Speak(content);

SendMessage(number, "I’m driving");

Figure 2.4: The script for Example 1.

However, since users can give free-form descriptions, SmartSynth may often detect

only a subset of the necessary relations. In these cases where the intent is under-specified,

SmartSynth uses techniques inspired by type-based synthesis to find the missing relations.

It performs searching over the dataflow graph for missing relations and uses a special
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ranking scheme to prioritize more likely relations. SmartSynth then uses these newly

discovered relations to generate the most likely script and returns it to the user.

As an example, suppose that the user had given a slightly different description

“. . . and send back. . . ” (instead of “. . . and replies the sender. . . ”) and also suppose that

SmartSynth does not model this mapping and thus is unable to extract the third relation

between MessageReceived.NumberO and SendMessage.NumberI in Table 2.2. Nonethe-

less, SmartSynth can discover this missing relation and generate the same script as in

Figure 2.4.

2.2 Automation Script Language

In this chapter, we use a scripting language SmartScript (Figure 2.5) with representative

features of the current smartphone generation. Since SmartScript is an intermediate

language, we can port it to other mobile platforms via simple syntax-directed transla-

tion [Aho et al., 2006].

2.2.1 Language Features

We have designed SmartScript from an extensive study of the scripts from various

smartphone help forums. This design process is an interesting exercise to balance the

trade-offs between the expressiveness of SmartScript and the effectiveness of SmartSynth.

The restrictions that we place in SmartScript (event and conditionals only appear at the

top of the script) allow SmartSynth to perform type-based synthesis more effectively

under the uncertainties in NL processing.

A script P in SmartScript represents a task that executes a sequence of actions under

a certain condition. It has some parameters I (which will be entered by users when the

script runs) and may be triggered by an event E. When the event occurs, it generates

some variables, which might be converted by T into new types that are used in the

condition C. The condition is then evaluated and if it holds, the body M is executed.

We use a few examples, each of which contains an NL description and the synthesized

script, to illustrate our key language constructs.
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Event and Conditional

Example 2 [Phone Locator] When the phone receive a new text message, reply with my

current location if the message content is “Secret code”.

when (number, text) := MessageReceived

if (text = "Secret code") then

text2 := LocationToString(CurrentLocation);

SendMessage(number, text2);

API Composition

Example 3 [Picture Uploader] Take a picture, add to it the current location and upload to

Facebook.

pic := TakePhoto();

text := LocationToString(CurrentLocation);

pic2 := AddTextToPhoto(pic, text);

UploadPhotoToFacebook(pic2);

Loops

Example 4 [Group Texting] Send my current location to 111-1111 and 222-2222.

text := LocationToString(CurrentLocation);

foreach number in {111-1111, 222-2222} do

SendMessage(number, text);

od
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Script P ::= I E T C M

Parameter I ::= input(i1, . . . , in) | ε

Event E ::= (r1, . . . , rn) := when Event() | ε

Conversions T ::= F1; . . . ;Fn;

Condition C ::= if (Π1∧·· ·∧Πn) then

Body M ::= Stmt1; . . . ;Stmtn;

Conversion F ::= x := Convert(a)

Predicate Π ::= Predicate(a1, . . . ,an)

Statement Stmt ::= S | foreach x ∈ a do S1; . . . ;Sn; od

Atomic Statement S ::= A | F

Action A ::= (r1, . . . , rn) := Action(a1, . . . ,an)

Argument a ::= x | i | r | l

Figure 2.5: The syntax of automation language. : x, i, r, and l refer to a temporary
variable, an argument of the script, a return value, and a literal, respectively. The
essential components identified by the NLP techniques are underlined.

2.2.2 Essential Components

Script components (constructs) in SmartScript are not equally important. A component

is essential to the semantics of the script if we cannot reconstruct the script once we

have removed the component from it. On the other hand, a component is not essential

if we are still able to reconstruct the script if the component is removed. In order

to successfully generate the intended script, SmartSynth must be able to identify all

essential components from an NL description.

In Figure 2.5, we underline all SmartScript’s essential components. An essential

component in SmartScript is either an API or an entity. While APIs are pre-defined and

related to smartphone functionalities, entities correspond to personal data. This mixture

enables the easy creation of personalized automation scripts.
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APIs We have created a representative set of 106 APIs that cover most of the available

functionalities of the current generation of smartphones. We annotate each API with a

set of weighted tags (used by the mapping algorithm to map text chunks to appropriate

components), and a type signature (used by the synthesis algorithm to generate only

type-safe scripts). The tag set is weighted since some tags are more indicative of a

component than others.

We classify the APIs into the following categories to match SmartScript constructs

and to assist the NLP engine in mapping descriptions to APIs:

• Events. These represent events that occur on the phone. For example, the event of

receiving a new text message (MessageReceived), the event of receiving a phone

call (IncomingCall). Events trigger script execution.

• Predicates. These denote conditions on the state of the phone. For example, there

are text messages that the user has not read (HasUnreadMessages), the phone

is in landscape orientation (IsInLandscapeMode). They also include comparison

operators (e.g., <, >, and =). Predicates restrict the condition under which the

script is executed.

• Actions. These are normal phone operations, such as turning off wifi or bluetooth

connection (TurnWifiOff, TurnBluetoothOff), muting the phone (MutePhone), tak-

ing a picture (TakePhoto), sending a text message (SendMessage). SmartSynth

executes a sequence of actions in a script’s body when its event is triggered and the

predicates are satisfied.

Entities Entities represent values that are passed among APIs inside a script. An entity

is one of the following:

• Return values: These are return values of our representative APIs. For example, the

content of the received message (MessageReceived.TextO), the caller of incoming

call (IncomingCall.NumberO).
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• Literals: These are personal data items from the user’s phone (e.g., a contact in her

address book, her bluetooth headset, her music collection, her current location) or

generic values (e.g., a string “I’m driving”, the time 10pm).

The purpose of identifying APIs is to form the script’s skeleton, while that of capturing

entities is to prepare for building the data-flow relations among these identified APIs in

a later step. We discuss the details of our algorithm next.

2.3 Synthesis Algorithm

The key observation behind our synthesis algorithm is that a SmartScript script can be

constructed from its constituent set of essential components and the dataflow relations

among those components. This observation allows us to reduce our original problem

of synthesizing a SmartScript script from an NL description to the following three sub-

problems: (a) identifying essential components (Section 2.3.1), (b) identifying their

dataflow relations (Section 2.3.2), and (c) constructing the script from the components

and their dataflow relations (Section 21). We use techniques inspired from both the NLP

and program synthesis communities to solve these sub-problems.

We first use an algorithm inspired by NLP techniques to map the given NL description

to a set of essential components. We then use rule-based relation detection algorithm (a

classic NLP technique) to extract dataflow relations among the identified components.

Since this algorithm may not be able to extract all relations, we use a technique inspired

by type-based synthesis to find the likely missing relations. Finally, we use the compo-

nents and their relations to construct the script and return it to the user. We explain

these algorithms in detail next.

2.3.1 Component Discovery

We assume that for every NL description, there exists a decomposition of that description

into disjoint text chunks, where each of the text chunks can be mapped to a component.

It is expected that there are many possible ways to decompose a given description into

chunks. Furthermore, each of the chunks can be mapped to many possible components.

Thus, the space of all possible mappings from an NL description to a set of components
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is large. The key high-level insight of our component discovery algorithm is to consider

all possible mappings (to gain high recall) in a ranked order (to gain high precision).

To this end, we have developed an effective data structure that efficiently stores all

possible description decompositions, and the supportive and refutative features used to

map these decompositions into components. We then find the best component mapping

from this data structure.

Mapping Data Structure Our data structure is a weighted directed graph 〈V,E〉 where

• V is a set of vertices. Each vertex represents a cut between two consecutive words

in the description.

• E is a set of edges. An edge (vi,vj) denotes a chunk of text that starts from the

vertex vi and ends at the vertex vj .

For each edge in E, we need to calculate the confidence of mapping its text chunk to

a particular component. We use mapping features to calculate this score.

Mapping Features A feature h is a function that returns the confidence score of map-

ping an edge in our data structure to a component. In other words, it indicates how

likely a text chunk (represented by the edge) is mapped to a certain component, among

all possible components.

Currently, our system uses the following features:

• Regular expressions. We use a set of regular expressions to extract entities. A chunk

is likely mapped to an entity if it matches the corresponding regular expression. For

each entity that is an API’s return value, we create a set of common terms that peo-

ple might call it. For example, we associate MessageReceived.TextO with “message

content”, “received content”, and “received message”. To extract literal entities

(e.g., the time “10pm”, the number “123-4567”), we define regular expressions for

all data types used in SmartSynth.

• Bags-of-words. We use the bags-of-words model [Jurafsky and Martin, 2008] to

categorize a chunk as representing some APIs. A chunk is more likely mapped to
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an API if it contains more words that are related to the API’s tags. For example, it

is more likely to map “send a text” to SendMessage than to map the single word

“send” to the same API, because the tag set of SendMessage contains both “send”

and “text”.

• Phrase length. This feature gives a negative score to a mapping (between a chunk

and a component) if the chunk is either too long or too short.

• Punctuation. A punctuation is an indication of the start or end of a chunk. Therefore,

chunks that start or end with punctuations have higher scores.

• Parse tree. Although NLP parsers may not provide precise parse trees, they are

still useful because these parse trees are partially correct, and we can exploit them

to gain higher mapping confidence. For example, if a parse tree indicates that a

text chunk is a noun phrase, it increases the confidence of mapping this chunk

to entities. Also, if the main verb in a chunk matches a verb in an action API, it

is more likely to map the chunk to this API. In our implementation, we use the

Stanford NLP parser [Klein and Manning, 2003].

The above features give different scores for mapping a text chunk to a component.

The aggregate function combines these scores into a single score. In our implementation,

the aggregate function is a weighted sum of all feature scores. It is formally defined as

follows:

f(e,c) =
∑

hi∈F

wi ∗hi(e,c)

where e is the edge that contains the text chunk, c is the component that e maps to, F is

the feature set, wi is the feature weight.

For each edge, we select the mapped component whose aggregate score is the highest.

This score becomes the edge’s weight in the data structure.

mapping(e) = {〈c,f(e,c)〉 | c ∈ argmax
c∈C

f(e,c)}

where argmax returns the components that maximize the value of the function f .
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We store all related information in the data structure to make a global decision based

on all the features. The next step is to extract the best mappings for the whole NL

description from the data structure.

Finding the Best Mapping A path from the start node to the end node decomposes

the descriptions into several disjoint text chunks. Each chunk is mapped to a component

with a confidence score represented by the weight of its corresponding edge. The total

confidence score of mapping the whole description to a component set is the total

weight of the corresponding path. Thus, the best mapping (which has the highest total

confidence score) corresponds to the longest path in the graph.

2.3.2 Script Discovery

Once SmartSynth has discovered the set of essential components, it uses the following

ingredients to synthesize the intended script: (1) type signature of the components, (2)

structural constraints imposed by SmartScript, (3) spatial locality of the components in

the natural language description, and (4) an effective ranking scheme.

The overall process works as follows. Using typing information, SmartSynth builds a

dataflow graph to capture all possible dataflow relations among the provided components.

It uses a classic NLP technique to extract dataflow relations from the relative orders of

the identified components. If the set of extracted relations is incomplete, SmartSynth

utilizes the dataflow graph and a ranking scheme to identify the most likely missing

relations. SmartSynth then constructs the intended script from the identified components

and relations via a process akin to reverse parsing, and returns the script to the user.

Next, we discuss these steps in detail.

Dataflow Relations Discovery

Dataflows are essential in determining the intended script. If components are building

bricks, dataflows are the cement to glue the bricks together to form scripts. The key insight

in this process is to use an NLP technique to detect a (partial) set of (high-confidence)

dataflow relations followed by a type-based synthesis technique to complete this set

using type signatures of components and a ranking scheme.
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Definition 1 (Dataflow Relation) A dataflow relation is an ordered pair of a source (i.e.,

an API return value or a literal) and a sink (i.e., an API parameter), representing a value

assignment from the source to the sink.

Dataflow Graph We build the graph GC = 〈V,E〉 that concisely captures all dataflow

relations among the identified components C as follows:

• V is the set of all sources and sinks in C.

• E is the set of all directed dataflow edges from sources to sinks, such that they are

type-compatible. Each edge in E represents a dataflow relation between a source

and a sink.

A source type τ1 is type-compatible with a sink type τ2 if they have the same type or

τ1 is a list of type τ2 (we use the later case to generate loops).

The task of SmartSynth is to determine which relations are most relevant in GC.

It does this in two steps. First, it detects dataflow relations among components from

their relative locations in the description. When necessary, it uses type-based synthesis

techniques to infer additional relations from the dataflow graph.

Detecting Partial Dataflow Relations We use rule-based relation detection algorithm,

a standard NLP technique, to detect dataflow relations among the identified components.

Since all of our APIs are pre-defined and structured (each API is annotated with its type

signature), we are able to manually compile a set of rules to extract relations based on

the order of how components appear in the sentence. Specifically, if an API component

is followed by entities having types that match its signature, those entities are likely to

be the API’s arguments.

Table 2.3 shows three rules for detecting all relations in Example 1. The first rule

states that if the entity following IsConnectedToBTDevice has type BT, there is a relation

between those two.

We remark that these rules can be learned automatically using supervised learn-

ing [Jurafsky and Martin, 2008, Kate et al., 2005]. However, in a manageable domain
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C1 typeof (C2) typeof (C3) Relations

IsConnectedToBTDevice BT 〈C2,C1.BTI〉

ReadText Text 〈C2,C1.TextI〉

SendMessage Number Text
〈C2,C1.NumberI〉

〈C3,C1.TextI〉

Table 2.3: Some rules to detect relations in Example 1. C1,C2,C3 is a sequence of
identified components.

like ours, expert rules work quite well. The Stanford NLP parser also uses hand-written

rules to extract grammatical relations between words [de Marneffe et al., 2006].

Even though our algorithm works fairly effectively, it is unable to detect all relations

within a description, as is typically the case with NLP algorithms. In these cases,

SmartSynth relies on recent advances in modern program synthesis to complete the

relation set and generates the final script. Without the synthesis algorithm, SmartSynth

would halt here and ask the user to refine the description.

Completing the Relation Set The goal here is to discover missing relations to form

a complete dataflow set that can be turned into a script in a later phase. We use a

specialized ranking scheme to find the most likely complete dataflow set among all

possible sets.

Definition 2 (Complete Dataflow Set) A setGC of dataflow relations among components

in C is complete if every sink of a component in C has one and only one relation associated

with it. This dataflow set fully specifies how arguments are passed to all the sinks in C.

Algorithm 1 describes the process of completing the dataflow set. At the high-level,

SmartSynth performs search over the dataflow graph to find the best dataflow sets R

for the sinks T̃ that have not been assigned any values (line 5). SmartSynth uses the

ranking scheme (represented by Cost) to guide the search towards more likely relations

(lines 12, 14). It enforces structural constraints imposed by SmartScript by eliminating

dataflow sets that do not conform to the language (line 11). To speed up the discovery
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Algorithm 1: Discovering the most likely complete dataflow set
Input : component set C, partial relation set R̃

Output : the most likely complete dataflow set Rtop

1 begin

2 GC ← BuildDataFlowGraph(C)

3 Tall←{t | t is sink in GC .V } /* already concretized sinks */

4 Tconc←{t | 〈s, t〉 ∈ R̃}

5 T̃ ← Tall \Tconc /* to be concretized sinks */

6 R← {ArbitraryRelationSet(R̃)}

7 Q← {〈R̃, T̃ 〉}

8 while Q 6= {} do

/* worklist is not empty */

9 〈R,T 〉 ←Q.Dequeue()

10 if MinCost(R)≤ MaxCost(R) then /* explore this branch */

11 if T = ∅ & GenCode(R) ∈ SmartScript then

12 if Cost(R)< MaxCost(R) then R← {R}

13 else if Cost(R) = MaxCost(R) then R←R∪{R}

14 else /* explore child spaces */

15 t← choose(T )

16 foreach (s, t) ∈GC .Ev do

17 Q.Enqueue(〈R∪〈s, t〉,T \ t〉)

/* else do nothing: prune this branch */

18 if R= ∅ then Rtop←⊥

19 else if R= {R} then Rtop←R

20 else Rtop← PerformConversation(R)

21 return Rtop

process, our algorithm implements the general branch-and-bound algorithm. It ignores

a search sub-space if the minimum cost (MinCost) of all dataflow sets in that space is

greater than that of the current set (lines 10 and 20).
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One important aspect of Algorithm 1 is our specialized ranking scheme, which

helps prioritize the search process toward the script that most likely matches the user’s

intention. We next discuss the ranking scheme.

Ranking Scheme Our high-level insight behind the ranking scheme is to give prefer-

ences to those scripts (1) that have greater coupling among the components, (2) that are

more generally applicable, or (3) that require fewer user inputs.

We define a set of (negative) cost metrics to realize the above insight, each of which

defines a less likely or less preferred feature of a script. The Cost function is simply the

sum of the costs given by each of them:

• Unused Variable Cost. This metric gives a unit cost to each unused variable generated

by SmartSynth. It promotes scripts that have better coupling among components.

• Parameter Cost. This metric gives a unit cost for each of parameters the script uses.

This is because users normally do not want to configure the script when it runs.

They often want fully automatic scripts.

• Domain-Specific Cost. This metric contains expert rules that capture what people

usually do in practice. For example, in the messaging domain, we punish the script

if the replied message is the same as the content of the received message.

This ranking scheme work quite effectively for our problem domain. However, in the

presence of a large amount of user data, we can build a probabilistic ranking model. We

are investigating this option for the TouchDevelop domain from its thousands of scripts

contributed by its users.

Script Construction

At this point, SmartSynth has found a set of components and a complete set of dataflow

relations. It now uses Algorithm 2 to construct the intended script. This process is

the reverse of the normal parsing process in a compiler. A compiler breaks down a

program into components and dataflow relations to enable optimizations and low-level

code generation. In contrast, the SmartSynth synthesizes the script structure from its
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Algorithm 2: Script Construction
Input : component set C, dataflow set R

Output : an automation script

1 begin

/* generate temporary variables */

2 foreach source τ ∈ C do

3 SymTable[τ ]← new variable

/* assign sources’ variables to sinks */

4 foreach (τs, τt) ∈ C.E do

5 SymTable[τt]← SymTable[τs]

6 I ← live input variables in C

7 E←⊥

8 if ∃e ∈ C : e is event then E← e

9 C←
∧
iΠi where Πi is a predicate in C

10 T ← conversion functions used by C

11 M ← the rest of actions and conversion functions in g

/* generate foreach loop */

12 foreach (τs, τt) ∈ g.Ev s.t. τs = List〈τt〉 do

13 s← the subgraph reachable from τt

14 SymTable[τt]← new variable

/* replace s by foreach stmt */

15 M ←M [(foreach SymTable[τt] ∈ SymTable[τs]do s od) / s]

16 P ← 〈I,E,T,C,M〉

17 return P

building pieces (i.e., the components and their dataflow relations). During this synthesis

process, SmartSynth needs to: (1) generate code to pass arguments to APIs, (2) generate

conditionals, and (3) generate loops.

SmartSynth generates a temporary variable for each API return value, and, based on

the dataflow set identified in the previous steps, passes these variables as arguments to
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other APIs (line 2-5). Next, it extracts the event and conditionals from the event and

predicate components to form the guard of the script (lines 8-9). The remaining action

APIs form the body.

The most interesting aspect of the script construction process is loop generation.

SmartSynth generates a looping construct if there is a relation from a collection to an API

parameter (lines 12-16). For example, the user may say “send Joe and John my current

location." Although the user does not explicitly mention the word “loop”, it would be her

intention to use a loop. In particular, SmartSynth detects that there is a relation between

the group {Joe, John} and SendMessage.NumberI , and generates a loop to send messages

to both Joe and John.

Having described the two technical components (i.e., Component Discovery and Script

Discovery), we now ready to formally describe the rest of SmartSynth’s architecture.

2.3.3 SmartSynth

Algorithm 3 implements all the components in the architecture. It realizes our observation

that a SmartScript script can be identified from its essential components and their

dataflow relations. Specifically, it uses NLP techniques to find components from the

provided NL description (line 4) and to detect some of relations (line 5). It then invokes

the synthesis algorithm to complete the dataflow relations (line 10), and to synthesize

the final script in line 14. If nothing goes wrong, those steps correspond to the simplest

possible workflow in SmartSynth.

However, since it is dealing with end users and natural language, SmartSynth faces

many uncertainties. For example, users might give irrelevant and/or ambiguous descrip-

tions. We discuss SmartSynth’s error handling mechanism next.

Handling Descriptions with Unsupported Functionalities It is possible that users

ask for functionalities unsupported by SmartSynth. If the given description is in-scope,

there exists a meaningful decomposition of the description into several chunks, and

SmartSynth is able to map each of these chunks to a component. The graph in this case

is a connected graph. On the other hand, if one or more parts of the description are

out-of-scope, these parts cannot be mapped to any component(s). The graph in this case

32



Algorithm 3: The overall algorithm of SmartSynth.
Input : Natural language description d

Output : Automation script P , or request to refine (parts of) d

1 begin

2 Gd← BuildDataFlowGraph(d)

3 if Gd is connected then

4 C ← BestMapping(Gd)

5 R̃← DetectRelations(C)

6 while MappingScore(〈C, R̃〉)< δ do

/* mapping score too low */

7 C ← NextBestMapping()

8 R̃← DetectRelations(C)

9 if C 6= ∅ then /* mapping exists */

10 R← CompleteRelations(〈C, R̃〉)

11 if R> 1 then R← QuestionAnswering(R) /* equally ranked sets */

12 else R←R.First()

13 return GenerateCode(〈C,R〉)

14 return AskForRefinement(d) /* refine the whole description */

15 else /* refine nonmappable phrases */

16 l← DisconnectedSubGraphs(Gd)

17 return AskForRefinement(l)

is disconnected. SmartSynth asks the user to refine the phrases corresponding to the

disconnected subgraphs that cannot be mapped to anything (line 17 in Algorithm 3, step

2 in Figure 2.1). Figure 2.6 visualizes this case.

Handling Ambiguous NL Descriptions Although SmartSynth uses multiple mapping

features to increase the precision of the component mapping process, there are cases

where these features cannot promote the best component mapping properly. This is

unavoidable because we cannot precisely model natural language. SmartSynth resolves

such cases via the feedback loop on lines 6-8 in Algorithm 3 (and Steps 3-4 in Figure 2.1).
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Disconnected region
(Cannot be mapped to any components)

Connected regions
(Mapped to components)

. . . . . .. . .

Figure 2.6: A region in the description that cannot be mapped to any component.
SmartSynth reports its phrase to the user to clarify.

It evaluates the quality of the component mapping provided by the mapping algorithm

and repeatedly generates other interpretations of the NL description, if the current one

is unsatisfactory.

Handling Equally Likely Scripts When the ranking scheme cannot differentiate the

top dataflow sets, SmartSynth has multiple equally ranked scripts at the top. In such

cases, SmartSynth performs interactive conversation with the user to eliminate undesired

scripts (line 12 in Algorithm 3, and Step 5 in Figure 2.1). It generates a sequence of

distinguishing multiple-choice questions based on these candidates and presents them to

the user, one question at a time. Her answers help SmartSynth capture more constraints

and eliminate unintended dataflow sets.

The intuition behind the algorithm is that each question corresponds to a sink that

receives different values in those dataflow sets, and the answer choices are those values

that can be assigned to the sink. When the user selects an answer, SmartSynth eliminates

those dataflow sets that do not correspond to the selected value.

Because the sink set is finite and known a priori (sinks are parameters of pre-defined

APIs), we are able to build a database that stores an NL question for each of the sinks.

Similarly, we define NL representations for all the sources. SmartSynth generates

questions and answers by looking up the values of the corresponding sinks and sources

in the database. For example, for the sink SendMessage.NumberI , SmartSynth generates
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the question “Who do you want to send the SMS to?”. Suppose this sink is related to two

sources, MessageReceived.NumberO and 111-1111. They will be presented as two answer

choices “(A) The sender of the received SMS” and “(B) The phone number 111-1111”.

2.4 Evaluation

In this section, we evaluate the effectiveness of SmartSynth in discovering the right set

of components and their dataflow relations. We also compare the overall performance of

SmartSynth and the system that employs only NLP techniques.

2.4.1 Setup

We implemented SmartSynth in C#. We ran all our experiments on a machine with

an Intel® i7 2.66 GHz CPU and 4 GB of RAM. SmartSynth uses the Stanford NLP

parser [Klein and Manning, 2003] wrapped under a public web service [LeBlanc, 2015].

We compile the benchmark from task descriptions found in help forums of Tasker,

App Inventor, and TouchDevelop. Among the 70 task descriptions that we found, seven

cannot be expressed in our language SmartScript. Therefore, we remark that SmartScript

was able to express 90% of the kind of real-life examples that it was designed for. All

the inexpressible descriptions that we found required synchronization between different

tasks, possibly through the use of some shared global variables or control-flow among

events. To illustrate, we describe below one of them; the other ones are similar.

Example 5 [Inexpressible in SmartScript ] If there is an unread SMS and the user has not

turned the screen on, remind her every 5 minutes.

This script has two synchronized tasks, which may be synchronized using a global

status variable denoting whether or not the screen has been turned on. We plan to

extend our language to allow task synchronization as future work.

Of the remaining 63 task descriptions that are expressible in SmartScript, 13 are

similar to another one in the set. Table 2.4 shows the distinct 50 tasks. To collect NL

descriptions for those benchmark tasks, we conducted an online user study involving

freshman students. We provided a one page document describing their task. We divided
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the benchmark into two sets that are roughly equivalent in terms of complexity. The

system randomly assigned a student to one set. For each problem in an assigned set,

we gave the student its desired script in SmartScript as the specification, and asked the

student to give several NL descriptions that match the given script.

Eleven students participated in the study, giving a total of 725 distinct descriptions

for our 50 benchmark tasks. Among these given descriptions, 640 match their respective

specifications. We used these 640 descriptions to evaluate SmartSynth.

2.4.2 Experimental Results

In Table 2.4, column “Com” shows, for each task, the total number of components that

are identified from the description. The next two columns divide these components into

APIs and entities. Column “Rel” corresponds to the number of dataflow relations for each

task, and “DRel” shows how many relations on average the NLP-based algorithm can

extract from various descriptions. The last two columns show the average parsing time

by the Stanford NLP parser and the average total synthesis time under ten runs. Note

that the parsing time includes the communication overhead to the web service provider.

It dominates the total time by SmartSynth.

Component Discovery We first evaluate the effectiveness of SmartSynth in mapping

descriptions into components. Figure 2.7 shows the precision of this process under

increasingly sophisticated configurations. The baseline algorithm (regular expression for

entities and bag-of-words for APIs) produces the right component set 64.3% of the time.

The algorithm combining all features achieves a 77.1% precision (the fourth column).

These results indicate that the considered features work harmoniously to improve the

overall precision.

Component Discovery (with Feedback Loop) Since mapping from descriptions to

components tends to be ambiguous, SmartSynth utilizes the feedback from the synthesis

algorithm (see Section 2.3.3) to gain higher mapping confidence. The last column of

Figure 2.7 shows that the aid from the feedback loop helps improve the mapping precision

to 90.3%. This proves that the synthesis feedback is very effective in disambiguating
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ID Brief Description Com API Ent Rel DRel tNLP ttotal
1 Reply current loc., read msg’s number and content 12 6 6 7 4.13 3,151 3,325
2 Reply current loc. and batt. level upon receiving a code 11 5 6 7 3.75 2,705 3,206
3 Phone locator by SMS 10 5 5 8 4.6 4,376 5,737
4 Text a friend when come nearby 8 3 5 4 2 1,102 1,137
5 Silent at night but ring for important contacts 8 3 5 4 3.14 2,544 2,617
6 Speak weather in the morning 7 3 4 3 1.67 388 405
7 Take a picture, add the location and upload to Facebook 7 4 3 4 3 837 875
8 Auto response to SMS at night 7 3 4 4 3.61 2,071 2,134
9 Alert and turn off connections when battery is low 7 6 1 1 1 2,402 2,878

10 Text wife when nearly finish a long commute 6 2 4 3 2.94 1,439 1,481
11 Send SMS at a particular time 6 2 4 3 2.60 1,173 1,210
12 Send an email when leaving the office 6 2 4 3 2.67 1,077 1,108
13 Send a message when kids are dropped at school 6 2 4 3 2.88 1,644 1,689
14 Send to a list of friends current location every 15 minutes 6 3 3 4 4 788 817
15 Reply busy message if connected to car’s bluetooth 6 3 3 3 2.19 2,723 2,811
16 Turn off GPS when connected to home wifi 5 2 3 1 1 737 779
17 Increase display timeout while running some apps 5 2 3 3 2 948 983
18 Auto answer calls when headset is connected 5 3 2 1 1 1,339 1,395
19 Block calls from a group of users 5 2 3 2 1.42 715 744
20 Connect to wifi when disconnected from car’s bluetooth 5 2 3 2 2 1,234 1,292
21 Find direction to the place a photo is taken 5 3 2 3 2.07 759 787
22 Turn off wifi and GPS at night 5 3 2 2 2 653 688
23 Ring loudly for important contacts 5 2 3 3 3 1,090 1,128
24 Lower volume when a loud friend is calling 5 2 3 3 3 1,539 1,584
25 Take a picture and add current time to it 5 3 2 3 1.88 486 507
26 Handsfree texting 5 3 2 2 1.36 1,246 1,290
27 Broadcast the received message from a group 5 2 3 4 3 827 859
28 Read the received msg while connected to car’s bluetooth 5 3 2 2 1.90 1,122 1,176
29 Mute the phone if is in the theater 4 2 2 1 0.89 467 485
30 Disable screen rotation at night 4 2 2 2 2 413 436
31 Mute the phone if is in meeting 4 2 2 1 0.92 344 359
32 Turn on data service for apps that require data 4 2 2 2 1.76 1,501 1,547
33 Turn on GPS when apps requiried GPS are run 4 2 2 2 1 752 781
34 Send current location to a friend via SMS 4 2 2 3 2 272 284
35 Send an SMS with a secret code to trigger an alarm 4 2 2 1 1 912 947
36 Repeat caller name 4 3 1 2 1 441 459
37 Alert when receive an email with important subject 4 2 2 1 1 759 788
38 No text while driving 4 2 2 2 1.55 1,824 1,879
39 Ask to take the call if connected to car’s bluetooth 4 3 1 1 1 1,702 1,776
40 Launch Pandora when the headphone is plugged 3 2 1 1 1 310 327
41 Reduce the volume when headset is plugged in 3 2 1 1 1 361 379
42 Keep screen awake when using the keyboard 3 2 1 1 1 414 434
43 Maximize screen brightness for calls 3 2 1 1 1 406 424
44 Turn off ringer by turning the phone down 3 3 0 0 0 718 757
45 Lay the phone down to switch to speaker 3 3 0 0 0 792 827
46 Show direction from current loc. to previously saved loc. 3 2 1 2 2 661 696
47 Open the keyboard and start texting 2 2 0 0 0 199 211
48 Unplug headset to pause media player 2 2 0 0 0 219 231
49 Play alert sound when battery is full 2 2 0 0 0 221 233
50 Send a text message to a group 2 1 1 3 2 387 402

Table 2.4: Characteristics of the benchmarks extracted from smartphone help forums.
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Figure 2.7: The result of mapping phrases to components under increasingly sophisticated
configurations.

mapping candidates. Note that we measure precision by counting the number of sets

that are mapped entirely correctly, while in other settings, individual components are

counted. Their performance might be reduced when measured in our context.

Dataflow Relation Detection (with NLP Technique) We now evaluate the capability

of SmartSynth in finding dataflow relations among APIs and entities under the ideal

case, i.e. when the components are mapped correctly. Figure 2.8 shows some statistics

on the number of dataflow relations that the rule-based relation detection algorithm can

detect on benchmark tasks that are grouped by the number of relations.

These results indicate that the rule-based relation detection algorithm works quite

effectively for tasks that have few relations. Specifically, it found almost all relations

in the 1-relation tasks and nearly 86% relations in those having four. However, the

rule-based algorithm faces problems when the tasks contain more relations. In particular,

it could not detect nearly half of the relations in tasks having 7 or more relations. In order

to resolve this, SmartSynth needs further support. Next, we measure the effectiveness of

the synthesis-based algorithm in assisting the rule-based algorithm to complete those

missing relations.

Dataflow Relation Completion (with Synthesis Technique) Figure 2.9 shows that in

nearly a quarter of the cases, the rule-based algorithm failed to detect all the dataflow
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Figure 2.8: The number of dataflow relations detected by the rule-based algorithm for
various tasks grouped by relation number.

relations in the solution set. Furthermore, the failure rate is proportional to the number

of dataflow relations in the task descriptions. These indicates that pure NLP techniques

do not scale well with complicated tasks. By employing the relation completion algorithm

inspired by program synthesis area, SmartSynth was able to complete the dataflow sets

and synthesize the desired scripts. In general, the synthesis-inspired algorithm is more

useful with more complicated scripts, where the failure rate of detecting all relations

using only NLP techniques is close to 100%.

Overall Performance Should SmartSynth only use NLP techniques and not employ the

synthesis-inspired algorithm, it would suffer from the ambiguity of mapping descriptions

to components and the uncertainty of extracting their relations. As a result, it might not

be able to generate the user’s intended script. Evaluated on our data, such system only

returns the intended script 58.7% of the time (mostly with simple descriptions).

After we enable techniques inspired by program synthesis area, SmartSynth both

improves its component identification (from the feedback loop) as well as its relation

discovery (from additional relations found using the relation completion algorithm).

SmartSynth achieves the 90% accuracy by combining the strength of the two research

areas.
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Figure 2.9: The number of descriptions whose dataflow relations are entirely detected by
the rule-based algorithm (total 487) vs. those that require completion by the completion
algorithm (total 153), grouped by the number of relations.

SmartSynth works quite well once it combines the strength of both NLP and synthesis

communities. However, it might fail to generate the intended script sometimes. We

discuss such cases next.

2.4.3 Limitations

Given the NL description is grammatically correct and in-scope, there are two possibilities

for SmartSynth to fail in generating the intended script. The first possibility is when

users ask for a script that is not expressible in SmartScript. When designing SmartScript,

we carefully balanced the trade-offs between language expressiveness and synthesis

effectiveness. We can extend SmartScript to cover more scripts, but this also expands

the search space, and may make the completion algorithm less scalable and the ranking

scheme less effective. Nonetheless, SmartScript is able to express 90% of automation

scripts that users care about (see Section 2.4).

The second possibility is when SmartSynth captures the intent from the NL description

incorrectly. This is a common problem for any system that handles NL. Although it cannot

completely avoid incorrect mappings, SmartSynth alleviates this problem by empowering

the feedback loop, which estimates script likelihood and repeatedly generates alternative

interpretations of the provided description, if the current script is not likely.
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As with any programming paradigms that use examples or natural language descrip-

tions, the correctness of the synthesized script in SmartSynth needs to be checked by the

user. Another limitation of SmartSynth is its tight integration with the API set and the

English language. To support any new APIs (or new languages), we have to add new

rules and possibly new ranking metrics. Interesting future work is to learn these rules

and ranking metrics automatically from training data. Currently, we only support small

tasks that can be described in one-liners. We are considering expanding SmartScript to

support task descriptions that use multiple sentences.
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Chapter 3

FlashExtract: Synthesizing
Data-Extraction Program from
Examples

The IT revolution over the past few decades has resulted in two significant advances: the

digitization of massive amounts of data and widespread access to computational devices.

However, there is a wide gap between access to rich digital information and the ability

to manipulate and analyze it.

Information is available in documents of various types such as text/log files, spread-

sheets, and webpages. These documents offer their creators great flexibility in storing

and organizing hierarchical data by combining presentation/formatting with the under-

lying data model. However, this makes it extremely hard to extract the underlying data

for several tasks such as data processing, querying, altering the presentation view, or

transforming data to another storage format. This has led to development of various

domain-specific technologies for data extraction. Scripting languages like Perl, Awk,

Python have been designed to support string processing in text files. Spreadsheet systems

like Microsoft Excel allow users to write macros using a rich built-in library of string and

numerical functions, or to write arbitrary scripts in Visual Basic/.NET languages. Web

technologies like Xquery, HTQL, XSLT can be used to extract data from webpages, but

this has the additional burden of knowing the underlying document structure.
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Existing programmatic solutions to data extraction have three key limitations. First,

the solutions are domain-specific and require knowledge/expertise in different technolo-

gies for different document types. Second, they require understanding of the entire

underlying document structure including the data fields that the end user is not in-

terested in extracting and their organization (some of which may not even be visible

in the presentation layer as in case of webpages). Third, and most significantly, they

require knowledge of programming. The first two aspects create challenges for even

programmers, while the third aspect puts these solutions out of reach of the vast majority

of business end users who lack programming skills. As a result, users are either unable

to leverage access to rich data or have to resort to manual copy-paste, which is both

time-consuming and error prone.

In this chapter, we address the problem of developing a uniform end-user friendly

interface to support data extraction from semi-structured documents of various types.

Our methodology includes two key novel aspects: a uniform user interaction model

across different document types, and a generic inductive program synthesis framework.

Uniform and End-user Friendly Interaction Model Our extraction interface supports

data extraction via examples. The user initiates the process by providing a nested

hierarchical definition of the data that he/she wants to extract using standard structure

and sequence constructs. The user then provides examples of the various data fields

and their relationships with each other. An interesting aspect is that this model is

independent of the underlying document type. This is based on our observation that

different document types share one thing in common: a two-dimensional presentation

layer. We allow users to provide examples by highlighting two-dimensional regions on

these documents. These regions indicate either the fields that the user wants to extract

or structure/record boundaries around related fields.

Inductive Program Synthesis Framework To enable data extraction from examples,

we leverage inductive program synthesizers that can synthesize scripts from examples in

an underlying domain-specific language (DSL). The key technical contribution of this

chapter is an inductive program synthesis framework that allows easy development of
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inductive synthesizers from mere definition of DSLs (for data extraction from various

document types). We describe an expressive algebra containing four core operators: map,

filter, merge, and pair. For each of these operators, we define its sound and complete

generic inductive synthesis algorithms parameterized by the operator’s arguments. As

a result, the synthesis designer simply needs to define a DSL with two features: (a) It

should be expressive enough to provide appropriate abstractions for data extraction for

the underlying document type, (b) It should be built out of the operators provided by

our core algebra. The synthesis algorithm is provided for free by our framework. This is

a significant advance in the area of programming by examples, wherein current litera-

ture [Gulwani et al., 2012, Gulwani, 2012] is limited to domain-specific synthesizers.

3.1 Motivating Examples

In this section, we motivate some data extraction tasks across different document types

and illustrate how FlashExtract can be used to automate the various tasks from examples.

Text Extraction

Example 6 Consider the text file in Figure 3.1 (taken from a help forum thread1) that

contains a sequence of sample readings, where each sample reading lists various “analytes”

and their characteristics (analyte intensities). The user wants to extract the highlighted

fields into an Excel spreadsheet in order to perform some analysis. Accomplishing this task

by creating a one-off Perl script appears daunting, especially for a non-programmer.

Suppose the user only wants to extract the analyte names (magenta regions starting

with instance “Be”) and their mass (violet regions starting with instance “9”). The user

starts with the analyte names. She highlights the first two regions “Be” and “Sc” as

examples in magenta color. FlashExtract synthesizes an extraction program and uses it

to highlight all other analyte instances. The user inspects and approves the highlighted

result because it matches the intended sequence. She then moves to the mass field

and repeats the process with violet color. FlashExtract can now automatically relate

1http://www.excelforum.com/excel-programming/608284-read-txt-file.html

44

http://www.excelforum.com/excel-programming/608284-read-txt-file.html


Figure 3.1: Extracting data from a text file using FlashExtract.

the respective instances from the magenta sequence and the violet sequence, and can

generate a two-column Excel table if desired.

Now suppose the user also wants to extract the conc. mean (blue regions including

instance “0.070073”). After one example, FlashExtract mistakenly includes the string

“,""ug/L„,404615.043” to the result (this should be null). To exclude this region, the user

draws a red line through it to mark it as a negative example, and FlashExtract refines the

learning with the new information. It then produces the correct result and the user stops

providing any further examples. Although the third sequence contains fewer regions,

FlashExtract is still able to relate it to the other two automatically because it is the only

sequence containing null regions.

In case FlashExtract cannot relate different field regions, or does so incorrectly, the

user can intervene by marking a structure boundary around related regions. For instance,

the user may highlight the first yellow region as the structure boundary for the intensity

of the first analyte. FlashExtract is able to infer similar yellow regions that group other
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intensities. If the user wants to further organize the analyte intensities into different

samples, she creates the outer green regions. The user can then add the sample ID

(orange field, such as “5007-01”) to these green structures.

Once the highlighting process has been completed, the user can obtain the data (in

different formats such as XML file or Excel table) and its associated data extraction

program. The user may run the program on other similar files to extract data in the same

output format without giving any additional examples.

Note that the user can extract data in any field order (we only demonstrated one such

order). For example, the green regions can be highlighted before the yellow regions,

which in turn can be highlighted before the violet regions. The top-down order is

generally recommended and has higher chance of success (because an inner field knows

who is its parent). Furthermore, the highlighting does not necessarily need to follow the

actual file structure; it just needs to be consistent. For instance, the user may want the

green structures to begin at “"Sample ID”, or the yellow structures to end in the middle

of the lines, say before “ug/L”.

We can combine FlashExtract with existing end-user programming technologies

to create new user experiences. For instance, integration of FlashExtract with Flash-

Fill [Gulwani, 2011] allows users to both extract and transform the highlighted fields

using examples, and possibly push the changes back to the original document. As an

example, after highlighting using FlashExtract, the user can easily change the precision

of conc. mean (blue field) or the casing of analytes (magenta field) using FlashFill.

Webpage Extraction

Example 7 Google Scholar website (http://scholar.google.com) has author pages con-

taining list of all publications. A publication consists of its title, list of authors, venue,

number of citations, and year of publication. Figure 3.2 shows an excerpt from a page of

the researcher Mandana Vaziri.

Suppose the user wants to find all publication titles in which Dr. Vaziri is the first

author. She can use FlashExtract to extract the publication title (blue) and just the

first author (magenta) fields into an Excel spreadsheet, where she can utilize the native
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Figure 3.2: Extracting data from a Google Scholar webpage.

spreadsheet functionality to sort by first author field. A key design principle behind

FlashExtract is to provide a uniform interaction model independent of the underlying

document type. The user interacts with webpages exactly as with text files. That is, the

user gives examples for the desired fields by using colored highlighting over the rendered

webpage. She does not need to understand the underlying structure of the webpages (as

is required in the case of querying languages such as XPath, XQuery).

Now suppose the user wants to extract publication titles along with the list of all

authors. Extracting list of all authors is technically challenging because the comma

separated list of all authors is represented as a string in a single div tag. However,

we can use FlashExtract to highlight each author individually. Its underlying DSL is

expressive enough to allow extracting list of regions in a text field of a single HTML

node.

FlashExtract can be used to group a publication and all its authors together. The

user may make this relation explicit by highlighting green regions. The same applies to

the yellow regions that group author sequences. Once FlashExtract has produced the

program, the user may run it on other scholar pages to perform the same task for other

authors.
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Figure 3.3: Extracting data from a semi-structured spreadsheet.

Spreadsheet Extraction

Example 8 Consider the semi-structured spreadsheet "Funded - February#A835C.xlsx"

from the EUSES benchmark [Ii and Rothermel, 2005] shown in Figure 3.3. Suppose the

user wants to (a) add up the values in the Amount column (excluding the values in the

subtotal rows), and (b) plot values in the Amount column grouped by department name.

The user highlights few examples of the amount field (magenta), department field

(yellow), and the record boundaries (green). FlashExtract is then able to highlight all

other similar instances and creates a new relational table view. For task (a), the user can

now simply add up all the values in the amount column by using the native spreadsheet

SUM function over the new relational view (instead of having to write a complicated

conditional arithmetic macro over the original semi-structured spreadsheet view). Task

(b) is easily accomplished using the popular “Recommended Charts” feature in Excel

2013, wherein Excel automatically suggests relevant charts over user’s data. Note that

this feature only works when the data is properly formatted as a single relational table—it

does not work on the original semi-structured spreadsheet.
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Schema M ::= S | T

Structure T ::= Struct (identifier : E1, . . . , identifier : En)

Element E ::= f | S

Sequence S ::= Seq(f)

Field f ::= [color] τ | [color] T

Figure 3.4: The language of schema for extracted data.

If the user later decides to also extract the investigator name (blue), she can simply

provide an example. As before, once all interactions are recorded, the output view can

be automatically updated if the user continues to edit and maintain the original ad-hoc

format consistently.

3.2 User Interaction Model

Our user interaction model for data extraction requires the user to provide an output data

schema and highlight examples of regions (in the document) that contain the desired

information. The final result is a schema extraction program that extracts the desired data

from the document as an instance of the output schema. We next define these aspects in

more detail.

3.2.1 Output Schema

The final product of an extraction task is a nested organization of the extracted data

using standard structure and sequence constructs. Figure 3.4 defines the language for

the output schema. The output schema is either a sequence S over some field f , or a

structure T with named elements E1, . . . ,En. Each element E corresponds to either a

field f or to a sequence S. Each field f is either an atomic type τ (also referred to as

a leaf field) or a structure T . Each field f is associated with a unique color (denoted

f.Color).

For example, the schemas for the two extraction tasks discussed in Example 6 are
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presented below. The first one represents a sequence of yellow structures, each of which

contains a magenta Analyte field and a violet Mass field. The second one represents

organization of many more fields referenced in the task illustrated in Figure 3.1.

(1) Seq
(
[yellow] Struct(Analyte : [magenta] Float, Mass : [violet] Int)

)
(2) Seq

(
[green] Struct(SampleID : [orange] String,

Intensities : Seq([yellow] Struct(

Analyte : [magenta] String,

Mass : [violet] Int,

CMean : [blue] Float)))
)

Note that the schema language does not allow a sequence to be directly nested

inside another sequence. It requires a colored structure construct in between them. The

structure serves as the boundary for the learning of the inner sequence.

Definition 3 (Ancestor) We say that a field f1 is an ancestor of field f2 if f2 is nested

inside f1. For notational convenience, we say that ⊥, which stands for the top-level data

schema definition, is an ancestor of every field. Additionally, f1 is a sequence-ancestor of

f2 if there is at least one sequence construct in the nesting between f1 and f2. Otherwise, f1

is a structure-ancestor of f2. We say that ⊥ is an ancestor of every other field.

In the second schema above, the yellow structure is the structure-ancestor of leaf fields

Analyte, Mass, and CMean. The top-level green structure is the sequence-ancestor of the

yellow structure. We categorize ancestral relationship in order to invoke appropriate

synthesis algorithms.

3.2.2 Regions

Definition 4 (Region) A region R of a document is some two-dimensional portion over

the visualization layer of that document that the user is allowed to highlight in some color.

We use the notation f -region to denote any region that the user highlights in f.Color. Any

region R that is associated with a leaf field (also referred to as a leaf region) has some

value associated with it, which is denoted by R.Val. For a document D, we use the notation

D.Region to denote the largest region possible in D.
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In case of text files, any region is represented by a pair of two character positions

within the file and consists of all characters in between (these positions may or may not

be within the same line). The value of such a region is the string of all characters in

between those positions.

In case of webpages, a leaf region is represented by either an HTML node (the value of

such a region is the text value associated with that node) or a pair of character positions

within the text content of an HTML node (the value of such a region is the string of all

characters between those positions). A non-leaf region is represented by an HTML node.

In case of spreadsheets, a leaf region is represented by a single cell (and its value is

the cell’s content), while a non-leaf region is represented by a pair of cells (and consists

of the rectangular region determined by those cells).

Definition 5 (Highlighting) A highlighting CR of a document D is a collection of colored

regions in D. It can also be viewed as a function that maps a color to all regions of that color

in D. We say that a highlighting CR is consistent with a data scheme M if the following

conditions hold.

• For any two regions (in CR), either they don’t overlap or one is nested inside the other.

• For any two fields f1 and f2 in M such that f1 is an ancestor of f2, each f2-region R2

is nested inside some f1-region R1.

• For any two fields f1 and f2 in M such that f1 is a struct-ancestor of f2, there is at

most one f2-region inside a f1-region.

• For every leaf field f in M , the value of any f -region in CR is of type f .

3.2.3 Schema Extraction Program

FlashExtract synthesizes extraction programs for individual fields and combines them

into a schema extraction program following the structure imposed by the output schema.

FlashExtract also leverages the schema’s structure to simplify the learning of individual

fields. In particular, it relates a field f to one of its ancestors, whose extraction program

(in case of a non-⊥ ancestor) defines learning boundaries for f (i.e., each f -region must

reside inside one of these boundaries).
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Algorithm 4: Execution semantics of extraction programs.

1 function Run (schema extraction program Q, schema M , document D) : schema instance is

2 CR := ∅

3 foreach field f in M in top-down topological order do

4 R̃ := Run(Q(f),D,CR)

5 CR := CR∪{(f.Color,R) |R ∈ R̃}

6 if CR is inconsistent with M then return ⊥

7 else return Fill(M,D.Region)

8 function Run (extraction program (f ′,P ) of field f , document D, highlighting CR): f-regions

is

9 R̃′ := (f ′ =⊥)? {D.Region} : CR[f ′.Color]

10 return
⋃

R′∈R̃′
JP KR′ /* execute P on R′ */

Definition 6 (Extraction Programs) A schema extraction program Q for a given schema

M is represented as a map from each field f in M to a field extraction program, denoted

Q(f). A field extraction program of field f is a pair (f ′,P ), where f ′ (possibly ⊥) is

some ancestor field of f and P is either a SeqRegion program that extracts a sequence

of f -regions from inside a given f ′-region (in case f ′ is a sequence-ancestor of f), or is a

Region program that extracts a single f -region from inside a given f ′-region (in case f ′ is a

struct-ancestor of f).

The execution semantics of a schema extraction program is defined in Algorithm 4.

FlashExtract executes the field extraction program corresponding to each field f in a

top-down order and updates the document highlighting CR using the returned list of

f -regions R̃ (lines 3–5). For each field f , it first finds the set of regions R̃′ determined by

the ancestor f ′ (line 9), and then computes all f -regions by executing the field extraction

program on each region R′ in R̃′ (line 10). Once CR has been fully constructed, it

generates a schema instance from the nesting relationship defined in the output schema

M , using the Fill function (line 7).
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Fill
(
Struct (id1 E1, . . . , idn En),R

)
= new

Struct
(
{id1 = Fill(E1,R), . . . , idn = Fill(En,R)}

)
Fill

(
Seq(f),R

)
= new Seq

(
Map(λR′ : Fill(f,R′),Subregions(R,CR[f.Color])

)
Fill([color] Val,R) = Subregion(R,CR[color]).Val

Fill([color] T,R) = Fill(T,Subregion(R,CR[color]))

Fill(_,⊥) =⊥

Figure 3.5: Semantics of Fill.

Figure 3.5 defines the semantics of Fill recursively. Each definition takes a schema

construct and a region corresponding to one of its ancestor fields, and returns a construct

instance by recursively applying Fill functions on its descendants. CR[c] returns all

regions whose color is c. Subregions(R,R̃) returns the ordered set of regions from R̃

that are nested inside R. Subregion(R,R̃) returns the region from R̃ that is nested inside

R; if no such region exists, ⊥ is returned. Note that if CR is consistent with M , there is at

most one such region. We assume the presence of an API for checking the nestedness of

two regions.

3.2.4 Example-based User Interaction

Having defined all necessary concepts, we are now ready to discuss the way a user

interacts with FlashExtract to extract their desired data. The user first supplies the

output data schema. Then, for each field f in the schema (in an order determined by the

user), the user simply provides sufficient number of examples of field instances of field f

by highlighting appropriate regions in the document using f.Color. Our user interface

supports standard mouse click, drag, and release gestures.

When the user provides examples for a field f , FlashExtract synthesizes a field

extraction program for field f (using Algorithm 5) that is consistent with the provided

examples, and executes it to identify and highlight other regions in f.Color. (See

Definition 7 for a formal notion of consistency.) If the user is happy with the inferred
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Algorithm 5: Synthesize a field extraction program.

1 function SynthesizeFieldExtractionProg (Document D, Schema M , Highlighting CR, Field

f , Regions R̃1, Regions R̃2) is

/* R̃1, R̃2 denote positive, negative instances */

2 foreach ancestor field f ′ of f in schema M do

3 if f ′ isn’t materialized ∧ f ′ 6=⊥ then continue

4 R̃ := (f ′ =⊥)? {D.Region} : CR[f ′.Color]

5 if f ′ is a sequence-ancestor of f then

6 ex := ∅

7 foreach R ∈ R̃ s.t. Subregions(R,R̃1∪ R̃2) 6= ∅ do

8 ex := ex∪{(R,Subregions(R,R̃1),Subregions(R,R̃2))}

9 P̃ := SynthesizeSeqRegionProg(ex)

10 else /* f ′ is a structure-ancestor of f */

11 ex := ∅

12 foreach R ∈ R̃ s.t. Subregion(R,R̃1) 6=⊥ do

13 ex := ex∪{(R,Subregion(R,R̃))}

14 P̃ := SynthesizeRegionProg(ex)

15 foreach P ∈ P̃ do

16 CR′ := CR∪{(f.Color,R) |R ∈ JP KR′,R′ ∈ R̃}

17 if CR′is consistent with M then return (f ′,P )

18 return ⊥

highlighting, she can commit the results (the field f is said to have been materialized at

that point of time), and then proceed to another (non-materialized) field. Otherwise,

the user may provide any additional examples.

We say that a field f has been simplified if there exists a materialized field f ′ such

that f ′ is a structure-ancestor of f . The examples for a non-simplified field consist of

positive instances and optionally negative instances of regions that lie completely within

the regions of the immediate ancestor field that has been materialized. If the user is not
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happy with the inferred highlighting, the user provides additional positive instances (of

regions that FlashExtract failed to highlight) or negative instances (of unintended regions

that FlashExtract highlighted) and the synthesis process is repeated. The examples for a

simplified field consist of at most a single positive instance (possibly null) inside each

region of the immediate ancestor field that has been materialized. If the user is not

happy with the inferred highlighting, the user provides additional examples and the

synthesis process is repeated.

The procedure SynthesizeFieldExtractionProg, described in Algorithm 5, enables

example-based interaction. It takes as input a document D, a schema M , a highlighting

CR of the document that is consistent with M , a non-materialized field f , a set of positive

instances R̃1, and a set of negative instances R̃2 (which is empty in case field f has

been simplified). SynthesizeFieldExtractionProg returns a program P such that (a)

P is consistent with the examples and (b) the updated highlighting that results from

executing P is consistent with the schema M . Line 3 finds a suitable ancestor f ′ from

CR that forms the learning boundary for f . The loops at lines 7 and 12 group the input

examples into boundaries imposed by f ′-regions. Depending on the relationship between

f and f ′, FlashExtract invokes an appropriate API provided by our inductive synthesis

framework. In particular, it invokes SynthesizeSeqRegionProg (line 9) to learn a program

for extracting a sequence of f -regions in an f ′-region (if f ′ is a sequence-ancestor of f),

or SynthesizeRegionProg (line 14) to learn a program for extracting a single f -region

in an f ′-region (if f ′ is a structure-ancestor of f). Both SynthesizeSeqRegionProg and

SynthesizeRegionProg actually return a sequence of programs of the right type. The

loop at line 15 selects the first program P in this sequence (if it exists) that ensures that

the updated highlighting that results from executing P is consistent with the schema M .

An interesting aspect of the above-mentioned interaction is the order in which the

user iterates over various fields. FlashExtract is flexible enough to let users extract

various fields in any iteration order. This is especially useful when the user dynamically

decides to update the data extraction schema (e.g., extract more fields). Iterating over

fields in a bottom-up ordering offers an interesting advantage. It allows FlashExtract to
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guess the organization of leaf field instances by looking at their relative order (thereby

obviating the need to provide examples for any non-leaf field.) While this is successful

in most cases, it may not be able to deal with cases where field instances may be null.

On the other hand, iterating over fields in a top-down topological order requires the

user to provide examples for each field (including non-leaf fields), but it offers three

advantages: (a) it provides an easy visualization for the user to inspect the results of the

organization of various non-leaf field instances, (b) it provides greater chance of success

since the synthesis task for a field can now be enabled relative to any ancestor field as

opposed to the entire document, (c) it may also entail having to provide fewer examples

for any field that is nested inside another field whose instances have all been identified.

Hence, if the leaf field instances are never null and the user does not need help with

identifying representative examples, the user may simply provide few examples for each

leaf field and FlashExtract may be able to automatically infer the organization of the

various leaf field instances. Otherwise, we recommend that the user iterates over fields

in a top-down topological order.

3.3 Inductive Synthesis Framework

In this section, we describe a general framework for developing the inductive synthesis

APIs (namely, SynthesizeSeqRegionProg and SynthesizeRegionProg) that enable the

example-based user interaction model discussed in the previous section. We build this

framework over the inductive synthesis methodology proposed in [Gulwani et al., 2012]

of designing appropriate DSLs and developing algorithms to synthesize programs in

those DSLs from examples. However, we go one step further. We identify an algebra

of core operators that can be used to build various data extraction DSLs for various

document types (Section 3.3.2). We also present modular synthesis algorithms for each

of these operators in terms of the synthesis algorithms for its (non-atomic) arguments

(Section 3.3.3)—this enables automatic generation of synthesis algorithms for any DSL

that is constructed using our algebra of core operators. We start out by formalizing the

notion of a data extraction DSL.
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3.3.1 Data Extraction DSLs

A data extraction DSL is represented by a tuple (G,N1,N2). G is a grammar that defines

data extraction strategies. It contains definitions for various non-terminals N . Each

non-terminal N is defined as a ranked collection of rules (also referred to as N.RHSs)

of the same type. The type of a non-terminal is the type of its rules. A rule consists of

a fixed expression or an operator applied to other non-terminals of appropriate types

or fixed expressions. The type of a rule is the return type of the fixed expression or the

operator that constitutes the rule.

We say a non-terminal is synthesizable if each of its rules either (a) involves an operator

from our core algebra applied to fixed expressions or synthesizable non-terminals, or (b)

involves an operator that is equipped with an inductive synthesis algorithm of its own

(i.e., domain-specific operators), or (c) fixed expressions. N1 is a distinguished (top-level)

synthesizable non-terminal of type sequence of regions. N2 is another distinguished

(top-level) synthesizable non-terminal of type region.

An expression generated by a non-terminal of type T can be viewed as a program with

return type T . Note that the expressions generated by N1 represent SeqRegion programs

and expressions generated by N2 represent Region programs. The DSL expressions may

involve one distinguished free variable R0 (of type Region) that denotes the input to

the top-level SeqRegion or Region programs. Any other free variable that occurs in a

DSL expression must be bound to some lambda definition that occurs in a higher level

expression.

A state σ of a program P is an assignment to all free variables in P . We use the

notation {x← v} to create a state that maps variable x to value v. We use the notation

σ[v/x] to denote setting the value of variable x to value v in an existing state σ. We use

the notation JP Kσ to denote the result of executing the program P in state σ.

Next, we discuss the core operators in our algebra that can be used to build data

extraction DSLs.
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3.3.2 Core Algebra for Constructing Data Extraction DSLs

Our core algebra is based around certain forms of map, filter, merge, and pair operators.

The pair operator (which returns a scalar) constitutes a scalar expression, while the other

operators (which return a sequence) constitute a sequence expression.

Decomposable Map Operator A Map operator has two arguments λx : F and S, where

S is a sequence expression of type List〈T 〉 and F is some expression of type T ′ and

uses an additional free variable x. The return type of Map is List〈T ′〉. Map(λx : F,S) has

the standard semantics, wherein it applies function F to each element of the sequence

produced by S to construct the resultant sequence.

JMap(λx : F,S)Kσ = [t0, . . . , tn], where n= |Y ′−1|, ti = JF K(σ[Y ′[i]/x]),Y ′ = JSKσ

We say that a Map operator is decomposable (w.r.t. the underlying DSL, which defines

the language for F and S) if it has the following property: For any input state σ and a

sequence Y , there exists a sequence Z such that

∀F,S : Y v JMap(F,S)Kσ =⇒ Z v JSKσ∧ JMap(F,Z)Kσ = Y

where v denotes the subsequence relationship. Let Decompose be a function that

computes such a witness Z, given σ and Y . It has the following signature:

Map.Decompose : (Region×List〈T ′〉)→ List〈T 〉

The Decompose function facilitates the reduction of examples for Map operator to

examples for its arguments F and S, thereby reducing the task of learning the desired

Map expression from examples to the sub-tasks of learning F and S expressions from

respective examples.

Filter Operators Our algebra allows two kinds of filter operators over sequences, one

that selects elements based on their properties (FilterBool), and the other one that

selects elements based on their indexes (FilterInt).

A FilterBool operator has two arguments λx : B and S, where S is a sequence

expression of type List〈T 〉 and B is a Boolean expression and uses an additional free
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variable x. The return type of FilterBool is List〈T 〉. FilterBool(λx : F,S) has the

standard filtering semantics: it selects those elements from S that satisfy B.

For example, let S be the set of all lines in the file in Example 6. The expression

FilterBool(λx : EndsWith([Number, Quote],x),S) selects all yellow lines. The predicate

EndsWith([Number, Quote],x) returns true iff the string x ends with a number followed

by a double quote.

A FilterInt operator has three arguments: a non-negative integer init, a positive

integer iter, and a sequence expression S. Its return value also has the same type as

that of S. The FilterInt operator takes every iter elements from S starting from init

as the first element. Its semantics is as follows:

JFilterInt(init,iter,S)Kσ =

let L= JSKσ in Filter
(
λx : (indexof(L,x)−init)%iter = 0,L

)
For example, FilterInt(1,2,S) selects all elements at odd indices from a sequence.

The two kinds of filter operators can be composed to enable sophisticated filtering

operations.

Merge Operator A Merge operator takes as input a set of n sequence expressions,

each of which is generated by the same non-terminal A (of some type of the form

List〈T 〉). The return value of Merge also has the same type as that of A. The Merge

operator combines the results of these n expressions together—this is useful when a

single expression cannot extract all intended regions. This operator is a disjunctive

abstraction and allows extraction of multiple-format field instances by merging several

single-format field instances. Its semantics is as follows:

JMerge(A1, . . . ,An)Kσ = MergeSeq(JA1Kσ, . . . ,JAnKσ)

The MergeSeq operation merges its argument sequences with respect to the order of their

elements’ locations in the original file.

Pair Operator A Pair operator has two arguments A and B and has the following

standard pair operator semantics.

JPair(A,B)Kσ = (JAKσ,JBKσ)
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The pair operator allows constructing region representations from smaller elements.

For example, we can create a text region from a pair of its start and end positions.

3.3.3 Modular Synthesis Algorithms

The API SynthesizeSeqRegionProg takes as input a set of examples, each of which

consists of a triple (R,R̃1, R̃2), where R denotes the input region, R̃1 denotes posi-

tive instances of the regions that should be highlighted within R, and R̃2 denotes

negative instances of the regions that should not be highlighted within R. The API

SynthesizeRegionProg takes as input a set of examples, each of which consists of a pair

(R,R′), where R denotes the input region and R′ denotes the output region. Both these

APIs return an ordered set of programs in the DSL, each of which is consistent with the

provided examples.

Algorithm 6 contains the pseudo-code for these APIs. In this algorithm, the method

SynthesizeSeqRegionProg first learns from only positive instances by invoking the learn

method of the top-level sequence non-terminal N1 (line 3) and then selects those

programs that additionally satisfy the negative instances constraint (loop at line 5). The

operator :: appends an element to a list. The method SynthesizeRegionProg simply

invokes the learn method of the top-level region non-terminal N2 (line 11).

The learn method for any non-terminal N invokes the learn methods associated with

its various rules (line 15) and returns the ordered union of the sequences of the programs

synthesized from each. The operator ++ performs list concatenation.

Algorithm 7, 8, and 9 describe the learn methods for the operators that constitute the

various rules. The higher level idea is to define them in terms of the learn methods of

their arguments. This allows for a free synthesis algorithm for any data extraction DSL.

Learning Decomposible Map Operator The key idea here is to first find the witness

Zj for each example (σj ,Yj) using the operator’s Decompose method (line 3). This allows

us to split the problem of learning a map expression into two independent simpler sub-

problems, namely learning of a scalar expression F (line 5), and learning of a sequence

expression S (line 7) from appropriate examples. The returned result is an appropriate

cross-product style composition of the results returned from the sub-problems (line 11).
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Algorithm 6: Top level learning APIs in FlashExtract.

1 function SynthesizeSeqRegionProg(

Set〈(Region,List〈Region〉,List〈Region〉)〉Q) : List〈Prog〉 is

2 Q′ := {({R0←R}, R̃1) | (R,R̃1, R̃2) ∈Q}

/* learn with positive examples */

3 P̃ :=N1.Learn(Q′) /* start symbol for sequence */

4 P̃ ′ := []

5 foreach P ∈ P̃ do /* filter programs violating negatives */

6 if (∃(R,R̃1, R̃2) ∈Q : (JP K{R0←R})∩ R̃2 6= ∅) then continue

7 P̃ ′ := P̃ ′ :: P

8 return P̃ ′

9 function SynthesizeRegionProg(Set〈(Region,Region)〉Q) : List〈Prog〉 is

10 Q′ := {({R0←R},R′) | (R,R′) ∈Q}

11 returnN2.Learn(Q′) /* start symbol for region */

12 function N.Learn(Set〈(State,T )〉Q) : List〈Prog〉 is

13 P̃ := []

14 foreach C ∈N.RHSs do

15 P̃ := P̃ ++C.Learn(Q)

16 return P̃

Learning Merge Operator The key idea here is to consider all (minimal) partitioning

of the examples such that the learn method of the argument for each partition returns

a non-empty result. The set T (at line 16) holds all such minimal partitions. For each

such partition (loop at line 18), we invoke the learn method of the argument for each

class in the partition (line 20), and then appropriately combine the results. Although

this algorithm is exponential in the size of the input set, it works efficiently in practice

because the number of examples required for learning is very small in practice.

Learning Filter Operators The key idea in the learn method for FilterBool is to

independently learn an ordered set P̃1 of sequence expressions (line 24) and an ordered
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Algorithm 7: Algorithm to learn Map and Merge operators.

1 function Map.Learn (Set〈(State,List〈T 〉)〉Q) : List〈Prog〉 is

2 Let Q be {(σj ,Yj)}1≤j≤m
3 for j := 1..m do Zj := Map.Decompose(σj ,Yj) /* find witnesses Z */

4 Q1 := {(σj [Zj [i]/x],Yj [i]) | 0≤ i < len(Zj),1≤ j ≤m}

5 P̃1 := F.Learn(Q1) /* learn Map’s function F */

6 Q2 := {(σj ,Zj) | 1≤ j ≤m}

7 P̃2 := S.Learn(Q2) /* learn Map’s sequence S */

8 P̃ := []

9 foreach P1 ∈ P̃1 do

10 foreach P2 ∈ P̃2 do P̃ := P̃ :: “Map(P1,P2)”

11 return CleanUp(P̃ ,Q)

12 function Merge.Learn (Set〈(State,List〈T 〉)〉Q) : List〈Prog〉 is

/* Learn Merge by splitting the examples into disjoint partitions, and learn

a program for each example partition. A is Merge’s arguments. */

13 Let Q be {(σj ,Yj)}1≤j≤m
/* Split examples Yj into all possible subsets s.t. we can learn at least a

program from each subset. X holds all possible subsets of examples. */

14 X := {Q′ |Q′ = {(σj ,Y ′j )}1≤j≤m,∀1≤ j ≤m : Y ′j v Yj ,A.Learn(Q′) 6= []}

15 Y :=
⋃

(σj ,Yj)∈Q
Yj /* all positive examples */

/* Find some elements in X so that together they form the examples Yj. */

16 T :=
{
X ′ |X ′ is a minimal subset of X s.t. {Y ′j | (σj ,Y ′j ) ∈Q′,Q′ ∈X ′}= Y

}
17 P̃ := []

18 foreach X ′ ∈ T ordered by size do

19 Let Q′1, ...,Q
′
n be the various elements of X ′

20 P̃1, . . . , P̃n :=A.Learn(Q′1), . . . ,A.Learn(Q′n)

21 P̃ := P̃ ++{“Merge(P1, ...,Pn)” | ∀1≤ i≤ n : Pi ∈ P̃i}

22 return CleanUp(P̃ ,Q)
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Algorithm 8: Algorithm to learn FilterInt and FilterBool operators.

23 function FilterBool.Learn(Set〈(State,List〈T 〉)〉Q) : List〈Prog〉 is

24 P̃1 := S.Learn(Q) /* learn FilterBool’s sequence S */

25 Q′ := {(σ[Y [i]/x],True) | (σ,Y ) ∈Q,0≤ i < len(Y )}

26 P̃2 :=B.Learn(Q′) /* learn FilterBool’s predicate B */

27 P̃ := []

28 foreach P1 ∈ P̃1 do

29 foreach P2 ∈ P̃2 do P̃ := P̃ :: “FilterBool(P1,P2)”

30 return CleanUp(P̃ ,Q)

31 function FilterInt.Learn(Set〈(State,List〈T 〉)〉Q) : List〈Prog〉 is

32 Let Q be {(σj ,Yj)}1≤j≤m
33 P̃1 := S.Learn(Q) /* learn FilterInt’s sequence S */

34 P̃ := []

35 foreach P1 ∈ P̃1 do

36 init :=∞, iter := 0

37 for j := 1 . . .m do

38 Zj := JP1Kσj

39 init := Min(init,indexof(Zj ,Yj [0]))

40 for i := 0 . . . |Yj |−2 do

41 t := indexof(Zj ,Yj [i+ 1])−indexof(Zj ,Yj [i])

42 if iter = 0 then iter := t

43 else iter := GCD(iter, t)

44 if iter = 0 then iter := 1

45 P̃ := P̃ :: “FilterInt(init,iter,P1)”

46 return CleanUp(P̃ ,Q)

set P̃2 of Boolean expressions (line 26) that are consistent with the given examples. The

returned result is a cross-product style composition of the sub-results P̃1 and P̃2.

The key idea in the learn method for FilterInt is to first learn an ordered set P̃ of
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Algorithm 9: Algorithm to learn Pair operator.

47 function Pair.Learn(Set〈(State,(T1,T2))〉Q) : List〈Prog〉 is

48 Let Q be {(σj ,(uj ,u′j))}1≤j≤m
49 Q1 := {(σj ,uj)}1≤j≤m; Q2 := {(σj ,u′j)}1≤j≤m
50 P̃1 :=A.Learn(Q1)

51 P̃2 :=B.Learn(Q2)

52 if P̃1 = ∅ or P̃2 = ∅ then return []

53 P̃ := []

54 foreach P1 ∈ P̃1 do

55 foreach P2 ∈ P̃2 do

56 P̃ := P̃ :: “Pair(P1,P2)”

57 return P̃

sequence expressions (line 33) that are consistent with the given examples. Then, for

each such program, we learn the most strict filtering logic that filters as few elements as

possible while staying consistent with the examples. In particular, we select init to be

the minimum offset (across all examples) of the first element in Yj in the sequence Zj

returned by executing the sequence program in the example state σj (line 39). We select

iter to be the GCD of all distances between the indices of any two contiguous elements

of Yj in Zj (line 43).

Learning Pair Operator The key idea here is to invoke the learn method of the first

(second) argument at line 50 (line 51) to learn programs that can compute the first

(second) element in the various output pairs in the examples from the respective inputs.

The final result is produced by taking a cross-product of the two sets of programs that

are learned independently (loop at line 54).

CleanUp Optimization An important performance and ranking optimization employed

by the learn methods of various operators is use of the CleanUp method, which removes

those programs that extract more regions than some retained program (Algorithm 10).

More precisely, this method removes each of those (lower-ranked) programs from an
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Algorithm 10: Algorithm to perform cleanup optimization.

1 function CleanUp(List〈Prog〉 P̃ , Set〈(State,List〈T 〉)〉Q) : List〈Prog〉 is

2 P̃ ′ := []

3 foreach i= 1 to |P̃ | do

4 P := P [i]

5 incl := true

6 foreach k = 1 to |P̃ | do

7 if (P̃ [k] subsumes P w.r.t. Q) and ((P does not subsume P̃ [k] w.r.t. Q) or k < i)

then incl := false

8 if (incl = true) then P̃ ′ := P̃ ′ :: P

9 return P̃ ′

ordered set of programs that is subsumed by some unremoved program (See Definition 8).

Note that this does not affect the completeness property associated with the various

learning methods (Theorem 3). Furthermore, it implements an important ranking crite-

rion that assigns higher likelihood to the scenario wherein the user provides consecutive

examples from the beginning of any immediately enclosing ancestral region (as opposed

to providing arbitrary examples).

3.3.4 Correctness

We now describe the correctness properties associated with our two key synthesis

APIs: SynthesizeSeqRegionProg and SynthesizeRegionProg. First, we state some useful

definitions.

Definition 7 (Consistency) A scalar program P (i.e., a program that returns a scalar value)

is said to be consistent with a set Q = {(σj ,uj)}j of scalar examples if ∀j : uj = JP Kσj.

A sequence program P (i.e., a program that returns a sequence) is said to be consistent

with a set Q = {(σj ,Yj)}j of sequence examples with positive instances if ∀j : Yj ⊆ JP Kσj.

A sequence program P is said to be consistent with a set Q = {(σj ,Yj ,Y
′

j )}j of sequence

examples with positive and negative instances if ∀j : (Yj ⊆ JP Kσj ∧Y ′j ∩ JP Kσj = ∅).
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Definition 8 (Subsumption) Given a set Q= {(σj ,Yj)}j of sequence examples with positive

instances, and two sequence programs P1, P2 that are consistent with Q, we say that P1

subsumes P2 w.r.t. Q if ∀j : JP1Kσj ⊆ JP2Kσj .

The following two theorems hold.

Theorem 1 (Soundness) The programs P returned by SynthesizeSeqRegionProg and

SynthesizeRegionProg are consistent with the input set of examples.

The proof of Theorem 1 follows easily by induction (on the structure of the DSL) from

similar soundness property of the learn methods associated with the non-terminals and

core algebra operators.

Theorem 2 (Completeness) If there exists some program that is consistent with the input

set of examples, SynthesizeSeqRegionProg (and SynthesizeRegionProg) produce one such

program.

The proof of Theorem 2 follows from two key observations: (a) The learn methods asso-

ciated with the scalar non-terminals and the (scalar) Pair operator satisfy a similar com-

pleteness property. (b) The learn methods associated with the sequence non-terminals

and the sequence operators of the core algebra satisfy a stronger completeness theorem

stated below (Theorem 3).

Theorem 3 (Strong Completeness) The learn methods associated with the sequence non-

terminals and the sequence operators of the core algebra (namely Map, FilterBool, FilterInt,

and Merge) satisfy the following property: “For every sequence program P that is consistent

with the input set of examples, there exists a program P ′ in the learned set of programs that

subsumes P .”

The proof of Theorem 3 follows from induction on the DSL’s structure. Note that the

CleanUp optimization only removes those (lower-ranked) programs that are subsumed

by other programs.
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3.4 Instantiations

We now present instantiations of our framework to three data extraction domains: text

files, webpages, and spreadsheets. For each domain, we define the notion of a region,

describe the domain’s underlying DSL, and discuss the implementation of domain-specific

learn methods.

3.4.1 Text Instantiation

A region in this domain is a pair of character positions in the input text file.

Language Ltext Figure 3.6 shows the syntax of Ltext, our data extraction DSL for this

domain. The core algebra operators are in bold. We name the various Map operators

differently in order to associate different Decompose methods with them. The non-

terminal N1 is a Merge operator over constituent sequence expressions SS. The non-

terminal N2 is defined as a Pair operator over two position expressions.

The position expression Pos(x,p) evaluates to a position in string x that is determined

by the attribute p (inspired by a similar concept introduced in [Gulwani, 2011]). The

attribute p is either an absolute position k, or is the kth element of the position sequence

identified by the regex pair rr which consists of two regexes r1 and r2. The selection

order is from left-to-right if k is positive, or right-to-left if k is negative. The position

sequence identified by (r1, r2) in string x, also referred to as PosSeq(x,rr), is the set of

all positions k in x such that (some suffix of the substring on) the left side of k matches

with r1 and (some prefix of the substring on) the right side of k matches with r2. A regex

r is simply a concatenation of (at most 3) tokens. A token T is a pre-defined standard

character class such as alphabets, digits, colon character, or a special data type such as

date time and IP address. Our instantiation contains 30 of such tokens. We also define

some context-sensitive tokens dynamically based on frequently occurring string literals

in the neighborhood of examples highlighted by the user. For instance, in Example 6,

our dynamically learned tokens include the string “DLZ - Summary Report” (which is

useful for learning the green outer structure boundary) and the string “"Sample ID:,""”

(which is useful to extract the orange sample ID).
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Disjunct Pair Seq N1 ::= Merge(SS1, . . . ,SSn)

Pos Pair Region N2 ::= Pair(Pos(R0,p1),Pos(R0,p2))

Pair Seq SS ::= LinesMap(λx : Pair(Pos(x,p1),Pos(x,p2)),LS)

| StartSeqMap(λx : Pair(x,Pos(R0[x : ],p)),PS)

| EndSeqMap(λx : Pair(Pos(R0[ : x],p),x),PS)

Line Seq LS ::= FilterInt(init,iter,BLS)

Bool Line Seq BLS ::= FilterBool(b,split(R0, ‘\n’))

Position Seq PS ::= LinesMap(λx : Pos(x,p),LS)

| FilterInt(init,iter,PosSeq(R0, rr))

Predicate b ::= λx : True

| λx : {Starts,Ends}With(r,x) | λx : Contains(r,k,x)

| λx : Pred{Starts,Ends}With(r,x) | λx : PredContains(r,k,x)

| λx : Succ{Starts,Ends}With(r,x) | λx : SuccContains(r,k,x)

Position Attribute p ::= AbsPos(k) | RegPos(rr,k)

Regex Pair rr ::= (r1, r2)

Regex r ::= T{0,3}

Token T ::= C+ | DynamicToken

Figure 3.6: The syntax of Ltext, the DSL for extracting text files.

The first rule of SS consists of a Map operator LinesMap that maps each line of a line

sequence LS to a pair of positions within that line. The Decompose method for LinesMap

takes as input a region R and a sequence of position pairs and returns the sequence of

lines from R that contain the corresponding position pairs.

The second (third) rule of SS pairs each position x in a position sequence PS with

a position that occurs somewhere on its right (left) side. The notation R0[x : ] (R0[ : x])

denotes the suffix (prefix) of the text value represented by R0 starting (ending) at

position x. The Decompose method associated with StartSeqMap (EndSeqMap) takes as
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input a region R and a sequence of positions and maps each position k in the input

sequence to the string R[k : ] (R[ : k]).

The line sequence non-terminal LS uses a nested combination of FilterInt and

FilterBool. The various choices for predicate b (used in FilterBool) have the expected

semantics. For example, StartsWith(r,x) asserts if line x starts with regex r, while

Contains(r,k,x) asserts if line x contains k occurrences of regex r. We also take hints

from preceding and succeeding lines via Pred* and Succ* predicates. For example,

PredStartsWith(r,x) asserts that the line that precedes line x ends with regex r.

The position sequence non-terminal PS includes expressions that select a position

within each line of a line sequence (using the LinesMap operator) or that filter positions

returned by the PosSeq operator (using the FilterInt operator).

Example 9 Below is a program in Ltext for extracting the yellow regions in Example 6

(from the top-level region of the entire file).

LinesMap(λx : Pair(Pos(x,p1),Pos(x,p2)),LS), where

p1 = AbsPos(0),p2 = AbsPos(−1),

LS = FilterInt(0,1,FilterBool(λx : EndsWith([Number, Quote],x),split(R0, ‘\n’)))

The FilterBool operator takes all the lines in the document and selects only those

that end with a number and a quote. The FilterInt operator does not do any filtering

(init = 0, iter = 1); it simply passes the result of FilterBool to LS. The map function

in LinesMap returns the entire input line (AbsPos (0) denotes the beginning of the line,

while AbsPos (-1) denotes the end of the line). The LinesMap operator thus returns a

sequence identical to LS, which is the yellow sequence.

Example 10 Below is a program for extracting the magenta regions in Example 6 (from

the top-level region of the entire file).

EndSeqMap(λx : Pair(Pos(R0[ : x],p),x),PS), where

p= RegPos
(
([DynamicTok(,"")], ε),−1

)
,PS = FilterInt(0,1,PosSeq(R0,(r1, r2)), and

r1 = [DynamicTok(,""),Word], r2 = [DynamicTok("",),Number,Comma]
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FlashExtract recognizes the prefixes (,"") and suffixes ("",) of the given examples

as frequently occurring substrings and promotes them to dynamic tokens. The PosSeq

operator returns the sequence of all end positions of the magenta sequence (since each

of these have an r1 match on the left and an r2 match on the right). Note that there

are other positions that either have an r1 match on the left (such as the position before

the number in "Sample ID:;""5007-01"""), or have an r2 match on the right (such as the

position after the character L in ""ug/L"",0.0009), but not both; hence, these positions

are not selected by the PosSeq operator. Since FilterInt does not filter any elements,

PS is the same sequence returned by the regex pair. The map function in EndSeqMap

takes each end position in PS and finds its corresponding start position specified by p,

which is the first position from the right (k = -1) that matches the dynamic token (,"")

on the left side. The result is the magenta sequence.

Example 11 If the magenta field is wrapped within the yellow structure, one of its extrac-

tion programs is as follows:

Pair(Pos(R0,p1),Pos(R0,p2)), where

p1 = 〈[DynamicTok(,"")], ε,1〉, p2 = 〈ε, [DynamicTok("",)],1〉

Since the yellow field is the structure-ancestor of the magenta field, FlashExtract

learns a Pair operator to extract a magenta region within a yellow region. The start

position of this pair is the first position from the left (k = 1) that matches (,"") on the

left side (r1), and the end position is the first position from the left that matches ("",)

on the right side (r2). This program is simpler than the one in Example 10, because it

exploits the separation determined by the program for the yellow field.

Domain-Specific Learn Methods The learning of Boolean expression b is performed

using brute-force search. The learning of position attribute expressions p is performed

using the technique described in prior work [Gulwani, 2011].

3.4.2 Webpage Instantiation

A region in this domain is either an HTML node, or a pair of character positions within

the text property of an HTML node.
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Disjuctive Seq N1 ::= Merge(NS1, . . . ,NSn)

|Merge(SS1, . . . ,SSn)

Region N2 ::= XPath | Pair(Pos(R0,p1),Pos(R0,p2))

Node Seq NS ::= XPaths

Pos Pair Seq SS ::= SeqPairMap(λx : Pair(Pos(x.Val,p1),Pos(x.Val,p2)),ES)

| StartSeqMap(λx : Pair(x,Pos(R0[x : ],p)),PS)

| EndSeqMap(λx : Pair(Pos(R0[ : x],p),x),PS)

Element Seq ES ::= FilterInt(init,iter,XPaths)

Position Seq PS ::= FilterInt(init,iter,PosSeq(R0, rr))

Figure 3.7: The syntax of Lweb, the DSL for extracting webpages. Definitions of p and rr
are similar to those in Figure 3.6.

Language Lweb Figure 3.7 shows the syntax of the DSL Lweb for extracting data from

webpages. XPath (XPaths) denote an XPath expression that returns a single HTML node

(a sequence of HTML nodes) within the input HTML node. Position attribute p and regex

pair rr are similar to those in the text instantiation DSL Ltext. Our token set additionally

includes dynamic tokens that we create for various HTML tags seen in the input webpage.

The non-terminal N1 represents expressions that compute a sequence of HTML nodes

or a sequence of position pairs within HTML nodes. The non-terminal N2 represents

expressions that compute a HTML node or a position pair within a HTML node. The

design of Lweb is inspired by the design of Ltext. HTML nodes in Lweb play a similar role

to that of lines in Ltext. We use XPath expressions to identify relevant HTML elements

instead of using regular expressions to identify appropriate lines.

The non-terminal SS represents expressions that generate a sequence of position

pairs by mapping each HTML node in a sequence ES to position pairs (SeqPairMap

operator) or by pairing up each position in a sequence PS of positions with another

position computed relative to it (StartSeqMap and EndSeqMap operators).
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Disjuctive Cell Pair Seq N1 ::= Merge(PS1, . . . ,PSn)

|Merge(CS1, . . . ,CSn)

Cell Pair Region N2 ::= Pair(Cell(R0, c1),Cell(R0, c2))

| Cell(R0, c)

Pair Seq PS ::= StartSeqMap(λx : Pair(x,Cell(R0[x :], c)),CS)

| EndSeqMap(λx : Pair(Cell(R0[: x], c),x),CS)

Cell Sequence CS ::= FilterInt(init,iter,CE)

| CellRowMap(λx : Cell(x,c),RS)

Row Sequence RS ::= FilterInt(init,iter,RE)

Cell Attribute c ::= AbsCell(k) | RegCell(cb,k)

Cell Split Seq CE ::= FilterBool(cb,splitcells(R0))

Row Split Seq RE ::= FilterBool(rb,splitrows(R0))

Cell Boolean cb ::= λx : True | λx : Surround(T{9},x)

Row Boolean rb ::= λx : True | λx : Sequence(T+,x)

Figure 3.8: The syntax of Lsps, the DSL for extracting spreadsheets.

Domain-specific Learn Methods We need to define learn methods for XPath and

XPaths from example HTML nodes. This is a well-defined problem in the data mining

community, called wrapper induction (see Chapter 6). We implemented a learn method

that generalizes example nodes to path expressions by replacing inconsistent tags at

any depth with “*”, and additionally incorporates common properties of example nodes.

These properties include the number of children, their types, the number of attributes

and their types. The result is a list of XPath expressions, ranging from the most specific

to the most general.

3.4.3 Spreadsheet Instantiation

A region in this domain is a rectangular region formed by a pair of cells or a single cell.

72



Language Lsps Figure 3.8 shows the syntax of our DSL. The non-terminal N1 represents

expressions that extract a sequence of cell pairs or a sequence of cells from a given

spreadsheet. The non-terminal N2 represents expressions that extract a cell pair or a

single cell from a given spreadsheet.

Lsps is inspired by Ltext and Lweb. The notion of a row in Lsps is similar to that of a

line in Ltext and an HTML node in Lweb. Just as Boolean expressions in Ltext help filter

lines by matching their content against regular expressions, the row Boolean expression

rb in Lsps selects spreadsheet rows by matching contents of consecutive cells inside a

row against some token sequence. In addition, the cell Boolean expression cb selects

cells by matching contents of the cell and its 8 neighboring cells against some 9 tokens.

As their name suggests, the two functions splitcells and splitrows split a spread-

sheet region into a sequence of cells (obtained by scanning the region from top to down

and left to right) and into a sequence of rows respectively, on which cell and row Boolean

expressions can be applied.

Domain-specific Learn Methods The learning of Boolean expression cb and rb is

performed using brute-force search. The learning of cell attribute expressions c is

performed in a manner similar to that of position attribute expressions p in Ltext.

We need to define learn methods for domain-specific top-level non-terminals c, cb and

rb. To learn c, we simply perform brute-force search to find all matching cell expression

cb. Learning the row expression rb is similar.

3.5 Evaluation

We seek to answer the following questions related to effectiveness of FlashExtract.

• Can FlashExtract describe DSLs that are expressive enough for extraction tasks on

real world files?

• How many examples are required to extract the desired data?

• How efficient is FlashExtract in learning extraction programs?
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3.5.1 Setup

We implemented FlashExtract framework and its three instantiations (described in

Chapter 3.4) in C#. We conducted all experiments on a machine running Windows 7

with Intel Core i7 2.67GHz, 6GB RAM.

Real-world Benchmarks We collected 75 test documents in total, 25 for each of the

three domains. The text file domain is very broad. A text file might be relatively

structured such as a log file, or loosely structured as in text copied and pasted from

webpages or PDF documents. We selected a representative benchmark set that includes

a few files for each kind. Additionally, we also included some benchmarks from the book

“Pro Perl Parsing” [Frenz, 2005], which teaches how to use Perl to parse data.

For the webpage domain, we used the benchmark from [Oro et al., 2010], which

describes SXPath, an extension of XPath to perform queries on Web documents. This

benchmark includes 25 e-commerce popular websites with different underlying struc-

tures. For each of the website, they have two test cases corresponding to the HTML

elements of the product name and the product price. In addition to these, we add a test

case for the region covering all product information, and another test case for the actual

price number (ignoring other texts in the price element such as “sale”, “$” or “USD”).

For the spreadsheet domain, we obtained 25 documents from two sources: benchmark

used in previous work on spreadsheet transformation [Harris and Gulwani, 2011] (we

selected those 7 documents from this benchmark that were associated with non-trivial

extraction tasks), and EUSES corpus [Ii and Rothermel, 2005].

Experimental Setup For each document, we wrote down an appropriate schema

describing the type of the hierarchical data inside the document, and we manually

annotated all instances for the various fields in that schema to precisely define the

extraction task. We used FlashExtract to learn the extraction programs for each field.

Recall that we can learn the extraction logic for a field f by relating it to any of its

ancestors. Among these, relating to ⊥, is typically the hardest (in contrast, relating to

one of the other ancestors can exploit the separation that has already been achieved by

the extraction logic for that ancestor).
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We wrote a script to simulate user interaction with FlashExtract to measure its effec-

tiveness in the above-mentioned hardest scenario. Let R̃ denote all manually annotated

instances for a field f . The simulator starts out with an empty set of negative instances

and a singleton set of positive instances that includes the first region in R̃, and repeats

the following process in a loop. In each iteration, the simulator invokes FlashExtract to

synthesize a field extraction program from the various examples. If FlashExtract fails to

synthesize a program, the simulator declares failure. Otherwise, the simulator executes

the program to find any mismatch w.r.t. the golden result R̃. If no mismatch exists, the

simulator declares success. Otherwise, the simulator adds the first mismatched region as

a new example: it is added as a positive instance if the mismatched region occurs in R̃

but is not highlighted in the execution result of the previous interaction; otherwise the

mismatch is added as a negative example. Furthermore, the simulator also adds all new

highlighted regions that occur before the new example as positive instances.

3.5.2 Experimental Results

Expressiveness Each of the three instantiations of FlashExtract was successfully able

to synthesize a desired field extraction program for the various tasks in the respective

domains. Thus, FlashExtract supports data extraction DSLs that are expressive enough

to describe a variety of real-world data extraction tasks.

Number of Examples FlashExtract required an average of 2.86 examples per field

across all documents. Figure 3.9 shows the average number of examples (over all fields

in the schema for a given document), split by positive/negative instances, for each of

the 75 documents in our benchmark. We observe that users have to give more examples

to extract data from text files because the structure of text files is more arbitrary. In

contrast, webpages and spreadsheets are generally more structured (because of HTML

tags and row/column based organization respectively), thus requiring fewer examples.

Synthesis Time Users interactively give more examples to FlashExtract in order to

learn a field extraction program. We measure the synthesis time required by FlashExtract

during the last iteration before FlashExtract succeeds or fails (since this last iteration
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Figure 3.9: Average number of examples (solid/white bars represent positive/negative
instances) across various fields for each document.

76



0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

ac
co

u
n

ts

ad
d

re
ss

e
s

sp
lit

ch
ai

rs

aw
k

b
an

ks

co
m

p
an

ie
s

co
u

n
tr

ie
s

h
ad

o
o

p

h
o

rs
e

s

in
st

ru
m

en
ts ls
-l

m
gx

n
am

e
p

h
o

n
e

n
o

zz
le

n
u

m
b

er
te

xt

p
ap

er
s

p
ld

i1
2

p
ld

i1
3

p
o

p
1

3

q
u

o
te

s

sp
e

ec
h

b
e

n
ch

te
ch

fe
st

u
cl

a-
fa

cu
lt

y

u
se

rs

se
co

n
d

s 

Text 3.7 3.7 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

ab
t

am
az

o
n

ap
p

le

b
ar

n
es

b
es

tb
u

y

b
ig

tr
ay b
o

l

b
u

y

ca
m

er
aw

o
rd

cn
e

t

co
o

ki
n

g-
b

w

d
ea

lt
im

e

d
ru

gs
to

re

eb
ay

m
gz

o
u

tl
et

m
ed

ia
w

o
rl

d

n
th

b
u

ts
w

p
o

w
e

lls

go
o

gl
e

p
d

ct

ya
h

o
o

sh
o

p

sh
o

p
p

in
g

sh
o

p
zi

lla

ta
rg

e
t

ti
ge

rd
ir

ec
t

ve
n

er
e

se
co

n
d

s 

Webpages 2.3 3.5 3.4 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

h
g_

ex
1

2

h
g_

ex
1

8

h
g_

ex
2

h
g_

ex
2

6

h
g_

ex
2

9

h
g_

ex
3

h
g_

ex
3

9

_
h

8
d

6
2

ck
1

*

0
3

P
FM

JO
U

*

2
0

0
3

Fa
ll

6
4

0
4

0

an
re

p
9

8
9

9
*

b
al

i

ch
1

5
_e

co
m

p
lia

n
ce

*

D
at

aD
ic

ti
o

n
*

d
el

iv
e

ra
b

le
*

e_
B

u
b

b
le

_
*

fl
ip

_
u

sd
5

Fu
n

d
ed

 -
 F

ge
-r

e
ve

n
u

e
s

H
O

SP
IT

A
L*

p
w

p
Su

rv
ey

*

SO
A

4
-Y

EA
R

*

yo
u

n
g_

ta
b

le

se
co

n
d

s 

Spreadsheet 4.8 7.1 
6.6 9.4 

4.7 2.3 

Figure 3.10: Average learning time of the last interaction across various fields for each
document.
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has the most number of examples, and thus typically consumes the longest synthesis

time). FlashExtract required an average of 0.82 seconds per field across all documents.

Figure 3.10 reports the average synthesis time (over all fields in the schema for a given

document) from the last set of examples, for each of the 75 documents in our benchmark.

While most text files and webpages require less than a second per field, spreadsheets

sometimes take a few seconds to complete. This is because the spreadsheet DSL is richer

with a larger search space.
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Chapter 4

EMI: Synthesizing Compiler Test
Programs from Existing Programs

Compilers are among the most important, widely-used and complex software ever

written. Decades of extensive research and development have led to much increased

compiler performance and reliability. Perhaps less known to application programmers

is that production compilers do also contain bugs, and in fact quite a few. However,

compiler bugs are hard to recognize from the much more frequent bugs in applications

because often they manifest only indirectly as application failures. Thus, when com-

piler bugs occur, they frustrate programmers and may lead to unintended application

behavior and disasters, especially in safety-critical domains. Compiler verification has

been an important and fruitful area for the verification grand challenge in computing

research [Hoare, 2003].

Besides traditional manual code review and testing, the main compiler validation tech-

niques include testing against popular validation suites (such as [Plum Hall, Inc., 2015]

and [ACE, 2015]), verification [Leroy, 2006], translation validation [Pnueli et al., 1998,

Necula, 2000], and random testing [Yang et al., 2011]. These approaches have com-

plementary benefits. For example, CompCert [Leroy, 2006, Leroy, 2009] is a formally

verified optimizing compiler for a subset of C, targeting the embedded software domain.

It is an ambitious project, but much work remains to have a fully verified production

compiler that is correct end-to-end. Another good example is Csmith [Yang et al., 2011],
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a recent work that generates random C programs to stress-test compilers. To date, it has

found a few hundred bugs in GCC and LLVM, and helped improve the quality of the most

widely-used C compilers. Despite this incredible success, the majority of the reported

bugs were compiler crashes as it is difficult to steer its random program generation to

specifically exercise a compiler’s most critical components—its optimization phases. We

defer to Section 6 for a detailed survey of related work.

Equivalence Modulo Inputs (EMI) This chapter introduces a simple, broadly appli-

cable concept for validating compilers. Our vision is to take existing real-world code

and transform it in a novel, systematic way to produce different, but equivalent variants

of the original code. To this end, we introduce equivalence modulo inputs (EMI) for a

practical, concrete realization of the vision.

The key insight behind EMI is to exploit the interplay between dynamically executing

a program P on a subset of inputs and statically compiling P to work on all inputs. More

concretely, given a program P and a set of input values I from its domain, the input set I

induces a natural collection of programs C such that every program Q∈ C is equivalent to

P modulo I: ∀i∈ I,Q(i) = P (i). The collection C can then be used to perform differential

testing [McKeeman, 1998] of any compiler Comp: If Comp(P )(i) 6= Comp(Q)(i) for some

i ∈ I and Q ∈ C, Comp has a miscompilation.

Next we provide some high-level intuition behind EMI’s effectiveness (Section 4.1

illustrates this insight with two concrete, real examples for Clang and GCC respectively).

The EMI variants can specifically target a compiler’s analysis and optimization phases,

and stress-test them to reveal latent compiler bugs. Indeed, although an EMI variant Q

is only equivalent to P modulo the input set I, the compiler has to perform all its (static)

analysis and optimizations to produce correct code for Q over all inputs. In addition,

P ’s EMI variants, while semantically equivalent w.r.t. I, can have quite different static

data- and control-flow. Since data- and control-flow information critically affects which

optimizations are enabled and how they are applied, the EMI variants not only help

exercise the optimizer differently, but also demand the exact same output on I from the

generated code by these different optimization strategies.
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EMI has several unique advantages:

• It is general and easily applicable to finding bugs in compilers, analysis and trans-

formation tools for any language.

• It can directly target miscompilations and stress-test critical, complex compiler

components.

• It can generate and explore test cases based on real-world code that developers

actually write. This means that any detected errors are more likely to manifest in

real-world code, and thus more directly impact software vendors and users.

Indeed, we believe that the EMI concept is simple and can be adapted to validate

compilers, program analysis, and program transformation systems in general. Potential

applications include, for example, (1) testing and validating production compilers and

software analysis tools; (2) generating realistic, comprehensive test suites for validation

and certification; and (3) helping software vendors detect potential compiler-induced

errors in their software, which can be desirable for safety- and mission-critical domains.

Compiler Bug Hunter: Orion Given a program P and an input set I, the space of P ’s

EMI variants w.r.t. I is vast, and difficult or impossible to compute. Thus, for realistic

use, we need a practical instantiation of EMI. We propose a “profile and mutate” strategy

to systematically generate a subset of a program’s EMI variants. In particular, given a

program P and input set I, we profile executions of program P over the input set I, and

derive (a subset of) P ’s EMI variants (w.r.t. I) by stochastically pruning, inserting, or

modifying P ’s unexecuted code on I. These variants should clearly behave exactly the

same on the same input set I as the original program P . We then feed these variants to

any given compiler. Any detected deviant behavior on I indicates a bug in the compiler.

We have implemented our “profile and mutate” strategy for C compilers and focused

on pruning unexecuted code. We have extensively evaluated our tool, Orion1, in testing

three widely-used C compilers—namely GCC, LLVM, and ICC—with extremely positive

results (Section 4.4). We have used Orion to generate variants for real-world projects,
1Orion was a giant huntsman in Greek mythology.
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existing compiler test suites, and much more extensively for test cases generated by

Csmith [Yang et al., 2011]. In eleven months, we have reported, for GCC and LLVM

alone, 147 confirmed, unique bugs. More than 100 have already been fixed, and

more importantly, the majority of the bugs were miscompilations (rather than compiler

crashes), clearly demonstrating the ability of EMI—offered by Orion—to stress-test a

compiler’s optimizer. We have also found and reported numerous bugs in ICC initially,

but later we only focused on the two open-source compilers, GCC and LLVM, as both use

open, transparent bug-tracking systems.

We have also done less, but still considerable testing of CompCert [Leroy, 2006,

Leroy, 2009]. Besides a few confirmed front-end issues we found and reported, we have

yet to encounter a bug in CompCert’s verified components. This fact gives strong evidence

of the promise and quality of verified compilers, although it is true that CompCert still

supports only a subset of C and fewer optimizations than production compilers, such as

GCC and LLVM.

4.1 Illustrating Examples

This section uses two concrete examples to motivate and illustrate our work: one for

LLVM, and one for GCC.

In general, compiler bugs are of two main types, and they vary in severity. Some

merely result in a compiler crash, causing minor nuisances and portability problems

at times. Others, however, can cause compilers to silently miscompile a program and

produce wrong code, subverting the programmer’s intent. Miscompilations are daunting,

and the following characteristics make them distinctive:

Lead to bugs in other programs: Normally, a bug in a program only affects itself. Com-

pilers generating wrong code can effectively inject bugs to programs they compile.

Hard to notice: If a miscompilation only affects a less traversed code path or certain

optimization flags, it might go unnoticed during program development and only

trigger in specific circumstances. Note that a rarely occurring bug can still be a
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severe issue. This can be especially troublesome for compilers targeting embedded

platforms and micro-controllers.

Hard to track down to the compiler: Popular mainstream compilers are generally con-

sidered very reliable (indeed they are), making them often the least to suspect

when client code misbehaves.

Weaken source-level analysis and verification: Correctness guarantees at the source

code level may be invalidated due to a compiler bug that leads to buggy binaries,

thus hindering overall system reliability.

Impact the reliability of safety-critical systems: A seemingly unimportant miscompi-

lation bug can potentially result in a critical flaw in a safety-critical system, thus

making compiler reliability critically important.

These characteristics of compiler miscompilations make their effects more similar

to bugs in hardware — and in the case of popular compilers, like bugs in widely-

deployed hardware — than bugs in most other programs. EMI is a powerful technique

for detecting various kinds of compiler bugs, but its power is most notable in discovering

miscompilations.

Our tool, Orion, detects compiler bugs by applying EMI on source programs. For

instance, we took the test program in 4.1a from the GCC test suite. It compiles and

runs correctly on all compilers that we tested. We subsequently apply Orion on the test

program. Clearly, none of the abort calls in the function f should execute when the

program runs, and the coverage data confirms this. This allows Orion to freely alter the

body of the if statements in the function f or remove them entirely without changing

this program’s behavior. By doing so, Orion transforms the program and produces many

new test cases. One of these transformations, shown in 4.1b, is miscompiled by Clang

on the 32-bit x86 architecture when optimizations are enabled. Figure 4.2 shows its

reduced version that we used to report the bug.

A bug in the LLVM optimizer causes this miscompilation. The developers believe

that the Global Value Numbering (GVN) optimization turns the struct initialization
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struct tiny { char c; char d; char e; };

f(int n, struct tiny x, struct tiny y,

struct tiny z, long l) {

if (x.c != 10) abort();

if (x.d != 20) abort();

if (x.e != 30) abort();

if (y.c != 11) abort();

if (y.d != 21) abort();

if (y.e != 31) abort();

if (z.c != 12) abort();

if (z.d != 22) abort();

if (z.e != 32) abort();

if (l != 123) abort();

}

main() {

struct tiny x[3];

x[0].c = 10;

x[1].c = 11;

x[2].c = 12;

x[0].d = 20;

x[1].d = 21;

x[2].d = 22;

x[0].e = 30;

x[1].e = 31;

x[2].e = 32;

f(3, x[0], x[1], x[2], (long)123);

exit(0);

}

(a) Test 931004-11.c from the GCC test suite;
it compiles correctly by all compilers tested.

struct tiny { char c; char d; char e; };

f(int n, struct tiny x, struct tiny y,

struct tiny z, long l) {

if (x.c != 10) /* deleted */;

if (x.d != 20) abort();

if (x.e != 30) /* deleted */;

if (y.c != 11) abort();

if (y.d != 21) abort();

if (y.e != 31) /* deleted */;

if (z.c != 12) abort();

if (z.d != 22) /* deleted */;

if (z.e != 32) abort();

if (l != 123) /* deleted */;

}

main() {

struct tiny x[3];

x[0].c = 10;

x[1].c = 11;

x[2].c = 12;

x[0].d = 20;

x[1].d = 21;

x[2].d = 22;

x[0].e = 30;

x[1].e = 31;

x[2].e = 32;

f(3, x[0], x[1], x[2], (long)123);

exit(0);

}

(b) Test case produced by Orion by transform-
ing the program in 4.1a, triggering a bug in
Clang.

Figure 4.1: Orion transforms 4.1a to 4.1b and uncovers a miscompilation in Clang.
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struct tiny { char c; char d; char e; };

void foo(struct tiny x) {

if (x.c != 1) abort();

if (x.e != 1) abort();

}

int main() {

struct tiny s;

s.c = 1; s.d = 1; s.e = 1;

foo(s);

return 0;

}

Figure 4.2: Reduced version of the code in Figure 4.1b for bug reporting.
(http://llvm.org/bugs/show_bug.cgi?id=14972)

into a single 32-bit load. Subsequently, the Scalar Replacement of Aggregates (SRoA)

optimization decides that the 32-bit load is undefined behavior, as it reads past the end

of the struct, and thus does not emit the correct instructions to initialize the struct. The

developer who fixed the issue characterized it as

“... very, very concerning when I got to the root cause, and very annoying to fix.”

The original program did not expose the bug because Clang decided not to inline the

function f due to its size. In contrast, the pruned function f in the EMI variant became

small enough that the Clang optimizer at -Os (and above) — when the inliner is enabled

— decided to inline it. Once f was inlined, the incompatibility between GVN and SRoA

led to the miscompilation. Indeed, using an explicit “inline” attribute on f in the original

program also exposes this bug.

In another case, Orion derives the code in 4.3 from a program generated by

Csmith [Yang et al., 2011], which was miscompiled by GCC 4.8 and the latest trunk

revision at the time when optimizations were enabled in both 32-bit and 64-bit modes.

The correct execution of this program will terminate immediately, as the continuation

condition of the second for loop will always be false2, never letting its loop body
2The variable c and other global variables are initialized to 0 in C.
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int a, b, c, d, e;

int main() {

for (b = 4; b > -30; b--)

for (; c;)

for (;;) {

e = a > 2147483647 - b;

if (d) break;

}

return 0;

}

Figure 4.3: GCC miscompiles this program to an infinite loop instead of immediately
terminating with no output. (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58731)

execute. GCC with optimizations enabled miscompiles this program to an infinite loop.

Interestingly, it does issue a bogus warning under -O2, but not -O3, which hints at the

root cause of the miscompilation:

“cc1: warning: iteration 5u invokes undefined behavior [-Waggressive-loop-

optimizations].”

The warning implies that the sixth iteration of the outermost loop (when b = -1) triggers

undefined behavior (i.e. signed integer overflow). In fact, there is no undefined behavior

in this program, as the innermost loop is dead code and never executes, thus never

triggering signed integer overflow at run time.

Partial Redundancy Elimination (PRE) detects the expression “2147483647 - b” as

loop invariant. Loop Invariant Motion (LIM) tries to move it up from the innermost

loop to the body of the outermost loop. Unfortunately, this optimization is problematic,

as GCC then detects a signed overflow in the program’s optimized version and this

(incorrect) belief of the existence of undefined behavior causes the compiler to generate

non-terminating code (and the bogus warning at -O2).

The original program did not trigger the bug because there were other statements

in the innermost loop that mutated the variable b (for instance, increasing b before the
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assignment to e). The expression “2147483647 - b” was thus determined not to be a

loop invariant and was not hoisted outside the inner loops. The program ran as expected.

On the other hand, since the innermost loop was not executed, Orion could freely modify

its body. It generated some variants in which all statements mutating b were removed.

As explained earlier, in these variants, the expression became loop invariant, and thus

was hoisted out of the loop, which effectively triggered the bug. The original program is

quite complex, having 2,985 LOC; the EMI variant that exposed the bug has 2,015 LOC.

The two examples demonstrate that bugs can appear in both small, and large, complex

code bases, potentially resulting in hard-to-detect errors, crashes, or security exploits,

even in entirely correct, even verified, programs. They also highlight the difficulty of

correctly optimizing code. Not only each optimization pass can introduce bugs directly,

the interactions among different optimizations can also lead to latent bugs. EMI, being

an end-to-end testing methodology, detects bugs that occur across optimization passes,

as well as those that occur within an individual pass.

4.2 Equivalence Modulo Inputs

The concept of equivalence modulo inputs (EMI) that we have outlined in Chapter 1

is simple and intuitive. The main goal of this section is to provide more detailed and

precise definitions.

Rather than formalizing EMI for a concrete programming language, we operate

on a generic programming language L with deterministic3 semantics J·K, i.e., repeated

executions of a program P ∈ L on the same input i always yield the same result JP K(i).

4.2.1 Definition

Two programs P,Q ∈ L are equivalent modulo inputs (EMI) w.r.t. an input set I common

to P and Q (i.e., I ⊆ dom(P )∩dom(Q)) iff

∀i ∈ I JP K(i) = JQK(i).

We use JP K =I JQK to denote that P and Q are EMI w.r.t. input set I.

3Note that we may also force a non-deterministic language to assume deterministic behavior.
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For the degenerate case where P and Q do not take inputs (i.e., they are closed

programs), EMI reduces to semantic equivalence:

JP K = JQK.

Or more precisely, P and Q are EMI w.r.t. the input set {void}, where void denotes the

usual “no argument”:

JP K(void) = JQK(void).

For example, the GCC test 931004-11.c and the output code from Orion shown respec-

tively in Figures 4.1a and 4.1b are EMI (w.r.t. I = {void}).

Given a program P ∈ L, any input set I ⊆ dom(P ) naturally induces a collection of

programs Q ∈ L that are EMI (w.r.t. I) to P . We call this collection P ’s EMI variants.

Definition 4.2.1 (EMI Variants) A program P ’s EMI variants w.r.t. an input set I is given

by:

{Q ∈ L | JP K =I JQK}.

It is clear that EMI is a relaxed notion of semantic equivalence:

JP K = JQK =⇒ JP K =I JQK.

4.2.2 Differential Testing with EMI Variants

At this point, it may not be clear yet what benefits our relaxed notion of equivalence can

provide, which we explain next.

Differential Testing: An Alternative View Our goal is to differentially test compilers.

The traditional view of differential testing [McKeeman, 1998] is simple: If two programs

(in our setting, compilers or compiler versions) “act differently” on some input (i.e.

source programs), we have found a bug in one of the compilers (maybe also in both).

This is, for example, the view taken by Csmith [Yang et al., 2011] (assuming that the

input programs are well-behaving, e.g., they do not exhibit any undefined behavior).

We adopt an alternative view: If an oracle can generate a program P ’s semantic

equivalent variants, these variants can stress-test any compiler Comp by checking whether
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Comp produces equivalent code for these variants. This view is attractive because we

can (1) operate on existing code (or randomly generated, but valid code), and (2) check

a single compiler in isolation (e.g. where competing compilers do not exist). However,

we face two difficult challenges: (1) How to generate semantic equivalent variants? and

(2) How to check equivalence of the produced code? Both have been long-standing

challenges in software analysis and verification.

The “Profile and Mutate” Strategy Our key insight is that EMI provides a practical

mechanism to realize our alternative view for differential testing of compilers. Indeed,

by relaxing semantic equivalence w.r.t. an input set I, we reduce the second challenge to

the simple task of testing against I. As for the first challenge, note that P ’s executions

on I yield a static slice of P and unexecuted “dead code”. One may freely mutate the

“dead code” without changing P ’s semantics on I, thus providing a potentially enormous

number of EMI variants to help stress-test compilers.

Once the EMI variants are generated, testing is straightforward. Let Q= {Q1, . . . ,Qk}

be a set of P ’s EMI variants w.r.t. I. For each Qi ∈Q, we verify the following:

∀i ∈ I Comp(Qi)(i) = Comp(P )(i).

Any deviant behavior indicates a miscompilation.

So far, we have not specified how to “mutate” the unexecuted “dead code” w.r.t. I.

Obvious mutations include pruning, insertion, or modification. Our implementation,

which we describe next, focuses on pruning, and we show in evaluation that even such a

simple realization is extremely effective — it has detected 147 unique bugs for GCC and

LLVM alone in under a year. We discuss other mutation strategies in Section 5.2.

4.3 Implementation of Orion

We now describe Orion, our practical realization of the EMI concept targeting C compilers

via the “profile and prune” strategy. At a high level, Orion operates on a program’s abstract

syntax tree (AST) and contains two key steps: (1) extracting coverage information

(Section 4.3.1), and (2) generating EMI variants (Section 4.3.2).
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One challenge for testing C compilers is to avoid programs with undefined behavior

because the C standard allows a compiler to do anything with such programs. For

example, one major, painstaking contribution of Csmith is to generate valid test programs

most of the time. In this regard, Orion has a strong advantage. Indeed, the EMI variants

generated by Orion do not exhibit any undefined behavior if the original program has no

undefined behavior (since only dead code is pruned from the original program). This

allows Orion to easily generate many valid variants from a single valid seed program.

Algorithm 11 describes Orion’s main process. As its first step, Orion profiles the test

program P ’s execution on the input set I to collect (1) coverage information and (2) the

expected output on each input value i ∈ I (lines 2–3). It then generates P ’s EMI variants

w.r.t. I (lines 5–6), and uses them to validate each compiler configuration against the

collected reference output (lines 7–11). Next, we discuss each step in detail.

4.3.1 Extracting Coverage Information

Code coverage tools compute how frequently a program’s statements execute during its

profiled runs on some sample inputs. We can conveniently leverage such tools to track

the executed (i.e. “covered”) and unexecuted (i.e. “dead”) statements of our test program

P under input set I. Those statements marked “dead” are candidates for pruning in

generating P ’s EMI variants.

In particular, Orion uses gcov [GNU Compiler Collection, 2015], a mature utility in

the GNU Compiler Collection, to extract coverage information. We enable gcov by

compiling the test program P with the flag “-O0 -coverage”, which instruments P

with additional code to collect coverage information at runtime. Orion then executes

the instrumented executable on the provided input set I to obtain coverage files with

information indicating how many times a line has been executed.

Because gcov profiles coverage at the line level, it may produce imprecise results

when multiple statements are on a single line. For example, in the example below,

if (false) { /* this could be removed */ }

gcov marks the entire line as executed. As a result, Orion cannot mutate it, although

the statements within the curly braces could be safely removed. Note that we manually
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Algorithm 11: Orion’s main process for compiler validation

1 procedure Validate (Compiler Comp, TestProgram P , InputSet I):

2 begin

/* Step 1: Extract coverage and output */

3 Pexe := Comp.Compile(P, "-O0") /* without optimization */

4 C :=
⋃
i∈I
Ci, where Ci := Coverage(Pexe.Execute(i))

5 IO := {〈i,Pexe.Execute(i)〉 | i ∈ I}

/* Step 2: Generate variants and verify */

6 for 1..MAX_ITER do

7 P ′ := GenVariant(P,C)

/* Validate Comp’s configurations */

8 foreach σ ∈ Comp.Configurations() do

9 P ′exe := Comp.Compile(P ′,σ)

10 foreach 〈i,o〉 ∈ IO do

11 if P ′exe.Execute(i) 6= o then

/* Found a miscompilation */

12 ReportBug (Comp, σ, P , P ′, i)

formatted the two test cases in Figure 4.1 for presentation. The actual code has every

“abort();” on a separate line.

Occasionally, coverage information computed by gcov can also be ambiguous. For

instance, in the sample snippet below (extracted from the source code of the Mathomatic4

computer algebra system), gcov marks line 2613 as unexecuted (indicated by prepending

the leading “#####”):

#####: 2613: for (;; cp = skip_param(cp)) {

.....

7: 2622: break;

#####: 2623: }

4http://www.mathomatic.org/
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Based on this information, Orion assumes that it can remove the entire for loop (lines

2613–2623). This is incorrect, as the for loop is actually executed (indicated by the

execution of its child statement break). What gcov really means is that the expression

“cp = skip_param(cp)” is unevaluated. We remedy this coverage ambiguity by verifying

that none of the children of an unexecuted statement is executed before removing it in

the next step.

To avoid the aforementioned problems caused by collecting coverage statistics at

line granularity, we could modify gcov or implement a new code coverage tool that

would operate at the statement level. This can make our analysis more precise and help

generate more variants. However, the practical benefits seem negligible as often there

are only few such impacted statements. Our extremely positive results (Section 4.4)

demonstrate that the use of gcov has been a good, well-justified decision.

4.3.2 Generating EMI Variants

Orion uses LLVM’s LibTooling library [The Clang Team, 2014] to parse a C program into

an AST and mutate it based on the computed coverage information to generate the

program’s EMI variants.

The mutation process happens at the statement level in the AST. We mark a statement

unexecuted if (1) the line number of its first token is marked unexecuted by gcov, and

(2) none of its child statements in the AST is executed. When Orion decides to prune

a statement, it removes all tokens in its AST subtree, including all its child statements.

Thus, all variants generated by Orion are syntactically correct C programs.

Algorithm 12 describes Orion’s process for generating EMI variants. The process is

simple — We traverse all the statements in the original program P and randomly prune

the unexecuted “dead” statements. On line 9, we use the function FlipCoin to decide

stochastically whether an unexecuted statement s should be kept or removed. We control

Orion’s pruning via two parameters, Pparent and Pleaf , which specify the probabilities

to prune parent or leaf statements in FlipCoin. One can use static probabilities for

deleting statements and uniformly vary these values across different runs. An alternative

is to allow dynamically adjusted probabilities for each statement. From our experience,
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Algorithm 12: Generate an EMI variant

1 function GenVariant (TestProgram P , Coverage C): Variant P ′:

2 begin

3 P ′ := P

4 foreach s ∈ P ′.Statements() do

5 PruneVisit (P ′, s, C)

6 return P ′

7 procedure PruneVisit (TestProgram P ′, Statement s, Coverage C):

8 begin

/* Delete this statement when applicable */

9 if s /∈ C and FlipCoin(s) then

10 P ′.Delete (s)

11 return

/* Otherwise, traverse s’s children */

12 foreach s′ ∈ s.ChildStatements() do

13 PruneVisit (P ′, s′, C)

this additional dynamic control seems quite effective. In fact, our standard setup is to

randomly adjust these two parameters after each statement pruning by resetting each to

an independent random probability value from 0.0 to 1.0.

In our actual implementation, Algorithm 11 is realized using shell scripts. In par-

ticular, we have a set of scripts to collect coverage and reference output information,

control the outer loop, generate EMI variants and check for possible miscompilation or

compiler crashes. We have implemented Algorithm 12 in C++ using LLVM’s LibTooling

library [The Clang Team, 2014]. Unlike random program generators such as Csmith,

Orion requires significantly less engineering effort. It has approximately 500 lines of

shell scripts and 1,000 lines of C++ code, while Csmith contains about 30-40K lines of

C++ code.
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4.4 Evaluation

This section presents our extensive evaluation of Orion to demonstrate the practical

effectiveness of our EMI methodology besides its conceptual elegance and generality.

Since January 2013, we have been experimenting with and refining Orion to find

new bugs in three widely-used C compilers, namely GCC, LLVM, and ICC. We have

also occasionally tested CompCert [Leroy, 2006, Leroy, 2009], a formally verified C

compiler. In April 2013, we started our extensive testing of GCC, LLVM, and ICC. After

finding and reporting numerous bugs in ICC, we stopped testing it for the lack of direct

communication with its developers (although we did learn afterward by checking its

later releases that many bugs we reported had been fixed). Since then, we have only

focused on GCC and LLVM because both have open bug repositories, and transparent

bug triaging and resolution. This section describes the results from our extensive testing

effort for about eleven months.

Result Summary Orion is extremely effective:

• Many confirmed bugs: In eleven months, we have found and reported 147 confirmed,

unique bugs in GCC and LLVM alone.

• Many long-latent bugs: Quite a few of the detected bugs have been latent for many

years, and resisted the attacks from both earlier and contemporary tools.

• Many have been already fixed: So far, 110 of the bugs have already been fixed and

resolved; most of the remaining ones have been triaged, assigned, or are being

actively discussed.

• Most are miscompilations: This is perhaps the most important, clearly demonstrating

the strengths of EMI for targeting the hard-to-find and more serious miscompila-

tions (rather than compiler crashes). For example, Orion has already found about

the same number (around 40) of miscompilations in GCC as Csmith did, but over

several years’ prior and continuing testing.
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4.4.1 Testing Setup

Hardware and Compiler Our testing has focused on the x86-linux platform. Since

late April 2013, we have performed our testing on two machines (one 18 core and one

6 core) running Ubuntu 12.04 (x86_64). For each compiler (i.e. GCC and LLVM), we

test its latest development version (usually built once daily) under the most common

configurations (i.e. -O0, -O1, -Os, -O2, and -O3), generating code for both 32-bit (-m32)

and 64-bit (-m64) environments. We did not use any finer-grained combinations of the

compilers’ optimization flags.

Test Programs In our testing, we have drawn from three sources of test programs to

generate their EMI variants (note that none of the original test programs triggered a

compiler bug):

• Compiler Test Suites: Each of GCC and LLVM has an already sizable and expanding

regression test suite, which we can use for generating EMI variants (which in turn

can be used to test any compiler). For example, the original test case shown in

Figure 4.1 was from the GCC test suite, and one of its EMI variants helped reveal a

subtle miscompilation in LLVM. We used the approximately 2,000 collected tests

from the KCC [Ellison and Rosu, 2012] project, an executable formal semantics for

C. Among others, this collection includes tests primarily from regression test suites

of GCC and LLVM. The programs in these test suites do not take inputs, and are

generally quite small. Nonetheless, we were able to find bugs by pruning them. The

problem with this source is that the number of bugs revealed by their EMI variants

saturated quickly, which is expected as they have few unexecuted statements.

• Existing Open-Source Projects: Another interesting source is the large number of

open-source projects available. One challenge to use such a project is that its source

code usually scatters across many different directories. Fortunately, these projects

normally use the GNU build utilities (e.g. “configure” followed by “make”) and do

often come with a few test inputs (e.g. invoked by “make test” or “make check”),

which we can leverage to generate EMI variants.
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In particular, we modify a project’s build process to generate coverage information

for “make test”. To generate an EMI variant for the project, we bootstrap its build

process. Before compiling a file, we invoke our transformer tool that transforms

the file into an EMI file, which is then compiled as usual. The output from the build

process is an EMI variant of the original project. Then, we can use it to test each

compiler simply by running the accompanying “make test” (or “make check”). If

checking fails on the variant under a particular compiler configuration, we have

discovered a compiler bug.

Now, we face another challenge, that is how to reduce the bug-triggering EMI

variant for bug reporting. This is a more serious challenge, particularly for miscom-

pilations. Although we have applied Orion on a number of open-source projects—

including all nine SPEC2006 integer C programs, Mathomatic and tcc5—and found

many inconsistencies, we were only able to reduce one GCC crashing bug triggered

by an EMI variant of gzip. We are yet to reduce the others, such as an interesting

GCC miscompilation triggered by a variant of tcc.

• Csmith-Generated Random Code: Csmith turns out to be an excellent source for

providing an enormous number of test programs for Orion. Programs generated

by Csmith, which do not take inputs, are generally complex and offer quite rich

opportunities for generating EMI variants. Our Csmith setup produces programs

with an average size of 4,590 LOC, among which 1,327 lines on average are

unexecuted. This corresponds to a vast space of EMI variants. More importantly,

these Csmith-variants can often be effectively reduced using existing tools such

as C-Reduce [Regehr et al., 2012] and Berkeley Delta [McPeak et al., 2015]. Thus,

most of our testing has been on top of the random programs generated by Csmith,

running in its “swarm testing” setup [Groce et al., 2012].

Test Case Reduction Test case reduction is still a significant and time-consuming

challenge. Our experience suggests that neither C-Reduce nor Berkeley Delta is the most

5The “Tiny C Compiler” (http://bellard.org/tcc/)
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effective on its own. We have devised an effective meta-process to utilize both. It is a

nested fixpoint loop. First, we use Delta to repeatedly reduce the test case until a fixpoint

has been reached (i.e. no additional reduction from Delta). Then, we run C-Reduce on

the fixpoint output from Delta. We repeat this two-step process until reaching a fixpoint.

This meta-process strikes a nice balance to take advantage of Delta’s better efficiency

and C-Reduce’s stronger reduction capability.

There is another challenge: How to reject code with undefined behavior in test

case reduction? We follow C-Reduce [Regehr et al., 2012] and leverage (1) GCC and

LLVM warnings, (2) KCC [Ellison and Rosu, 2012], and (3) static analysis tools such as

Frama-C.6 We also utilize Clang’s (although imperfect) support for undefined behavior

sanitization, as well as cross-checking using a few different compilers and compiler

configurations to detect inconsistent behavior caused by invalid code (i.e. code with

undefined behavior). Whenever possible, we use CompCert (and its C interpreter) for

detecting and rejecting invalid code.

Number of Variants It is also important to decide how many variants to generate

for each program. There is a clear trade-off in performance and bug detection. Our

experience suggests that eight variants appear to strike a good balance. In earlier testing,

we used a static bound, such as 8, as the number of variants to generate for each program.

Later, we added a random parameter that has roughly an expected value of 8 to control

the number of generated variants for each test program independently at random. This

has been quite effective. For future work, we may explore white-box approaches that

support less stochastic, more controlled generation of EMI variants.

We have conducted our testing over an extended period of time. We usually had

multiple runs of Csmith with different configurations, especially after we learned that

certain Csmith configurations may often lead to test cases with undefined behavior. One

such example is the use of unions because code with unions can easily violate the strict

aliasing rules, thus leading to undefined behavior. Sometimes, we also needed to restart

due to system failures, Csmith updates, bugs in Orion, and re-seeding Csmith’s random

6http://frama-c.com/
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number generation. As the number of EMI variants that we generated for each test case

was also stochastic, we do not have exact counts of the Csmith tests and their derived

EMI variants, but both numbers were in the millions to tens of millions range.

4.4.2 Quantitative Results

This subsection presents various summary statistics on results from our testing effort.

Bug Count We have filed a total of 195 bug reports for GCC and LLVM during our

testing period: (1) three derived from compiler test suites, (2) one from existing

open-source projects, and (3) the rest from Csmith tests. They can be found under

“su@cs.ucdavis.edu” and “dhazeghi@yahoo.com” in GCC’s and LLVM’s bugzilla databases.

Till March 2014, 147 have been confirmed, 110 of which have been resolved and fixed

by the developers. Note that when a bug is confirmed and triaged, it corresponds to a

new defect. Thus, all of our confirmed bugs were unique and independent.

Also note that although we always ensured that all of our reported bugs had different

symptoms, some of them were actually linked to the same root cause. These bugs were

later marked as duplicate by developers. The remaining 13 bugs — 4 for GCC and 9 for

LLVM — have not yet been confirmed as the developers have not left any comments on

these reports.

Table 4.1 classifies the reported bugs across the two tested compilers: GCC and LLVM.

It is worth mentioning that we have focused more extensive testing on GCC because of

the very quick responses from the GCC developers and relatively slow responses from

the LLVM developers (although later we had seen much increased activities from LLVM

because of its 3.4 release). This partially explains why we have reported more bugs for

GCC over LLVM.

Bug Types We distinguish two kinds of errors: (1) ones that manifest when compiling

code, and (2) ones that manifest when the compiled EMI variants are executed. We

further classify compile-time bugs into compiler crashes (e.g. internal compiler errors and

memory-safety errors) and performance bugs (e.g. compiler hang or abnormally slow

compilation).
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GCC LLVM TOTAL

Reported 111 84 195

Marked duplicate 28 7 35

Confirmed 79 68 147

Fixed 56 54 110

Table 4.1: Bugs reported, marked duplicate, confirmed, and fixed.

A compile-time crash occurs when the compiler exits with a non-zero status. A

runtime bug occurs when an EMI variant behaves differently from its original program.

For example, it crashes or terminates abnormally, or produces a different output. We

refer to such compiler errors as wrong code bugs. Silent wrong code bugs are the most

serious, since the program surreptitiously produces wrong result.

Table 4.2 classifies the bugs found by Orion according to the above taxonomy. Notice

that Orion found many wrong code (more serious) bugs, confirming its strengths in

stress-testing compiler optimizers. For example, Csmith found around 40 wrong code

bugs in GCC over several years’ prior and continuing testing, while Orion found about

the same number of wrong code bugs in a much shorter time (and after GCC and LLVM

had already fixed numerous bugs discovered by Csmith).

GCC LLVM TOTAL

Wrong code 46 49 95

Crash 23 10 33

Performance 10 9 19

Table 4.2: Bug classification.

Importance of the Reported Bugs It is reasonable to ask whether the compiler defects

triggered by randomly pruning unexecuted code matter in practice. This is difficult to

answer and a question that Csmith has also faced. The discussion from the Csmith

paper [Yang et al., 2011] is quite relevant here. First, most of our reported bugs have

been confirmed and fixed by the developers, illustrating their relevance and importance.
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(b) LLVM

Figure 4.4: Affected versions of GCC and LLVM (lighter bars: confirmed bugs; darker
bars: fixed bugs).

Second, some of our reported bugs were later reported by others when compiling

real-world programs. As a recent example, from an EMI variant of a Csmith test, we

found a miscompilation in GCC and reported it as bug 59747.7 Later, others discovered

that GCC also miscompiled the movie player mplayer, and filed a new bug report 59824.8

The two bugs turned out to share the same root cause, and subsequently bug 59824 was

marked as duplicate.

Affected Compiler Versions We only tested the latest development trunks of GCC and

LLVM. When we find a test case that reveals a bug in a compiler, we also check the

compiler’s stable releases against the same test case. Figure 4.4 shows the numbers of

bugs that affect various versions of GCC and LLVM. Obviously both development trunks

are the most frequently affected. However, Orion has also found a considerable number

of bugs in many stable releases that had been latent for many years.

Optimization Flags and Modes Figure 4.5 shows which optimization levels are af-

fected by the bugs found in GCC and LLVM. In general, a bug occurs at lower optimization

levels is likely to also happen at higher levels. However, we did encounter cases where a

bug only affected one optimization flag. In most such cases, the flag is “-Os”, which is

quite intuitive because “-Os” is the only flag that optimizes for code size and is less used.

Table 4.3 shows the number of bugs that affected code generated for 32-bit (“-m32”) and

7http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59747
8http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59824
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Figure 4.5: Affected optimization levels of GCC and LLVM (lighter bars: confirmed bugs;
darker bars: fixed bugs).

64-bit (“-m64”) environments, alone or both.

GCC LLVM TOTAL

-m32 alone 15 10 25

-m64 alone 21 18 39

Both 43 40 83

Table 4.3: Bugs found categorized by modes.

Affected Compiler Components Figure 4.6 shows which compiler components in GCC

and LLVM were affected by the reported bugs. Most of the bugs that Orion found in

GCC are optimizer bugs. As for LLVM, the developers do not (or have not) appropriately

classify the bugs, so the information we extracted from the LLVM’s bugzilla database may

be quite skewed, where most have been classified as “LLVM Codegen” thus far.

4.4.3 Assorted Bug Samples Found by Orion

Orion is capable of finding bugs of diverse kinds. We have found bugs that result

in issues like compiler segfaults, internal compiler errors (ICEs), performance issues

at compilation, and wrong code generation, and with various levels of severity, from

rejecting valid code to release-blocking miscompilations. To provide a glimpse of the

diversity of the uncovered bugs, we highlight here several of the more concise GCC and

LLVM bugs. The wide variety of bugs demonstrates EMI’s power and broad applicability.
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Figure 4.6: Affected components of GCC and LLVM (lighter bars: confirmed bugs; darker
bars: fixed bugs).

Miscompilations We first discuss a few selected wrong code bugs:

4.7a: All versions of GCC tested (4.6 to trunk) failed to correctly compile the program

shown in 4.7a in 64-bit mode under -O3. The resulting code crashes with a segfault.

The reason is believed to be a wrong offset computation in GCC’s predictive

commoning optimization. The generated code tries to access memory quite far

from what it actually should access due to incorrectly generated offsets, causing a

segmentation fault. (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58697)

4.7b: When compiling the code in 4.7b, Clang generated incorrect code, making the

program return an incorrect value. The bug is caused by Clang’s vectorizer. (http:

//llvm.org/bugs/show_bug.cgi?id=17532)

4.7c: GCC trunk failed to compile the program listed in 4.7c at -O1 and above in both

32-bit and 64-bit modes because of a bug in its jump threading logic. The shape

of the control-flow graph caused the code to handle jump threads through loop

headers to fail. (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58343)

4.7d: Clang trunk failed to compile the test case in 4.7d and crashed with a segfault

under -O2 and above in both 32-bit and 64-bit modes. The problem was caused by

GVN forgetting to add an entry to the leader table when it fabricated a “ValNum”

for a dead instruction. Later on, when the compiler wants to access that table entry,

102

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58697
http://llvm.org/bugs/show_bug.cgi?id=17532
http://llvm.org/bugs/show_bug.cgi?id=17532
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58343


int b, f, d[5][2];

unsigned int c;

int main() {

for (c = 0; c < 2; c++)

if (d[b + 3][c]

& d[b + 4][c])

if (f) break;

return 0;

}

(a) All tested GCC versions
generated wrong code that
crashed at run-time due to in-
valid memory access, when
compiled at -O3 in 64-bit
mode (GCC bug 58697).

int main() {

int a = 1; char b = 0;

lbl:

a &= 4;

b--;

if (b) goto lbl;

return a;

}

(b) Clang bug affecting 3.2
and above: the vectorizer
generates incorrect code af-
fecting the program’s return
value. The bug disappears
with -fno-vectorize. (LLVM
bug 17532)

int a;

int main() {

int b = a;

for (a = 1; a > 0; a--);

lbl:

if (b && a) goto lbl;

return 0;

}

(c) GCC trunk crashed at
-O1 and above with an In-
ternal Compiler Error (ICE)
due to the unusual shape of
the control-flow graph which
causes problems in the jump
threading logic and leads to a
failure. (GCC bug 58343)

int *a, e, f;

long long d[2];

int foo() {

int b[1]; a = &b[0];

return 0;

}

int bar() {

for (f = 0; f < 2; f++)

d[f] = 1;

e = d[0] && d[1] - foo();

if (e) return 0;

else return foo();

}

(d) Clang trunk segfaulted
when compiled at -O2 or -O3

due to GVN’s incorrectly up-
dating the leader table. (LLVM
bug 17307)

struct S0 {

int f0, f1, f2, f3, f4 }

b = {0,0,1,0,0};

int a;

void foo(struct S0 p) {

b.f2 = 0;

if (p.f2) a = 1;

}

int main() {

foo(b);

printf("%d\n", a);

return 0;

}

(e) Clang trunk miscompiled
this program when optimized
for code size (-Os) as a result
of an LLVM inliner bug, gener-
ating incorrect output. (LLVM
bug 17781)

int a[8][8] = {{1}};

int b, c, d, e;

int main() {

for (c = 0; c < 8; c++)

for (b = 0; b < 2; b++)

a[b + 4][c] = a[c][0];

printf("%d\n", a[4][4]);

return 0;

}

(f) GCC vectorizer regres-
sion from 4.6 triggers a
miscompilation affecting
program output under -O3.
The bug goes away with the
-fno-tree-vectorize flag.
(GCC bug 58228)

Figure 4.7: Example test cases uncovering a diverse array of GCC and LLVM bugs.
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it fails with a segfault as the entry is nonexistent. (http://llvm.org/bugs/show_

bug.cgi?id=17307)

4.7e: The test program in 4.7e was miscompiled by Clang trunk when optimized for

code size (i.e. at -Os), causing the binary to print “0” when executed where it

should have printed “1”. The root cause was traced to a bug in the LLVM inliner.

(http://llvm.org/bugs/show_bug.cgi?id=17781)

4.7f: GCC’s vectorizer was not immune to Orion either. It miscompiled the program

in 4.7f, resulting in wrong output from executing the generated code. (http:

//gcc.gnu.org/bugzilla/show_bug.cgi?id=58228)

Compiler Performance Issues Orion also helps discover another category of bugs:

compiler performance bugs resulting in terribly slow compilation. For instance, it took

GCC minutes to compile the program in 4.8, orders of magnitude slower than both Clang

and ICC. Across different versions, GCC 4.8 was considerably faster than trunk, whereas

GCC 4.6 and 4.7 were much slower. The performance issue is believed to be caused by

loop unrolling while retaining a large number of debug statements (> 500,000) within a

single basic block that will have to be traversed later.

While Clang was much faster than GCC at compiling the program in 4.8, it had

performance bugs elsewhere. Both Clang 3.3 and trunk failed to perform satisfactorily in

compiling the code in Figure 4.9, taking minutes to compile the code under -O3, orders

of magnitude longer than -O2, GCC, ICC, and even the previous Clang release (3.2),

which took 9 seconds to compile at -O3. GCC had the fastest compilation — only 0.19

seconds at -O3.

Clang’s performance issue was caused by its creation of thousands of stale lifetime

marker objects within the compiler that are not properly cleaned up, drastically slowing

down compilation.

4.4.4 Remarks

One of the reasons why Csmith has not been extended to C++ or other languages

is because it requires significant engineering efforts to realize. One essentially has to
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int a, b, c, d;

int *foo (int *r, short s, short t) {

return &c;

}

short bar(int p) {

int t = 0;

for (a = 0; a < 8; a++)

for (b = 0; b < 8; b++)

for (p = 0; p < 8; p++)

for (d = 0; d < 8; d++) {

foo(&t, p, d);

}

bar (0);

return 0;

}

int main() {

return 0;

}

Figure 4.8: GCC retains many debug
statements that will have to be tra-
versed in a single basic block as a re-
sult of loop unrolling, causing orders
of magnitude slowdown in compilation
speed. (http://gcc.gnu.org/bugzilla/
show_bug.cgi?id=58318)

int a = 1, b, c, *d = &c, e, f, g, k, l, x;

static int * volatile *h = &d;

static int * volatile **j = &h;

void foo(int p) { d = &p; }

void bar() {

int i;

foo (0);

for (i = 0; i < 27; ++i)

for (f = 0; f < 3; f++)

for (g = 0; g < 3; g++) {

for (b = 0; b < 3; b++)

if (e) break;

foo (0); }

}

static void baz() {

for (; a >= 0; a--)

for (k = 3; k > 0; k--)

for (l = 0; l < 6; l++) {

bar (); **j = &x; }

}

int main() { baz(); return 0; }

Figure 4.9: It takes Clang 3.3+ minutes
to compile at -O3, compared to only 0.19
seconds with GCC 4.8.1. Clang created a
large number of lifetime marker objects
and did not clean them up. (http://llvm.
org/bugs/show_bug.cgi?id=16474)

rebuild a new program generator almost entirely from scratch. In contrast, Orion is much

easier to be targeted for a new domain. To add C++ support to Orion, we simply need

to handle a few more C++ statements and constructs in the generator transformer.

Although we have not yet done any substantial testing of Orion’s C++ support, our

preliminary experience has been encouraging as Orion has already uncovered potential

latent compiler bugs using small existing C++ code.
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Even for a completely new domain, EMI also requires much less engineering effort

because it can leverage existing tools and infrastructures. Our active ongoing work on

adapting Orion to testing the JVM JIT confirms this.

Currently, Orion only focuses on integer C programs. We plan to extend the work to

floating-point programs. This direction is new and exciting, and our EMI methodology

offers a promising high-level approach. The key technical challenge is to define the

“equivalence” of floating-point EMI variants considering the inherent inaccuracy of

floating-point computation.
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Chapter 5

Other Dimensions of Program
Synthesis

Previous chapters have shown the practicality and effectiveness of program synthesis.

This chapter further explores program synthesis in the following three dimensions. First,

we investigate various user interaction models to improve the usability of program

synthesis techniques (Section 5.1). Second, we discuss a guided, stochastic synthesis

technique that helps improve synthesis coverage, thereby reveal many deep compiler

bugs that otherwise could not be found (Section 5.2). Finally, we illustrate the general

applicability of program synthesis by applying it to finding bugs in a new domain:

link-time optimizers (Section 5.3).

5.1 New User Interaction Models: Program Navigation

and Conversational

Programming by Examples (PBE) has the potential to revolutionize end-user program-

ming by enabling end users, most of whom are non-programmers, to create small scripts

for automating repetitive tasks. However, examples, though often easy to provide, are

an ambiguous specification of the user’s intent. Because of that, a key impedance in

adoption of PBE systems is the lack of user confidence in the correctness of the program

that was synthesized by the system.

This section presents two novel user interaction models that communicate actionable
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information to the user to help resolve ambiguity in the examples. One model allows

the user to effectively navigate between the huge set of programs that are consistent

with the examples provided by the user. The other model uses active learning to ask

directed example-based questions to the user on the test input data over which the user

intends to run the synthesized program. FlashProg, a web application that enables data

extraction from textual documents, spreadsheets, and Web pages using examples, is our

user interface that realizes the two interaction models.

5.1.1 FlashProg’s User Interface

Figure 5.1 shows FlashProg’s interface after providing some examples (top), and after

finishing learning (bottom). The interface consists of 3 sections: (1) Top Toolbar, (2)

Input Text View, and (3) PBE Interaction View.

Top Toolbar The Top Toolbar contains: (a) an Input button to open and upload files,

(b) a Reset button to reset FlashProg to the initial state, (c) Undo/Redo buttons to

undo/redo interaction steps, and (d) a Results button to export the output to CSV file.

Input Text View The Input Text View is the main area. It allows users to highlight

desired document sections as examples (the examples can be nested). FlashProg then

initiates the learning process and shows the highest ranked program in the Output

pane. Each new row in the output corresponds to a region in the document (which is

highlighted with dimmer colors). The scroll bars are colored with a bird’s-eye view of

highlighting, which makes it easier to identify discrepancies in output. The user can also

provide negative examples by clicking on previously marked regions to communicate to

FlashProg that the region should not be selected as part of the output.

PBE Interaction View The tabbed-pane PBE Interaction View lets users interact with

FlashProg in three different ways: (i) exploring the produced output, (ii) exploring

the learned program set paraphrased into English inside program viewer (Program

Navigation), and (iii) engaging in an active learning session through the “Disambiguation”

feature (Conversational Clarification).
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Figure 5.1: FlashProg UI with PBE Interaction View in the “Output” mode, before and
after the learning process. 1 – Top Toolbar, 2 – Input Text View, 3 – PBE Interaction
View.
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Figure 5.2: Initial input to FlashProg in our illustrative scenario: extraction of the author
list from the PDF bibliography of “A Formally-Verified C Static Analyzer”.

Figure 5.3: Bird’s eye view showing discrepancy in extraction.

5.1.2 Illustrative Scenario

To illustrate the different interaction models and features of FlashProg, we consider the

task of extracting the set of individual authors from the Bibliography section of a paper

“A Formally-Verified C Static Analyzer” [Jourdan et al., 2015] (Figure 5.2). Our model

user Alice wants to extract this data to figure out who is the most cited author in papers

presented at POPL 2015.

Extracting Publication Records First, Alice provides an example of an outer region

containing each publication record. After providing two examples, a program is learned

and other publications are highlighted. However, the user notices that there is an

unexpected gap between two extracted regions using the bird’s-eye view (Figure 5.3).

Giving another example to also include the missing text “Springer, 2014.” fixes the

problem and a correct program is learned for the publication record regions.

Extracting Lists of Authors Next, Alice wants to extract the list of authors and provides

an example inside the first record. She observes that the program learned is behaving
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Figure 5.4: An error during the author list extraction.

incorrectly (Figure 5.4). Although Alice can provide more examples to learn the correct

program, she finds it easier to switch to the Program Viewer tab, and select a correct

alternative for the wrong subexpression (Figure 5.5).

The top-ranked program for extracting the Author list from a Record is

“extract the substring starting at first occurrence of end of whitespace and

ending at the first occurrence of end of Camel Case in the second line”

The sub-program for the starting position is correct but the sub-program for the ending

position seems too specific for the given example. Alice asks for alternative programs

that the system has learned for the ending position. Hovering over each alternative

previews the extraction results in the input pane. In this case, Alice hovers over the first

alternative, which generates the correct result. The final, correct program is

“extract everything between first whitespace and first occurrence of Dot after

CamelCase”

Note that "Wang" is considered to be in CamelCase by FlashProg, even though it is

just one word. The logic is not obvious even for programmers.

Extracting Individual Authors Now Alice wants to extract each author individually,

and provides two examples within the first publication record. FlashProg again does

not identify all authors correctly. Although Alice can provide additional examples or

look at the extraction program, she decides to engage in the Conversational Clarification

mode, which helps FlashProg disambiguate between programs by answering clarifying
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Figure 5.5: Program Viewer tab & alternative subexpressions.

Figure 5.6: Conversational Clarification being used to disambiguate different programs
that extract individual authors.

Figure 5.7: Final result of the bibliography extraction scenario.

questions (such as should the output include “D. Richards” or “C. D. Richards” and

if “and” should be included, as shown in Figure 5.6). At each iteration, FlashProg asks

her to choose between several possible highlightings in the unmarked portion of the

document. Each choice is then communicated to the PBE system and the set of programs

is re-learned. After two iterations of Conversational Clarification, FlashProg converges

on a correct program, which Alice is confident with (Figure 5.7).
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5.1.3 Implementation

Our underlying program learning engine is a rich toolkit of generic algorithms for PBE. It

allows a domain expert to easily define a domain-specific language (DSL) of programs

that perform data manipulation tasks in a given domain [Polozov and Gulwani, 2015].

The expert (DSL designer) only defines the semantics of DSL operators, from which our

engine automatically generates a synthesizer. A synthesizer is an algorithm that, at run

time, accepts a specification from a user, and returns a set of DSL programs that satisfy

this specification. For instance, a specification in FlashExtract is given by a sequence of

positive and negative highlightings. The efficiency of the learning engine comes from

the synthesis algorithm and the program set representation.

Synthesis Algorithm Most prior work in PBE implement their synthesis algorithms by ex-

haustive search over the DSL, or delegate the task to constraint solvers [Alur et al., 2013].

In contrast, our engine employs an intelligent “top-down” search over the DSL struc-

ture, in which it iteratively transforms the given examples for the entire DSL program

into the examples that should be satisfied by individual subexpressions in the pro-

gram [Polozov and Gulwani, 2015]. Such an approach allows FlashProg to be responsive

within 1-3 seconds for each learning round, whereas state-of-the-art PBE techniques

can take minutes or even hours on similar tasks. Moreover, our approach generates a

set of satisfying programs, instead of just a single candidate. This enables our Program

Navigation feature, where users may select alternate programs and observe their effects

on the output.

Program Set Representation A typical learning session can return up to 1030 ambiguous

programs, all consistent with the provided specification [Gulwani et al., 2012]. Our

engine uses version space algebra, a polynomial-space representation of such a program

set [Mitchell, 1982]. The key idea of VSAs is sharing of subspaces. Consider an operator

SubStr(s,p1,p2), which extracts a substring of s that starts at the position p1 and ends at

the position p2. Both p1 and p2 can expand to various position logics, such as absolute

positions (e.g., “5th character”) or positions based on regular expressions (e.g., “after the

second number”). The total number of possible consistent SubStr(s,p1,p2) programs is
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quadratic in the number of possible consistent position programs (since any consistent

p1 can be combined with any consistent p2).

A VSA stores these programs concisely as a join structure over two program sets for

p1 and p2 (also represented as VSAs). The join structure specifies that any combination

of the programs sampled from these two sets is a valid combination of parameters for

the SubStr operator. Therefore, the overall size of a VSA is typically logarithmic in the

number of programs it semantically represents.

Formally, our learning engine represents program sets as a combination of shared

program sets using two operators: union and join. A union (join) of two VSAs Ñ1 and

Ñ2 represents a set that is a union (Cartesian product) of two sets represented by Ñ1

and Ñ2. VSA has two major benefits: (1) it stores an exponential number of candidate

programs using only polynomial space, and (b) it allows exploring the shared parts of

the space of candidates, and quickly examine the alternative candidate subexpressions at

any given program level.

The ideas explained above are key to our novel Program Navigation and Conversa-

tional Clarification interaction models, which we discuss next.

Program Navigation

The two main challenges in Program Navigation are paraphrasing of the DSL programs

in English and providing alternative suggestions for program expressions.

Template Language To enable paraphrasing, we implemented a high-level template

language, which maps partial programs into partial English phrases. Lau stated in one of

her early PBE work [Lau, 2008]:

“Users complained about arcane instructions such as “set the CharWeight to

1” (make the text bold). [. . .] SMARTedit users also thought a higher-level

description such as “delete all hyperlinks” would be more understandable

than a series of lower level editing commands.”

Our template-based strategy avoids arcane instructions by using "context-sensitive

formatting rules", and avoids low-level instructions by using "idiomatic rules".
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Paraphrasing is a bottom-up process. We use an idiom whenever possible. We remove

context formatters from the template and apply them to their referenced child’s template.

We illustrate this process with an S1 program:

PosPair(Pos(Line(1),1),Pos(Line(1),−1))

The program evaluates to the string between the start and end of the second line

(note that line indices start at 0, whereas char indices start at 1). The relevant DSL

portion is defined as a CFG:

S := PosPair(p,p) p := Pos(L,n)

L := Line(n) n := int

We add three paraphrasing rules, in which {:0} and {:1} refer to first and second

arguments:

PosPair → “extract the string between {:0} and {:1}”

Pos → “the char number {:1} of {:0}”

Line → “line {:0}”
Paraphrasing S1 yields (parentheses added to see the paraphrase tree):

“extract the string between (the char number (1) of (line (1))) and (the char

number (-1) of (line (1)))”

To differentiate the two 1, we rewrite the last two rules above with a list of dot-

prefixed formatters:

Pos → “the {:1.charNum} of {:0}”

Line → “{:0.lineNum}”
charNum (lineNum) is a formatter mapping ints to a char ordinal (line ordinal).

Formatters are lists of 〈regex,result〉 pairs that modify the template of the targeted child.

We replace a formatter’s template with the first matching regex result.

The limitation of this approach is that all rules are written and updated manually.

We have to keep a DSL and its paraphrasing rules synchronized. Furthermore, because

paraphrasing depends on order of formatters and idioms, some idiom templates may not

allow users to explore the full program. We overcome this problem by letting the user

switch between the paraphrase and the code (the latter is always complete).
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Alternative Programs To enable exploring alternative programs, we record the original

candidate program set for each subexpression. Because our program set is represented as

a VSA, we can easily retrieve a subspace of alternatives for each program subexpression,

and apply the domain-specific ranking scheme on them. FlashProg then presents the top

5 subexpression programs to the user.

Conversational Clarification

Conversational Clarification selects candidates by differencing outputs produced by the

synthesized programs. Each synthesis step produces a VSA of ambiguous programs that

are consistent with the given examples. Conversational Clarification iteratively replaces

the subexpressions of the top-ranked program with its top k alternatives from the VSA.

This produces k clarification candidates (k is set to 10 in FlashProg). We generate the

clarifying question based on the first discrepancy between the outputs of the currently

selected program P and those of the clarification candidateP ′. Such a discrepancy can

have three possible manifestations:

• The outputs of P and P ′ match until a region r in P does not intersect with any

regions in P ′. This leads to the question “Should r be highlighted or not?”

• The outputs of P and P ′ match until a region r′ in P ′ does not intersect with any

regions in P . This leads to the question “Should r′ have been highlighted?”

• The outputs of P and P ′ match until a region r in P intersects with a region r′ in

P ′. This leads to the question “Should r or r′ be highlighted?”

For better usability (and faster convergence), we merge the three question types into

one, which asks the user “What should be highlighted: r1, r2, or nothing?”. Selecting r1

or r2 would mark the selected region as a positive example. Selecting “nothing” would

mark both r1 and r2 as negative examples. We convert user choice into new examples,

and invoke a new synthesis process.

Analysis Conversational Clarification always converges to the program representing

user’s intent in a finite number of rounds, if such program exists. The number of
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rounds depends on the space of collisions in DSL outputs. However, the number of

Conversational Clarification rounds is usually small in practice. In all of our benchmarks,

this number never exceeds 5.

A Conversational Clarification round is sound by construction (i.e., accepting a

suggestion always yields a program that is consistent with both the suggestion and

the prior examples). However, since our choice of clarification candidates is limited

to top k alternatives at each level of the VSA, the Conversational Clarification round

may be incomplete (i.e., the suggestions may not include the intended correct output).

User can always provide a manual example instead of using CC suggestions in such a

situation. The performance of a single Conversational Clarification round is linear in

the VSA space (which is typically logarithmic in the number of ambiguous programs),

because we implement CC using our novel (recursively defined) ranking operation over

the VSA [Polozov and Gulwani, 2015].

5.1.4 Evaluation

We now present a user study to evaluate FlashProg. In particular, we address three

research questions for PBE:

• RQ1: Do Program Navigation and Conversational Clarification contribute to cor-

rectness?

• RQ2: Which of Program Navigation and Conversational Clarification is perceived

more useful for data extraction?

• RQ3: Do FlashProg’s novel interaction models help alleviate typical distrust in PBE

systems?

User Study Design

Because our tasks can be solved without any programming skills, we performed a within-

subject study over an heterogeneous population of 29 people: 4 women aged between 19

and 24 and 25 men aged between 19 and 34. Their programming experience ranged from

none (a 32-year man doing extraction tasks several times a month), less than 5 years (8
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people), less than 10 (9), less than 15 (8) to less than 20 (3). They reported performing

data extraction tasks never (4 people), several times a year (7), several times a month

(11), several times a week (3) up to every day (2).

We selected 3 files containing several ambiguities these users have to find out and to

resolve. We chose these files among anonymized files provided by our customers. Our

choice was also motivated by repetitive tasks, where extraction programs are meant to

be reused on other similar files. The three files are the following:

1. Bank listing. List of bank addresses and capital grouped by state. The postal code

can be ambiguous.

2. Amazon research. The text of the search results on Amazon for the query “chair”. The

data is visually structured as a list of records, but contains spacing and noise.

3. Bioinformatic log. A log of numerical values obtained from five experiments, from

bioinformatics research (Figure 5.9).

We first provided users a brief video tutorial using the address file as example

(Figure 5.1, youtu.be/JFRI4wIR0LE). The video shows how to perform two extractions

and to use features such as undo/redo. It partially covers the Program Viewer tab and

the Disambiguation tab. It explains that these features will or will not be available,

depending on the tasks. When users start FlashProg, they are given the same file as in

the video. A pop-up encourages them to play with it until they feel ready. The Program

Viewer tab and the Disambiguation tab are both available at this point.

We then ask users to perform extraction on the three files. For each extraction task,

we provide a result sample (Figure 5.8). Users then manipulate FlashProg to generate

the entire output table corresponding to that task. We further instruct them that the

order of labels do not matter, but they have to rename them to match our result sample.

To answer RQ1, we select a number of representative values across all fields for each

task, and we automatically measure how many of them were incorrectly highlighted.

These values were selected by running FlashProg sessions in advance ourselves and

observing insightful checkpoints that require attention. In total, we selected 6 values for
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Figure 5.8: Result sample of extracting bioinformatic log.

task #1, 13 for task #2 and 12 for task #3. We do not notify users about their errors.

This metric has more meaning than if we recorded all errors. As an illustration, a raw

error measurement in the third task for a user forgetting about the third main record

would yield more than 140 errors. Our approach returns 2 errors, one for the missing

record, and one for another ambiguity that needed to be checked but could not. This

makes error measurement comparable across tasks.

Environments To measure the impact of Program Navigation and Conversational

Clarification interaction models independently, we set up three interface environments.

Basic Interface (BI). This environment enables only the Colored Data Highlighting

interaction model. It includes the following UI features: the labeling interface for

mouse-triggered highlighting, the label menu to rename labels, to switch between

them and the Output tab.

BI + Program Navigation (BI + PN ). Besides the Colored Data Highlighting, this

interface enables the Program Navigation interaction model, which includes the

Program Viewer tab and its features (e.g. Regular expression highlighting, Alterna-

tive subexpression viewer).

BI + Conversational Clarification (BI + CC ). Besides the Colored Data Highlighting,

this environment enables the Conversational Clarification interaction model, which

includes the Disambiguation tab.
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Figure 5.9: Highlighting for obtaining Figure 5.8.

To emphasize PN and CC, the system automatically opens the matching tab, if they

are part of the environment.

Configurations To compensate the learning curve effects when comparing the useful-

ness of various interaction models, we set up the environments in three configurations

A, B, and C. Each configuration has the same order of files/tasks, but we chose three

environment permutations. As we could not force people to finish the study, the number

of users per environment is not perfectly balanced.

Tasks

Config. 1. Bank 2. Amazon 3. Bio log # of users

A BI + PN BI + CC BI 8

B BI BI + PN BI + CC 12

C BI + CC BI BI + PN 9

Survey To answer RQ2 and RQ3, we asked the participants about the perceived useful-

ness of our novel interaction models, and the confidence about the extraction of each

file, using a Likert scale from 1 to 7, 1 being the least useful/confident.

Results

We analyzed the data both from the logs collected by the UI instrumentation, and from

the initial and final surveys. If a feature was activated, we counted the user for statistics

even if he reported not using it.
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Figure 5.10: Distribution of error count across environments. Both Conversational
Clarification (CC) and Program Navigation (PN) significantly decrease the number of
errors.

RQ1: Do Program Navigation and Conversational Clarification contribute to cor-

rectness? Yes. We have found significant reduction of number of errors with each of

these new interaction models (See Figure 5.10). Our new interaction models reduce the

error rate in data extraction without any negative effect on the users’ extraction speed.

To obtain this result, we applied the Wilcoxon rank-sum test on the instrumentation

data. More precisely, users in BI + CC (W = 78.5, p = 0.01) and BI + PN (W = 99.5,

p = 0.06) performed better than BI, with no significant difference between the two of

them (W = 94, n.s.). There was also no statistically significant difference between the

completion time in BI and completion time in BI + CC (W = 178.5, n.s.) or BI + PN

(W = 173, n.s.).

RQ2: Which of Program Navigation and Conversational Clarification is perceived

more useful for data extraction? Conversational Clarification is perceived more use-

ful than Program Navigation (see Figure 5.11a and Figure 5.11b). Comparing the

user-reported usefulness between the Conversational Clarification and the Program Navi-

gation, on a scale from 1 (not useful at all) to 7 (extremely useful), the Conversational

Clarification has a mean score of 5.4 (σ = 1.50) whereas the Program Navigation has

4.2 (σ = 2.12). Only 4 users out of 29 score Program Navigation more useful than

Conversational Clarification, whereas Conversational Clarification is scored more useful

by 15 users.

RQ3: Do FlashProg’s novel interaction models help alleviate typical distrust in

PBE systems? Yes for Conversational Clarification. Considering the confidence in the

final result of each task, tasks finished with Conversational Clarification obtained a
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Figure 5.11: User-reported: (a) usefulness of PN, (b) usefulness of CC, (c) correctness of
one of the choices of CC.

higher confidence score compared to those without (W = 181.5, p= 0.07). No significant

difference was found for Program Navigation (W = 152.5, n.s.). Regarding the trust our

users would have if they had to run the learned program on other inputs, we did not find

any significant differences for Conversational Clarification (W = 146, n.s.) and Program

Navigation (W = 161, n.s.) over only BI.

Regarding the question “How often would you use FlashProg, compared to other

extraction tools?”, on a Likert scale from 1 (never) to 5 (always), 4 users answered 5, 17

answered 4, 3 answered 3, and the remaining 4 answered 2 or less. Furthermore, all

would recommend FlashProg to others. When asked how excited would they be to have

such a tool on a scale from 1 to 5, 8 users answered 5, and 15 answered 4.

The users’ trust is supported by data: Perceived correctness is negatively correlated

with number of errors (Spearman ρ=−0.25, p= 0.07). However, there is no significant

correlation between number of errors made and the programming experience mapped

between 0 and 4 (ρ=−0.09, n.s.).

We observed that only 13 (45%) of our users used the Program Viewer tab when

it was available. These 13 users having experienced Program Navigation got mixed
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feelings about it. A 22-year woman with more than 5 years of programming experience

gave a positive review: "I absolutely loved [regular expression highlighting]. I think that

perfectly helps one understand what the computer is thinking at the moment and to

identify things that were misunderstood”. According to a 27-year man with more than

10 years of programming experience, the interaction was not easy enough: “the program

[is] quite understandable but it was not clear how to modify the program”. 9 users

out of 13 did not use Alternative subexpression viewer under Program Navigation.

On the other hand, 27 (93%) used the Disambiguation tab when it was available.

Users appreciated it. The previous woman said: “in the last example, in which I didn’t

have [Conversational Clarification] as an option, I felt like I miss it so much”. A 27-year

man with 5+ years of programming experience said: “It always helps me to find the

right matching”. A 19-year old novice programmer woman said: “The purpose of each

box wasn’t clear enough, but after the text on left became highlighted (hovering the

boxes), the task became easier”. Although there were tooltips, some users were initially

confused about how we presented negative choices with XXX crossing the answer.

Discussion

With so many experienced users, we did not expect that only half of them would interact

with Program Navigation, and even less with the Alternative subexpression viewer. To

ensure usability, we developed FlashProg and Program Navigation iteratively based on

the feedback of many demo sessions and a small 3-user pilot study before running the

full user study. We did not receive any specific complaints about the paraphrasing itself,

although it certainly required substantial time to understand their semantics. In the

tasked they solved, users might then have thought that it would take more time to figure

out where the program failed, and to find a correct alternative, than to add one more

example. We believe that in other more complex scenarios, such as with larger files

or multiple files, the time spent using Program Navigation could be perceived as more

valuable and measured as such. The decrease of errors may then be explained by the

fact that when Program Navigation was turned on, users have stared at FlashProg more

and took more time to catch errors.
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The negative correlation between the confidence of users in the result and the number

of errors is insightful. Although we asked them to make sure the extraction is correct

and never told them they did errors, users making more errors (thus unseen) reported to

be less sure about the extraction. The problem is therefore not just about alleviating the

users’ typical distrust in the result, it is really about its correctness.

We also acknowledge several limitations of this study: (a) we have a limited amount

of heterogeneous users; (b) the time was uncontrolled, thus we could not prevent users

from getting tired or from pausing in the middle of extraction tasks; (c) besides the 29

users having completed all the study, more than 50 users who decided to start the study

stopped before finishing the last task (this explains the unbalanced number of users for

each condition). Thus, they were not part of the qualitative correlations (e.g. between

confidence and errors), but we did include each finished task for the error metrics; (d) if

a user extracts all regions manually, replacing a record not covered by the checkpoints

by another, we do not measure this error (false negatives).

5.2 New Techique: Guided Program Synthesis

Chapter 4 introduces Equivalence Modulo Inputs (EMI) as a promising approach for

compiler validation. It is based on mutating the unexecuted statements of an existing

program under some inputs to produce new equivalent test programs w.r.t. these inputs.

Orion is a simple realization of EMI by only randomly deleting unexecuted statements.

Despite its success in finding many bugs in production compilers, Orion’s effectiveness is

still limited by its simple, blind mutation strategy.

To more effectively realize EMI, this section introduces a guided, advanced mutation

strategy based on Bayesian optimization. Our goal is to generate diverse programs

to more thoroughly exercise compilers. We achieve this with two techniques: (1)

the support of both code deletions and insertions in the unexecuted regions, leading

to a much larger test program space; and (2) the use of an objective function that

promotes control-flow-diverse programs for guiding Markov Chain Monte Carlo (MCMC)

optimization to explore the search space.
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Our technique helps discover deep bugs that require elaborate mutations. In 19

months, our realization, Athena, has found 72 new bugs — many of which are deep and

important bugs — in GCC and LLVM. Developers have confirmed all 72 bugs and fixed

68 of them.

5.2.1 Illustrative Examples

This section uses two concrete bug examples to motivate and illustrate Athena: one

LLVM bug and one GCC bug. Both bugs start from seed programs generated by

Csmith [Yang et al., 2011], and trigger by a sequence of mutations, i.e., inserting and

deleting statements derived from the seeds.

LLVM Crashing Bug 18615 Figure 5.12a shows the reduced EMI variant that triggers

the bug. Initially, clang compiles the seed program successfully at all optimization levels.

However, after Athena replaces the original statement f[0].f0 = b; in the seed program

with another statement f[0] = f[b];, it causes clang to crash at optimization -O1 and

above. The bug happens because an assertion is violated. LLVM assumes that array

indices used in memory copy operations are non-negative. At line 9 of Figure 5.12a, the

variable b is −1, making the array access f[b] illegal. However, this should not matter

because the code is never executed. The compiler should not crash.

Athena extracts candidate statements for insertion from existing code and saves them

into a database. Each database entry is a pair of statement and its required context,

where the context specifies the necessary conditions to apply the statement. Figure 5.12b

shows the database entry that was inserted into the seed program to reveal the bug. To

use the statement of this entry, the insertion point must have an array of structs g and an

integer c in scope.

While performing insertion, Athena only selects from the database those statements

whose required contexts can be satisfied by the local context (at the insertion point)

to avoid generating invalid programs. Athena also renames constructs in a selected

database statement to match the local context when necessary. In this example, we can

replace the original unexecuted statement with the statement in Figure 5.12b because

their contexts are compatible under the renaming g→ f and c→ b.
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1 int a;

2 struct S0 {

3 int f0; int f1; int f2;

4 };

5 void fn1 () {

6 int b = -1;

7 struct S0 f[1];

8 if (a) // true branch is unreachable

9 f[0] = f[b]; // was "f[0].f0 = b;"

10 }

11 int main () {

12 fn1 ();

13 return 0;

14 }

(a) The simplified EMI variant.

...

=====

// Required context

g: struct (int x int x int) [1]

c: int

-----

// Statement

g[0] = g[c];

=====

...

(b) The database entry used to insert into the
variant. Athena renamed g,c to f,b to match
the context at the insertion point.

Figure 5.12: LLVM 3.4 trunk crashes while compiling the variant at -O1 and above
(https://llvm.org/bugs/show_bug.cgi?id=18615).

Note that the program in Figure 5.12 is already reduced. The original program and

its variant are quite large. Also, the bug was triggered not under one single step but

under a sequence of mutations. Athena’s MCMC algorithm plays a key role here. It

guides the mutation process toward generating programs that are more likely to expose

bugs. Orion cannot reveal the bug because it cannot insert new statements to trigger the

assertion violation.

GCC Miscompilation Bug 61383 Figure 5.13a shows a simplified version of a GCC

miscompilation bug. Because the loop on line 5 executes only once, the expected

semantics of this program is to terminate normally. However, the compiled binary of the

EMI variant aborts during its execution.

While compiling the variant, GCC identified the expression 1 % f as a loop invariant

for the loop on line 5. As an optimization, GCC hoisted the expression out of the loop

to avoid redundant computation. However, this optimization is problematic because
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1 int a, c, d, e = 1, f;

2 int fn1 () {

3 int h;

4 ...

5 for (; d < 1; d = e) {

6 h = f == 0 ? 0 : 1 % f;

7 if (f < 1)

8 c = 0;

9 else // else branch is unreachable

10 if(h) break; // was "c = 1;"

11 }

12 ...

13 }

14 int main () {

15 fn1 ();

16 return 0;

17 }

(a) The simplified EMI variant.

...

=====

// Required context

requires_loop

i: int

-----

// Statement

if (i)

break;

=====

...

(b) The database entry used to insert into the
variant. Athena renamed i to h. requires
_loop requires the statement to be inserted
inside a loop.

Figure 5.13: GCC trunk 4.10 and also 4.8 and 4.9 miscompile the variant at -O2 and -O3

(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61383).

now the expression is evaluated. Since f is 0, the expression 1 % f traps and aborts the

program. This expression should not be evaluated because the conditional expression

always takes the “then” branch (f == 0 is true).

By adding the extra statement if (h) break; from the database to line 10, Athena

changes the control-flow of the variant. The extra complexity causes the optimization

pass ifcombine to miss the check whether the expression 1 % f can trap. Hence, it

concludes that the statement does not have any side effect. The expression is incorrectly

hoisted and the bug is triggered.

Because this bug-triggering statement contains a break statement, we can only insert

it inside a loop. While traversing the source program, Athena keeps track of all variables

in scope and an additional flag indicating whether the current location is inside the body
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of a loop. On line 10, Athena renames i to one of the available variables, h, and replaces

the unexecuted statement with if (h) break;.

5.2.2 Background on Markov Chain Monte Carlo

This section gives a gentle introduction to MCMC techniques. Most of the material comes

from the following sources [Gilks, 1999, Andrieu et al., 2003]. Interested readers may

consult them for further details.

Monte Carlo is a general method to draw samples Xi from a target density distri-

bution p(X) defined on a high-dimensional space X (such as the space of all possible

configurations of a system, or the set of all possible solutions of a problem). From these

samples, one can estimate the target density p(X).

A stochastic process {X0,X1,X2, . . .} is a Markov chain if the next state Xt+1 sampled

from a distribution q(Xt+1 |Xt) only depends on the current state of the chain Xt. In

other words, Xt+1 does not depend on the history of the chain {X0,X1, . . . ,Xt−1}.

Markov Chain Monte Carlo (MCMC) draws samples Xi in the space X using a

carefully constructed Markov chain, which allows more samples to be drawn from

important regions (i.e., regions having higher densities). This nice property is obtained

when the chain is ergodic, which holds if it is possible to transition from any state to

any other state in the space X . The samples Xi mimic samples drawn from the target

distribution p(X). Note that while we cannot sample directly on p(X) (we are simulating

this unknown distribution, which is why we use MCMC in the first place), we should be

able to evaluate p(X) up to a normalizing constant.

The Metropolis-Hasting algorithm is the most popular MCMC method. This algorithm

samples the candidate state X∗ from the current state X according to the proposal

distribution q(X∗ | X). The chain accepts the candidate and moves to X∗ with the

acceptance probability as follows:

A(X →X∗) = min
(

1, p(X
∗)q(X |X∗)

p(X)q(X∗ |X)

)
(5.1)

Otherwise, the chain remains at X, and a new candidate state is proposed. The process

continues until a specified computational budget is reached.

128



The Metropolis algorithm is a simple instance of the Metropolis-Hasting algorithm,

which assumes that the proposal distribution is symmetric, i.e. q(X∗ |X) = q(X |X∗).

Our acceptance probability simplifies to the following:

A(X →X∗) = min
(

1, p(X
∗)

p(X)

)
(5.2)

While MCMC techniques can be used to solve many problems including integration,

simulation and optimization [Gilks, 1999, Andrieu et al., 2003], our focus in this section

is optimization.

5.2.3 MCMC Bug Finding

In our setting, the search space X is the space of all EMI variants of a seed program

P . Because our computational budget is limited, we want to sample more “interesting”

variants in this space X . For this reason, we need to design an effective objective function

that determines if a variant is interesting and worth exploring.

Objective Function

Our key insight for a suitable objective function is to favor variants having different

control- and data-flow as the seed program. When compiling a program, compilers use

various static analyses to determine — based on the program’s control- and data-flow

information — which optimizations are applicable. By generating variants with different

control- and data-flow, we are likely to exercise the compilers more thoroughly by forcing

them to use various optimization strategies on the variants. In particular, we use program

distance to measure the difference between two programs.

Definition 5.2.1 (Program Distance) The distance ∆ between an EMI variant Q and its

seed program P is a function of the distance between their control-flow graph (CFG)

nodes (i.e., basic blocks), the distance between their CFG edges, and their size difference.

Specifically,

∆(Q;P ) = α·d(VQ,VP ) +β·d(EQ,EP )−γ· |Q−P |

where

• d(A,B) = 1− A∩B
A∪B is the Jaccard distance [Wikipedia, 2014];

129



• VQ,VP are Q and P ’s CFG node sets respectively;

• EQ,EP are Q and P ’s CFG edge sets respectively; and

• |Q−P | is the program size difference of Q and P .

Two nodes are different if their corresponding statements are different. If we modify

a node in the variant, the node will be different from the original one. Two edges are

different if their corresponding nodes are different.

Intuitively, our notion of program distance measures the changes in the variant. It is

capable of capturing simple changes that do not alter the control flow, such as deleting

and inserting straight-line statements, via the node distance. It also captures complex

changes that modify the control and data flow considerably, such as deleting and inserting

complicated statements, via both the node and edge distance.

Our program distance metric disfavors changes in program size. This helps avoid

generating too small or too large variants. Small variants are less likely to reveal bugs.

Large variants may take significant amount of time to compile, thus may prevent us from

sampling many variants.

MCMC Sampling

When applied to optimization, an MCMC sampler draws samples more often from regions

that have higher objective values. We leverage this crucial property to sample more

often the program space that produces more different EMI variants (i.e., ones with larger

program distances ∆).

To calculate the transition acceptance probability, we need to evaluate the density dis-

tribution p(.) at any step in the chain. According to [Gilks, 1999, Schkufza et al., 2013],

we can transform any arbitrary objective function into a density distribution as follows

p(Q;P ) = 1
Z

exp(σ·∆(Q;P )) (5.3)

where σ is a constant and Z a normalizing partition function.
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Algorithm 13: MCMC algorithm for testing compilers

1 procedure BugFinding(Compiler C, Seed test P , Input I):

2 O := C.Compile(P ).Execute(I) /* ref. output */

3 Q := P /* initialization */

4 for 1 .. MAX_ITER do

5 Q∗ := Mutate(Q,I) /* propose candidate */

6 O∗ := C.Compile(Q∗).Execute(I)

7 if O∗ 6=O then

8 ReportBug(C,Q∗)

9 if Rand(0,1)<A(Q→Q∗;P ) then

10 Q :=Q∗ /* move to new state */

Deriving from (5.1), the probability to accept the proposal Q→Q∗ is given below:

A(Q→Q∗;P ) = min
(

1, p(Q
∗;P )·q(Q |Q∗)

p(Q;P )·q(Q∗ |Q)

)

= min
(

1,exp(σ·(∆(Q∗;P )−∆(Q;P ))) · q(Q |Q
∗)

q(Q∗ |Q)

)
(5.4)

where q(·) is the proposal distribution, q(Q |Q∗) is the probability of transforming Q∗ to

Q, and q(Q∗ |Q) is the probability of transforming Q to Q∗.

We develop our bug finding procedure based on Metropolis-Hasting algorithm. Algo-

rithm 13 illustrates this procedure. We start with the seed program (line 3). The loop

on lines 4-10 simulates our chain. At each iteration, based on the current variant Q, we

propose a candidate Q∗, which we use to validate the compiler. The chain moves to the

new state Q∗ with the acceptance probability described in (5.4). Otherwise, it stays at

the current state Q.

Variant Proposal

We generate a new candidate Q∗ by removing existing statements from and inserting

new statements into the current variant Q. All mutations must happen in the unexecuted

regions under the profiling inputs I to maintain the EMI property.
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Removing unexecuted statements is straightforward. We can safely remove any of

these statements from the program without affecting its compilability. We only need to

be careful not to remove any declaring statements whose declarations may be used later

in the program.

However, inserting new statements into unexecuted regions is not as straightforward.

In particular, we need to construct the set of all statements suitable for insertion. Also,

while inserting new statements, we need to take extra care to make sure the new variants

compile.

Extracting Statement Candidates We extract statement candidates from existing code.

Given a corpus of existing programs, we construct the database of all available statements

by traversing the ASTs of these programs and extract all statements at all levels. These

statements have different complexities, ranging from a single-line statement to a whole

function body.

For each statement, we determine the context required to insert the statement. When

we perform insertion into a location, we only insert statements whose required contexts

can be satisfied by the local context at the location. This is to guarantee that the new

variant compiles after insertion.

Generating New Variant We use our statement database to facilitate variant mutation.

At an unexecuted statement, we can perform the following actions according to the

proposal distribution q(·):

Delete Similar to Orion, we keep track of two probabilities pd
parent and pd

leaf . We delete a

parent statement, those that contain other statements, with probability pd
parent. We delete

a leaf statement with probability pd
leaf . We distinguish these two kinds of statements

because they have different effects on the new variant.

Insert We also have two probabilities pi
parent and pi

leaf for inserting at parent or leaf

statements. We can insert a new statement either before or after the unexecuted

statement (with the same probability). If the unexecuted statement does not directly

belong to a compound statement, we promote it to a compound statement before

inserting the new statement. This is to make these statements share the same parent.
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We perform a breadth-first traversal on the AST of the current variant Q. During

this traversal, we maintain a context table that contains necessary information (such as

the variables in scope) to help select compatible statements from the database. At each

statement marked as unexecuted, we delete the statement or insert a new statement

according to the probabilities defined above. It is possible to do both, in which case the

unexecuted statement is replaced by the new statement.

Maintaining Ergodicity Our mutation must satisfy the ergodicity property described

in Section 5.2.2, which states that we should be able to walk from one state to any

other state in our search space. If this property is violated, we cannot perform the walk

effectively because the search space is disconnected.

Let us first see if we can revert our proposal Q∗ to Q. We can easily revert an inserted

statement by deleting it. However, it is impossible to revert a deleted statement. As the

statement is removed, our coverage tool cannot mark the location as unexecuted, which

is the necessary condition for insertion. Moreover, if the deleted statement does not exist

in our database, our insertion process will not be able to recover this statement.

To address the first problem, we leave a syntactic marker in place of the deleted

statement. While mutating the variant, we replace these markers with new statements as

if they are unexecuted statements. In our implementation Athena, we use the statement

“while(0);”. Comments do not work because our tool only visits statements. Although

these markers do not have any effects on the variant semantics, they may affect the

compilers under test. Hence, we remove them from the variant before testing.

To solve the second problem, we allow code from the seed program. Before sampling,

we extract statements from the seed and add them to the statement database. Because

the deleted statement is either from the seed program or external code, we will be able

to reconstruct it from the updated database.

Our process is now ergodic, and hence applicable for sampling. We can transform

any EMI variant of a program to any other EMI variant of that program.
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Figure 5.14: The high-level architecture of Athena. We extract statement candidates
from both existing code and the seed program. We then perform MCMC sampling on the
seed program to expose compiler bugs.

5.2.4 Implementation

Athena is a concrete realization of our MCMC bug finding procedure targeting C compil-

ers. We highlight its architecture in Figure 5.14. This section discusses various design

choices we made in implementing Athena.

Extracting Statement Candidates

Athena uses the tool stmt-extractor to extract statement candidates from existing code

corpus. We implement stmt-extractor using LLVM’s Libtooling library [The Clang Team, 2014].

For each program in the corpus, stmt-extractor visits all statements at all levels in the

program’s AST. It then determines the context required to apply such statements and

inserts these 〈context, statement〉 pairs to the database.

A context contains the following information:

• The variables (including their types) used in the statement but defined outside.

These variables must be in scope at the insertion point when we perform insertion

(otherwise we would have inserted an invalid statement). We exclude variables

that are defined and used locally.

• The functions (including their signatures) used in the statement.

• The user-defined types used in the statement such as structures or unions, and

their dependent types.
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• The (goto) labels defined in the statement. If a function has already defined these

labels, we have to rename the labels in the inserted statement.

• The labels used in the statement. We have to rename these labels to match those

defined in the function.

• A flag indicating whether the statement contains a break or continue statement. If

this is the case, we can only insert this statement inside a loop.

To construct the context, we parse the statement and collect the information listed

above. In particular, we find the required variables by finding all variables used in the

statement, and subtracting them with those that are defined inside the statement. During

this process, we also collect all used functions, user-defined types, labels, and break and

continue statements. If the statement uses any user-defined type, we recurse into the

type and construct its dependencies. Type dependencies are cached to avoid redundant

computation.

In Figure 5.14, we only need to calculate the database of candidate statements once

and the process happens offline. We also use stmt-extractor to extract statements from

the seed program.

Proposing Variants

We implement a tool called transformer to transform variants, also using LLVM Libtool-

ing. The tool takes as input a program (which is either the seed or one of its EMI

variants in the chain), the program’s coverage information (which is obtained using GNU

gcov [GNU Compiler Collection, 2015]), and the four deletion/insertion probabilities

mentioned in Section 10.

Transformation The transformer tool performs a breadth-first traversal on the pro-

gram. It keeps a context table that stores variables and labels in scope, the available

functions and user-defined types, and a flag indicating whether the current statement is

in a loop. It deletes unexecuted statement or inserting new ones according to the given

probabilities. If a statement is deleted, we will stop traversing into it. We do not traverse

into newly inserted statements.
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While it is possible to keep the deletion/insertion probabilities unchanged during

the mutation, it is better to randomize them in our experience. Hence, we shuffle these

probabilities after each deletion or insertion.

Statement Renaming Because external code has different semantics and naming

convention, there are usually not many statement candidates compatible with the local

program context at insertion points. For this reason, we relax the context matching

condition to accept matches under renaming. In particular, we allow the renaming of

variables in the statement candidates to those in the local context that have compatible

types. For example, if the context of a statement candidate requires an integer variable b,

but the local context only has an integer variable a, we can rename all occurrences of b

in the candidate to a. Similarly, we can rename labels, functions and user-defined types

to those that have compatible signatures.

Discussion

Although our algorithm satisfies the ergodicity property, it is not symmetric. That is, we

cannot walk back to Q∗ from Q in one step in general (but we may via several steps).

This is because a deleted statement from Q may be constructed from several steps, and

does not exist in our database. For example, we may insert a large statement s into Qk,

and since s is also unexecuted, some of its children are deleted in Qk+1 (let us call the

updated statement s′). If we delete s′ in Qk+2, we cannot go back to Qk+1 in a single

step because the database does not have s′.

One possible solution is to extract the statements from every variant, and update the

database after each transition. We have decided not to do this because many statements

are redundant. It is quite challenging to distinguish these statements since many of them

have been renamed to match the local context.

As a result, our proposal distribution is not symmetric. To simplify our implementa-

tion, we assume that this distribution is symmetric (i.e., it is equally likely to generate

the new variant Q∗ from the current variant Q and vice versa). The consequence of this

assumption is that we may not sample the program space proportionally to the value of

the objective function. For instance, we may not sample as often (or more often than
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required) the program space that has high objective values.

This is an example of the trade-offs between precision and efficiency. Making our

process more precise may incur major performance degradation. On the other hand,

having a less precise process helps sample many more variants in the same unit of time.

This justifies the lack of sampling precision.

Based on this assumption, our algorithm turns into Metropolis algorithm, which has

the following simpler acceptance probability:

A(Q→Q∗;P ) = min
(
1,exp

(
σ·(∆(Q∗;P )−∆(Q;P ))

))
(5.5)

5.2.5 Evaluation

We focus our testing efforts on two open-source compilers GCC and LLVM because of

their openness in tracking and fixing bugs. We summarize below our results from the

end of January 2014 to the end of August 2015:

• Many detected bugs: In 19 months, Athena has revealed 72 new bugs. Developers

confirmed all of our bugs and fixed nearly all of them (68 out of 72).

• Many serious bugs: GCC developers marked 17 out of 40 GCC bugs as P1, the most

severe kind of bugs that must be fixed before a new GCC release can be made.

Three of our GCC bugs were linked to subsequent bugs exposed while compiling

real-world code, namely gcc, qtwebkit, and glibc.

• Many deep bugs: Our experiments show that Athena is capable of detecting both

shallow and deep bugs. The later requires sophisticated mutation sequences that

could not be done using Orion.

• Many long-latent bugs: Although our focus is to test the development trunks of

GCC and LLVM, we have found 15 latent bugs in old versions of the two compilers.

These bugs had resisted traditional validation approaches, which further illustrates

Athena’s effectiveness.

Testing Setup

We first describe our testing setup before presenting our detailed results.
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Sources of Seed Programs Athena is capable of using existing open-source projects

as seed programs. However, it is challenging to reduce bugs triggered by these projects be-

cause the projects typically involve multiple directories and multiple files [Le et al., 2014].

Therefore, in our evaluation, we only use programs generated from the random pro-

gram generator Csmith [Yang et al., 2011]. Existing reduction tools such as Berkeley’s

Delta [McPeak et al., 2015] and CReduce [Regehr et al., 2012] can reduce these pro-

grams effectively.

Sources of Statement Candidates Athena is capable of using existing code for inser-

tion. As part of our evaluation, we built a database of all statements extracted from the

SPEC CINT2006 benchmarks [Standard Performance Evaluation Corporation, 2015]. Be-

cause the database contains a huge number of statements, it is very expensive to perform

a linear scan on it. Note that we cannot look up by required context because a local

context is different from these required contexts, and it may satisfy not one but multiple

of them. Our solution is to repeatedly draw a random statement from the database until

we find one that satisfies the local context. If we cannot find any satisfying statement

after some constant k attempts, we conclude that no satisfying candidate exists.

Unfortunately, our experiments show that inserting real-world code into Csmith-

generated seeds is ineffective. This is because Csmith can only generate limited forms

of constructs, making the contexts at insertion points incapable of accepting the more

diverse real-world code. One way to mitigate this problem is to merge the required

constructs from external projects to the current variant. This is quite challenging because

these constructs may depend on other constructs, or locate in a different location.

Therefore we leave this for future work.

The seed program turns out to be a great source for statement candidates. A seed

program can yield hundreds of statements that have diverse complexities: statements

range from one line to hundred lines of code. Moreover, these statements are well

connected to the variants, which helps increasing the ratio of satisfying statements. Our

evaluation uses only statements from the seed programs.
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Selecting Statement Candidates For each unexecuted location, there are potentially

multiple satisfying statements from the database. A good strategy to select the “best”

statement from this satisfying set may yield a better result overall.

We hypothesize that the best statement is one that uses the most information from

the local context. For instance, it uses the most number of variables defined in the

variant. Using this statement puts more constraints on the compiler because it increases

the dependencies between existing code and external code.

Under this strategy, we have to scan the database to find the best statement candidate.

Our experiments show that this strategy is two orders of magnitude slower than the

random sampling strategy. Because speed is key in testing, we adopt the random

sampling strategy and use it in our evaluation.

Testing Infrastructure Our testing focuses on the x86-linux platform due to its popu-

larity and ease of access. We conduct our experiments on two machines (one 18 cores

and one 6 cores) running Ubuntu 12.04 (x86_64). While calculating the program dis-

tance ∆, we value equally changes in CFG nodes and edges (α= β = 0.5). We fine-tuned

γ to avoid generating programs larger than 500KB, a threshold at which we observed a

significant degradation in compilation time for both GCC and LLVM.

As in the work on Csmith and Orion, we have focused on the five standard options,

"-O0", "-O1", "-Os", "-O2" and "-O3", because they are the most commonly used. Athena

tests only the daily-built development trunks of GCC and LLVM. Once it finds a bug in a

compiler, Athena also validates the bug against other major releases of that compiler.

Quantitative Results

We next present some general statistics on our reported bugs.

Bug Count Table 5.1 summarizes our bug results. In 19 months, we reported 83

bugs, which are roughly equally divided between GCC (44 bugs) and LLVM(39 bugs).

Developers confirmed 72 valid bugs and fixed 68 of them.

Not-Yet-Fixed Bugs Among two GCC bugs that have not been fixed, one was just

reported recently. The other one (bug 62016) is a performance bug, which affects GCC
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GCC LLVM TOTAL

Fixed 38 30 68

Not-Yet-Fixed 2 2 4

WorksForMe 0 3 3

Duplicate 3 4 7

Invalid 1 0 1

TOTAL 44 39 83

Table 5.1: Reported bugs.

4.8.X, 4.9.X, and 4.10 trunk (at that time). GCC took a few minutes to compile a small

program due to problems in inlining. Developers discussed about backporting some code

across versions to fix the problem. Unfortunately, this was quite challenging because of

a cross-version design gap. A few months later, GCC moved to version 5.0 and some

design changes fixed the problem. The bug therefore remains unfixed, although it still

affects earlier versions. One of the two not-yet-fixed LLVM bugs is a complicated one.

Developers have not found a solution to fix it yet. The other bug triggers only in debug

mode, which perhaps is the reason why developers have not fixed it.

WorksForMe Bugs It may take a while before developers consider our reported bugs.

During this time, the trunk has changed and it is possible that these changes suppress the

bug. Developers mark bugs that no longer trigger “WorksForMe”. We have three LLVM

bugs of this kind. We do not have this kind of bugs in GCC because GCC developers

responded to our bugs very quickly. Moreover, even when this happens, GCC’s policy

recommends going back to the affected revision and check if the root cause has been

properly fixed. If not, the bug may be latent and is likely to trigger later. Indeed, one

LLVM WorksForMe bug (bug 21741) re-triggers in a later revision. We reopened the bug,

but LLVM developers have not yet responded.

Duplicate Bugs Before reporting a bug, we ensure that it has different symptoms from

the previously reported and not yet fixed bugs. However, reporting duplicated bugs may

be unavoidable because compilers are complex. Bugs having different symptoms may
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turn out to have the same root cause. During our evaluation, we reported 7 duplicated

bugs (3 GCC and 4 LLVM).

As an example, GCC bugs 64990 and 645383 are duplicates of bug 61047. Bug 61047

only triggers at -O1 on GCC 4.9 and 4.10 trunk. Bug 64990 triggers at all optimization

levels on all versions of GCC from 4.6 to 5.0 trunk. Bug 65383 only triggers at -O2

and -O3 from GCC 4.7 to trunk, and the program looks very different from bug 64990.

Although these bugs affected different versions and triggered at different optimization

levels, they turned out to have the same root cause. Developers marked two bugs

reported later as duplicates.

Invalid Bugs We reported one invalid bug (bug 63774) for GCC, in which a function

returns the address of a local variable. We were unsure whether this behavior was

implementation defined or undefined. It turned out that the behavior was undefined,

and the bug was subsequently marked as invalid.

Bug Type We classify bugs into two main categories: (1) ones that manifest when we

compile programs, and (2) ones that manifest when we execute the compiled binaries. A

compile-time bug can be a crashing bug (e.g., internal compiler errors), or performance

bug (e.g., the compiler hangs or takes a very long time to compile the program). A

runtime bug happens when the compiled program behaves abnormally w.r.t. its expected

behavior. For example, it may crash, hang, or produce wrong output. We call these bugs

miscompilation bugs.

Table 5.2 classifies our 72 confirmed and valid bugs according to the above taxonomy.

These bugs are quite diverse, illustrating the power of Athena in finding all kinds of bugs.

A significant chunk of these bugs are miscompilation, the most serious kind among the

three.

Importance of Reported Bugs Developers took our bugs seriously. They have con-

firmed all of our bugs and fixed nearly all of them. GCC developers are generally more

responsive in fixing bugs — they fixed most of our reported bugs within several days.

Three of our GCC bugs were linked to bugs triggered while compiling real-world

projects. Bug 63835 is related to a bug that crashes GCC while compiling GCC itself.
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GCC LLVM TOTAL

Miscompilation 11 17 28

Crash 26 13 39

Performance 3 2 5

Table 5.2: Bug classification.

Bugs 61042 and 61684 crash GCC while compiling our variants. Later, people reported

similar bugs while compiling qtwebkit and glibc. Subsequently, these bugs were marked

as duplicates. Such bugs are rare because developers usually fix our bugs very quickly,

leaving only a small time window for people to rediscover these bugs using real-world

projects.

Another way to measure the importance of our bugs is via the “Importance” field set

by developers in the bug reports. Developers marked 17 of our 40 GCC bugs as “P1”, the

highest bug priority (the default is “P3”). Developers must fix all P1 bugs before they can

release a new version of GCC. LLVM developers marked all our bugs using the default

value “P normal”. We do not know whether these bugs have normal severity or LLVM

developers did not classify the bugs.

Effectiveness of MCMC Bug Finding

Athena is effective because it is able to find many bugs after developers have fixed

numerous bugs reported by Csmith and Orion. However, it is unclear how many of these

bugs are deep bugs and could not be found by Orion. We conduct another experiment to

compare Athena directly with Orion to answer this question.

We run Athena and Orion in parallel for a certain amount of time using the same

seed programs that trigger our bugs. If Athena finds a bug, we reset the chain to the

seed program and continue. This does not apply to Orion because it always operates on

the seed program.

We limit this experiment to bugs that affect previous stable releases. It is because if

the bug only affects the trunk, we need to build the compiler at that revision. Since the

number of bugs is large, it is quite expensive to build a revision for each of them.
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Bug ID Type Optimizations Seed Variant Report DB #Bugs #Variants

(1) (2) (3) (4) (5) (6) (7) (8) (9)

gcc-59903 Crash -O3 4,694 6,238 38 1,723 14 23,479

gcc-60116 Mis. -Os 11,596 11,843 25 3,092 367 20,082

gcc-60382 Crash -O3 6,151 21,903 19 1,989 19 21,267

gcc-61383 Mis. -O2, -O3 3,298 3,567 22 1,272 106 32,981

gcc-61452 Hang -O1, -Os 3,308 3,474 17 885 0 49,158

gcc-61917 Crash -O3 11,820 11,226 7 3,066 2 32,562

gcc-64495 Crash -O3 2,767 1,951 20 517 4 45,896

gcc-64663 Crash all 11,118 12,160 9 2,875 0 26,626

llvm-20494* Mis. -O2, -O3 8,080 11,009 23 1,683 2,660 24,588

llvm-20680 Mis. -O3 6,250 7,584 15 1,753 22 23,438

llvm-21512* Crash all 8,455 5,087 11 3,081 988 21,882

llvm-22086 Crash -Os, -O2, -O3 5,220 8,495 27 1,711 0 29,279

llvm-22338 Crash -O2, -O3 2,923 7,197 23 1,302 13 19,469

llvm-22382 Crash -Os, -O2, -O3 4,813 2,147 19 1,432 0 29,805

llvm-22704 Crash all 3,684 23,250 11 981 12 28,740

Table 5.3: The result of running Athena and Orion on the bugs that affect stable releases
for one week. Columns (4), (5) and (6) show the SLOC (in BSD/Allman style) of the
original seed program, the bug-triggering variant, the reduced file used to report the bug.
Column (7) shows the size of the database (i.e., the number of <context, statement>
pairs) constructed from the seed program. Column (8) shows the number of bugs Athena
rediscovered. Column (9) shows the total number of variants Athena generated. Orion
rediscovered two shallow bugs: LLVM 20494 and 21512.

Table 5.3 shows the results of running Athena and Orion in parallel on 15 of such

bugs for one week. In the table, we assume that all bugs rediscovered under a same seed

file are the same. From our experience with both Orion and Athena, it is unlikely for the

same seed Csmith program to reveal multiple bugs in the same compiler revision.

Shallow Bugs During this period, Orion was able to discover only two LLVM bugs

(20494 and 21512). Athena also rediscovered these bugs. Interestingly, these bugs were

rediscovered most often (2,660 and 988 times), which indicates that they are shallow,

and can be triggered using simple mutations. Orion failed to find bugs in the other seed

programs. These bugs are deep bugs, and require sophisticated sequences of mutations.
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Figure 5.15: Improvement in line coverage of Orion and Athena while increasing the
number of variants. The baseline is the coverage of executing 100 Csmith seeds, where
GCC and LLVM have respectively 34.9% and 23.5% coverage ratios.

Deep Bugs Despite generating 28K variants on average for a seed program, Athena

was unable to rediscover four of our bugs. Some other bugs were rediscovered only a few

times. These bugs are indeed quite deep and require specific sequences of mutations. This

is understandable because the search space is vast and our process is nondeterministic.

The sizes of the triggering variants vary. The variants are often larger than the original

programs. Some are significantly larger because we may happen to insert some large

chunks of code (such as bugs gcc-60382 and llvm-22704). On the other hand, some

are smaller because we delete some large chunks of code (such as bugs gcc-64495 and

llvm-22382).

This experiment confirms that Athena is more powerful than Orion in terms of bug

detection. Indeed, Orion is Athena taking away insertion and limiting the length of

random walks to one. However, Athena may take more time than Orion to find bugs. If

the bug is shallow, Orion may find it faster because it only explores the smaller nearby

neighborhood of a seed program.

Coverage Improvement

We now evaluate the line coverage improvement of Athena on GCC and LLVM in compar-

ison with Orion. The baseline is the coverage of executing 100 Csmith seed programs,
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on which GCC and LLVM achieve 34.9% and 23.5% coverage ratios respectively. We

measure coverage using variants produced by Orion and Athena from these seeds. To

evaluate the impact of the number of variants on code coverage, we also vary the number

of variants for each seed.

Figure 5.15 shows the coverage improvement of Orion and Athena over the baseline.

Although both Athena and Orion help increase line coverage, Athena is strictly better

than Orion. In particular, 10 Athena variants yields slightly better coverage than 100

Orion variants. This is expected because Athena generate more diverse test programs.

5.3 New Domain: Stress-Testing Link-Time Optimizers

Link-time optimization (LTO) is an increasingly important and adopted modern optimiza-

tion technology. It is currently supported by many production compilers, including GCC,

LLVM, and Microsoft Visual C/C++. Despite its complexity, but because it is more recent,

LTO is relatively less tested compared to the more mature, traditional optimizations. To

evaluate and help improve the quality of LTO, we present the first extensive effort to

stress-test the LTO components of GCC and LLVM, the two most widely-used production

C compilers. In 11 months, we have discovered and reported 37 bugs (12 in GCC; 25 in

LLVM). Developers have confirmed 21 of our bugs, and fixed 11 of them.

Our core technique is differential testing and realized in the tool Proteus. We leverage

existing compiler testing tools (Csmith and Orion) to generate single-file test programs

and address two important challenges specific for LTO testing. First, to thoroughly exercise

LTO, Proteus automatically transforms a single-file program into multiple compilation

units and stochastically assigns each an optimization level. Second, for effective bug

reporting, we develop a practical mechanism to reduce LTO bugs involving multiple files.

5.3.1 Illustrative Examples

Proteus detects both crash/hang and miscompilation bugs in compilers’ LTO components.

Unlike traditional optimizations which are performed during compilation, LTO takes

place at link time. It further complicates compilers, as they need to write intermediate

representations to object files, read them back in, and perform whole-program analyses.
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Figure 5.16: Overview of Proteus’s approach.

Figure 5.16 shows the overview of Proteus’s approach. It starts with a single-file

program p (generated by Csmith or Orion), and compiles p in three different ways:

1. p is directly compiled without LTO.

2. p is compiled with LTO under various compilation and linker flags.

3. p is split into multiple compilation units (each corresponds to a function), which

are separately compiled under different optimization flags and linked with LTO.

Proteus then executes these compiled programs and compares the execution results. Any

inconsistency indicates a bug. We next demonstrate this process via two concrete bugs,

one for GCC and one for LLVM.

GCC Bug #60404 Figure 5.17 shows Proteus’s steps to find this bug. The original

program, generated by Orion, prints 0 — the expected value of a[b] — and terminates

(Figure 5.17a). Note that after the call fn2(0) in the function main, the value of variable

b remains unchanged (i.e., 0).

However, the GCC development trunk (revision 208268) miscompiles the files that

are split from the original file by Proteus (Figure 5.17c), under the build configuration

shown in Figure 5.17b. The compiled program in this case prints 1 instead of the

expected 0. In this program, b was incorrectly assigned the value 1 after invoking fn2(0).

The printed value a[b] (or a[1]) is the memory location right after the boundary of the

array a, which is coincidentally b (or 1). Figure 5.17d shows the files and the build

configuration that we used for reporting after some cleaning up.
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/*** small.c ***/

#include <stdio.h>

int a[1] = { 0 }, b = 0;

void fn1 (int p) { }

void fn2 (int p) {

b = p++;

fn1 (p);

}

int main () {

fn2 (0);

printf ("%d\n", a[b]);

return 0;

}

(a) A simplified version of a
program generated by Orion
(the original version has
2367 lines of code). All com-
pilers under test compile it
correctly.

/*** configuration ***/

gcc -flto -O1 -c fn1.c

gcc -flto -O1 -c fn2.c

gcc -flto -O1 -c main.c

gcc -flto -O1 -c t.c

gcc -flto -O0 fn1.o fn2.o \

main.o t.o

(b) A build configuration that
triggers a GCC LTO bug on
split files in Figure 5.17c.

/*** small.h ***/

#include <stdio.h>

int a[1], b;

void fn1 (int p);

void fn2 (int p);

/*** small.c ***/

#include "small.h"

int a[1] = {0}, b = 0;

/*** fn1.c ***/

#include "small.h"

void fn1 (int p) { }

/*** fn2.c ***/

#include "small.h"

void fn2 (int p) {

b = p++;

fn1 (p);

}

/*** main.c ***/

#include "small.h"

int main () {

fn2 (0);

printf ("%d\n", a[b]);

return 0;

}

(c) Files split from the code
in Figure 5.17a.

/*** fn1.c ***/

void fn1 (int p) { }

/*** fn2.c ***/

extern int b;

extern void fn1 (int);

void fn2 (int p) {

b = p++;

fn1 (p);

}

/*** main.c ***/

extern void fn2 (int);

int a[1], b;

int main () {

fn2 (0);

printf("%d\n", a[b]);

return 0;

}

/*** configuration ***/

gcc -flto -O1 -c fn1.c

gcc -flto -O1 -c fn2.c

gcc -flto -O1 -c main.c

gcc -flto -O0 fn1.o fn2.o \

main.o

(d) Cleaned up files with the
bug-triggering configuration
for bug reporting.

Figure 5.17: Proteus’s workflow: from original file (in Figure (a)) to split files (in
Figure (c)) to reported files (in Figure (d)). GCC revision 208268 miscompiles these files.
The compiled program returns 1 instead of 0. (http://gcc.gnu.org/bugzilla/show_bug.
cgi?id=60404)

147

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60404
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60404


The bug happens because while coalescing SSA (single static assignment) parameter

variables, the GCC developer mistakenly assumes that intermediate representation (IR)

in object files are compiled without optimization, or without LTO. When the assumption

is invalid, GCC misinterprets the IR stored in object files and generates incorrect code.

In this example, GCC compiles fn2.c at -O1 to produce fn2.o, whose optimized IR is

similar to the following:

void fn2 (int p) { p_1 = p + 1; b = p; fn1 (p_1); }

When GCC links the program with -flto -O0, it assumes that the IR of fn2.c is

unoptimized and that all the SSA variables originated from the parameter p are already

coalesced into a single partition. As the assumption is wrong, GCC fails to allocate a

memory location for p_1, and consequently both p and p_1 share the same address. The

miscompiled code is similar to the following:

void fn2 (int p) { p = p + 1; b = p; fn1 (p); }

GCC correctly compiles the original single-file program and its split files without LTO

because in these cases, the complication involving writing/reading/linking multiple IRs

do not arise.

LLVM Bug #19201 Figure 5.18 shows an LLVM LTO bug, triggered by a test program

generated by Orion. The test program is clearly well-defined according to the C standard.

It should execute and terminate normally. However, both LLVM 3.4 and its development

trunk miscompile the code with LTO enabled at -O0, resulting in a non-terminating

program. With LTO disabled the program is correctly compiled.

It is evidently a bug in LLVM, because the program is valid and the semantics of the

program compiled with LTO is inconsistent with that of its non-LTO counterpart. The

LLVM developers have yet to comment on the root cause of the bug. To shed some light

on this bug, we have disassembled the miscompiled program and inspected its assembly

code. LLVM compiles the program into an infinite loop with an empty body:

int main() { while(1) {}; return 0; }
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/*** small.c ***/

int a, b = 1, c;

int fn1 (unsigned char p1, int p2) {

return p2 || p1 > 1 ? 0 : p2;

}

int main () {

int d = 0;

for (; a < 1; a++) {

c = 1;

fn1 ((b &= c) | 10L, d);

}

return 0;

}

/*** configuration ***/

clang -flto -O0 -c small.c -o small.o

clang -flto -O0 small.o

Figure 5.18: LLVM 3.4 and trunk revision 204228 miscompile this program at -O0. The
compiled executable hangs. (http://llvm.org/bugs/show_bug.cgi?id=19201)

We suspect that LLVM mistakenly concludes that the program contains undefined

behavior, and consequently generates a non-terminating loop. This happens because

there is no restriction on compilers for compiling programs having undefined behaviors.

Compilers are only obligated to consider valid programs.

5.3.2 Design and Realization

This section describes our approach and realization of Proteus. At the high level, Proteus

first leverages Csmith and Orion to generate single-file test programs to enable later

phases of our differential testing of LTO. In particular, we use the generated programs to

seed the following two-step process: (1) we modify Orion to insert arbitrary function calls

to unexecuted code regions to increase function-level dependencies; and (2) we divide a

single test program into separate compilation units. Both steps are semantics-preserving

and designed to specifically target LTO testing. Our goal is to find build configurations

that lead to deviant behavior.
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Definition 5.3.1 (Split Function) The function Split takes as input a single program

and divides it into the followings: (1) a header file that contains all type definitions and

global variable/function declarations; (2) an initialization source file that contains all

initializations of global variables (this file includes the header file); (3) a set of source files,

each of which contains one function definition from the original source file (these files also

include the header file).

For example, Split divides a single file in Figure 5.17a to a header file, an initialization

file, and a set of function files in Figure 5.17c. The transformation imposed by Split does

not change the semantics of the original program.

Definition 5.3.2 (Build Configuration) A build configuration specifies how to compile

and link a set of source files into a single executable. It compiles each source file into an

object file and links all the object files into a final executable. Each compilation and linking

step is parametrized over a set of optimization flags.

For instance, Figure 5.17b is a build configuration that triggers a bug in GCC while

compiling the files in Figure 5.17c.

Differential Testing of LTO

Proteus uses differential testing to find LTO bugs. The traditional view of differential

testing [McKeeman, 1998] is quite simple: If two systems under test behave differently

on some input, it indicates a bug in one of the systems, or both. Csmith has implemented

this view [Yang et al., 2011]. It generates random C programs and seeks for deviant

behavior in different C compilers while compiling/running the same source program.

Orion introduces an alternate view on differential testing [Le et al., 2014]. It profiles

the execution of a program P under some input I. It then generates many variants of P

by randomly pruning unexecuted statements in P . Since these variants are equivalent

w.r.t. I (i.e., they produce the same output under the input I), Orion seeks for deviant

behavior in a compiler while compiling/running these variants on I.

We take yet another view of differential testing, based on the observation that all

compiled programs built from different build configurations are semantically equivalent.
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Proteus seeks for deviant behavior in a compiler while compiling/running the program

(and its split version) under different LTO build configurations. Similar to the view in

Orion, this view has some advantages over the original (and Csmith’s) approach. Proteus

can operate on existing code base (either real or randomly generated), and it can validate

a single compiler in isolation (where competing compilers do not exist).

Implementation

Algorithm 14 describes the main procedure for finding LTO bugs from a test program

in Proteus. It takes as input a compiler under test Comp, a program P and a set of its

input I, and searches for build configurations that trigger LTO bugs on P (or its split

files) under some input in I.

The algorithm consists of two main steps. First, Proteus calculates the expected output

of the original program built without LTO (lines 3–4). It then searches for inconsistent

behaviors in the compiler when LTO is enabled while compiling/running the program

and its split files (lines 5–6). The loop on line 9 randomly generates build configurations

(line 10) and checks for any deviance from the expected behavior (lines 12–17). Proteus

reports a crashing or hang bug, if Comp crashes or hangs during the build process

(line 13), or a miscompilation bug, if the running output is different from the expected

output on some input (line 17).

Algorithm 14 is realized as a shell script. We implement the function Split in C++

using LLVM’s LibTooling [The Clang Team, 2014]. This implementation follows the func-

tion’s description in Definition 5.3.1. Similarly, the implementation of GenerateRandomBuildConfig

follows the description of build configuration in Definition 5.3.2. We assign a random

optimization flag to each compilation or linking step to generate a random build configu-

ration.

Proteus is simple to realize, yet very effective in finding LTO bugs (see Section 5.3.3).

Our implementation contains only approximately 300 lines of bash scripts and 200 lines

of C++ code. Its simplicity makes Proteus general and applicable to other language

settings.

151



Algorithm 14: Proteus’s main procedure

1 procedure Validate (Compiler Comp, TestProgram P , InputSet I):

2 begin

/* Calculate expected output */

3 Pexe := Comp.Compile(P )

4 IO := {〈i,Pexe.Execute(i)〉 | i ∈ I}

/* Perform differential testing */

5 DiffTest(Comp,P,IO)

6 DiffTest(Comp,Split(P ), IO)

7 procedure DiffTest (Compiler Comp, TestPrograms P, InputOutputSet IO):

8 begin

/* Generate configs and verify */

9 for 1..MAX_ITER do

10 σ := GenerateRandomBuildConfig(P)

11 P ′exe := Comp.Compile(P,σ)

12 if 6 ∃P ′exe then

13 ReportCrashHang(Comp,σ,P)

14 else

15 foreach 〈i,o〉 ∈ IO do

16 if P ′exe.Execute(i) 6= o then

17 ReportMiscomp(Comp,σ,P, i)

Bug Reduction

Once Proteus finds a bug, we need to reduce it before filing a report in the affected

compiler’s bug database. This step is important because developers usually ignore large

test cases or specifically ask reporters to reduce their test cases further.

We can automate this step using delta-debugging. At a high-level, delta-debugging

works by gradually reducing the input program and ensuring that the reduced program

152



still triggers the bug and is valid (i.e., does not contain undefined behavior). State-

of-the art delta-debugging reducers include Berkeley Delta [McPeak et al., 2015] and

C-Reduce [Regehr et al., 2012]. Unfortunately, these reducers support reducing only a

single file.

Traditional Approach to Reducing LTO Bugs Because LTO bugs normally involve

multiple files, reducing them is quite challenging, especially for miscompilation bugs.

In fact, the GCC official guide to reduce bugs does not even have any instruction for

reducing LTO miscompilation bugs [GCC Wiki, 2015], forcing the developers to rely on

their experience to craft their own reduction strategies.

The standard approach to reducing miscompilation LTO bugs is to reduce each file

individually (e.g. with Delta or C-Reduce). This is very inefficient and error-prone as

these files are normally interdependent. While reducing a file, reduction tools cannot

remove constructs used in other files, as this would invalidate the integrity of the program.

Therefore, the reduction results are usually unsatisfactory.

Moreover, we do not have a reliable way to detect undefined behavior in multiple-file

programs. For example, the C interpreter in CompCert, which can detect undefined

behavior, supports only single-file programs. This makes reducing LTO bugs even more

challenging. Because we cannot check for program validity during reduction, the reduced

program may contain undefined behavior and become invalid.

Reducing LTO Bugs in Proteus Fortunately, in our settings, by design the splitting

function Split has a special property that allows us to perform reduction on a single file,

which significantly improves reduction effectiveness.

Proposition 5.3.1 The bug-triggering property of Split is preserved under reduction. That

is,

∀P∀Comp∀σ∀i :Bug(Comp,Split(P ),σ, i)→

∃P ′ : P ′ = ∆(P )∧Bug(Comp,Split(P ′),σ, i)

where:

P is the program whose split files trigger the bug,

Comp is the compiler affected by the bug,
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σ is the bug-triggering build configuration,

i is the bug-triggering input, and

∆ is the reduction function.

The above claim states that, if the split files of a program P trigger a bug under some

build configuration σ and some input i, the reduction tool ∆ will produce a reduced

(i.e. smaller) program P ′ such that its split files also trigger the same bug—to be precise

the same manifested bug characteristics, i.e. crash or miscompilation—under the same

configuration and input.

We leverage this property to reduce LTO bugs found by Proteus. Our reduction script

first applies delta reduction on the original single file. It then uses Split to separate the

reduced file, and checks for bug-triggering behavior on the split files. We carefully design

the build configuration so that it is always valid for the reduced split files, although our

reduction tool may eliminate several functions (and thus their corresponding split files).

5.3.3 Evaluation

We started our experiments with Proteus from the end of February 2014. We focus on

testing two mainstream open-source C compilers—GCC and LLVM—because of their

open bug tracking systems. This section describes the results of our testing effort in

about 11 months.

Result Summary Proteus is very effective:

• Many detected bugs: Proteus has detected 37 bugs in GCC and LLVM. Developers

have confirmed 21 of our bugs. Eight out of the 12 GCC bugs were discovered from

split programs, while Csmith and Orion alone would fail to discover these. Thus,

the results highlight the utility and effectiveness of Proteus.

• Many long-latent bugs: Many of the detected bugs have been latent in old versions

of GCC and LLVM. These bugs had resisted all traditional validation approaches.

This further emphasizes Proteus’s effectiveness.
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• All but one reported GCC bugs are fixed: So far, 11 out of our 12 reported GCC bugs

have already been fixed.

• Diversified bugs: Proteus has found many kinds of bugs in GCC and LLVM’s LTO

components. The majority are miscompilations, the most serious kind.

Testing Setup

We first describe our set up for Proteus to find LTO bugs before discussing our empirical

results.

Hardware and Compilers We focus our testing on the x86-linux platform due to its

popularity and our ease of access. We perform our testing on two machines (one 18

core and one 6 core) running Ubuntu 12.04 (x86_64). We only test the daily-built

development trunks of GCC and LLVM. Once Proteus has found a bug in a compiler, we

also validate the bug against other major versions of that compiler.

Test Programs We build our LTO test corpus by leveraging Csmith-generated programs

and their variants generated by Orion. Traditionally, Orion only generates variants by

removing unexecuted statements. We modify Orion to also allow inserting arbitrary func-

tion calls to these unexecuted area. We then further split these programs into separate

compilation units. We run Csmith in its “swarm testing” mode [Groce et al., 2012] to

maximize its effectiveness.

Real-world projects are an interesting source to test compilers. We can certainly apply

Proteus on these projects to detect LTO bugs. However, reducing these projects is very

challenging as they usually involve many files, each of them can be very large. It is also

more difficult to detect undefined behavior in these projects. This explains why we have

only focused on randomly generated programs. We leave as future work how to test with

real-world projects and how to reduce any detected bugs.

Build Configurations While generating build configurations, we only use the popular

compiler optimization flags (i.e. -O0, -O1, -Os, -O2, and -O3). Each compilation and

linking step is assigned with the -flto flag to enable LTO. We consider generating build

configurations for both 32-bit (-m32) and 64-bit (-m64) environments.
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For a single program, we are able to enumerate all possible optimization flags to

generate build configurations. However, this is infeasible in case we split the program

into separate files, because the number of files is usually large (10+ files). We need to

sample this large search space and select only a certain number of build configurations

to perform testing.

The number of build configurations generated for each program is a trade-off between

the depth and scope of Proteus’s testing. If we generate many build configurations, we

may test that program more thoroughly, but we may lose the opportunity to test other

programs. On the other hand, generating a few build configurations helps Proteus cover

more programs, but it may not be sufficient to trigger the buggy behavior of each of

the generated programs. Our empirical experience suggests that 8 build configurations

strikes a good balance. We control a random parameter whose expected value is 8 and

use it to generate build configurations.

Quantitative Results

Having described our testing setup, we are now ready to discuss our results using Proteus

to find LTO bugs. Table 5.4 shows the details of our reported bugs.

Bug Count We have reported 37 bugs: 12 in GCC and 25 in LLVM. Till end of January,

2015, GCC developers have fixed 11 bugs. The LLVM developers have confirmed 9 of

our bugs, but they have not fixed any of them. A number of private communications

suggested that they were busy fixing internal bugs and working on Swift.

Before reporting a bug, we ensure that it has a different symptom from the previously

reported bugs. However, reporting duplicate bugs is unavoidable, as compilers are

complex, and bugs having different symptoms may turn out to have the same root

cause. So far, we only reported one duplicated GCC bug (we did not include it in our

results). Our LLVM bugs may contain duplicates, but from our experience on previous

work [Le et al., 2014], the duplication rate is low.

Importance of Reported Bugs Because we use randomly generated programs of-

fered by Csmith and Orion to find LTO bugs, it is reasonable to ask if these bugs
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Bug ID Bug Type Status Size Rep Test Program Affected Vers Modes

gcc-60319 Miscomp. Fixed 1818 11 Csmith+Split 4.6→ 4.9-trunk m32, m64
gcc-60404 Miscomp. Fixed 2367 28 Orion+Split 4.9-trunk m32, m64
gcc-60405 Crash Fixed 3242 5 Csmith 4.9-trunk m32, m64
gcc-60461 Link Error Fixed 3242 37 Csmith 4.9-trunk m32, m64
gcc-61184 Miscomp. Fixed 2821 13 Csmith+Split 5.0-trunk m32, m64
gcc-61278 Crash Fixed 1446 30 Csmith+Split 5.0-trunk m64
gcc-61602 Crash Fixed 6659 7 Orion 5.0-trunk m32, m64
gcc-61786 Miscomp. Fixed 1823 26 Csmith 5.0-trunk m32, m64
gcc-61969 Miscomp. Fixed 1860 261 Csmith+Split 4.8→ 5.0-trunk m32
gcc-62209 Crash Confirm 1495 23 Csmith+Split 4.8→ 5.0-trunk m32, m64
gcc-62238 Crash Fixed 4276 27 Csmith+Split 4.9, 5.0-trunk m64
gcc-64684 Miscomp. Fixed 1745 13 Orion+Split 5.0-trunk m32, m64
llvm-18984 Miscomp. Confirm 2266 27 Csmith 3.2→ 3.5-trunk m32, m64
llvm-19026 Miscomp. Confirm 2729 10 Csmith 3.2→ 3.5-trunk m32, m64
llvm-19062 Miscomp. New 3243 12 Orion 3.2→ 3.5-trunk m32, m64
llvm-19072 Miscomp. New 1691 36 Csmith+Split 3.2→ 3.5-trunk m64
llvm-19073 Miscomp. New 1703 29 Csmith+Split 3.2→ 3.5-trunk m64
llvm-19078 Miscomp. New 3450 44 Orion 3.2→ 3.5-trunk m32, m64
llvm-19079 Link Error New 3638 52 Csmith+Split 3.2→ 3.5-trunk m64
llvm-19093 Miscomp. New 4815 25 Orion 3.2→ 3.5-trunk m32, m64
llvm-19109 Miscomp. New 8232 24 Orion 3.2→ 3.5-trunk m32, m64
llvm-19111 Miscomp. New 20556 26 Csmith+Split 3.2→ 3.5-trunk m32, m64
llvm-19132 Miscomp. New 16626 23 Csmith+Split 3.2→ 3.5-trunk m32, m64
llvm-19138 Miscomp. New 5122 12 Orion 3.2→ 3.5-trunk m32, m64
llvm-19146 Miscomp. New 5369 19 Orion 3.4, 3.5-trunk m32, m64
llvm-19184 Link Error New 4310 47 Orion 3.5-trunk m32, m64
llvm-19201 Miscomp. New 9821 17 Orion 3.4, 3.5-trunk m64
llvm-19202 Miscomp. New 3043 10 Orion 3.2→ 3.5-trunk m32
llvm-19219 Miscomp. New 2169 23 Orion 3.2→ 3.5-trunk m32, m64
llvm-19225 Miscomp. New 2241 21 Orion 3.2→ 3.5-trunk m32, m64
llvm-19830 Link error Confirm 1291 15 Orion 3.5-trunk m32, m64
llvm-19885 Miscomp. Confirm 9748 24 Orion 3.2, 3.3, 3.4 m32, m64
llvm-19889 Miscomp. Confirm 8098 14 Orion 3.2→ 3.5-trunk m32, m64
llvm-19891 Miscomp. Confirm 11161 26 Orion 3.4, 3.5-trunk m32, m64
llvm-19907 Miscomp. Confirm 5356 25 Orion 3.5-trunk m32, m64
llvm-20172 Miscomp. Confirm 4683 59 Orion 3.5-trunk m32, m64
llvm-20237 Miscomp. Confirm 3502 44 Orion 3.4, 3.5-trunk m64

Table 5.4: The valid reported bugs for GCC and LLVM. Rep is reported size.
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GCC LLVM TOTAL

Miscompilation 6 22 28

Crash 5 0 5

Link Error 1 3 4

Table 5.5: Bug classification.

really matter in practice. The related discussions in Csmith [Yang et al., 2011] and

Orion [Le et al., 2014] are quite relevant here.

First, developers have acknowledged and fixed these bugs. GCC developers are

impressively responsive; they generally confirmed our bugs within one day, and fixed

them after three days on average. Second, some of these bugs were marked as critical.

In fact, the GCC developers marked a third of our reported bugs as P1, the most severe,

release-blocking type of bugs. Finally, both Csmith and Orion have encountered cases

where compiler bugs triggered by real-world programs were actually linked to their

reported bugs derived from random programs. We expect this to also hold for Proteus as

we continue finding and reporting LTO bugs.

Bug Type We classify bugs into two main categories: (1) bugs that manifest when we

compile programs, and (2) bugs that manifest when we execute the compiled programs.

A compile-time bug can be a compiler crashing bug (e.g., internal compiler errors),

complier hang bug (e.g., the compiler hangs while compiling the program), or linking

error bug (e.g., the compiler cannot link object files into an executable file). A runtime

bug happens when the compiled program behaves abnormally w.r.t. its expected behavior.

For example, it may crash, hang, or produce wrong output. We refer to these bugs as

miscompilation bugs. These bugs are the most serious, because the compiled programs

silently produce wrong results.

Table 5.5 classifies the bugs found by Proteus according to the above taxonomy (note

that Proteus has not yet encountered any hang bugs). This result shows that the majority

of LTO bugs found by Proteus are miscompilation bugs, the most important type. This is

expected because we specifically target the LTO component.
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Affected Compiler Versions Our strategy is to test only the latest development trunks

of GCC and LLVM. Once a bug is found, we also use it to validate other versions. Another

strategy is to test all compiler versions in parallel. We do not implement this strategy

because it is much more expensive, and developers are more interested in bugs that occur

in recent versions. Nonetheless, while all of our reported bugs affect the development

trunk, most of them also affect earlier stable releases. These bugs had been latent for

many years.

Discussion

Proteus found a few hundred inconsistencies during our testing period. We managed to

reduce a good fraction of them, and reported 37 bugs.1 However, we are yet to reduce

many other interesting ones because the current reduction tools do not work very well

for these programs. In general, these programs have very deeply nested constructs, and

neither C-Reduce nor Berkeley Delta is able to simplify such constructs. For example,

Proteus found a link error bug in GCC 4.7, in which the function calls recurse deeply on

their arguments (i.e., the function call argument is the call result of the same function,

whose argument is also the call result of that function, and so on). As another example,

Proteus found many LLVM bugs, in which array member accesses are deeply nested. We

are developing new reduction strategies that exploit programs’ syntactic and semantic

structures to reduce these programs.

1Many inconsistencies are duplicate, thus we only report the representatives.
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Chapter 6

Related Work

Our work on program synthesis is related to the large body of research, ranging from

natural language processing, machine learning, to human-computer interaction, software

engineering and programming languages. This section survey some representative work

in each of the areas.

6.1 Natural Language Understanding

Natural Language Interfaces (NLIs) There have been numerous attempts to build

NLIs for other application domains such as controlling robots [Finucane et al., 2010],

performing navigation [Song et al., 2004], processing XML [Li et al., 2005], and most

notably for querying databases (NLIDBs) [Androutsopoulos, 1995]. To solve the NL

ambiguity problem, NLIDBs normally accept only a restricted subset of natural lan-

guage [Epstein, 1985, Hendrix et al., 1978]. For example, in [Epstein, 1985], relative

clauses must follow their noun phrases. In contrast, users of SmartSynth can give

free-form descriptions.

Another challenge in implementing NLIDBs is the capability to perform conversa-

tions with users, where they can give anaphora (referring to previous objects) and

elliptical (incomplete) sentences based on the query context and previous query re-

sults [Androutsopoulos, 1995]. Because of its nature, SmartSynth does not have this

problem. However, it does provide feedback on the scope of queries and performs

interactive conversations with the user to resolve query ambiguities.
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The main difference between SmartSynth and other NLIs is its use of type-based

synthesis algorithms. While other systems have difficulties in extracting all necessary

constraints, SmartSynth overcomes this problem by exploiting the capabilities of working

with under-specifications of synthesis algorithms to complete the missing dataflow

relations. We believe that our approach is applicable for building natural language

interfaces for other domains as well.

Specification Extraction From NL Extracting specifications automatically from NL

has long been a research dream. Kate et al. propose an approach to transform NL to

formal languages [Kate et al., 2005]. Xiao et al. develop a template-based method to

extract security policies from NL software documentations [Xiao et al., 2012]. Pandita

et al. analyze API descriptions to infer their method specifications [Pandita et al., 2012].

Our approach complements these existing approaches on specification extraction. Smart-

Synth can also leverage advances in this area to improve its NLP engine’s capability of

identifying components and detecting dataflow relations, which may reduce the burden

on its synthesis engine to complete the relations.

General-purpose Programming Using NL and Keywords NaturalJava is an attempt

to bridge the gap between NL and programming languages [Price et al., 2000]. It

performs translation from a restricted form of NL, which is centralized around Java’s

programming concepts, to Java statements. It requires the user to think and give

descriptions at the syntactical level of Java. Little and Miller propose a code completion

tool that synthesizes the most likely Java expression in a code context from a set of

keywords [Little and Miller, 2007]. SmartSynth is different, in that it synthesizes a

complete script and does not require extra contextual information.

Metafor [Liu and Lieberman, 2005a, Liu and Lieberman, 2005b] considers the pro-

gramming task as telling a story. It automatically generates the program structure from a

given NL description. It can extract classes and method names from the description, but

the paper is unclear about how to extract the constraints to form sequences of statements

inside the methods.
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Digital Assistants Siri [Apple, 2013] is a virtual personal assistant that allows users

to ask questions and give verbal commands. It originated from the CALO project, the

“largest known artificial intelligence project in U.S. history 1” [SRI International, 2015].

Siri can handle a wide range of queries, but only those that are simple and relate to a

single phone functionality [Aron, 2011]. In other words, users cannot give complicated

commands that combine different phone features. Voice Action [Google, 2013] is another

personal assistant application targeting Android phones. However, it requires its users

to give queries that fit pre-defined patterns. It also does not allow compositions of

supported functionalities.

In contrast, users of SmartSynth can give commands containing events, conditions,

and actions without any restrictions. Thus, SmartSynth provides users with greater

flexibility and control over their smartphones.

6.2 Program Synthesis

Program synthesis is the task of automatically synthesizing a program in some un-

derlying domain-specific language from a given specification using some search tech-

niques [Gulwani, 2010]. It has been applied to various domains [Gulwani, 2010], in-

cluding bit-vector algorithms [Gulwani et al., 2011], graph algorithms, mutual exclusion

algorithms, intellisense for auto completion [Mandelin et al., 2005, Gvero et al., 2011],

string transformations [Gulwani, 2011, Singh and Gulwani, 2012a], number transforma-

tions [Singh and Gulwani, 2012b], and table transformations [Harris and Gulwani, 2011].

In this dissertation, we apply program synthesis to two new domains: smartphone au-

tomation scripts (in SmartSynth) and data extraction (in FlashExtract and FlashProg).

Because we are targeting end users, the traditional intent specification mechanisms

based on logical specifications are not applicable. Indeed, logical specifications are be-

yond the expertise of end-users and not worth the effort for small scripts. In SmartSynth,

the specification is natural language as it is quite natural for the user to express their

intent in their language. The by-example paradigm does not apply because smartphone

1http://sri.com/about/siri.html

162

http://sri.com/about/siri.html


scripts are not functional programs: they are event-based and have side-effects. On the

other hand, natural language does not work in the data extraction domain because the

tasks are inherently complicated. Users often do not know how to perform the tasks, let

alone explaining it in natural language. Expressing intent in input/output examples is

more natural to them.

The synthesis algorithm in SmartSynth performs type-based synthesis that refers

to a class of search techniques that use typing information/abstraction to perform

search and produces a ranked set of results. Type-based synthesis has been used

for various applications: synthesizing snippets that can convert a given source type

into a given target type [Mandelin et al., 2005, Gvero et al., 2011], completing par-

tial expressions [Perelman et al., 2012], assembling a given set of APIs into a pro-

gram [Gulwani et al., 2011]. In each of these cases, the programmer starts out with

(incomplete) program structures and the underlying synthesis engine generates ranked

completions/assemblies of these structures. SmartSynth is different from these systems

in two key ways: (i) SmartSynth does not require the user to start out with program

structures — these are automatically inferred from NL descriptions; (ii) SmartSynth

extracts relational information from NL descriptions, which helps disambiguate between

multiple solutions and significantly improves the effectiveness of ranking.

While prior synthesis techniques [Gulwani et al., 2012] are specialized to a single

underlying DSL, the technique in FlashExtract is more general and can be applied to

any DSL that is constructed using our core algebra. FlashExtract’s extraction capability

also complements the transformation capability of prior work. In fact, we have com-

bined them together to provide a better end-to-end user experience. For example, after

using FlashExtract to extract data from a text file, the user can perform string trans-

formations [Gulwani, 2011] or number transformations [Singh and Gulwani, 2012b] to

modify the extracted fields. Our prototype even allows in-place editing by examples:

FlashExtract is used to highlight regions that need to be edited repetitively, and string

transformation techniques [Gulwani, 2011] are used to perform transformation on leaf

regions (and these changes are pushed back to the underlying document).
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6.3 Data Extraction

Data Extraction from Log Files The PADS project [Fisher and Walker, 2011] has en-

abled simplification of ad hoc data processing tasks for programmers by contributing

along several dimensions: development of domain specific languages for describing

text structure or data format, learning algorithms for automatically inferring such

formats [Fisher et al., 2008], and a markup language to allow users to add simple anno-

tations to enable more effective learning of text structure [Xi and Walker, 2010]. While

PADS supports parsing of entire files, FlashExtract allows users to extract only parts of

the file thereby avoiding unnecessary complications. PADS’s learner only supports a fixed

line-by-line chunking strategy to split the records; in contrast, FlashExtract can learn

chunking (aka, structure boundaries) from examples, making it suitable for extracting

data fields and records that have arbitrary length (and might cross multiple lines). Fi-

nally, PADS primarily targets ad hoc text files. Although one can view webpages and

spreadsheet as text files, it is unclear if the PADS learning algorithm can be adapted to

work effectively for webpages and spreadsheets.

Data Extraction from Webpages Wrappers are procedures to extract data from In-

ternet resources. Wrapper induction is the method to automatically construct wrap-

pers [Kushmerick et al., 1997]. There has been a wide variety of work in this area, rang-

ing from supervised systems [Hsu and Dung, 1998, Muslea et al., 1999], semi-supervised

systems [Chang and Lui, 2001], to unsupervised systems [Crescenzi et al., 2001]. The

difference between FlashExtract and the above systems is that its users induce wrappers

by interactively giving multiple positive/negative examples. In that sense, FlashExtract

is similar to [Anton, 2005]. However, the system in [Anton, 2005] only learns XPath

expressions to extract HTML elements. By defining other sequence operators to han-

dle non-HTML text (i.e., text that is within a tag), FlashExtract supports finer grain

extraction. For instance, FlashExtract can extract a substring or a sequence of substrings

from a text tag, as in Figure 3.2. Furthermore, we can leverage advances in wrapper

induction research as part of the FlashExtract general framework to support much more

sophisticated extraction tasks.
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In general, our work is complimentary. Since most of wrapper inductors have limited

support for handling non-HTML text, we can combine advances in wrapper induction

research with our general framework to support much more sophisticated extraction

tasks with minimal effort.

Data Extraction from Spreadsheets Cunha et al. [Cunha et al., 2009] detect func-

tional dependencies in spreadsheet data in order to automatically derive even the

data schema. However, their technique is not effective over spreadsheets with hierar-

chical data. Erwig et al. formulate the concept of spreadsheet units – which defines

headers associated with a particular cell – and use them to detect potential errors in

spreadsheets [Erwig and Burnett, 2002]. Abraham et al. identify spreadsheet headers

automatically [Abraham and Erwig, 2004] and use that to extract relational data. In con-

trast, FlashExtract extracts (data from) cells based on the properties of the surrounding

cells. This allows FlashExtract to deal with spreadsheets with no headers. Furthermore,

instead of inferring the whole schema at once, FlashExtract allows users to work in an

interactive manner. Users may focus only on cells of interest–this enables robustness on

complex spreadsheets.

Wrangler [Kandel et al., 2011] is an interactive system for data transformations on

tabular data. It automatically suggests a ranked list of paraphrased transformations

based on the context of user interactions. A user can then navigate the space of suggested

transformations in three ways: (i) by providing additional examples, (ii) by selecting an

operator from the transform menu, and (iii) by editing the parameters of the suggested

transforms. Wrangler’s language is aimed at data cleaning and transformation, but not

for extracting data from semi-structured sources. Moreover, the new interaction models

of Program Navigation and Conversational Clarification in FlashProg can augment and

complement Wrangler’s interaction model.

OpenRefine [Metaweb Technologies, Inc., 2015] help users clean and transform their

spreadsheet data into relational form. Unlike FlashExtract and FlashProg, OpenRefine

requires users to program. Both Wrangler and OpenRefine are limited in their extraction

capabilities over spreadsheets with hierarchical data.
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6.4 Interactive User Interfaces

FlashProg user interface is inspired by that of the STEPS system [Yessenov et al., 2013]

that uses hierarchical structure coloring for text extraction and manipulation. STEPS

showed the usefulness of PBE systems for text processing: STEPS users completed

more tasks and were faster than conventional programmers. For disambiguation and

converging to the desired task, STEPS supports two interaction mechanisms: (i) provide

additional mock input-output examples that capture specific intents and corner cases,

and (ii) navigate through a flattened list of a small set of programs (paraphrased in

English). Since the DSLs supported by FlashProg are more expressive, there is often

a huge number of programs that are consistent with few examples, which makes the

interaction model of navigating the flattened list of programs unusable. Providing mock

input-output examples puts additional burden on users to first identify why the system is

learning an incorrect program and then construct specific examples to avoid learning

them. FlashProg provides two new interaction models to alleviate this problem: 1)

Program Navigation to browse the set of learned programs (paraphrased in English) in a

hierarchical manner, and 2) Conversational Clarification to ask users to select the desired

output on inputs for which the system has learned multiple interpretations.

LAPIS [Miller, 2002] is a text-editor that incorporates the concept of lightweight

structure to recognize the text structure using an extensible library of patterns and

parsers. Given positive and negative examples, LAPIS learns a pattern in a language

called text constraints (TC), and highlights other matches in the file. This enables users

to perform multiple selections and simultaneous editing to apply the same set of edits

to a group of elements. LAPIS does not has good support for nested and overlapping

regions, which are essential for data extraction tasks. LAPIS also introduced the idea

of outlier detection for finding atypical pattern matches to focus user’s attention for

potential incorrect generalizations [Miller and Myers, 2001], which is related to the

Conversational Clarification interaction model. The main difference between the two is

the way in which the match discrepancies are computed. LAPIS models pattern matches

as a list of binary-valued features and computes outlier matches based on their weighted
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Euclidean distance from the feature vector of the median match. FlashProg uses program

semantics to identify ambiguous examples, where the highly ranked learnt programs

generate different outputs on the examples.

Amershi et al. [Amershi et al., 2009, Amershi, 2011] have explored two strategies for

soliciting effective training examples in interactive ML systems. The first strategy of global

overview selects a subset of training examples that maximizes the mutual information

with the high-dimensional vector space of the examples, and is most representative of

the training set. The second strategy of projected overview projects examples onto a

set of principal dimensions and then selects examples that illustrate variation amongst

those dimensions. Our Conversational Clarification model presents a complimentary

technique for selecting training examples to learn a richer class of programs (as opposed

to classifiers) based on the semantics of the learnt programs.

Several PBE-based text manipulation systems exist. SmartEdit [Lau et al., 2000]

automates text processing tasks from demonstrations by interactively navigating the

space of learned programs (represented using a version-space algebra) using a mixed-

initiative interface. Visual AWK [Landauer and Hirakawa, 1995] provides a graphical

environment to drag and drop relevant text selections to learn patterns based on trial and

error demonstrations. It allows users to separately learn conditionals and edit the learned

programs graphically. Peridot [Myers and Buxton, 1986] allows users to interactively

create graphical user interfaces by demonstrations. The TELS [Witten and Mo, 1993]

system records a trace, generalizes it, and then executes and extends the generated

program based on user feedback. Marquise [Myers et al., 1993] lets users provide

example actions to create user interfaces and uses a feedback window to show the

inferred operation using english sentences with buttons that can be pressed to pop up the

list of alternative options. Many of these systems do not expose the learned programs to

the user and depend on manual inspection of generated outputs for validation. However,

some systems such as SmartEdit, Peridot, Marquise, and Visual AWK do expose the

learned programs, but the class of transformations supported by them are limited and

are not expressive enough for learning hierarchical extraction of nested records.
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FlashProg is based on automated program synthesis. Programs are synthesized

in DSLs that are expressive enough to encode most common tasks, but at the same

time concise enough for efficient learning. The synthesis algorithm uses a divide-

and-conquer based strategy to decompose the original learning task to smaller sub-

tasks [Polozov and Gulwani, 2015]. The FlashProg framework provides a general user

interface for all these PBE systems, where users can use Program Navigation to navi-

gate the space of learned programs in a hierarchical manner, and use Conversational

Clarification to provide additional examples.

Jha et.al. [Jha et al., 2010] proposed distinguishing inputs for disambiguation in

program synthesis - their synthesizer generates two consistent programs P1 and P2, and

a distinguishing input on which P1 and P2 yield different results. The Conversational

Clarification interaction model uses a similar idea to ask questions but it differs in several

ways: (i) it selects distinguishing inputs from the user data instead of generating random

inputs, (ii) it converges faster since it can execute all learned programs (instead of two)

to ask for more important clarifications, and (iii) it works in real-time and is interactive

unlike the constraint-solver based technique used in [Jha et al., 2010].

Topes [Scaffidi et al., 2008] allows developers to implement abstractions for interac-

tively validating and transforming data in many different formats. It can recognize valid

inputs in multiple different formats on a non-binary scale as opposed to binary-valued

regular expressions. It provides transformation functions to convert inputs in different

formats to a consistent format. The DSLs for FlashProg build on top of regular expressions

and are quite different from the validation and transformation functions supported by

Topes. Conversational Clarification uses the set of learnt programs to find ambiguous

inputs unlike the non-binary valued matches used by Topes for finding questionable

inputs.

Gamut [McDaniel and Myers, 1999] is a PBD system that enables non-programmers

to create interactive games and educational software using demonstrations. Gamut’s

interaction techniques allows users to specify relationships between developer-generated

objects such as guide objects, cards, and decks of cards, and then use nudges and hints
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to modify or provide new behaviors. The "Do Something" interaction model lets users

specify new behaviors on an object, whereas the "Stop That" interaction model lets users

specify undesired behaviors. Similar to the "Stop That" model, FlashProg also lets users

specify negative examples by clicking the labelled output in the input pane or marking

the entry in the output table as incorrect.

6.5 Compiler Testing and Verification

Compiler Testing The most directly related to our Equivalence Modulo Inputs (EMI)

work is compiler testing, which remains the dominant technique for validating production

compilers in practice. One common approach is to maintain a compiler test suite. For

example, each major compiler (such as GCC and LLVM) has its own regression test

suite, which grows over the time of its development. In addition, there are a number

of popular, commercial compiler test suites (e.g. Plum Hall [Plum Hall, Inc., 2015] and

SuperTest [ACE, 2015]) designed for compiler conformance checking and validation.

Most of these test suites are written manually.

Random testing complements manually written test suites. Zhao et al. develop JTT,

a tool that automatically generates test programs to validate the EC++ embedded

compiler [Zhao et al., 2009]. It takes as input a test specification (e.g. optimizations to

be tested, data types to use, and statements to include), and generates random programs

to meet the given specification. Recent work by Nagai et al. focuses on testing C compilers’

arithmetic optimizations by carefully generating random arithmetic expressions to avoid

undefined behavior [Nagai et al., 2012, Nagai et al., 2013]. As of November 2013, they

have found seven bugs each for GCC and LLVM. Another notable recent random C

program generator is CCG [Balestrat, 2015], which targets only compiler crashes.

Csmith [Yang et al., 2011, Regehr et al., 2012, Chen et al., 2013] has been the most

successful random testing system for C compilers. It has helped find a few hundred

compiler bugs over the last several years and contributed significantly to improving

the quality of GCC and LLVM. It is based on differential testing [McKeeman, 1998] by

randomly generating C programs and checking for inconsistent behavior across compilers
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or compiler versions. What make it stand out from other random C program generators

are the many C language features it supports and its careful control to avoid generating

programs with undefined behavior. Thus, in addition to compiler crashes, it is suitable

for finding miscompilations. Csmith has also been applied to find bugs in static analyzers,

for example, in Frama-C [Cuoq et al., 2012].

Orion and Athena are complementary. Different from Csmith-like tools, they do not

generate random programs, but rather consume existing code (whether real or randomly

generated) and systematically modify it. EMI variants generated from existing code, say

via Orion, are likely programs that people may actually write. The EMI concept is general

and can be adapted to any program analysis and transformation systems. Its simplicity

makes it easy to implement for a new domain — there is no need to specifically craft a

new program generator each time.

Holler et al.’s recent work on LangFuzz [Holler et al., 2012] is also related. It is

a random generator that uses failing programs as stems for producing test programs.

LangFuzz has found many bugs in the PHP and Mozilla JavaScript interpreters. The

same idea may be adapted to Orion and Athena. As we have already experimented in this

work, problematic programs (such as those from the GCC and LLVM test suites) can be

used as seeds to generate their EMI variants. We can also incorporate them in generating

other programs’ EMI variants, which we plan to investigate in our future work.

Verified Compilers A decade ago, “the verifying compiler” was proposed as a grand

challenge for computing research [Hoare, 2003]. Compiler verification in particular

has been a fruitful area for this grand challenge. A verified compiler ensures that the

semantics of a compiled program is preserved. Each verified compiler is accompanied by

a correctness proof that guarantees semantic preservation. The most notable example

is CompCert [Leroy, 2006, Leroy, 2009], a verified optimizing compiler for a sizable

C subset. Both the compiler itself and the proof of its correctness have been devel-

oped using the Coq proof assistant. The same idea has been applied to the database

domain. In particular, there is some early work toward building a verified relational

database management system [Malecha et al., 2010]. There is also recent work by Zhao
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et al. [Zhao et al., 2013] on a proof technique to verify SSA-based optimizations in LLVM

using the Coq proof assistant.

The benefits of verified compilers are clear because of their strong guarantee of

semantic preservation. Despite considerable testing, neither Csmith nor Orion nor Athena

has uncovered a single CompCert back-end bug to date. This is a strong testimony to the

promise and quality of verified compilers. However, techniques like Csmith, Orion, and

Athena are complementary as much work remains to build a realistic production-quality

verified compiler. CompCert, for example, currently supports fewer language constructs

and optimization techniques than GCC and LLVM (thus is less performant). These make

verified compilers mainly suitable for safety-critical domains that may be more willing to

sacrifice performance for increased correctness guarantees.

Translation Validation It is difficult to automatically verify that a compiler correctly

translates every input program. However, it is often much easier to prove that a par-

ticular compilation is correct, which motivated the technique of translation valida-

tion [Pnueli et al., 1998]. In particular, the goal of translation validation is to verify the

compiled code against the input program to find compilation errors on-the-fly. Early work

on translation validation focuses on transformations among different languages. For

example, Pnueli et al.’s seminal work [Pnueli et al., 1998] that introduced translation

validation considers the non-optimizing compilation from SIGNAL to C.

Subsequent work by Necula [Necula, 2000] extends this technique to handle opti-

mizing transformations and validates four optimizations in GCC 2.7. Extending work

on super-optimization [Joshi et al., 2002, Bansal and Aiken, 2006, Massalin, 1987], in

particular Denali [Joshi et al., 2002], Tate et al. introduce the Peggy optimization and

translation validation framework for JVM based on equality saturation [Tate et al., 2009].

Tristan et al. [Tristan et al., 2011] adapt the work and evaluate it on validating intra-

procedural optimizations in LLVM.

Although promising, translation validation is still largely impractical in practice.

Current techniques focus on intra-procedural optimizations, and it is difficult to handle

optimizations at the inter-procedural level. In addition, each validator is attached to a
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particular implementation of an optimizer, thus changes in the optimizer may require

appropriate changes in the validator. Since the validator is not verified, it may also

produce wrong validation results.

6.6 Markov Chain Monte Carlo Sampling

MCMC sampling is a popular algorithm that has played a significant role in science

and engineering. People have applied MCMC techniques to solve a large number of

problems in statistics, economics, physics, biology, and computer science [Gilks, 1999,

Andrieu et al., 2003].

In computer science, Schkufza et al. recently applied MCMC sampling to perform

superoptimization tasks, which transform a loop-free sequence of binary statements

into a more optimized sequence [Schkufza et al., 2013, Schkufza et al., 2014]. They

propose a cost function that captures both correctness and performance, and some

basic operations to transform the program such as replacing the opcode or operand,

or swapping the statements. The cost function guides their program space exploration

toward lower cost (i.e., more optimized) programs.

Our technique in Athena also uses MCMC sampling to explore the space of programs

but with several distinct differences: (1) we target a different domain (i.e., compiler

testing); (2) the cost function in our work is to maximize the diversity of generated

test programs; and (3) the eligible transformations generate EMI variants instead of

instruction sequences.
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Chapter 7

Conclusion and Future Work

In recent years we have witnessed an explosion in innovation in many critical critical

areas. The number of people with access to computing devices has exploded due to falling

prices and increased functionality of devices. Most of these users are non-programmers,

yet want to take full advantage of their devices. At the same time, the availability of data

and tools to exploit it have led to the big data revolution. This dissertation addresses the

challenges arising from these areas.

Via SmartSynth, we help users use their phone more effectively by automating their

repetitive tasks using natural language. FlashExtract is our first attempt to tackle the

data cleansing problem in the big data revolution. The system allows users to extract

data in semi-structured formats such as text files, webpages, and spreadsheets by simply

highlighting some sample regions. FlashProg takes one step further and lets user explore

the space of satisfying programs (which are already paraphrased in English), and even

perform conversation with the system to resolve ambiguities. These systems enable users

to perform tasks that otherwise are impossible for them. We are having more and more

software nowadays, but they still all depend on a critical piece, the compiler. A bug in

the compiler may potentially invalidate the software it compiles. Equivalence Modulo

Inputs, which generates many equivalent test programs from existing test programs to

find compiler bugs, is our solution to make this critical piece of software safer.

This dissertation has demonstrated a strong focus on end-to-end approaches that

are motivated by real-world applications and provide practical impact. SmartSynth has
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been integrated into TouchDevelop. We ship FlashExtract with PowerShell in Microsoft

Windows 10, and with Microsoft Azure Operational Insights. Our work on EMI has

resulted in more than 400 bugs in GCC and LLVM. Many compiler companies have

adopted EMI as part of their testing framework. We believe that these successes are just

the beginning in this research direction. There are many opportunities for future work.

Multi-Modal Synthesis Traditional program synthesis techniques take as input only

one form of specifications, such as logical specifications, speech/natural language de-

scriptions, input/output examples, or demonstrations. Each form typically has different

expressive power of user intent, and requires a different synthesis algorithm. We plan

to build new synthesis systems that combine multiple forms of specifications. The new

systems can capture user intent more precisely, and consequently reduce user interaction.

The main challenge is to develop novel synthesis algorithms that seamlessly integrate

various forms of specifications to help effectively prune the search space. Another chal-

lenge is to design novel interaction models to enable new interaction and debugging

experience. For example, when the result is unintended, we need to identify the most

suitable form of specifications to interact with users.

Data-Driven Synthesis We want to build synthesis systems that leverage the massive

amount of available data. One key component of any synthesis algorithm that deals

with under-specification (e.g., input/output examples) is the ranking system that is

used to resolve ambiguity. The ranking is usually built from expert rules derived from

extensive studies of real-world problems. With sufficient data, we can leverage modern

statistical machine learning approaches to build data-oriented ranking to generate more

natural programs. For example, we can build a new ranking system for SmartSynth from

hundreds of thousands user scripts submitted to TouchDevelop. We can also use available

data to develop new applications, such as a system to automatically correct syntax errors

in TouchDevelop scripts. Such system is very useful because most TouchDevelop users

are novice programmers.

Equivalence Modulo Inputs A significant strength of EMI is its generality. We can

use EMI to test compilers, interpreters, database engines, and program analysis and
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transformation systems in general. Our immediate plan is to extend the work to floating-

point programs. The key challenge is to define the equivalence of floating-point EMI

variants considering the inherent inaccuracy of floating-point computation. We also

plan to apply EMI to new languages such as C++, Java, and JavaScript. Each of these

languages comes with a different challenge. For instance, we do not have reliable

methods to detect undefined behavior in C++ programs, which can lead to invalid bug

reports. Another domain that I want to explore is the validation of database engines. We

can adapt EMI to modify both the input queries (e.g. by changing the unexecuted clauses

and performing semantically equivalent rewriting) and the data (e.g. by changing the

unused table rows/columns or relevant statistics on data).

We are on the cusp of an exciting era where we will fundamentally change how

people interact with and benefit from technologies, how software is designed and

developed, how we teach students, etc. Such changes will demand cross-disciplinary

mindsets and solutions. The techniques described in this dissertation, which combine

advances in natural language processing, programming languages, machine learning,

and human-computer interaction, make one step to fuel this change.
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