
Artefact: A Framework for Low-Overhead Web-Based
Collaborative Systems

Jeff Brandenburg, Boyce Byerly, Tom Dobridge,
Jinkun Lin, Dharamaraja Rajan and Timothy Roscoe

Persimmon I.T., Inc.
4813 Emperor Boulevard
Durham, NC 27703 USA

+1-919-941-9339
fjeffb,boyce,dobridge,jinkun,dsrajan,timothyg@persimmon.com

ABSTRACT
The Artefact framework supports collaborative applications
using standard browsers, a lightweight general-purpose Java
applet, and HTML representations of objects and actions. We
present some aspects of Artefact's implementation, includ-
ing enhancements to HTTP to support synchronous collabo-
ration, the decoupling of input and output in the interaction
protocol, and the user agents that bridge the gap between a
browser and an application. We describe some of the char-
acteristics that make it easy to create multi-user applications
with Artefact, and illustrate this with a simple example ap-
plication. Finally, we compare Artefact to some existing dis-
tributed application platforms.

KEYWORDS: Artefact, multi-user environments, groupware,
collaboration, World Wide Web, HTTP, CORBA, update pro-
tocols.

INTRODUCTION
The Internet and the World Wide Web have become ubiqui-
tous and familiar platforms for communication, and cooper-
ation. Public access points are becoming common in hotels,
libraries and universities, and businesses often have at least
low-speed access to Internet services. As access becomes
more affordable and widespread, more people are becoming
comfortable with Web browsers and the “feel” of Web inter-
action.

This familiarity and ubiquity makes Web browsers and pro-
tocols attractive as a platform for delivering access to many
kinds of systems, including collaborative applications. A
Web-based system can be used by salespeople or field en-
gineers to interact with one another and their organization
from remote locations, perhaps using borrowed equipment
and software on other organizations' premises. It can also

allow people outside an organization to interact with each
other and with organization personnel for applications such
as customer support.

Unfortunately, the Web does not make it easy to deploy
highly dynamic interfaces, especially synchronous collabo-
rative interfaces. The client-initiated nature of HTTP (Hyper-
Text Transfer Protocol) [4] makes it difficult to update in-
formation dynamically in response to remote events or the
actions of other users. While Java and proprietary clients
can solve these problems, they introduce new problems of
cross-platform consistency and download delays. In particu-
lar, people who want to use an application only occasionally
may be reluctant to install a large, specialized client; people
who examine an application out of curiosity or mild interest
may lose that interest after waiting several minutes for a large
applet to download.

The Artefact project represents our effort to address these
limitations. Artefact provides an infrastructure for devel-
oping distributed object-oriented applications. Developers
can use HTML, JavaScript, Java, Tcl, and C++ to define
the appearance and behavior of objects. Users can interact
synchronously and asynchronously with multi-user applica-
tions through standard Web browsers, even over low-speed
(14.4kbps or 28.8kbps) connections.

A User’s View of the Artefact System
Artefact uses the metaphor of a person moving around in a
set of “rooms”, referred to as theapplication space, working
with application objects such as merchandise, documenta-
tion, system resources, or customized application programs.
Artefact application objects are the essential building blocks
of any running Artefact installation. The Artefact objects
within a running system, together with the containment/location
relationship that users experience, forms the application space.
It is this logical space that Artefact users navigate through.
The application space provides a conceptual framework for
organising, locating, managing and securing objects, whether
they be people, places or things.

The software object that represents a person is called an

“Artefact User Agent” or AUA. The “page” a user views
with a browser is actually their User Agent's perspective of
a room, including any objects and other users in the room.
The browser contacts the AUA through a single URL; as the
AUA interacts with different applications, or moves to differ-
ent rooms, the URL pointed to by the person's browser never
changes. A browser connected to an AUA displays a set of
frames that comprise the AUA's view of the application space
(figure 1).

Figure 1: AUA window

The largest frame displays the room the AUA is currently in.
Any objects that the room “contains” are reflected by icons,
followed by short textual descriptions, displayed in the room
frame. “Exits” to other rooms in the application space are
displayed as part of the room. Clicking on one of the exits
causes the AUA to move to a new room, updating the room
frame to show the new location.

If the user has the appropriate access permissions, objects
displayed in the room can be examined more closely, picked
up, or moved around. Clicking on the “view” button beside
an icon, for example, opens a window displaying the appli-
cation's user interface. Moving an object allows the user to
rearrange the Artefact application space, place an object into
their personal space (much like putting an item into a shop-
ping cart), or pass an object to another user. Whenever ob-
jects move in the application space, the system updates the
appropriate frames of all users' views of the space.

An “inventory” frame for a particular AUA, shown on the up-
per left of Figure 1, displays the icons of objects which have
been picked up by the user. A user might pick up objects
representing resources the person needs to manage, person-
alized documentation, or items being purchased in an elec-
tronic commerce application.

The remaining frames of the AUA screen contain text-send

and text-receive windows for online chat, and a messages line
for the most recent status message. An administrator can
customize the size, appearance and layout of all AUA frames
as appropriate for specialized applications.

Application Programmer’s View
For a site developer, Artefact provides a number of base
classes of objects, such as:

� documents: web pages, files
� containers: briefcases, boxes, filing cabinents
� collaborative tools: whiteboards, shared browsers, address

books, buddy lists
� autonomous agents: search bots, knowledge bots
� gateways: Internet Relay Chat (IRC) repeaters, SNMP

monitors
� scriptable objects: Javascript and Tcl interpreters

Every object supports Access Control Lists to allow fine-
grained security controls.

In addition, Artefact provides a complete object-oriented
SDK for developing customized application objects. Ad-
vanced developers can use C++ and Java to create new object
classes; content developers, graphic designers, and casual
programmers can use HTML, JavaScript and Tcl to specify
object appearance and functionality without in-depth OOP
experience. New components can be added to a running sys-
tem with no interruption of service. All Artefact objects com-
municate via the CORBA standard, allowing applications to
be distributed transparently across multiple servers.

IMPLEMENTATION
Artefact applications are built from objects that communi-
cate among themselves through CORBA interfaces. This
makes it easy to distribute application functionality across a
number of hosts; in addition, CORBA provides facilities for
on-demand server restart and connection re-establishment,
which improves robustness in the face of program or com-
munication failures.

Artefact installations can be made completely self-contained
and private, with no dependencies on any servers or facili-
ties outside the corporate firewall. Users connect with their
AUAs using enhanced HTTP connections, with no CORBA
traffic passing enterprise boundaries.

While some Web clients now support direct CORBA com-
munication, the efficiency and portability issues discussed
above led us to retain HTTP as our path to the browser. We
use the AUA as a bridge, communicating with a browser via
an enhanced HTTP protocol and with the rest of an Artefact
system via CORBA.

HTTP Enhancements
We chose to use HTTP as our basic protocol for several rea-
sons:

� User expectations: from experience with the World Wide
Web, users are familiar with browsers and how they work,

and also how transient network failures can affect responses.
While we have changed the interaction model in Artefact
from a document-retrieval paradigm to one closer to win-
dow system interaction, we have retained some features of
the Web that users find reassuring (for example, the use of
the “reload” button).

� Security configuration: HTTP is well understood by proxy
servers and firewalls, simplifying network management
within an organization. Further, inside the AUA it is much
easier to validate an HTTP request than (for example) a
CORBA/IIOP invocation.

� Installed base: a sophisticated implementation of HTTP
already exists in Web browsers.

� Debugging: from our point of view as system developers,
the text-based nature of HTTP makes it easy to debug.

The principal drawback to using HTTP in this application is,
of course, that it is primarily a client-server, request-response
protocol which has no provision for the server to send asyn-
chronous updates to the user's screen. We considered us-
ing the “server-push” facilities of some browsers (whereby
the server sends a multipart MIME message to the browser,
which displays each part in succession as it arrives), but this
is somewhat clumsy for our purposes: it requires an open
TCP connection for each frame of the display, and is not
robust in the event of connections going away. The conse-
quences of server-push for human users are that the browser
appears to be loading a document all the time (removing a
piece of feedback that we have found useful in practice),
and that Artefact would “go dead” if the connection to the
browser was interrupted (for instance, with the “stop” but-
ton). We felt that both of these compromises were unaccept-
able.

The solution we adopted involves downloading a small (less
than 5K) Java applet to the browser. This applet establishes
a single TCP connection to the HTTP port on the server,
and thereafter listens for messages from the AUA indicating
which frames in the browser need to be updated. The applet
then initiates HTTP requests from the browser to update the
frames.

This is a lightweight approach with a number of advantages.
First, the applet is small, and has no user interface at all, mak-
ing it highly reliable and portable: we have successfully used
Artefact with versions 2.02, 3.0 and 4.0 of Netscape Navi-
gator, and with some versions of Microsoft Internet Explorer
3.0 and 4.0. Second, every message sent by the browser to
the AUA is a valid HTTP request. This makes it easy for us to
validate the request at the server end, traverse proxy servers,
and so forth.

Decoupling input and output
HTTP requests in Artefact are split conceptually into two
types: content requests, andinput events. Content requests
are generally initiated by the remote control applet, or by
users clicking “reload,” and return the contents of frames.

These requests are idempotent, which increases resilience
and preserves a useful property of the WWW: one can al-
ways hit reload to update one's screen if something appears
to go wrong.

The second type of request, input events, is caused by user
activity, such as clicking an active area of a frame, closing
a window, etc. These requests do not return any content
themselves (they return an HTTP “no content” message), but
will generally cause an update notification to be sent to the
browser at some later time. In this way, input to applica-
tion objects (including the user agent itself) and output to the
screen from application objects are effectively decoupled.

This decoupling is a big advantage for a developer writing
a shared application object, since it separates the business of
updating the appearance of the application object from that of
sending that appearance to the screen. The decoupling is car-
ried through into the CORBA world: each application object
can be queried for its appearance at any time, and propagates
events to other interested application objects (including user
agents) when its appearance changes. The drawback of this
approach is that it does not address the need for instant feed-
back to the single initiator of each input. In practice this issue
is often hidden by the latencies of the Web itself relative to
the communication between application objects: by the time
the browser has received the “no content” acknowledgement
of the input, there is usually a resulting update notification
already pending, and we can rely on the “loading document”
animation of the browser to provide this feedback.

For each frame of the user's browser, the AUA instantiates an
`update protocol' instance which handles HTTP requests for
the content of the frame and sends update notifications back
to the remote control applet in the browser. This protocol
ensures that the frame is not “out of date”, and also batches
change notifications so that the user viewing the browser is
not overwhelmed by a constantly updating frame.

The Artefact User Agent
AUAs manipulate other Artefact objects through CORBA
method invocations. These methods allow an AUA to move
from location to location, to move other objects, to obtain
views of other objects, to send or broadcast messages, and
to invoke object-specific actions. Since AUAs are first-class
objects, other objects can also obtain a AUA's views or send
it messages. An event-distribution protocol notifies objects
when a change happens in their location, in their contents, or
in an object they are explicitly observing.

To begin using an Artefact application, a user connects to her
own AUA. This is usually accomplished through a login pro-
cess that validates the user's identity; the login facility can
also return a cookie that serves as an authentication token for
the rest of a session. Once the user is validated, the login pro-
cess redirects the browser to a URL that encodes the identity
of the user's AUA and the address of the server on which that

AUA runs.

When the server receives an HTTP request for this URL,
it examines the URL for themarker, or unique-within-the-
server identifier, of the AUA. It then forwards the request to
that AUA's request queue. The AUA replies to this initial re-
quest with a frame set; each frame in the set, in turn, loads
its contents from another URL referring to the same AUA.

One of these frames loads the remote-control applet. When
this applet starts running, it establishes a TCP connection
back to the AUA from which it was loaded. When the AUA
determines that the content of a frame has changed, it sends
an update requestalong this connection; this request con-
tains the name of a frame, and the URL from which it should
be loaded. When the remote-control applet receives the re-
quest, it uses the Java showDocument() method to make the
browser reload the frame.

The user interacts with the Artefact application through stan-
dard HTML input elements, such as links and forms. As with
the initial frameset, the URLs associated with these elements
refer to the AUA and its server. But when the user selects
one of these elements – for example, when she follows a link
– that request does not return a response, as explained above.
Instead, the AUA interprets the request and performs the ap-
propriate CORBA method invocations to carry it out, then
reports the results through the update protocol.

This decoupling of input and output reduces the potential for
confusion in the face of reloads or repeated clicks. Reloading
a frame (or the entire frameset) only refreshes the screen; it
does not repeat any commands. Clicking multiple times on a
link does submit multiple requests, but by making commands
idempotent – for instance, by avoiding “toggle” commands in
favor of “on” and “off” commands – we can create interfaces
that respond predictably to these multiple commands.

Besides controlling frames in the basic frameset, the remote-
control applet can open new windows. The AUA associates
“examine” actions with most objects; by selecting an object's
“examine” link, a user can open a separate view on that ob-
ject. Like other frames, the applet updates this view dynam-
ically as the examined object changes.

In busy systems, when an AUA is in a room with many ac-
tive objects, change events can arrive so quickly that they
outrun the update mechanism. For example, if a user is con-
nected over a 28.8Kbps link, and a room's view contains 3
Kbytes of HTML, the view cannot be updated more rapidly
than approximately once per second. To avoid communica-
tion backlogs, the AUA batches updates. Between the time
it sends an update message to the remote-control applet and
the time it receives and services the resulting HTTP request,
the AUA simply collects changes; only after the request is
serviced does the AUA send a new update message. This
protocol adapts to varying latency and available bandwidth,
so the user always sees a relatively current view – delayed

by the network latency between the AUA and the browser,
and by the time needed to send the view's contents across the
connection, but not by backlogged responses.

EXAMPLE
Objects are created in Artefact by defining their behaviour
and appearance in an XML-like format called ADL. Figure
2 shows the complete definition of a very simple TicTacToe
game in ADL.

The object is defined at the top level by specifying a name
(TicTacToe) for the object, together with aclass, which
specifies the underlying implementation to be used. In this
case, the class isTclObj, which provides an interpreter in
the popular embedded language Tcl[16] for controlling how
objects behave. The body of the definition contains two main
sections: theBEHAVIOR andHTML elements.

The HTML section defines static aspects of the object's ap-
pearance, using a superset of HTML 4.0. The use of HTML
in this case allows us to make use of the considerable lay-
out capabilities of modern Web browsers in creating the user
interface for objects. More importantly, it provides a mini-
mal learning curve for Web developers new to the Artefact
system. New objects can be defined from many preexisting
classes (for example, IRC gateways or SNMP monitoring ob-
jects) entirely using HTML.

The TicTacToe example shows the use of two elements not
present in HTML 4.0: theSUBST and ACTION tags. The
SUBST tag is used to substitute dynamic content provided by
the implementation of the class. In the case of Tcl objects,
the expression to be substituted is simply handed to the in-
terpreter for evaluation, and so the expressions we see in the
file are really Tcl command invocations.

TheACTION element is the simplest construct available for
handling user input in the system. It is analogous to a con-
ventional HTML anchor or link: if a user clicks on the area
defined by the tag, the AUA interprets the request and in-
vokes the object'saction() method, passing as parameters
the command string corresponding to the action (in this ex-
ample the string “reset”) and the identity of the user who
caused the input. More sophisticated constructs are avail-
able for handling other user input features of HTML such as
forms.

In contrast to the static declaration of appearance in theHTML

element, theBEHAVIOR element for scriptable objects (like
this example) defines how the object behaves in response to
the actions of other objects around it (including, but not lim-
ited to, human users). Artefact currently supports two classes
of fully scriptable objects: TclObj, illustrated here, and a sec-
ond based on a JavaScript/ECMAscript interpreter.

Theonevent procedure is called for each event encountered
by the object; in this case the only type of events we are inter-
ested in are inputs from users of the object. These either cor-

<ARTEFACT CLASS="TclObj" NAME="TicTacToe">
<SHORT>TicTacToe board</SHORT>
<BEHAVIOR>
array set board ""
set curmove 0
proc onevent {} {
 global curmove board
 if { [event type] == "action" } {
 if { [event cmd] == "reset" } {
 unset board; array set board ""
 set curmove 0
 } else {
 set board([event cmd]) $curmove
 incr curmove
 }
 refresh
 }
}
proc cell { loc } {
 global curmove board
 if { [info exists board($loc)] } {
 if { [expr $board($loc) % 2] == 1 } { write "O" } else { write "X" }
 } else {
 writeaction "-" $loc
 }
}
proc tomove {} {
 global curmove
 if { [expr $curmove % 2] == 1 } { write "O" } else { write "X" }
}
</BEHAVIOR>
<HTML>
<HEAD><TITLE>TicTacToe</TITLE></HEAD>
<BODY>
 <CENTER>
 <H1>TicTacToe</H1>
 <P><SUBST EXPR="tomove"> to move.</P>
 <P><TABLE BORDER><TR>
 <TD><SUBST EXPR="cell 00"></TD>
 <TD><SUBST EXPR="cell 01"></TD>
 <TD><SUBST EXPR="cell 02"></TD>
 </TR><TR>
 <TD><SUBST EXPR="cell 10"></TD>
 <TD><SUBST EXPR="cell 11"></TD>
 <TD><SUBST EXPR="cell 12"></TD>
 </TR><TR>
 <TD><SUBST EXPR="cell 20"></TD>
 <TD><SUBST EXPR="cell 21"></TD>
 <TD><SUBST EXPR="cell 22"></TD>
 </TR></TABLE>
 <P><ACTION CMD="reset">Reset the board</ACTION>
 </CENTER>
</BODY>
</HTML>
</ARTEFACT>

Figure 2: Complete TicTacToe application definition in Tcl
and ADL

respond to resetting the board (the “action” described above),
or a click on an unoccupied cell in the board.

The other two Tcl procedures shown are called from the
HTML section. The first generates each cell of the board,
including generating a clickable area for cells which have
not been filled in yet. The second simply prints whose move
is next. The end result is shown in figure 3.

Note that this fully shared, multiuser TicTacToe game is im-

Figure 3: How the TicTacToe application appears

plemented in 27 lines of Tcl and 23 lines of HTML. Arte-
fact's scripting API is event driven, and hides much of the
complexity of the full C++ API (threads, CORBA, persis-
tence, etc.) to provide an easy to learn programming model
which is well suited to rapid prototyping.

This example was stripped down for inclusion in this paper,
but it does illustrate how much can be achieved with very
little code. A fuller example might detect wins, and imple-
ment a floor control policy assigning players on a first-come-
first-served basis, calling them by name: such information
is made readily available to script authors. There is clearly
room for improving the application cosmetically, for instance
using graphics images rather than simply “X”, “O” and “-”:
this is simply a matter of enhancing the HTML portion of the
object definition.

MORE COMPLEX CLIENTS
As previously discussed, Artefact allows site developers to
declare an object using only an ADL file. In the simplest
cases, these files do little more specify the object's Artefact
class, its name, and HTML description.

Even though objects based on ADL files are sufficient in
many collaboration situations, some applications require more
fine-grained interaction. To support such applications, Arte-
fact can serve as a “switchboard” for out-of-band communi-
cation among specialized applets or clients. As an example,
we have built a shared white-board application that allows
collaborators to simultaneously draw or type on a shared
workspace.

The Whiteboard application differs from other Artefact ap-
plications based on a simple ADL definition file, in that
much of its user interface is implemented in Java. When a
user opens a Whiteboard object, the user's browser loads an
applet from the Artefact server. The applet uses a conven-
tional mouse- and keyboard-based interface to draw images
or text. The applet also opens a TCP/IP socket back to its
corresponding Artefact object. Through this socket, the ap-
plet sends drawing commands to the Artefact object which,

in turn, broadcasts the commands to instances of the applet
running in other users' browsers. In this way, all applets re-
ceive the drawing commands and update their drawing ar-
eas. Moreover, the drawing commands are stored persis-
tently by the Whiteboard Artefact object; when other users
later open the same Whiteboard, their applets get up-to-date
images immediately. Finally, since the Whiteboard object
that serves up the applets also serves as a central distribution
point for update information, it overcomes the security re-
strictions which make it difficult for applets to communicate
directly with one another.

The Whiteboard application shows that the Artefact frame-
work is not limited to HTTP protocols and HTML docu-
ments, but allows a natural mechanism for out-of-band com-
munications using a complex client. Artefact can easily sup-
port specialized user interface agents with Java applets or
other browser plug-ins. These applications can bring ex-
tended capabilities to clients and applications that require
them, while still benefitting from Artefact's persistence, ac-
cess control, and event-handling mechanisms.

RELATED WORK
Previous distributed collaborative systems have taken vari-
ous approaches in distributing functionality. Systems may
replicate state on each client, distribute state across clients,
or maintain state in a central server.

DistView [18], COTERIE [10] and DIVA [21] replicate ob-
ject state on each client. This approach yields good response
time, since users interact with local copies of objects. How-
ever, replication increases client size and complexity, and can
entail significant overhead at startup or installation time as
initial state information is propagated into a client.

Distributing system components to clients makes sense when
a single client dominates the traffic to any given object.
Again, local objects lead to excellent responsiveness, but im-
pose heavier demands on clients. When clients must interact
with remote objects, responsiveness suffers. Suite [3] was
an early example of this approach; more recently examples
include GroupKit [19], CommonPoint [15] and CBE [9].

Centralized systems support applications on a single server,
with users accessing applications through relatively lightweight
clients. Rendezvous [17], Jupiter [14] and TeamRooms [20]
are examples of this approach. While clients are general-
purpose within each system, they do not interoperate among
different systems. CVW [22] does support a browser-based
Java client, but this client is not publically available, and it
is unclear how large or complex the client is. (The client
runs on Unix and Windows, with a “very limited version”
available for the Apple Newton, but not the Macintosh.) Ha-
banero [12] represents a hybrid approach, in which servers
may run remotely or on the same machine as a client; again,
the Habanero client is not browser-based, and is quite large.

Systems in which clients interact with remote objects must

cope with network latency and bandwidth restrictions. Arte-
fact's basic structure is targeted at applications and commu-
nication modes in which sub-second latency is not critical.
Instead of minimizing update latency, Artefact minimizes
network traffic, batching updates to dynamically match avail-
able bandwidth and latency. For systems that must support
more fine-grained mutual interaction among users, enhanced
update protocols [5] can bring update performance close to
the theoretical limits imposed by two-way latency.

A number of commercial products now provide collabora-
tive capabilities. Ding [1], ichat [7] and ICQ [11] provide
text- based chat and “buddy list” functions; Netopia's Vir-
tual Office [13], TeamWave [23] and eRoom [8] provide vir-
tual office environments, with various combinations of syn-
chronous and asynchronous communication features. For
each of these products, users must either install a proprietary
client program prior to using the system, or download a large,
complex Java applet at the beginning of each session.

CONCLUSIONS
Artefact's lightweight, HTML-based interface supports use-
ful collaborative applications using standard browsers and
low-bandwidth connections. We have created testbed appli-
cations implementing a virtual office and a problem ticket
management system, and we have used these systems with-
out modification with clients running under Solaris, Dig-
ital Unix, Windows 3.1, Windows 95, Windows NT 4.0,
and Macintosh System 7.5; from desktop and laptop ma-
chines, ranging from a 333-MHz DEC Alpha to a 40-MHz
68030; and over modem connections as slow as 14.4 Kbps.
While the slowest systems and the slowest links do pro-
vide noticeably slower performance, sometimes taking sev-
eral seconds to perform a single update, they still are respon-
sive enough for text-based conversations and simple, non-
graphics-intensive application interaction. Even on these
slow systems, it takes less than twenty seconds to start up
the Artefact frameset and update applet.

We have used the Artefact testbed applications to let users
on both sides of the Atlantic interact with application ob-
jects. While the increased network latency does slow down
responses, the subjective feel of the application remains quite
good. The basic structure of Web browsers and protocols
is designed to cope with potentially high latency and low
bandwidth, and users with Web experience are familiar with
the variations in performance that result. We have not done
extensive quantitative tests on Artefact's performance as la-
tency and bandwidth vary, but since Artefact uses the same
protocols and presentation languages (HTTP and HTML) as
the rest of the Web, we expect that its performance will scale
in the same way.

Where more bandwidth and more powerful client machines
are available, Artefact can use out-of-band techniques to sup-
port richer forms of interaction. We have already imple-
mented a Java-based shared-whiteboard application, and an

audio-connection facility, whereby users with LAN-based
clients can hear other users whose AUAs are in the same vir-
tual room. We plan to add similar support for video, and for
large data objects such as medical images.

We continue to work on enhancements of our windowing
model to give the AUA more control over the user's dis-
play. Currently, the remote-control applet can open windows
and detect when the user closes windows; a small amount of
JavaScript also allows the applet to close windows itself. Fur-
ther enhancements will give application objects more con-
trol over the size and appearance of their “examine” win-
dows, and add support for multiple frames within an object's
HTML view.

As Artefact systems are deployed more widely, we will also
investigate scaling issues. There are practical limits on the
number of objects displayed in a room, the number of AUAs
that can participate in a single linear thread of conversation,
and the speed at which events can be propagated to a single
browser. While our current applications bring users together
in small groups, and thus remain well within those limits,
techniques like those presented in [6] and [2] should allow
us to support much larger numbers of simultaneously inter-
acting users, for example in a “virtual auditorium”.

REFERENCES
1. Activerse, Inc. Ding! User's Guide. Available from

http://www.activerse.com/ding/v10/docs/intro.htm.

2. S. Benford, C. Greenhalgh, and D. Lloyd. Crowded
collaborative virtual environments. InProceedings of
ACM CHI '97 Conference, pages 59–66., Atlanta, GA
USA, 1997.

3. P. Dewan and R. Choudhary. Flexible user interface
coupling in collaborative systems. InProceedings of
ACM CHI '91 Conference, pages 41–49, New Orleans,
LA, USA, 1991.

4. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext transfer protocol—http/1.1.
IETF Request for Comments No. 2068, January 1997.

5. N. T. C Graham, T. Urnes, and R. Nejabi. Ef-
ficient distributed implementation of semi-replicated
synchronous groupware. InProceedings of ACM UIST
'96, pages 1–10, Seattle, WA, USA, 1996.

6. R. W. Hall, A. Mathur, F. Jahanian, A. Prakash, and
C. Rasmussen. Corona: A communication service for
scalable, reliable group collaboration systems. InPro-
ceedings of ACM CSCW '96, pages 140–140, Cam-
bridge, MA, USA, 1996.

7. ichat, Inc. Real-time Object Oriented Multimedia
Server Administrator's Guide, 2.1 edition, 1996.

8. Instinctive Technology, Inc.eRoom. Available from
http://www.instinctive.com.

9. J. H. Lee, A. Prakash, T. Jaeger, and G. Wu. Sup-
porting multi-user, multi-applet workspaces in CBE. In
Proceedings of ACM CSCW '96, pages 344–353, Cam-
bridge, MA, USA, 1996.

10. B. MacIntyre and S. Feiner. Language-level support
for exploratory programming of distributed virtual en-
vironments. InProceedings of ACM UIST '96, pages
83–94, Seattle, WA USA, 1996.

11. Mirabilis Ltd. ICQ. Available from
http://www.mirabilis.com.

12. National Center for Supercomputing Applications.The
NCSA Habanero User's Guide. Avail-
able fromhttp://www.ncsa.uiuc.edu/SDG/Software/

Habanero /Docs/Environment/.

13. Netopia, Inc. Netopia Virtual Office. Available
from http://www.netopia.com/software /nvo /win

/overview.html.

14. D. Nichols, P. Curtis, M. Dixon, and J. Lamping. High
latency, low bandwidth windowing in the jupiter col-
laboration system. InProceedings of UIST '95, pages
111–120, Pittsburgh, PA, November 1995.

15. R. Orfali, D. Harkey, and J. Edwards.The Essential
Distributed Objects Survival Guide, pages 297–312.
John Wiley and Sons, 1996.

16. John K. Ousterhout.Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

17. J. F. Patterson, R. D. Hill, S. L. Rohall, and W. S.
Meeks. Rendezvous: An architecture for synchronous
multi-user applications. InProceedings of the Third
Conference on Computer Supported Cooperative Work
(CSCW '90), pages 317–328, Los Angeles CA USA,
1990.

18. A. Prakash and H. S. Shim. Distview: Support for
building efficient collaborative applications using repli-
cated objects. InProceedings of ACM CSCW '94, pages
153–164, Chapel Hill, NC, USA, 1994.

19. M. Roseman and S. Greenberg. Building real
time groupware with groupkit, a groupware toolkit.
ACM Transactions on Computer-Human Interaction,
3(1):66–106, March 1996.

20. M. Roseman and S. Greenberg. TeamRooms: network
places for collaboration. InProceedings of CSCW '96,
pages 325–333, Cambridge, MA, 1996.

21. M. Sohlenkamp and G. G. Chwelos. Integrating com-
munication, cooperation, and awareness: the DIVA vir-
tual office environment. InProceedings of ACM CSCW
'94, pages 331–343, Chapel Hill, NC USA, 1994.

22. P. J. Spellman, J. N. Mosier, L. M. Deus, and J. A. Carl-
son. Collaborative virtual workspace. InProceedings
of the International ACM SIGGROUP Conference on
Supporting Group Work (GROUP'97), pages 197–203,
Phoenix, AZ, USA, 1997.

23. TeamWave Software Ltd.TeamWave Workplace. Avail-
able fromhttp://www.teamwave.com/.

