
1

New Resource Control Issues in Shared Clusters
Position Statement

Timothy Roscoe Prashant Shenoy
Sprint Advanced Technology Labs Department of Computer Science

1 Adrian Court University of Massachusetts
Burlingame, CA 94010, USA Amherst, MA 01003, USA

troscoe@sprintlabs.com shenoy@cs.umass.edu

Abstract—We claim that the renting of machine resources
on clusters of servers introduces new systems challenges
which are different from those hitherto encountered, either
in multimedia systems or cluster-based computing. We char-
acterize the requirements for such “public computing plat-
forms” and discuss both how the scenario differs from more
traditional multimedia resource control situations, and how
some ideas from multimedia systems work can be reapplied
in this new context. Finally, we discuss our ongoing work
building a prototype public computing platform.

I. I NTRODUCTION AND MOTIVATION

THIS paper argues that the growth of shared comput-
ing platforms poses new problems in the field of re-

source control that are not addressed by the current state of
the art, and consequently there exist important unresolved
resource control issues of interest to the multimedia sys-
tems community.

The scenario we examine in detail is that of apublic
computing platform. Such a platform consists of a clus-
ter of processing nodes interconnected by a network of
switches and provides computational resources to a large
number of small third-partyservice providerswho pay the
provider of the platform for the resources: CPU cycles,
network bandwidth, storage space, storage bandwidth, etc.
The platform provider offers service providers a platform
which can be, for example, highly available, managed, and
located in a geographically advantageous location such as
a metropolitan area. In return, the platform provider can
use economies of scale to offer service hosting at an at-
tractive rate and still generate profit.

Public computing platforms differ from current hosting
solutions in that there are many more services than ma-
chines: lots of services share a relatively small number of
nodes. The challenge for the platform provider is to be
able to sell resources like processor cycles and predictable
service to many service providers, who may be mutually
antagonistic, in a cost-effective manner.

This engineering problem subsumes other important

scenarios as well. One example is workgroup clusters: a
cluster of compute servers shared by a workgroup or an
university department. Here the basic challenges are the
same, but there can be more trust between applications
sharing the computing facility and users are not necessar-
ily directly paying for computation.

There is evidence that this problem is becoming impor-
tant. Systems for running one, specialized class of applica-
tion (e.g. web servers, caches, some Application Service
Providers) in this manner are already appearing in the mar-
ketplace. However, the lack of solutions for the more gen-
eral problem has prevented the range of services offered
in this way from being widened, for example to include
multimedia traffic.

Two research areas feed directly in to this area: both
have much to offer, but do not address areas specific to
the support of time- and resource-sensitive applications on
public computing platforms.

A. Resource control in multimedia systems

Resource control has been central question in multime-
dia systems research for at least the past 10 years or so.
Control of resources within a machine is now relatively
well-understood: it has been addressed in completely new
operating systems (e.g. [1], [2]), modifications to existing
operating systems (e.g. [3]), schedulers ([4]), and abstrac-
tions ([5]).

Many of these advances were motivated by the desire to
handle multimedia and other time-sensitive applications.
Such mechanisms clearly have a place in a public com-
puting platform designed to handle a diversity of services,
not simply for multimedia applications but to provide per-
formance isolation between services owned by providers
who are paying for resources. Consequently, public com-
puting platforms enable much of the past and on-going re-
search on resource control for multimedia systems to be
applied toa new and more general setting. The caveat
though is that most of these techniques were developed for
single machine environments and do not directly general-



ize to multi-resource environments (multiprocessors, clus-
ters), for example see [6]. Consequently we argue the need
for additional research to tailor these techniques to clus-
tered environments such as public computing platforms.

B. Cluster-based computing platforms

Much work has been performed recently on the use of
clustered computing platforms for network services (see
[7] for an example and convincing arguments in favor of
the approach). This work aims at delivering high-capacity,
scalable, highly-available applications, usually web-based.

Typically, a single application is supported, or else the
applications are assumed to be mutually trusting—a rea-
sonable assumption in the large enterprise case. Conse-
quently, little attention is paid to resource control, either
for real-time guarantees to applications or performance
isolation between them [8]. Similarly, intra-cluster secu-
rity is relaxed as a simplifying assumption within the plat-
form [9].

One notable exception to this is recent work on provid-
ing differential service to web-based applications, for ex-
ample Cluster Reserves [10]. This work assumes a large
application running on a cluster of servers, where the aim
is to provide differential service to clients based on some
notion of serviceclass, for example requested content or
source address. Many, though by no means all, services on
the Internet today fall into this category. In the future we
can expect a wider variety of services with a wider range
of resource requirements.

While the arguments for an approach based on clusters
of commodity machines carry over into the public comput-
ing space, the assumptions about resource control and trust
clearly do not: the applications we can expect to be run-
ning on such platforms will have diverse requirements and
the operators of such applications will be paying money to
ensure that those requirements are met. In addition, they
may be in competition with each other. Lack of trust be-
tween competing applications as well as between applica-
tions and the platform provider introduces new challenges
in design of cluster control systems.

C. What’s different about public computing platforms

This paper argues that the systems problems of public
computing platforms are conveniently similar to the two
fields above, but have a specificity of their own. They both
present new challenges, but also have properties that help
to ground and concretize general classes of solutions.

The most significant property of systems like this that
set them apart from traditional multimedia systems and
cluster-based servers is that resources are beingsold. From

a cluster architecture point of view this means that perfor-
mance isolation becomes central: it is essential to provide
some kind of quantitative resource guarantees since this is
what people are paying for.

From a multimedia systems point of view this property
has two effects. Firstly, resource allocation must extend
over multiple machines running a large number of ser-
vices. This amounts to a problem ofplacement: which
components of which services are to share a machine?

Secondly, the policies used to drive both this placement
and the resource control mechanisms on the individual ma-
chines are now driven by a clear business case. Resource
control research in the past has been marked by a lack of
clear consensus over what is being optimized by the var-
ious mechanisms and policies: processor utilization, ap-
plication predictability, application performance, etc. The
notion of graceful degradation is also made more quanti-
tative in this scenario: we can relate degradation of ser-
vice to a change in platform revenue. This represents a
significant advance over current so-called “economic” or
“market-driven” resource allocation policies since they can
now be explicitly linked to a “real” market.

We elaborate on these issues below.

II. CHALLENGES IN DESIGNING A PUBLIC

COMPUTING PLATFORM

We first describe the design challenges that arise from
the perspective of a platform provider. We then discuss
challenges that must be addressed from the perspective of
platform users (i.e., service providers). Finally we discuss
the implications of these challenges for system design.

A. Challenges for the Platform Provider: The Need for
Overbooking and Yield Management

The primary goal for the operator of a public computing
platform is to maximize revenues obtained from renting
platform resources to service providers. A public com-
puting platform services a wide variety of customers; de-
pending on how much each customer pays for resources,
not all users are treated equally. This process is known
asyield management, and adds an important twist to the
policy side of the resource control problem. Maximizing
yield (revenue) requires that platform resources be over-
booked. Overbooking of resources is typically based on
an economic cost-benefit analyses, which explicitly links
resource allocation not to closed market abstractions (e.g.
[11]) but to a “real” commercial operation.

Beyond this, resource policies will take into account
such factors as demographics and psychometric models of
client behavior in determining allocations and pricing. In

2



other industries where similar challenges exist (for exam-
ple, the airline industry [12]), much of this is in the domain
of business decision-making and operations research mod-
els. The challenge for a public computing platform is to
allow as much flexibility as possible in business decisions
regarding its operation: it must not impose undue restric-
tions on business policies, but at the same time should fa-
cilitate their implementation.

From a systems design point of view this has a number
of implications. Firstly, business assessments and policies
must be representable in the system, without the system
constraining this representation (in other words, without
the system taking over too much of the decision-making
process). Secondly the system should aid the process of
overbooking and reacting to the overloads resulting from
overbooking. For instance, service providers that pay more
should be better isolated from overloads than others; to
achieve this goal, resource control policies should help de-
termine (i) how to map individual applications to nodes in
the cluster, (ii) the amount of overbooking on each indi-
vidual node depending on the yield from that node and the
service guarantees that need to be provided to applications,
and (iii) how to handle an overload scenario. Thirdly, the
system should provide timely feedback into the business
domain as the results of the process and the behavior of
other commercial parties involved (principally the service
providers).

B. End-User Challenges: The Need for Appropriate Ab-
stractions

Applications running on a public computing platform
will be inherently heterogeneous. One can expect such
platforms to run a mix of applications such as stream-
ing audio and video servers, real-time multiplayer game
servers, vanilla web servers, and ecommerce applica-
tions. These applications have diverse performance re-
quirements. For instance, game servers need good inter-
active performance and thus low average response times,
ecommerce applications need high aggregate throughput
(in terms of transactions per second), and streaming me-
dia servers require real-time performance guarantees. For
each such application (or service), a service provider
contracts with the platform provider for the desired per-
formance requirements along various dimensions. Such
requirements could include the desired reservation (or
share) for each capsule as well as average response times,
throughput or deadline guarantees. To effectively service
such applications, the platform should support flexible ab-
stractions that enable applications to specify the desired
performance guarantees along a variety of dimensions.

We propose the abstraction of acapsuleto express these

requirements. A capsule is defined to be that component
of an application that runs on an individual node; each ap-
plication can have one or more capsules, but not more than
one per node. It’s important to note that capsules are apost
factoabstraction: for reasons detailed in [13] we try not to
mandate a programming model for service authors. Cap-
sules are therefore an abstraction used by the platform for
decomposing an existing service into resource principals.

A capsule can have a number of attributes, such as the
desired CPU, network and disk reservations, memory re-
quirements, deadline guarantees, etc., that denote the per-
formance requirements of that capsule. Due to the com-
mercial nature of a public computing platform, capsules
are a flexible and natural abstraction for expressing the per-
formance requirements of applications to the system and
for appropriate accounting of resource usage.

C. Implications for System Design

The above research challenges have a number of impli-
cations on the design of a public computing platform. In
what follows, we discuss some of these issues.

C.1 Capsule Placement

A typical public computing platform will consist of tens
or hundreds of nodes running thousands of third-party ap-
plications. Due to the large number of nodes and applica-
tions in the system, manual mapping of capsules to nodes
in the platform is infeasible. Consequently, an automated
capsule placement algorithm is a critical component of any
public computing platform. The aim of such an algorithm
is clearly to optimize revenue from the platform, and in
general this coincides with maximizing resource usage.
However, a number critical factors and constrains modify
this:

Firstly, the algorithm must run incrementally: services
come and go, nodes fail, and are added or upgraded, and
all this must occur with minimal disruption to service. This
means, for instance, that introducing a new capsule must
have minimal impact of the placement of existing capsules,
since moving a capsule is costly and may involve violating
a resource guarantee.

Secondly, capsule placement should take into account
the issue of overbooking of resources to maximize yield;
sophisticated statistical admission control algorithms are
needed to achieve this objective. Much of the past work
on statistical admission control has focussed on a single
node server; extending these techniques to clustered envi-
ronments is non-trivial.

Thirdly, there are technological constraints on capsule
placement, for example capsules are generally tied to

3



a particular operating system or execution environment
which may not be present on all nodes.

Finally, there are less tangible security and business-
related constraints on capsule placement. For example, we
might not wish to colocate capsules of rival customers on a
single node. On the other hand, we might colocate a num-
ber of untrusted clients on a single node if the combined
revenue from the clients is low.

To help make this last constraint tractable, and also in-
tegrate notions of overbooking, we introduce the twin ab-
stractions oftrustworthinessand criticality, explored in
more detail in [14]. These concepts allow us to represent
business-level assessments of risk and cost-benefit at the
system level.

Trustworthiness is clearly an issue, since third-party ap-
plications will generally be untrusted and mutually antag-
onistic; isolating untrusted applications from one another
by mapping them onto different nodes is desirable. Trust-
worthiness is a function of many factors outside the scope
of the system (including legal and commercial considera-
tions), but the placement of capsules must take trust rela-
tionships into account.

The complementary notion of criticality is a measure of
how important a capsule or an application is to the plat-
form provider. For example, criticality could be a function
of how much the service provider is paying for applica-
tion hosting. Clearly, mapping capsules ofcritical applica-
tions anduntrustedapplications to the same node is prob-
lematic, since a denial of service attack by the untrusted
application can result in revenue losses for the platform
provider.

In summary, capsule placement becomes a multi-
dimensional constrained optimization problem—one that
takes into account the trustworthiness of an application, its
criticality and its performance requirements.

C.2 Resource Control

A public computing platform should employ resource
control mechanisms to enforce performance guarantees
provided to applications and their capsules. As argued ear-
lier, these mechanisms should operate in multi-node en-
vironments, should isolate applications from one another,
enforce resource reservations on a sufficiently fine time-
scale, and meet requirements such as deadlines. These is-
sues are well understood within the multimedia commu-
nity for single node environments. For instance, hierar-
chical schedulers [15] meet these requirements within a
node. However, these techniques do not carry over to
multi-resource (multi-node) environments. For instance,
it was shown in [6] that uniprocessor proportional-share
scheduling algorithms can cause starvation or unbounded

unfairness when employed for multiprocessor or multi-
node systems. Consequently, novel resource control tech-
niques need to be developed to meet the performance re-
quirements of distributed applications in public computing
platforms.

C.3 Failure Handling

Since high availability is critical to a public computing
platform, the platform should handle failures in a graceful
manner. In contrast to traditional clusters, the commercial
nature of a public computing platform has an important
effect on how failures are handled: we can classify failures
as to whose responsibility it is to handle them, the platform
provider or a service provider.

We distinguish three kinds of failures in a public com-
puting platform: (i) platform failures, (ii) application fail-
ures, and (iii) capsule failures.

A platform failure occurs when a node fails or some
platform-specific software on the node fails. Interestingly,
resource exhaustion on a node also constitutes a platform
failure—the failure to meet performance guarantees (since
resources on each node of the platform may be overbooked
to extract statistical multiplexing gains, resource exhaus-
tion caused due to the total instantaneous demand exceed-
ing capacity results in a violation of performance guaran-
tees). Platform failures must be dealt with by detecting
them in a timely manner and recovering from them au-
tomatically (for instance, by restarting failed nodes or by
offloading capsules from an overloaded node to another
node).

An application failure occurs when an application run-
ning on the platform fails in a mannerdetectableby
the platform. Depending on the application and the
service contract between the platform provider and the
service provider, handling application failures could be
the responsibility of the platform provider or the service
provider (or both). In the former scenario, application se-
mantics that constitute a failure will need to be specified a
priori to the platform provider and the platform will need
to incorporate application-specific mechanisms to detect
and recover from such failures.

A capsule failure occurs when an application capsule
fails in a wayundetectableto the platform provider, for
example an internal deadlock condition in an application.
Capsule failures must be assumed to be the responsibil-
ity of the service provider and the platform itself does not
provide any support for dealing with them.

We have found this factorization of failure types highly
useful in designing fault-tolerance mechanisms for a pub-
lic computing platform.

4



III. STATUS OF ON-GOING WORK

We are building a public computing platform that ad-
dresses the requirements outlined in the previous section.
In this section, we describe some of our initial research on
yield management, resource control mechanisms for appli-
cation isolation in such platforms.

We have begun investigating techniques for yield man-
agement in a public computing platform. These tech-
niques involve attributing notions of trustworthiness and
criticality to individual applications and providers, and us-
ing these attributes to overbook resources [14]. The key
challenge in designing these capsule placement and admis-
sion control techniques is that traditional metrics such as
utilization and predictable performance guarantees are no
longer adequate. In a public computing platform, these
techniques will be driven by the need to maximize yield.
Admission control and placement based on this new met-
ric can yield results different from those using more tra-
ditional metrics, and consequently novel techniques are
needed to address this issue. For instance, as explained
earlier, a cost-benefit analysis of admitting each new ap-
plication and the resulting impact on overbooking is nec-
essary in this approach, in addition to the traditional focus
on the ability to meet performance guarantees.

We are also investigating resource control techniques
for a public computing platform. The two canonical tech-
niques for single-node resource control developed by the
multimedia research community arereservations[1], [16]
and shares[17], [15]. Whereas a reservation-based ap-
proach allocates resources in absolute terms (e.g., 2ms of
CPU time every 20ms on a node), a proportional-share ap-
proach enables relative allocation of resources. In the latter
approach, each capsule is assigned a weight and receives
resources in proportion to its weight (allocation is rela-
tive because the share of each capsule depends not only
on its weight but also the cumulative weights of the re-
maining capsules). In a pure-reservation-based approach,
each capsule always receivesat mostits requested fraction;
any unused bandwidth is wasted. In the proportional-share
approach, a continuously runnable application always re-
ceivesat leastits assigned share and possibly more if other
capsules do not utilize their allocations (i.e., unused band-
width is redistributed among runnable capsules in propor-
tion to their weights). Conceptually, resources require-
ments specified using reservations are upper bounds, while
those specified using weights are lower bounds. Rather
than wasting unused bandwidth, it is possible to modify
a reservation-based approach to redistribute unused band-
width among competing applications. Similarly, it is pos-
sible to combine proportional-share scheduling algorithms

with admission control to limit the number of applica-
tions in the system and provide guarantees on delay and
throughput [18]. Due to these similarities, it has been
shown that reservations and shares are duals of one another
[19] in the sense that a single scheduler can simultaneously
allocate resources based on weights and reservations.

We are currently investigating resource control mech-
anisms that employ a novel combination of these two
approaches. Our approach employs a reservation-based
cluster-wide hierarchy; application providers can use this
hierarchy to specify their aggregate requirements as well
as those of individual capsules. Once an application is ad-
mitted and its capsules are mapped to individual nodes,
the platform translates these reservations into equivalent
shares and employs a proportional-share scheduler to en-
force these allocations. Since the number of capsules at
each node is constrained by admission control each appli-
cation can be provided with guarantees on processor band-
width and latency. This approach is conceptually equiv-
alent to using a reservation-based scheduler at each node
that can reassign idle bandwidth. Moreover, the hybrid ap-
proach permits a judicious combination of work conserv-
ing behavior and predictable allocation.

IV. CONCLUSIONS

We believe that there are compelling reasons to host
large numbers of Internet services on a cluster-based plat-
form. In particular, we are interested in the case where
there are many more services than machines – this is a dif-
ferent space from current commercial hosting solutions,
but one where we feel considerable innovation in applica-
tions is possible if the economic barrier to entry is very
low.

Facilitating this innovation requires support for highly
diverse resource guarantees: current application-level con-
nection scheduling work restricts applications to web-
based or similar request-response systems, and conse-
quently restricts the diversity of feasible services (and how
cheap it is to offer them). Much research from the field of
multimedia systems can be reapplied here – indeed this
may be a more compelling case for resource control facil-
ities in the real world than multimedia workstations.

However, both the clustered environment and the busi-
ness relationships involved in the design of public plat-
forms adds new challenges: (i) heterogeneity of applica-
tions, distributed application components, and processing
nodes; (ii) place of capsules within the platform; (iii) fail-
ure handling in a domain of split responsibility, and (iv)
overbooking and yield management. Our current research
focuses on these issues for a public computing platform.

5



ACKNOWLEDGMENTS

The authors would like to acknowledge the suggestions
of Bryan Lyles in writing this paper.

REFERENCES

[1] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
and R. Fairbairns, “The design and implementation of an operat-
ing system to support distributed multimedia applications,”IEEE
JSAC, vol. 14, no. 7, pp. 1280–1297, 1996.

[2] O. Spatscheck and L. L. Peterson, “Defending Against Denial of
Service Attacks in Scout,” inProceedings of the Third USENIX
Symposium on Operating Systems Design and Implementation,
February 1999.

[3] V Sundaram, A. Chandra, P. Goyal, P. Shenoy, J Sahni, and H Vin,
“Application Performance in the QLinux Multimedia Operating
System,” inProceedings of the Eighth ACM Conference on Mul-
timedia, Los Angeles, CA, November 2000, pp. 127–136.

[4] J. Nieh and M. S. Lam, “The Design, Implementation and Eval-
uation of SMART: A Scheduler for Multimedia Applications,” in
Proceedings of the Sixteenth ACM Symposium on Operating Sys-
tems Principles, Saint-Malo, France, October 1997.

[5] G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers: a
new facility for resource management in server systems,” inPro-
ceedings of the Third Symposium on Operating Systems Design
and Implementation, New Orleans, Louisiana, March 1999, pp.
45–68.

[6] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus Fair
Scheduling: A Proportional-Share CPU Scheduling Algorithm
for Symmetric Multiprocessors,” inProceedings of the Fourth
Symposium on Operating System Design and Implementation
(OSDI 2000), San Diego, CA, October 2000.

[7] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,
“Cluster-Based Scalable Network Services,” inProceedings of
the Sixteenth ACM Symposium on Operating Systems Principles,
San Malo, France, October 1997.

[8] M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter of idle
workstations,” inProceedings of the 8th International Conference
of Distributed Computing Systems, June 1988, pp. 104–111.

[9] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler, “The Mul-
tispace: an Evolutionary Platform for Infrastructural Services,”
in Proceedings of the 1999 Usenix Annual Technical Conference,
Monterey, California, June 1999.

[10] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Reserves:
A mechanism for Resource Management in Cluster-based Net-
work Servers,” inProceedings of the ACM Sigmetrics 2000, Santa
Clara, CA, June 2000.

[11] Neil Stratford and Richard Mortier, “An economic approach to
adaptive resource management,” inProc. 7th IEEE Workshop on
Hot Topics in Operating Systems (HotOS VII), March 1999.

[12] Barry C. Smith, John F. Leimkuhler, and Ross M. Darrow, “Yield
management at American Airlines,”Interfaces, vol. 22, no. 1, pp.
8–31, January-February 1992.

[13] T. Roscoe and B. Lyles, “Distributed Computing without DPEs:
Design Considerations for Public Computing Platforms,” inPro-
ceedings of the 9th ACM SIGOPS European Workshop, Kolding,
Denmark, September 17-20 2000.

[14] T. Roscoe, B. Lyles, and R. Isaacs, “The case for supporting risk
assessment in systems,” Sprint Labs Technical Report, May 2001.

[15] P. Goyal, X. Guo, and H.M. Vin, “A Hierarchical CPU Scheduler
for Multimedia Operating Systems,” inProceedings of the First

USENIX Symposium on Operating System Design and Implemen-
tation (OSDI’96), Seattle, October 1996, pp. 107–122.

[16] M. B. Jones, D. Rosu, and M. Rosu, “CPU Reservations and
Time Constraints: Efficient, Predictable Scheduling of Indepen-
dent Activities,” inProceedings of the sixteenth ACM symposium
on Operating Systems Principles (SOSP’97), Saint-Malo, France,
December 1997, pp. 198–211.

[17] K. Duda and D. Cheriton, “Borrowed Virtual Time (BVT)
Scheduling: Supporting Lantency-sensitive Threads in a General-
Purpose Scheduler,” inProceedings of the Seventeenth ACM Sym-
posium on Operating Systems Principles (SOSP’99), Kiawah Is-
land Resort, SC, December 1999, pp. 261–276.

[18] P. Goyal, S. S. Lam, and H. M. Vin, “Determining End-to-
End Delay Bounds In Heterogeneous Networks,”ACM/Springer-
Verlag Multimedia Systems Journal, vol. 5, no. 3, pp. 157–163,
May 1997.

[19] I. Stoica, H. Abdel-Wahab, and K. Jeffay, “On the duality be-
tween resource reservation and proportional share resource allo-
cation,” in Proceedings of the ACM/SPIE Conference on Mul-
timedia Computing and Networking (MMCN’97), San Jose, CA,
February 1997, pp. 207–214.

6


