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ABSTRACT
Modern Systems-on-Chip (SoCs) are networks of hetero-
geneous cores, intelligent devices, and memory, connected
through multiple configurable address translation and protec-
tion units like IOMMUs and System MMUs.

Modern OS kernels like Linux are based on traditional
MMUs and have no clear abstractions to represent this com-
plexity, mostly leaving IOMMU configuration to device dri-
vers. This has led to a recent spate of serious bugs, and increas-
ing concern over “cross-SoC” attacks on memory security.

To address this, we propose a new kernel primitive, mmapx,
based on a decoding net a rich and detailed representation of
the memory addressing semantics of a complex SoC from the
recent formal methods literature. mmapx provides a uniform
facility for securely configuring all the address translation
facilities in a system.
mmapx leverages existing Unix facilities wherever possi-

ble: the file system for naming, discovery, and coarse-grained
access control, and file descriptors for fine-grained autho-
rization. We show how mmapx can eliminate bugs caused by
device drivers programming IOMMUs directly, but also the
detail captured by the underlying model has further benefits
while incurring minimal overhead.
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1 INTRODUCTION
Memory management in a modern operating system provides
protection via a simple model: client software (either a user-
space process or an in-kernel driver) requests access to a
physical resource (either memory or device registers) by iden-
tifying its location in the system-wide physical address space.
The OS checks authorization, and then maps the appropriate
physical region into the client’s virtual address space. Un-
fortunately, these days this appealingly simple model just
doesn’t work.

Modern SoCs have complex interconnects and peripheral
devices, and much of what Linux models as devices are really
complete processors with their own firmware or independent
operating systems, often incorporating their own memory
translation units. For protection to be useful, these devices
must be sandboxed behind a correctly-configured IOMMU
(or System MMU).

However, programming IOMMUs is complex and error-
prone, and is often delegated to individual device drivers,
which have ambient authority in the kernel. The task is made
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worse by the need to enforce a changing partial correspon-
dence between the virtual address space seen by the device,
and that seen by a process, since the OS needs to share datas-
tructures with devices as much as protect itself from them.
The result is that buggy, compromised, or just plain malicious
devices or drivers can do an end-run around the OS protection
model by exploiting holes in the IOMMU-based protection
domain [14, 22].

Surprisingly, modern OSes provide no good abstractions
for uniformly handling this problem, leaving low-level con-
figuration of protection up to individual device drivers. This
is in contrast to, e.g. access control in file systems or au-
thority over process address space, where well-established
subsystems enforce OS policy.

We propose a new primitive, mmapx, for clients to request
general memory mappings. Unlike existing interfaces, mmapx
is explicit about which address space it is mapping a region
from, and which address space it is mapping a region into.
This allows clients to be precise in specifying what memory
is exposed to devices or coprocessors via IOMMUs. Like
mmap(), mmapx refers to memory regions using file descrip-
tors, which provide capability-like protection. However, re-
gions for mmapx are acquired using a file system (/dev/as),
which captures the memory topology of the machine in detail,
and allows basic authorization to leverage the full Unix file
system protection model via two different rights on an address
space: map and grant.

We describe mmapx here from the point of view of user-
space Linux programs but the basic model works in a micro-
kernel architecture, or within a monolithic kernel. In the latter
case, protection within the kernel is only advisory, unless
a mechanism like Nooks [28] is available. Crucially, how-
ever, even in this case mmapx provides a policy framework
for protecting the kernel itself from malicious or buggy dri-
vers, device firmware, or other cores not running the kernel
itself by ensuring that IOMMUs and other translation units
are correctly programmed.

Moreover, while mmapx resembles a high-level primitive
like mmap(), this belies its true power. mmapx builds on our
existing work on formalizing address translation and decod-
ing, and its concept of an “address space” region is flexible
and powerful enough to capture the functionality of the full
range of TLBs, and even individual levels of a multi-level
page table. This allows mmapx to express “delegation” of
MMU page table structures to virtual machines, for example,
as in Arrakis [24] and Ix [6].

2 MOTIVATION
The “QualPwn” exploit [14] is emblematic of the problem
we address in this paper. It makes brutally clear the mismatch

A57
Linux

DSP

MMU

SMMUMMU

DSP
Registers

QuRT

System Address SpaceDRAM

Figure 1: Relevant actors (A57 and DSP), translation
units (MMU, SMMU) and memory regions (gray) of the
Qualcomm SoC. Note that the DSP MMU is not con-
trolled by the host Linux, but the SMMU is.

between the model of hardware behavior baked into the OS
kernel, and the reality of modern SoC platforms.

QualPwn affects mobile SoCs running Android and starts
with a bug in the WLAN process running not on the CPU but
a DSP core on the chip, which runs the proprietary QuRT OS.
A series of exploits allows compromise of another process on
the DSP, which itself communicates with its corresponding
device driver in the Linux kernel on the application cores
using DMA. Since the driver trusts the device, it can be tricked
into granting the device full access to application memory by
reprogramming the system MMU.

Our focus in this paper is preventing incorrect granting of
memory access rights to devices and drivers. A simplified
view of the hardware is shown in Figure 1: two processors,
running a different OS, with different MMUs, but sharing
the same memory. The Linux kernel driver is tasked with
configuring the SMMU to only allow legitimate access to
buffers shared between the two cores, and it fails to do this.

Linux offers little functionality to help with this task. In-
stead, it relies on a naive model where a set of process vir-
tual address spaces are mapped to a single physical address
space, and protection against DMA-capable devices using
an IOMMU or SMMU is delegated to drivers. Indeed, the
SMMU is often programmed to give a device the same view
of memory as that of the corresponding software process,
whether in user space or the kernel.

For example, the recent Linux Heterogeneous Memory
Manager [29] attempts to unify device memory management
using a specialized page structure to replicate translation
across device and CPU address spaces, in order to simplify
programming with GPU and FPGA accelerators.

We argue this is inappropriate for devices: access by the
device should be restricted as much as possible, rather than
giving the device free rein over application memory [22].
However, Linux provides no help in maintaining partially
replicated mappings between heterogeneous devices or cores:
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there are simply no abstractions for explicitly changing SMMU
mappings.

We are not first to point this out [13], and so-called “cross-
SoC” attacks [4, 14, 26] and other DMA-related vulnerabili-
ties [18, 21, 23, 25, 32] which exploit the fact that the OS is
not in control of software running on other cores on the SoC
is becoming a serious security concern. Neither does moving
the device driver out of the kernel solve the problem, whether
into Linux user space or using a microkernel-oriented design.

Our solution to this is to provide a single primitive for con-
figuring any translation hardware in the system, with a clear
and secure authorization framework that leverages existing
mechanisms in the kernel.

As a useful side-effect, this primitive also subsumes the un-
derlying functionality of newer memory managers like Linux
HMM [29], and VFIO/DPDK [19] (which could usefully be
implemented over mmapx), while providing more fine-grained
protection.

3 THE MMAPX PROGRAMMING MODEL
To provide principled control over address protection and
translation in any part of the system (including co-processors
and IOMMUs), we need abstractions that go beyond the tra-
ditional Linux model – that is,a single physical address space
and multiple processes, all of which map virtual addresses to
this one physical space.

We leverage our recent work on representing complex ad-
dressing in a modern SoC as a decoding net [2]. In our work,
an address space or AS is simply a function from “virtual” ad-
dresses to either physical resources or another address space,
and the system is represented by a directed graph whose nodes
are ASes and whose arcs are mappings to other ASes. Leaf
nodes in the graph are banks of memory (e.g. DRAM) or
device registers (e.g. the DSP registers in Figure 1), whereas
interior nodes are the views on memory created by fixed or
configurable translation units (e.g., an MMU, SMMU, or
system address space in Figure 1). The root nodes are the
complete set of cores or DMA-capable devices (e.g., the A57
and DSP in Figure 1).

A decoding net for a system has a different AS (node) for
each distinct view of what an address means. For example,
every core in a system has its own physical AS containing
local devices like interrupt controllers, but most of whose
addresses map to a shared “system address space”, which
itself leads to distinct nodes representing further buses and
interconnects. Decoding nets have been shown to be suffi-
cient to capture caches, MMUs, lookup tables, and a variety
of other addressing hardware. Essentially, mmapx is a primi-
tive that changes memory protection in a system by editing
this decoding net at runtime. The kernel assembles its initial

base⏞     ⏟     
/dev/as

asid⏞ ⏟ 
/0

right⏞                        ⏟                        
/{grant,map,info}

Figure 2: The path structure of /dev/as

decoding net representation of the hardware using standard
device discovery and Devicetree representations [20].

For example, the Linux kernel running on the A57 in Fig-
ure 1 would detect the presence of the modem coprocessor
from a Devicetree entry, and would create the corresponding
decoding net elements: the DSP register bank as a leaf node,
plus a mapping between the System address space whose ex-
act location is determined by the reg field in the Devicetree.

In this example, additional information (not available in
Devicetree) is required to infer that a DMA capable device or
coprocessor (the DSP) exists and must be added to the decod-
ing net, together with its own associated MMU connected to
the System MMU; it would seem useful for a future version
of Devicetree to provide this important information.

In addition to representing the already complex memory
topology in our example, the kernel would instantiate drivers
for all the translation units involved (including the DSP MMU,
the System MMU, and any associated lookup tables).

The decoding net is also augmented with a virtual ASes for
each process.

The /dev/as file system: The kernel internal decoding net
representation is exposed to clients via a file system interface.
All nodes in the decoding net are enumerated and become
directories in a virtual file system called /dev/as, which
provides naming and access control using standard Linux
access control lists. We use standard Linux udev to add links
from easily determinable names into /dev/as. There exists
for example a static name that links to the system address
space.

Each node directory in /dev/as contains a file called info,
which describes the relation of this AS to others. Each region
of the AS which maps to another is listed with the filename of
the destination AS, plus whether the mapping is static (fixed),
or can be configured, and if so, what constraints exist on this
mapping (e.g., page size).

For example, in Figure 1 the mapping from the system ad-
dress space to the DSP register leaf node would be described
in the info of the system address space as a static mapping,
because it can not be reconfigured.

Regions that simply contain RAM or memory-mapped IO
are similarly listed. /dev/as thus provides a flat, persistent
namespace for ASes with cross-references, which is needed
since the decoding net for real systems is not a tree, and
indeed often contains cycles.
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int mmapx(int src_fd, off_t src_offset,
int dst_fd, off_t dst_offset,
size_t length, int flags);

int munmapx(int src_fd, off_t src_offset,
size_t length);

Figure 3: mmapx and munmapx signatures

grant and map. : Each AS directory can also contain two
further files, map and grant (Figure 2). Access to grant con-
fers the right to map parts of this AS into another which has
an arc to it in the decoding net (e.g. by configuring an MMU
between the two), and can be viewed as a generalization of
traditional mmap().
map, however, is different and has no analogue in traditional

Unix systems. Access to map is required to map a region of
another AS into this one. Creating a mapping from a region r1
in AS A1 (e.g., a process address space) into region r2 of AS
A2 requires access to both grant for A2 and map for A1, plus
there to be an arc from A1 to A2 which includes the region r1.

Leaf nodes in the decoding net, i.e. RAM or device reg-
isters, have a grant but no map. Conversely, process virtual
address spaces have a map but no grant (since they cannot be
mapped into some other AS). Intermediate translation steps
lead to ASes with both grant and map files. In the example
of Figure 1 the SMMU is such an intermediate AS. Initially
it contains only map. When a mapping is installed by calling
mmapx with a grant handle to the DRAM and a map handle
to the SMMU, it appears in the SMMU grant.

There are therefore two fundamental rights involved in
mapping: the right to change the mapping of an address space
(map) and the right to map to something (grant). This com-
bination of rights is key to how mmapx works.

mmapx itself: Figure 3 shows the mmapx syscall. It attempts
to create a mapping of a region in a source AS given by a
file descriptor src_fd to a target AS given by dst_fd. The
size and location of the region in each AS is also supplied as
arguments.

The source file descriptor is obtained by opening the map
of the appropriate AS, and the destination file descriptor is
obtained by opening the grant of the target AS. By way of
contrast, in traditional mmap() the source is implicitly the
calling process’ virtual address space; only the target region
(segment) is given.

Access control on mapping is therefore enforced when
the map and grant are opened; thereafter the file descriptors
function as short-term capabilities. This is by design, and not
by accident: capabilities give the bearer certain rights over
a specific resource. Nevertheless, mmapx can still fail for a
variety of reasons: the requested mapping may not be mean-
ingful given the topology, hardware granularities like page

sizes constrain the region offset and length, or a conflicting
mapping might already exist.

ASes in decoding nets tend to be more fine-grained than
the traditional single physical address space (device registers
often occupy their own small AS, for example), but mmapx
as described so far is not quite sufficient for fine-grained
(page-sized) least-privilege authorization.

For this we allow operations on the file descriptors (such
as truncate) which limit the range of authorized addresses
in the AS, analogous to refining a capability (deriving a new
capability with less or equal rights, such as covering a smaller
region of memory). This means that we can augment coarse-
grained file system-based access control with system “moni-
tor” processes with the rights to open some map and grant
files and then restrict the descriptors before passing them to
client processes. An allocator (either in-kernel or at user level)
would be such a process: The right to allocate (e.g. DRAM)
is given by grant on the whole space, and individual alloca-
tions are returned to callers as truncate-d descriptors (with
grant) to a new anonymous segment.

In-kernel calls: While we have presented mmapx as a user-
space API, it can also be naturally provided within the kernel
using equivalent authorization checks and handles. While in-
kernel device drivers are not sandboxed in the way that user-
space processes are, mmapx removes the burden of IOMMU
configuration from drivers and allows devices themselves to
be conveniently sandboxed.

Moreover, intra-kernel protection schemes such as split ker-
nel [11] or in-kernel enclaves [28] can be naturally modeled
using decoding nets, and thus become usable transparently by
drivers whenever they are available.

Additional complexity: Dropping the fiction of homoge-
neous MMUs and a single physical address space in favor of
a decoding net exposes the complexity of the memory system,
and this is a two-edged sword. mmapx is a minimalist secure
primitive which only involves two linked ASes. Clients are
left to set up a potential chain of mappings (albeit safe ones).

However, this kind of problem already exists in the Linux
kernel for device management, where it is addressed by sys-
tem facilities like udev, devfs, and sysfs. For user space
clients, a library operating on info file contents can provide a
simplified end-to-end mapping interface above the full graph
of address spaces, without sacrificing flexibility.

In the final part of this paper we provide some evidence
that the overhead introduced by mmapx would be negligible.

Example: preventing QualPwn: Having compromised the
WLAN firmware, the vulnerability QualPwn exploits to com-
promise the Linux host is a failure to distinguish between
map and grant rights. The driver needs map rights for the
DSP’s address space (to add SMMU mappings), but it should
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Driver AS
map map

Device AS
map

Physical AS grant grant

Figure 4: Memory mapping in the QualPwn scenario

not have grant rights to arbitrary host memory: the SMMU
should only allow the DSP access to descriptors and packet
buffers in host memory.

Defense in depth and the principle of least privilege im-
ply that any world-facing device (e.g. a network interface)
or process is vulnerable to compromise, and should thus be
assumed malicious. A device (and its driver) should there-
fore be assigned the minimum privilege necessary to func-
tion. In QualPwn the driver is acting as a classic “confused
deputy” [15], exercising the ambient authority of the kernel
(to grant arbitrary memory) at the behest of a malicious
client (the device).

While a capability-based microkernel with strict isolation
would prevent a malicious driver causing damage, that is not
the actual problem in this case: Instead, an honest driver has
mistakenly abused its ambient authority. This mistaken abuse
is prevented using mmapx.

Using mmapx, on initialization the driver is identified as
manager of the device’s SMMU-implemented (virtual) AS
and given a map descriptor for this AS. When buffers are al-
located (e.g. with dma_alloc_coherent()), an anonymous
segment is created as a truncate-d grant descriptor from
host memory, either by the driver itself via a library function,
or as part of a buffer pool.

Possession of the grant right on this memory segment
together with the map right on the DSP’s AS allows the driver
to call mmapx to make this memory accessible to the DSP, but
as long as the driver only every manipulates SMMU mappings
via the mmapx interface, it cannot be tricked into abusing its
ambient authority and providing access to anything other than
buffer memory.

4 ADDITIONAL BENEFITS
As we have shown, instead of a traditional Unix 2-level view
of memory (virtual ASes spaces mapped by a page table
to single physical AS), mmapx adopts a more faithful view
of a modern computer system as a graph of address spaces
connected by address translation functions. Some of these
translations are fixed and trivial (such as an offset), while
some are highly complex and implemented by MMUs.

It turns out that this detailed representation has benefits
beyond the fine-grained device memory protection we have
discussed so far. For one thing, it allows us to generalize the

Driver VA
L4

Dev

L3

L2

L1

PA

map map

map

map

map

map

grant
256TiB

grant
512GiB

grant
1GiB

grant
2MiB

grant
4KiB

Figure 5: Example of sharing page tables between a pro-
cess and a device using Intel 4-level paging

Unix notion of memory segments to include partial transla-
tions from regions of virtual memory to physical resources,
in the process subsuming a number of ad-hoc mechanisms
already deployed or proposed in the research literature.

Page table structure: Rather than representing an MMU
with a multi-level page table as a single translation from one
AS to another, we observe that each level of the page table
implements its own translation, and we can expose this in the
decoding net. This allows clients to make explicit superpage
mappings without have to rely on less flexible or controllable
facilities like transparent superpages or libhugetlbfs.

However, the fact that mmapx can expose each layer of
translation as a separate AS means that these ASes can be
passed around, allowing explicitly controlled partial sharing
of page mappings between processes, or even application-
controlled replication of page regions between cores within a
process [8], as shown in Figure 5.

This ability of a part of a page table (albeit highly ab-
stracted) as a first-class citizen in the OS is an example of an
intermediate address space enabled by mmapx. An interme-
diate AS has both grant and map rights, and can be passed
between clients, and installed and removed within another AS
using the mmapx call.

For example, SpaceJMP [12] allows processes to use and
switch between multiple virtual ASes, although it requires the
process’ stack, code and data segments to be present in the
target AS. mmapx provides the same functionality by creating
an intermediate AS and using its grant right to map it into
the calling process with additional flexibility, since arbitrary
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parts of the AS can be swapped without the SpaceJMP’s need
to replicate most of the whole address space in each target.

Intermediate ASes can be viewed as generalizations of
Multics-style segments [9], in that they do not need to be
contiguous in physical memory, but can still be passed and
shared between processes.

Other translation units: The flexibility of the decoding net-
work used by in mmapx also means it can be used to securely
configure other address translation units which, today, are pro-
grammed once at boot time and never touched thereafter due
to a lack of safe abstractions. For example, some accelerators
like the Intel Xeon Phi [16] map physical addresses from the
accelerator’s MMUs through a 32-entry lookup table, each
of which translates a 16GiB region of host address space (be-
fore going through the host IOMMU!). mmapx would allow
suitably authorized client programs to exploit the efficiency
of this lookup table, reducing TLB overhead in the IOMMU
and accelerator.

Supporting existing interfaces: Finally, we note that mmapx
is a useful foundational primitive for supporting existing in-
terfaces for dealing with device memory and IOMMUs. For
example, Linux HMM [29] mirrors the full virtual address of
a process to a device. This can conveniently be implemented
over mmapx, though the more coarse-grained protection of-
fered by HMM exposes the kernel to attacks like QualPwn.

Similarly, VFIO/DPDK [19], which exposes parts of a pro-
cess AS to devices, could also be built conveniently using
mmapx, and take advantage of more fine-grained protection,
delegation, and also the ability to include other device’s mem-
ory spaces in addition to client processes.

5 PRIOR IMPLEMENTATION
mmapx was inspired by essentially the same functionality
which we had earlier implemented in the Barrelfish research
OS [5], but which we had been unsuccessful in publishing [1].

Barrelfish is built around a capability system, itself based
on that of seL4 [17], but adding support for distributed capa-
bility retyping and revocation as well as a richer type system
for capabilities defined in a Domain Spacific Language [10].
User processes manage virtual address spaces using capability
invocations that correspond roughly to mmapx system calls.
The capability type system preserves all invariants and en-
sures that only valid page tables can be constructed, and that
a principal cannot elevate privilege using a special mapping.

However, like other capability systems like KeyKOS [7],
Eros [27], and CAP [30], the underlying assumption is that
of virtual address mappings to a single, global, physical ad-
dress space. The same is true for architectural capability units
situated upstream of the MMU, such as CHERI [31]

prot1-trap-unprot protN-trap-unprot trap only
0

2.5

5.0

7.5

10

12
Latency [kcycles/(page | trap)]

Linux Barrelfish Barrelfish/MAS

Figure 6: Appel-Li benchmarks on Barrelfish with
(“MAS”) and without mmapx, and Linux

We extended Barrelfish in two ways. First, we added an
“address space” field to each capability, and ensured that capa-
bility operations check the validity of these values in addition
to type and rights information before proceeding. Second, we
extended the capability type system to represent all available
page table formats (including Intel IOMMUs, AMD IOM-
MUs and Xeon Phi accelerator page tables), as well as the
rights to program any other translation device.
mmapx’s combination of /dev/as permissions and open

file descriptors provides a slightly more limited, but otherwise
equivalent, authorization model for mappings.

The decoding net itself was represented in Barrelfish’s
“System Knowledge Base” (SKB), which is a combined Pro-
log database and Constraint Logic Programming (CLP) solver.
A simple routing policy for address mapping is provided in the
SKB as a CLP query, although clients can also use their own.
The info files in the /dev/as file system, combined with
client library support, provide basically the same functionality
in mmapx.

To provide some confidence we had got the design right, we
first built an executable specification of mmapx’s functionality
in Haskell, inspired by the use of this technique in seL4 [17].
This spec then served as the basis for the C implementation
in Barrelfish.

The Haskell implementation can check if a sequence of ad-
dress resolution and address translation operations conforms
to the specification by simulating the effects of the operations,
modelling the authority each process holds as a set of access,
map and grant rights. By requiring that no process ever has
grant authority on addresses that are either in leaf address
spaces or already mapped to addresses in another AS, the
specification ensures that no “dangling pointers” can be in-
stalled and thus address resolution will always terminate at a
real physical resource.

The Barrelfish implementation does provide some indica-
tion of the performance cost of the more complex view of the
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memory system that mmapx provides. The Appel-Li bench-
mark [3] exercises common virtual memory operations with
three experiments:

(1) prot1-trap-unprot. Write-protect a randomly-chosen
page, write to it, take a trap, unprotect it, and repeat.

(2) protN-trap-unprot. Write-protect 512 pages of memory
in a single operation, write to each page of memory in
turn, taking a trap and unprotecting the page.

(3) trap only. Write to a protected page and take the trap,
then continue with next page without changing any
permissions.

Figure 6 shows the results on a dual-socket Intel Xeon
server for the original Barrelfish, Barrelfish with the mmapx-
like extensions, and a vanilla Linux kernel 4.15 for compari-
son. All Specter/Meltdown mitigations in Linux are disabled
in this experiment.

We make no claims here about the comparison between
Barrelfish and Linux, since they are very different designs of
OS, but it is clear that the additional complexity of mmapx
adds negligible overhead to Barrelfish, and is likely to have
similarly minimal impact in Linux, since its performance is
similar. If anything, a Linux mmapx will have even less im-
pact, both because Linux memory management is somewhat
slower, and an optimized, fully in-kernel mmapx implementa-
tion should be faster than the Barrelfish version.

6 CONCLUSION
We identify the increasing complexity of the “physical” ad-
dress space, the need to securely program IOMMUs/SMMUs
to achieve defense in depth, and the lack of a consistent inter-
face for this as a major vulnerability of existing OS designs.

To remedy this, we propose mmapx, a consistent, univer-
sal interface for both in-kernel and user-level construction
of address spaces that faithfully captures the complexity of
modern hardware while extending and reusing existing, fa-
miliar UNIX primitives, specifically: The file system as a
secure naming mechanism (/dev/as), and memory-mapped
segments (named and anonymous). We identify two distinct
rights, map and grant, which are usually conflated, and demon-
strate that properly and securely distinguishing them allows a
least-privilege approach to SMMU configuration, addressing
known vulnerabilities such as QualPwn.

We further describe exciting extended use cases for mmapx,
including the safe partial sharing of virtual address space
regions and the potential to subsume existing approaches in-
cluding HMM and VFIO. Finally, previous implementation
experience with mmapx in a different OS suggests that the run-
time overhead of more faithfully representing the addressing
structure of a machine is negligible.
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