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ABSTRACT
Resource allocation is an increasing challenge for distributed net-
work testbeds as computational and network resources are involved.
Testbed designers have moved to a query-based model: clients pro-
vide a declarative description of their desired resources, and the
provider allocate specific resources to meet the request. In this pa-
per, we describe an new approach to negotiate testbed resources
between clients and testbed providers: the clients specify their re-
quests as constraints, and the providers reply with resource alloca-
tions expressed also as declarative set of constraints on resources.
This gives providers more flexibility in late-binding of resources
to requests, and opens up a wide design space to optimize resource
allocation for efficiency, cost, utilization, or other metrics. Our sim-
ple first experiments suggest that the late-binding of resources en-
abled by representing resource reservation as constraints achieves
better network resource utilization compared to the fixed assign-
ment solution.

1. INTRODUCTION
Networking testbeds like GENI [7] face an increasing challenge in
resource allocation. As dependencies between resources (switch
ports, links, virtual machines) become more constrained, resources
become more diverse (specialized switches, programmable middle-
boxes, etc.) and testbeds scale to large numbers of clients, sites, and
network elements, it becomes harder for clients to express their re-
quests to the providers of the testbed infrastructure, and in turn for
these providers to allocate resources in a way that makes efficient
use of the platform.

Faced with these trends designers of testbed platforms have moved
to a query-based model for resource request: clients supply a declar-
ative description of resources they want, and the provider allocates
(if possible) specific resources to satisfy this request. The request is
a set of constraints on the resources to be allocated, and (optionally)
some objective function to allow the resource provider to select the
“best” (for the client) allocation from the available options.

In this paper, we take the idea a step further: not only do clients
specify their requests as constraints, but providers reply with re-
source promises which are also expressed as sets of declarative
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constraints on resources. We conjecture that this allows providers
much greater flexibility in late-binding of resources to requests, and
opens up a wide space of techniques for optimizing testbed utiliza-
tion, including statistical overbooking.

Similar challenges are faced by Infrastructure-as-a-Service (IaaS)
providers and scientific Grid platforms, to a lesser, though increas-
ing, degree. We focus on network research platforms in this paper,
but we expect that as network topology becomes increasingly im-
portant for performance and as a market differentiator [10] in these
areas, our ideas will have wider applicability.

In the next section we describe and motivate the specific resource
allocation problem we are addressing in more detail, and discuss
the background – in particular, why it has not been a problem until
recently, and why we think it will become more important in the
future.

In section 3 we introduce the idea of expressing resource adver-
tisements and allocations, as well as simply requests, as declarative
sets of constraints. We show this changes the resource negotiation
process between clients and providers, and in turn opens up a rich
design space for providers to optimize resource allocation for effi-
ciency, cost, utilization, revenue, or other metrics.

We then describe the current status of our work to establish the
effectiveness of the idea and show some preliminary results in Sec-
tion 4.

2. BACKGROUND AND MOTIVATION
The basic problem we address in this paper is how a client of an
infrastructure provider (e.g. a networking testbed, cloud hosting
service, or grid installation) requests resources, how the provider
allocates such resources, and how the allocation of such resources
is returned to the client. “Resources” in this sense include virtual
machines, virtual switches and routers, shares of physical network
links, and the like.

At a high level, this process is quite straightforward, and exist-
ing testbeds employ simple mechanisms. In this section, we sur-
vey how it is done today, and in doing so make the argument that
existing solutions to the problem will not suffice for large-scale,
distributed facilities where networking resources are explicitly al-
located.

2.1 Virtual machines
We start with systems that purely allocate virtual machines. Ama-
zon EC2 [5] advertises a small (6 at time of writing) set of VM
types (based on location and approximate computing power), each
of which consists of a large homogeneous pool. While clients can
request VMs in a specific location, EC2’s scale means that these
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VMs can be allocated entirely independently of each other. Ac-
cess to the VMs is granted at the time when a request is made –
there is no notion of (or need for) future reservations of resources.
These factors allow a simple and intuitive API to EC2 and simplify
Amazon’s task of provisioning physical plant.

PlanetLab [16] is different: clients specify precisely the physi-
cal machine on which to create a VM, and all individual physical
resources (close to 1000 servers) are visible to clients. Neverthe-
less, acquiring resources on PlanetLab is conceptually similar to
the EC2 case: a request is expressed in terms of the advertised set
of machines, and access to resulting “slivers” is granted in the re-
ply. As a best-effort, community-run service, PlanetLab does not
need to provide any resource guarantees or make provisioning deci-
sions. Despite this, the diversity of resources offered by PlanetLab
(albeit all resembling Linux virtual machines) has led to third-party
resource managers [15, 20] which allow clients to specify requests
for resources in the form of declarative queries over the available
nodes.

This mirrors constraint-matching in Grid computing systems:
Condor [4] allocates machines to jobs based on a match-making
mechanism called ClassAds. Machine characteristics and job re-
quirements are represented in a common framework making it pos-
sible to decide, for a particular request-resource pair, whether re-
quirements are satisfied. RedLine [11] uses constraints to describe
resource offerings and requests, interprets resource matching prob-
lem as a constraint satisfaction problem and explores constraint-
solving technologies to implement matching operations.

Grid systems require more complex resource allocation schemes
for two reasons: firstly, they typically allocate a large number of
machines or VMs in a single operation for parallel compute jobs,
rather than the piecemeal sliver allocation which suffices for de-
ploying overlays on PlanetLab. Secondly, the resource require-
ments of Grid jobs motivate advance reservation of a block of ma-
chines. For example, the Haizea [19] lease manager is an Open-
Nebula [14] scheduling module which leases VM resources under
a variety of terms, including reservations and queuing of best effort
requests. The key observation is that the dependencies between re-
sources motivate a richer specification for resource requests.

2.2 Network virtualization
Such inter-dependencies become more significant when network,
as well as computational, resources are involved. Topological con-
siderations tightly constrain resources: virtual machines and virtual
switches must be connected by shares of physical links, for exam-
ple. This introduces two challenges: firstly, how to express requests
for combinations of network and compute resources, and secondly,
how to efficiently allocate such resources in the provider.

Emulab [6] solves the former by using ns2 configurations to ex-
press virtual networks, which are then embedded into its physical
topology using simulated annealing graph mapping algorithms. It
successfully avoids the latter challenge through its focus on centrally-
controlled network emulation: Emulab exploits high-capacity net-
work switches which approximate a physical crossbar between ma-
chines, thereby rendering the problem of embedding clients’ virtual
networks in Emulab’s physical infrastructure tractable.

However, recent proposals for distributed network testbeds such
as GENI will not be amenable to such solutions, since they pre-
sume a federated, distributed physical infrastructure over which vir-
tual networks (“slices”) are instantiated. The expected low cross-
sectional bandwidth in GENI-like testbeds leads to inefficient allo-
cation with simple greedy approaches.

A simple example (Figure 1) should make this clear. Given
a physical network of 2 switches and 8 hosts, a simple strategy
might allocate for REQUEST1 4 hosts under one switch and leave
REQUEST2 unsatisfiable. In fact, both requests can be met with the
allocation solution shown on the right.

REQUEST 2
size(Hosts) = 4

size(Switches) = 2

REQUEST 1
size(Hosts) = 4

Figure 1. Virtual network allocation example

ProtoGENI [17] uses an optimistic reservation mechanism: the
users make the resource availability query right before running the
slice embedder, then attempt to get tickets for the components that
were chosen.

The ORCA-BEN project [3] uses an ontology language called
NDL-OWL to express rich resource requests as queries, including
topology embedding. Like some other platforms, ORCA differ-
entiates tickets from leases. The application requests u slivers of
resource type r. If approved, a ticket is issued for u units from
a specific pool, and the client later redeems the ticket to obtain a
lease for the resources.

Such concepts are not totally new: open signaling [2] and sys-
tems like Tempest [13] and the Genesis Kernel [8] explored how to
virtualize networks efficiently to support multiple, custom control
planes over a single physical infrastructure. More recently, Open-
Flow [12] has applied similar ideas to IP- and Ethernet-based net-
works. Based on this, systems like FlowVisor [18] act as trans-
parent proxies between OpenFlow switches and controllers to pro-
vide slices of a physical network. In Internet architecture research,
so-called “pluralists” even view support for co-existing virtual net-
works as the key feature of the architecture [1].

Recently, problem has grown beyond academic interest. Topology-
Aware Resource Allocation [10] in IaaS-based cloud systems aims
to better support data-intensive workloads by making providers more
aware of hosted application requirements and giving users fine-
grained visibility into, or control over, the infrastructure.

3. A (POSSIBLY) BETTER WAY
We are building a resource allocator for testbeds to investigate a
different approach: we use constraints to describe not only resource
requests, but also resource promises made by the provider.

A request is a list of constraints on:

• when the request should be satisfied (start, end time)

• types of computational and networking resources: charac-
teristics of these resources (CPU, memory of the compute
units, table entries of the switches, latency or bandwidth of
the links) as well as aggregated properties of the resource set;

• connectivity: topological properties of the virtual network,
maximum fanout, network diameter, etc.

A very simple example request may look like this:
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Time :: 8..12, % request from 8am for 4 hours
size(Hosts) = 3 % three hosts
sum(Hosts, cpu) > 8 % total CPU units larger than 8
size(Switches) >1 % more than one switch
di(Topology) = 3 % network diameter is 3

We retain the distinction between tickets and leases: a lease
grants access to specific, named resource components, whereas a
ticket simply describes (in more or less detail) a set of resources
which the client may gain a lease to in the future.

In previous systems, a ticket, signed by the provider, serves as
a reservation of a set of concrete resources – a promise by the
provider to bind the resources to the client and grant access to them
in the future.

In contrast with those systems, the ticket need not bind a specific
set of resources, and indeed need not correspond at all with the
request that generated it. Instead, the ticket is simply another set of
constraints. These might refer to specific switches or nodes, but are
more likely to be “unbound”: they simply describe elements in the
virtual network are not yet mapped to a physical component.

Only leases will always refer to specific resources. Exchanging
a ticket for a lease grants access to specific concrete components
over a definite interval of time.

3.1 Client-Provider interaction

size(Hosts) = 3

R
esource 
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sum(Hosts,cpu) > 8,

Request1
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Figure 2. Resource negotiation

Figure 2 depicts how client and provider negotiate testbed re-
sources. This is similar to the protocols used in other systems, but
the significant differences are, firstly, that tickets generally do not
specify definite resources (or even definite numbers in some cases),
and secondly, that resource negotiation is ongoing: a client can at
any time return a ticket (or a lease) and exchange it atomically for
some other ticket or lease.

In the example, the client sends Request0 for 3 hosts. The provider
accepts this request and issues Ticket0 for 3 (non-specific) hosts.
Later, the client refines its request, returns Ticket0 and requests in
exchange 3 hosts with at least 8 CPU units. This request is again
satisfied and Ticket1 returned. In this resource reservation phrase,

tickets are “unbound”, and the client is not subject to failures of
specific nodes. Therefor, the client does not have to frequently
check the availability of the reserved “unbound” nodes.

Eventually, the client presents the ticket and requests a lease for
the resources. Only then, the provider will allocate specific re-
sources and grant the client a lease after which the client gets the
control over the resources.

Even after resource allocation (the ticket is redeemed), the client
is still able to negotiate with the provider by sending a new re-
fined request and returning the granted lease. In the example, the
client adds an additional constraint on network diameter. For the
provider, to minimize the overhead of resource reallocation, it’s
preferrable to keep as much current allocation possible (two hosts
under one switch), release the last host under this switch, and al-
loate another switch with one host connected to it.

More general operations such as splitting and merging of tickets
are also possible, in line with existing testbed proposals.

Of more interest, however, than the protocol itself is the state
maintained by both sides and the actions taken on receipt of a mes-
sage, in particular, in the provider.

The provider maintains an up-to-date list of all physical resources
available, and their current condition, together with a list of all valid
tickets and leases that it has issued. A provider will typically also
have some kind of objective function it will seek to maximize –
mostly likely utilization in the case of a networking testbed, but in
commercial settings this will probably be some function of yield or
revenue.

Conceptually, when it receives a request for a ticket, the provider
will try to generate (or, strictly speaking, prove the existence of ) an
assignment of physical resources to a new ticket which optimizes
its object function subject to the set of constraints imposed by:

1. the availability and topology of physical resources

2. the set of already-issued tickets and leases, minus those being
returned in the request

If the request is for a lease, the provider will return this concrete as-
signment in the lease. This operation may, of course, fail: changes
in testbed since the ticket was issued may result in the provider be-
ing unable to satisfy the request. However, if the request is for a
ticket, the provider has considerable freedom in deciding whether
to issue a ticket, and for what.

The straightforward procedure above which takes all allocations
into account can give optimal use of the infrastructure (without re-
sorting to revoking leases), and therefore extracts maximum benefit
from the fact that tickets do not imply definite assignments. Solv-
ing this problem includes embedding many virtual networks into
a physical network, and is known to be NP-hard. However, there
may be approaches which produce near-optimal solutions cheaply.

Another approach is to assign resources as we go: the provider
retains the previous concrete assignment and assigns resources for a
new request only from previous unassigned ones. This incremental
approach is the behavior of current testbeds.

Between these extremes there is a trade-off: the more existing
reservations our system can reconsider, the greater the complexity
of allocation but the higher the potential efficiency of the result. We
show preliminary investigations of this trade-off in the next section.

Our point is not to identify an optimal algorithm at this stage,
but rather to show that there is a wide space of possible solutions.
Some may be appropriate for academic testbeds which follow Plan-
etLab’s community model, while others may employ sophisticated
yield-management techniques (as in, for example, the travel indus-
try), including the use of overbooking and variable price models, to
maximise commercial revenue.
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Figure 3. Sequential solving
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Figure 4. Global solving

3.2 Further advantages
As well as opening up a wide space of allocation strategies, issu-
ing tickets as constraints offers many other potential advantages for
network testbeds. Firstly, late-binding of resources accommodates
changes in physical resource availability. Failures can be masked if
resources can be reallocated before they are required.

Secondly, resources can be specified with different levels of gen-
erality. Very general requests such as “4 machines for 2 hours in
the morning” are both easy to express and fit naturally into the
provider’s framework. Furthermore, in the case of network ele-
ments with varying capabilities, we avoid committing a machine
early to a task which does not fully exercise it. Finally, multi-stage
negotiation is possible with constraint-based tickets. The client is
able to refine the resource request by adding or modifying con-
straints.

4. INITIAL RESULTS
We now briefly present some initial results aimed at establishing
the feasibility of our approach. In particular, we are interested in
the size of space for optimization that is opened up by late-binding
resource requests. A thorough, real-world evaluation is beyond the
scope of this paper and a topic of our ongoing work.

We used Mininet [9] to generate a physical tree network (depth 3,
fanout 6) with 216 hosts and 43 switches, and randomly annotated
the nodes with different capabilities. Our test workload is a round-
robin sequence of 4 pre-defined requests, Req1 and Req2 are simple
requests for networks of 2 and 5 nodes respectively, while Req3
and Req4 are more complex requests for larger networks (7 and 11
nodes) with specific topologies. For different allocation strategies,
we are interested both in time to perform successive allocations,
and the total proportion of physical resources that can be allocated.

In our first experiment we allocate resources to each request
when it arrives, and never reallocates resources, roughly follow-
ing the behavior of current systems. As Figure 3 shows, after the
first 34 requests are satisfied (70% utilization), only small requests
can be met. Note also that solving time (whether successful or not)
decreases as available resources are reduced.

Second, we try full resource reallocation: as each request arrives,
we globally allocate all resources to the complete set of requests
so far with no a priori allocations. This problem is NP-complete,
and so as Figure 4 shows, execution time increases exponentially

and after several hours, our solver fails to allocate even half of the
available network.

Finally, we pick a design point between these two: allocate se-
quentially as in the first experiment case, but when allocation fails
retry by remapping, in one go, the current request and all exist-
ing requests. These requests are ordered by their complexity, and
solved independently as we did in the first experiment. Intuitively,
this represents a compromise between the exponential solving time
of reconsidering all prior requests altogether, and the severely con-
strained approach of fixing previous allocations. Remapping the
more complex requests first might be expected to result in more
freedom to find space for new requests.
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Figure 5. Constraint remapping

Figure 5 shows the results. Versus the simple sequential ap-
proach, runtime is much higher (though not prohibitive, even with
our unoptimized solver). We satisfy more requests (we now fail
first at request 40), resulting in greater utilization (16.7% remain-
ing free).

5. DISCUSSION
There is much scope for improving the run time of our solver for
remapping resources (better algorithms such as simulated anneal-
ing, a more sophisticated solving engine, etc.). We conjecture that
there are also better heuristics for resource remapping than the sim-
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ple one we evaluate here: the field of Operations Research has a
wealth of results on this kind of problem.

We are also only beginning to explore the possibilities for over-
booking and online resource renegotiation permitted by this ap-
proach. However, even our simple first experiments suggest that
the late-binding of resources enabled by representing resource tick-
ets as constraints opens up a significant space for optimization of
resource usage by platform providers.
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