PlanetLab: An Overlay Testbed for
Broad-Coverage Services

Brent Chun, David Culler, Timothy Roscoe
Intel Research — Berkeley

Andy Bavier, Larry Peterson, Mike Wawrzoniak

Princeton University

ABSTRACT

PlanetLab is a global overlay network for developing and ac-
cessing broad-coverage network services. Our goal is to grow
to 1000 geographically distributed nodes, connected by a di-
verse collection of links. PlanetLab allows multiple services
to run concurrently and continuously, each in its own slice of
PlanetLab. This paper describes our initial implementation
of PlanetLab, including the mechanisms used to implement
virtualization, and the collection of core services used to
manage PlanetLab.

1. INTRODUCTION

The last few years have seen the emergence of a new class of
network services, including network-embedded storage [10],
peer-to-peer file sharing [16, 5], content distribution net-
works [21], robust routing overlays [17, 2], scalable object
location [3, 15, 20, 14], and scalable event propagation [6].
Researchers are also beginning to deploy network measure-
ment and monitoring tools [18, 19].

What all these applications have in common is that they
benefit from being widely distributed over the Internet. To
support the design and evaluation of such applications, we
are building a global overlay network called PlanetLab. Our
goal is to grow PlanetLab to 1000 geographically distributed
nodes connected by a diverse collection of links, including
edge sites, co-location and routing centers, and homes (i.e.,
at the end of DSL lines and cable modems). This paper
describes an early version of PlanetLab (Version 1), that
has been deployed on 100 nodes distributed across 42 sites,
and is currently being used to experiment with several dozen
broad-coverage network services.

To appreciate the design decisions we have made, it is impor-
tant to understand that while we have a short-term goal of
supporting experimentation with the types of services men-
tioned above, our medium-term goal is to support continu-
ously running services that potentially serve a client commu-
nity. In other words, PlanetLab is designed to support the
seamless migration of an application from early prototype,
through multiple design iterations, to a popular service that
continues to evolve. In the long-term, we envision Planet-
Lab serving as a microcosm for the next generation Internet
[13].

2. ARCHITECTURAL OVERVIEW

Mic Bowman
Intel Corporation

The centerpiece of the PlanetLab architecture is a slice (a
horizontal cut of global PlanetLab resources). Each service
(a set of distributed and cooperating programs delivering
some higher-level functionality) runs in a slice of Planet-
Lab. A slice encompasses some amount of processing, mem-
ory, storage, and network resources across a set of individ-
ual PlanetLab nodes distributed over the network. A slice
is more than just the sum of the distributed resources, how-
ever. It is more accurate to view a slice as a network of
virtual machines, with a set of local resources bound to each
virtual machine.

A virtual machine is the environment where the program
that implements some aspect of a service runs. Each virtual
machine runs on a single node and is allowed to consume
some fraction of that node’s resources. In addition to be-
ing bound to a set of resources, a virtual machine also de-
fines the programming interface (execution environment) to
which programs are written. Multiple virtual machines run
on each PlanetLab node, where a virtual machine monitor
(VMM) arbitrates the node’s resources among them.

This section gives a high-level overview of the PlanetLab ar-
chitecture, first from the local (per-node) perspective, and
then from the global (network-wide) perspective. This over-
view provides the framework in which the specific mecha-
nisms described in the next two sections are defined.

2.1 Node Per spective

PlanetLab slices are collections of virtual machines, each
running on a physical PlanetLab node. Each node, there-
fore, has to provide a virtual machine abstraction. This
virtual machine must be useful (it should be no harder to
program than a conventional server machine) and protected
from other virtual machines on the same node. In addition,
node resources (CPU, local disk space, network bandwidth,
etc.) must be shared fairly so that one slice cannot starve
another. Virtual machines must also be restricted in some
ways, particularly with regard to the volume and nature of
network traffic they can generate. This is because unlike
many testbeds, PlanetLab is implemented over the “real”
Internet, and experimental PlanetLab services must coexist
peaceably with existing Internet traffic.

The kind of virtual machine available to a slice, and the
operating system VMM that provides it, is one of the cen-
tral design questions in PlanetLab. The solutions adopted



are also expected to change over time as PlanetLab evolves:
planned obsolescence of building blocks is an important as-
pect of the design.

PlanetLab’s design philosophy draws an important distinc-
tion between the Application Programming Interface used
by typical services and the Protection Interface implemented
by the VMM. The latter is the level at which both inter-
VM protection and resource allocation to VMs is performed.
Once separated, these two interfaces can evolve relatively in-
dependently. To some extent, solutions in the design space
for PlanetLab node virtualization mechanisms are charac-
terized by where these two interfaces are drawn.

For example, software runtimes such as the Java Virtual Ma-
chine and the Microsoft Common Language Runtime place
the API at a very high level of abstraction, and rely on
an underlying operating system to provide protection and
resource control between applications. This option was re-
jected for PlanetLab because of the large amount of design
policy mandated by these systems—more lightweight solu-
tions can always support such language VMs inside their
own VM, but allow much greater flexibility and can often
avoid the overhead of the entire runtime.

At the other end of the scale, complete virtual machine mon-
itors like VMware provide a protection interface at a very
low level of abstraction: that of conventional hardware. This
offers complete flexibility in choice of API (any operating
system can be run in a VM, even without recompilation),
and excellent protection properties (slices are completely en-
capsulated along with their associated operating systems),
but comes at a high price in CPU and memory resources:
even high-end commercial server VMMs typically support
10s of VMs per machine, which is insufficient for Planet-
Lab.

Mainstream operating systems such as Unix provide pro-
tection and resource control at the same level as the API
(e.g.- at the Unix system call/process interface). For ex-
ample, a PlanetLab node implementation using such an OS
might give each slice a process group on the machine. This
has efficiency advantages: since the API and protection in-
terfaces are relatively high-level, considerable sharing of re-
sources (e.g., physical memory for code and data) is possible,
and thus, many slices can be supported on a machine. The
downside is that protection is problematic, and the number
of resources that must be allocated is large, with a high-level
protection interface introducing much complexity to the sys-
tem (e.g., policies may now need to include file descriptors,
sockets, network port numbers, loopback interfaces, and so
on).

A middle ground between the complete virtualization and
mainstream operating systems are recent modifications to
Unix systems to provide wirtual kernels or wvirtual servers.
Examples of this approach include Linux VServers [9], The
BSD Jail [?], User-Mode Linux [?], and commercial offerings
such as Ensim’s Private Server technology [?]. Such systems
provide the sharing efficiencies of the Unix option, but with
better possibilities for protection and resource control. On
the downside, supporting alternative, future APIs in an effi-
cient manner remains problematic. Version 1 of PlanetLab,

as described in this paper, uses Linux VServers with addi-
tional resource control and protection facilities derived from
the Scout [12] operating system.

Recently, the notion of an isolation kernel has been pro-
posed by at least two groups in the research community [22,
7]. Isolation kernels claim to occupy an attractive point in
the design space: they provide a protection interface close to
real hardware suitable for running (and consequently evolv-
ing) operating systems and their APIs, and a low-level mul-
tiplexing point for system resources. Unlike pure VMs, how-
ever, the “hardware” presented to a guest operating system
is considerably more efficient for the operating system to
handle, and more cooperation between VMs and the VMM
itself is possible.

2.2 Network Perspective

At the global level, the central challenge is discovering what
resources are available, dynamically creating slices that span
these resources, and launching services within these slices.
This process is rootedd in the individual nodes, which is-
sue tickets (credentials) that specify resource amounts (e.g.,
cycle and link bandwidths) and a time frame for which the
resources can be acquired. The bearer of a ticket can redeem
it at the node for a lease on the resources over the given time
frame, subject to the node’s admission control policy. In the
abstract, this process works as follows; Section 4 described
the implementation in Version 1.

First, a node manager, implemented as part of the VMM,
runs on each node. It takes a set of tickets as input, and ac-
cording to a local admission control policy, determines if the
tickets can be redeemed. The ticket set is signed by an au-
thority that the node trusts to enforce the global allocation
policy. If the request can be satisfied, the node manager re-
serves the specified resources, creates a virtual machine and
binds it to those resources, and returns a lease. This lease
is later used by the service manager to launch a program
within the virtual machine.

Second, a resource monitor is an service running on each
node. It monitors resource availability on the node and peri-
odically reports the results to one or more agents. Resource
monitors depend on an interface exported by the virtual
machine that allows them to record certain facts about the
state of the node; e.g., the current CPU load and the avail-
able link bandwidth.

Third, an agent collects resource availability information
from a set of resource monitors or other agents, and issues
tickets that can be used to acquire resources on the moni-
tored nodes. An agent can respond to two kinds of queries:
(1) it can advertise the tickets it is holding that meet cer-
tain criteria, and (2) it can grant tickets themselves to a
requester.

Fourth, a resource broker responds to queries from service
managers trying to discover a slice to run in. Each query
describes the resources needed by the service, and specifies
the principal on whose behalf the request is being made.
Given a query, the broker first contacts one or more agents to
discover what tickets it is possible to obtain. It then matches
this information with the service’s resource requirements to



produce a slice specification, contacts the relevant agents to
obtain the tickets, and returns them to the service manager.

Finally, a service manager is associated with each service. It
contacts a resource broker to discover a slice and obtain the
tickets needed to instantiate it. It then submits the tickets
to the admission control mechanism on each node to cre-
ate a network of virtual machines. Should virtual machine
creation succeed on each node, the service manager then
launches the service, that is, loads and starts a program in
each virtual machine. Admission control returns a lease on
the slice. The manager must periodically renew this lease.

Tickets @

Node

Monitoring
(1) Y Agent

/ \\Reiuﬂ/(
Monitoring @
Node Tickets

Figure 1: Acquiring a Slice

Service

©

Figure 1 shows one picture of how these components might
interact. Step 1 shows resource monitoring information flow-
ing from a set of nodes to their trusted agent. At step 2,
a resource broker running within the service manager re-
quests a description of tickets held by the agent, and the
agent responds with a set of advertisements. At step 3, the
broker combines the advertisements with the known service
requirements to produce a slice specification. The broker
requests the tickets for the slice from the agent at step 4
and the agent replies with the tickets. Finally, at step 5 the
service presents the tickets to the node on which they are
good; the node instantiates a virtual machine bound to the
resources and returns a lease to this VM to the service.

3. VIRTUAL MACHINES

This section describes how PlanetLab implements virtual
machines on each node. The plan is to evolve the Plan-
etLab VMM, by initially supporting a single, well-known
API (the Linux system call interface), and then changing
the underlying implementation over time. As described in
this section, Version 1 adopts the virtualized kernel strategy.
We are exploring the use of isolation kernels as the basis for
node virtualization in Version 2 of PlanetLab.

3.1 Vservers

Vservers is a patch to the Linux 2.4 kernel that provides the
illusion of multiple, independently managed virtual servers
(vservers) running on a single machine [9]. It implements
a level of virtualization at the system call interface by ex-
tending the non-reversible isolation provided by chroot for
filesystems to other operating system resources such as pro-
cesses and SysV IPC. Processes within a vserver are given
full access to files, processes, SysV IPC, network interfaces,
and accounts which can be named in their containing vserver
and are denied access to all other operating system resources

otherwise. Each vserver is also given a weaker form of root
along with its own UID/GID namespace which allows each
vserver to have its own superuser while at the same time
not compromising the security of the underlying machine.

3.1.1 Mrtualization

Virtualization is implemented at the system call interface
and isolation is enforced based on the idea of a security con-
text. Each vserver on a machine is assigned a unique security
context, and each process running on that machine is associ-
ated with a specific vserver through its security context. A
process’s security context is assigned via a new system call
and inherited by all of the process’s descendants. Isolation
between different vservers is enforced through the system
call interface by using a combination of a process’s security
context and UID/GID when checking access control privi-
leges and deciding what information should be exposed to a
given process. A special security context (context 1) is given
a complete view of the entire machine and, as described in
Section 4.3, is used to create administrative slices.

By virtualizing above a standard Linux kernel, vservers achieve
scalability through large amounts of resource sharing and no
active state for idle vservers. Sharing of physical memory
and disk space is substantial. For physical memory, savings
are accrued by having a single copy of the kernel, a single
copy of all kernel and user-level daemons, and, perhaps most
importantly, sharing of read-only and copy-on-write mem-
ory segments across unrelated vservers. Disk space shar-
ing is also significant due to the introduction of the filesys-
tem immutable invert bit which allows for a primitive form
of filesystem copy-on-write (COW). By using COW on ch-
rooted vserver root filesystems, vserver disk footprints are
reduced to just 5.7% of what would be requiring with copy-
ing (Section 3.1.3). Achieving comparable amounts of shar-
ing in a virtual machine monitor or isolation kernel approach
is strictly harder, albeit the isolation guarantees are differ-
ent.

Virtualizing above the kernel, however, comes at a cost:
weaker guarantees on isolation and additional challenges for
eliminating QoS crosstalk. Unlike virtual machine monitors
and isolation kernels that provide isolation at a low-level,
vservers implement isolation at the system call interface.
Hence, a malicious vserver that exploits some obscure bug
in the Linux operating system could potentially gain control
of the underlying operating system, and hence compromise
security of the machine. (In practice, we have yet to observe
such an incident. However, in principle, such an attack is
still possible.) Such an attack would not be possible in a
VMM or isolation kernel. Another cost incurred by virtu-
alizing above the kernel is QoS crosstalk. Eliminating all
forms of QoS crosstalk (e.g., interactions through the Linux
buffer cache) is strictly harder in a vserver-based approach,
even in the presence of proportional-share schedulers.

3.1.2 Vserver Root

A weaker version of root allows each vserver to have its own
superuser while at the same time not compromising the se-
curity of the underlying machine. Superuser privileges are
granted safely to vservers by having each vserver root re-
linquish a subset of the true superuser’s capabilities and



by leveraging the isolation already provided by vservers to
limit the scope of a vserver root’s activities to the contain-
ing vserver. In Linux, access control for privileged opera-
tions is based on a capabilities system. Capabilities deter-
mine whether privileged operations such as pinning physical
memory or rebooting the machine are allowed or disallowed.
Vserver root is denied all capabilities that could undermine
the security of the machine (e.g., accessing raw devices) and
granted all other capabilities.

Despite having only a subset of the true superuser’s capa-
bilities, vserver root is still useful in practice. It allows for
modification of the vserver’s root filesystem which, for ex-
ample, allows users to customize what software packages are
installed in a particular vserver. Combined with per-vserver
UID/GID namespaces, it allows vservers to implement their
own internal account management schemes (e.g., by main-
taining a vserver-specific /etc/passwd and running an sshd
daemon a different TCP port), which provides the basis for
potential integration with other wide-area testbeds such as
NetBed [24] and RON [1]. Finally, as we gain additional ex-
perience on what privileges services actually require, adding
additional extensions to the existing set of Linux capabilities
provides a natural path towards exposing privileged opera-
tions in a controlled manner.

3.1.3 Scalability

Scalability in the current implementation is determined pri-
marily by disk space for vserver root filesystems and service-
specific storage. On PlanetLab, each vserver is created with
a root filesystem that points back to a trimmed-down ref-
erence root filesystem which comprises 1408 directories and
28003 files covering 508 MB of disk. Using vserver’s primi-
tive COW on all files, excluding those in /etc and /var, each
vserver root filesystem mirrors the reference root filesystem
while only requiring 29 MB of disk space, 5.7% of the orig-
inal root filesystem size. This 29 MB consists of 17.5 MB
for a copy of /var, 5.6 MB for a copy of /etc, and 5.9
MB to create 1408 directories (4 KB per directory). Given
the reduction in vserver disk footprints afforded by COW,
hundreds of vservers can easily co-exist on a given Planet-
Lab node. In the future, we would like to push disk space
sharing even further by using a true filesystem COW and ap-
plying techniques from systems such as the Windows Single
Instance Store [4].

Operating system resource limits are a secondary factor which
ultimately determine the scalability of vservers. While each
vserver is provided with the illusion of its virtual execution
environment, there still remains a single copy of the underly-
ing operating system and associated kernel resources. Under
heavy degrees of concurrent vserver activity, it is possible
that limits on kernel resources may become exposed and
consequently limit system scalability. (We have already ob-
served this with file descriptors.) The nature of such limits,
however, are no different from that of large degrees of con-
currency or resource usage within a single vserver or even
on an unmodified Linux kernel. In both cases, one solution
is to simply extend kernel resource limits by recompiling the
kernel. Of course, simple scaling up of kernel resources may
be insufficient if inefficient algorithms are employed within
the kernel (e.g., O(n) searches on linked lists). Thus far, we
have yet to run into these types of algorithmic bottlenecks.

3.2 Protected Raw Sockets

One key decision made very early in design process was that
users of PlanetLab should not have root access to the ma-
chines. This is because we expect PlanetLab to support a
large number of users (researchers) that cannot all be trusted
to not misuse root priviledge. On the other hand, we recog-
nize that many users will need access to services that nor-
mally require root priviledge. Access to raw sockets is one
such example.

Our resolution of this dilemma, is to provide a “protected”
version of the priviledged service. For example, in the case
of raw sockets, rather than allow a service to gain access
to all incoming packets and write arbitrary packets to the
network, services are forced create sockets that are bound to
specific UDP or TCP ports: incoming packets are classified
and delivered only the to the service that created the socket,
and outgoing packets are filtered to ensure that they are
properly formed (e.g., the process does not spoof the source
IP address or UDP/TCP port numbers). The protected raw
socket facility consults a policy database that indicates what
port numbers are allocated to each service.

3.2.1 UDP and TCP Sockets

Protected raw sockets use the standard Linux socket API
with minor semantic differences. Just as in standard Linux,
first the socket must be created with the

socket (int domain, int type, int protocol);

system call. To create a protected raw socket, the domain
argument must be set to PF_INET, type to SOCK_RAW and
protocol can be either IPPROTO_TCP or IPPROTOT_UDP for
TCP or UDP sockets, respectively. Return values are the
same as in Linux.

Once the socket is created, it is necessary to bind it to a
particular local port of the specified protocol. The standard
Linux bind system call is used. For example, the following
code fragment

bzero((char *)& sin, sizeof(sin));
sin.sin_port = htons(9090);

if ((bind(sock, (struct sockaddr *)& sin, sizeof(sin)))

<0 {
perror("bind") ;
exit(1);

}

binds the previously created socket to local TCP port 9090.

After the socket is created and bound to a local port, it is
ready to be used to send and receive data. The usual send,
sendto, sendmsg, recv, recvfrom, recvmsg and select
calls can be used. The data received includes the IP and
TCP/UDP headers, but not the link layer header. The data
sent, by default, does not need to include the IP header; a

service that wants to include the IP header sets the IP_HDRINCL

socket option on the socket. The IP and UDP/TCP check-
sum are performed by the kernel.



3.2.2 ICMP Sockets

ICMP packets can be sent and received through protected
raw ICMP sockets. To protect users from interfering with
each other, each ICMP socket is allowed to send and re-
ceive only packets of the registered type bound to the socket.
Similar to standard sockets, the bind system call is used to
specify the packets that are to be received and sent through
a socket. To receive and send packets associated with a spe-
cific local TCP/UDP port (e.g., Destination Unreachable,
Source Quench, Redirect, Time Exceeded, Parameter Prob-
lem), the ICMP socket needs to be bound to the specific
port. For example, the following code fratment

if ((sock = socket(PF_INET, SOCK_RAW, IPPROTO_ICMP_UDP))
<0 {

perror ("socket") ;

exit(1);
}

bzero((char *)& sin, sizeof(sin));
sin.sin_port = htons(9090) ;

if ((bind (sock,
<0 {
perror ("bind") ;
exit(1);
}

(struct sockaddr *)& sin, sizeof(sin)))

creates and binds the ICMP socket to local UDP port 9090.
Only ICMP messages associated with the local UDP port
9090 can be received and sent through this socket.

To exchange ICMP messages that are not associated with
a specific TCP/UDP port number—e.g., Echo, Echo Re-
ply, Timestamp, Timestamp Reply, Information Request,
and Information Reply—the socket has to be bound to a
specific ICMP identifier. The ICMP identifier is a 16-bit
field present in the ICMP header that is used to demulti-
plex/match packets. Only messages containing the right
identifier are received and sent through a protected raw
ICMP socket. For example, the following code fragment

if ((sock = socket(PF_INET, SOCK_RAW, IPPROTQ_ICMP))
<0 {
perror ("socket") ;
exit(1);
}

bzero((char *)& sin, sizeof(sin));
sin.sin_port = htons(23456) ;

if ((bind (sock,
<0) {
perror ("bind") ;
exit(1);
}

(struct sockaddr *)& sin, sizeof(sin)))

creates and binds the ICMP socket to identifier 23456.

3.3 ResourceLimitsand Isolation

PlanetLab provides resource limits per vserver as well as re-
source isolation between the vservers running on a node.
More specifically, resource limits on outgoing traffic pro-
tect the rest of the world from PlanetLab, while resource
isolation between vservers protect PlanetLab services from
each other. This section describes the resource management
mechanisms now in place on PlanetLab and outlines future
work in this area.

PlanetLab currently enforces a cap on the total outgoing
bandwidth of a node while providing fair service between
vservers. This is done using the hierarchical token bucket
(htb) queueing discipline of the Linux Traffic Control facility
(tc) [11] as follows. First, the node administrator configures
the root token bucket with the maximum rate at which he
is willing to allow traffic to leave the node. Next, for each
vserver, a token bucket is automatically created that is a
child of the root token bucket. The htb queueing discipline
then provides each child token bucket with its configured
rate, and fairly distributes the excess capacity from the root
to the children that can use it in proportion to their rates.
For example, if the node administrator sets the root token
bucket rate to 5Mbps, and the rate of each vserver token
bucket is set to 1Kbps, the 5Mbps will be fairly divided
among all vservers (in this case we expect vservers to use
more than 1Kbps, but we assign each the same small rate
so that they fairly share the total).

In addition to this general rate-limiting facility, PlanetLab
also limits the outgoing rate for certain classes of packets
that may raise alarms within the network. For instance, we
may choose to limit the rate of outgoing pings, or of packets
containing IP options to a small number per second; this
simply involves creating additional child token buckets using
htb and classifying outgoing packets so that they end up in
the correct bucket. Figuring out reasonable output rates for
potentially troublesome packets is ongoing work.

Isolation between vservers is desirable to minimize cross-
talk among slices as they contend for resources. Two pos-
sible approaches to providing resource isolation are fairness
and guarantees. Fairness ensures that each of the IV slices
running on a node receives no less than 1/N of the available
resources during periods of contention, while guarantees pro-
vide a slice with a reserved amount of the resource. In the
latter case, the scheduling mechanism that provides guar-
antees as a consequence provides isolation; for instance, if
a slice is truly guaranteed 10Mcps on the CPU, then this
guarantee protects it from excessive CPU usage by other
slices. PlanetLab will ultimately provide CPU and band-
width guarantees for slices that request them, and “fair best
effort” service for the rest.

The hierarchical token bucket rate limiter described above
fairly distributes bandwidth between outgoing packet flows,
and can also serve as a first step towards granting bandwidth
guarantees for slices. For instance, in order to provide a
vserver with 1Mbps of bandwidth on a node, the rate of the
vserver’s token bucket can be set to this amount. The token
bucket can be configured so that the vserver can share the
excess capacity over 1Mbps, or its usage can be capped to
1Mbps. In either case, the admission controller must ensure
that the sum of all vserver token bucket rates is no greater



than the root bucket rate in order to provide a reasonable
guarantee of service. We require more experience to deter-
mine how well the htb mechanism is able to provide services
with true bandwidth guarantees.

The Linux CPU scheduler provides approximate fairness be-
tween processes, but this raises two problems for Planet-
Lab. First, a vserver with many processes could use up
more than its fair share of the CPU. We want to enforce
isolation primarily on the level of vservers rather than pro-
cesses. Second, the standard Linux scheduler cannot provide
CPU guarantees in the form of reservations. We are cur-
rently planning on leveraging Scout’s [12] CPU scheduling
infrastructure to provide vservers with fairness and resource
guarantees, but this feature has not yet been deployed in
PlanetLab.

4. MANAGEMENT SERVICES

Rather than view PlanetLab management as a single, fixed
service, our approach is to unbundled management of the
overlay into a set of largely independent services, each run-
ning in their own slice of PlanetLab. Some aspects of man-
agement are service-specific (e.g., monitoring the health of
a running service), while others are part of the shared in-
frastructure (e.g., discovering the set of available nodes).
PlanetLab provides an initial version of the latter services,
as described in this section, although our expectation is that
they will be replaced by better alternatives over time.

4.1 System Installation and Update

PlanetLab poses challenges for the maintenance of infras-
tructure software on PlanetLab nodes, in particular because
the system software is expected to evolve over time, while
supporting continuously running services. It is a require-
ment to be able to upgrade pretty much all of PlanetLab’s
core software, including the operating system kernel, under
remote control. Fortunately, the nature of the applications
running over PlanetLab reduces the burden of maintaining
continuous operation: it is safe to take a single node down
for a software upgrade since applications should assume that
a small number of nodes will always be going down anyway.

Our original approach to installing software on machines,
adopted for reasons of rapid initial deployment, was to use
the U.C. Berkeley RootStock [?] system. This had the ad-
vantage that it included an update daemon on each node to
allow software to be updated after installation, but suffered
a number of drawbacks in the PlanetLab case, the most se-
rious being that a human operator is required to insert and
remove a floppy disk when the machine is installed.

The solution currently adopted consists of three compo-
nents: a powerful boot monitor (a Linux kernel booted from
a CD) that allows almost arbitrary remote manipulation of
the machine, a boot server that securely downloads instruc-
tions to a newly-booted machine (including complete installs
of operating system software), and a process for runtime
update of non-kernel packages (which we retain from Root-
Stock). The system is centralized, but still appropriate for
a federated model where multiple PlanetLabs exist run by
different organisations.

411 BootCD

The boot environment for PlanetLab was developped from
the University of Cambridge XenoBoot disk [25] and shares
many features with the BSD-based NetBed CD [23]; indeed
the two projects have exchanged several ideas over the de-
sign. The CD supplied for PlanetLab machines is a minimal,
though complete, Linux system that boots from the CD and
runs from the CD and dynamic RAMdisk. The PlanetLab
node always boots from the CD, but is capable of then boot-
ing another kernel from a harddisk if required.

At boot time, the node brings up the main network inter-
face using DHCP, or using static address information on a
floppy disk if present. It then connects to a web server (the
boot server) using SSL, verifying the server’s identity with
a certificate burned onto the CD. The node posts to the
boot server a variety of information about itself, including
hardware specification, current network configuration, and
ethernet MAC address. It recieves in return a file encrypted
and signed with an offline private key held at Intel Research.
The node decrypts this file and verifies its authenticity us-
ing a public key also burned on the CD, and finally executes
the file as a script. What happens next is entirely up to
the script, and consequently is under the control of the boot
server.

The motivation for both authenticating the server and the
script is to prevent replay attacks from a “fake” web server
and also protect PlanetLab in the event that the “real” web
server is compromised: adversaries still cannot execute ar-
bitrary scripts on booting PlanetLab nodes since they still
cannot sign a new script. During a normal install process
(described below), all files downloaded from the web server
are signed in this way.

4.1.2 Boot Server and Software Maintenance

The task of the boot server is to respond to this request from
a booting machine with an appropriate script. Typically,
one of three scripts is sent to the machine: one to perform
a reinstall of the current PlanetLab software distribution on
the node, one to simply boot a second kernel from the node’s
hard disk, and a third to bring up a heavily firewalled ssh
server to allow remote diagnostics and login by a PlanetLab
administrator. A database on the boot server holds the boot
state for each node, including a state machine that keeps
track of whether the machine needs a reformat and reinstall,
or should simply boot from the hard disk as normal.

This arrangement confers great flexibility in both bringing
up nodes, and installing software. In principle, nearly any
filing system and kernel can be installed on the bare hard-
ware of the node using this technique, provided that code
can be written for the Linux distribution on the CD to do the
job. Most importantly, this can all be written or modified
after the CD has been distributed and the node installed.
In combination with the ability the remotely power-cycle a
machine, the result is a powerful remote management facil-

ity.

Since the current PlanetLab system software environment
is a derivative of RedHat Linux, we can leverage RedHat’s
package management and installation tools to maintain Plan-



etLab nodes. The installation boot script mimics the con-
ventional RedHat network install behavior, and we retain
the use of RootStock to regularly update software packages
installed on the nodes while they are running. The only
changes we have made to this process is to ensure that all
files downloaded from the boot server are signed by the of-
fline key, for the reasons detailed above.

4.2 Dynamic Slice Creation

Dynamic slice creation is currently implemented as a set of
daemons and a command-line program that communicate
via secure RPC protocols. Each node runs a node man-
ager daemon that implements the node’s admission control
policy and handles lease and virtual machine management
requests. Each node manager delegates authority to issue
tickets for its resources to an agent daemon that runs on
a well-known machine (www.planet-lab.org). The agent
keeps track of which node managers are available for dy-
namic slice creation and issues tickets in response to requests
from brokers. The service manager is currently a command-
line program and uses an integrated broker that speaks to
a single agent to obtain tickets to create slices. Both node
managers and agents also run a tiny embedded web server
to allow for remote inspection of their state.

4.2.1 Resource Monitoring

Each node runs a resource monitor that periodically reports
the status of its resources to an agent. The resource monitor
currently uses the Ganglia cluster monitoring toolkit [8], and

reports to a centralized agent running at www.planet-lab.org.

The monitoring facility currently reports overall CPU and
memory utilization, as well as per-slice network usage. This
information is aggregated at the agent and made available
as an XML document.

4.2.2 Agents

We currently implement a single, centralized agent, running
as a daemon process on www.planet-lab.org. It uses use
secure XML-RPC protocols to communicate with brokers,
issues tickets for all nodes, and discovers such nodes by pe-
riodically polling a Ganglia resource monitor. The agent
handles two main types of XML-RPCs from brokers: ticket
advertisement requests (getads) and new ticket requests
(gettickets). Ticket advertisement requests are handled
by returning the current set of available nodes as a set of
advertisements, each of which includes a node’s IP address.
New ticket requests are handled by performing a two-way
authentication via SSL, verifying the broker is authorized
to request tickets, creating a set of signed tickets, storing
the tickets in a local DB file (for crash recovery), and finally
returning them to the broker. Requests for tickets are spec-
ified using an XML slice description document. In the cur-
rent implementation, slice description files consist of a slice
name (e.g., oceanstore), the number of nodes requested,
and a desired lease length in seconds.

4.2.3 Node Managers

A node manager is that part of each node’s VMM that im-
plements admission control and handles all the mechanics of
creating and deleting vservers. Node managers are imple-
mented as daemon processes that use secure XML-RPC pro-
tocols to communicate with service managers. They make

themselves available for dynamic slice creation through the
central agent by periodically sending an existence packet
(including a heartbeat for debugging) to a local Ganglia re-
source monitor, and by accepting signed tickets from the
trusted agent.

Using XML-RPCs over SSL, node managers handle a num-
ber of different types of requests from service managers re-
lated to lease management and access control to the vir-
tual machines underlying the leases. The most important
requests are the following: new lease requests (newlease),

lease cancellations (deletelease), lease renewals (rewewlease),

and adding (addkey) and removing (delkey) SSH keys from
a lease’s virtual machine. In addition, node managers also
support a number of passive requests to allow probing of a
given virtual machine’s state (e.g., the getsshkeys RPC re-
turns a list of SSH public keys in the virtual machine’s SSH
.authorized keys file).

The most important request handled by a node manager is
the lease creation request. Lease creation requests from ser-
vice managers are handled first through an authentication
phase: a two-way authentication via SSL, ascertaining the
service manager’s identity through the SSL handshake, ver-
ifying the ticket presented as part of the request is signed by
a trusted agent and has not expired, and finally by verifying
that the service manager’s identity matches the identity of
the principal named in ticket. Assuming service manager
authentication succeeds, the node manager creates a new
lease by creating a new virtual machine, creating a signed
lease that specifies the term of the lease, storing the lease in
a local DB file (for crash recovery), and returning the lease
to the service manager. Creating a new virtual machine en-
tails creating a new vserver and creating a pair of accounts,
one in the main vserver and one in the vserver just created,
to allow for transparent redirection using SSH/SCP into the
vserver created for the virtual machine.

Vserver creation is done by first choosing a unique security
context and creating a mirror of a reference root filesystem
for the vserver using hard links and the immutable and im-
mutable invert filesystem bits. Two Linux accounts are then
created, one in the node’s primary vserver and one in the
vserver just created. Both accounts use a login name iden-
tical to that of the slice. The account in the main vserver
is specified to use a special shell, /bin/vsh. This shell is es-
sentially a modified bash shell which performs the following
four actions upon login: a switch to the slice’s vserver secu-
rity context, a chroot to the vserver’s root filesystem, relin-
quishing of a subset of the true superuser’s capabilities, and
redirection into an account in the vserver with an identical
login name. The end result of this two account arrangement
is that users accessing their virtual machines remotely via
SSH/SCP are transparently redirected into the appropriate
vserver and need not modify any of their existing service
management scripts.

4.2.4 Service Managers and Brokers

Service managers are implemented as executions of as a
command-line program that implements the secure XML-
RPC protocols required to communicate with both agents
and node managers. They use a simple integrated broker
that is capable of probing and requesting tickets from a



single agent in the creation of a slice. They authenticate
themselves to agents and node managers using an RSA key
pair and an X.509 certificate signed by a trusted certifi-
cate authority, both of which are stored locally in the user’s
.planetlab directory. Service managers store information
about the slices they are currently managing, including the
slice’s XML slice description file, unredeemed tickets, and
valid leases. This information is stored on disk in the user’s
.planetlab directory and used to recover from partial com-
pletion of slice management operations. For example, if a
node was unreachable when the service manager attempted
to redeem a ticket for a lease, it can retry the request later by
reading the unredeemed ticket from disk. Service managers
perform all node manager RPCs in parallel to all nodes to
reduce execution time and return either 0 or a positive error
code to allow service managers to be called programmati-
cally from other programs.

425 Trust Relationships

Trust relationships and delegations of trust are expressed
using a combination of X.509 certificates and signed XML
files. Agents accept ticket requests from brokers that present
X.509 certificates signed by a trusted certificate authority
and prove they possess the private keys associated with the
public keys contained in the X.509 certificates. Node man-
agers accept lease creation requests from service managers
that present tickets signed by a trusted agent and prove
they are the principle named in the tickets. The latter is
done by authenticating the service manager as part of the
SSL handshake protocol and comparing the SHA1 hash of
service manager’s public key to the principle named in the
ticket. Both tickets and leases are expressed as XML files
which include a principle, an IP address, a slice name, and
an interval of UTC time where the ticket or lease is valid.
Also included is the authorizing principle’s RSA signature
on the SHA1 hash of either the ticket or lease’s XML (Fig-
ure 2).

4.3 Administrative Slices

Administrative slices provide management services with a
complete view of node state along with additional capabil-
ities to perform privileged operations. Unlike conventional
virtual machines, which are confined to particular vservers,
virtual machines in administrative slices run in a special se-
curity context (context 1) that exposes the entire state of the
underlying physical machine. In addition, they also carry a
set of Linux capabilities that specify the set of privileges that
root should have within a specific administrative slice. The
former allows management services to perform tasks such as
conventional virtual machine management and distributed
process monitoring, tasks which would be impossible within
a conventional slice due to the isolation enforced by vservers.
The latter allows management services to perform tasks such
as passive monitoring of all outgoing network packets, a task
that requires elevated privileges, in this case the CAP_NET_RAW
Linux capability.

Administrative slices are created in a similar manner as that
of conventional slices but require additional details to be
specified and require additional user privileges in order for
tickets to be obtained from an agent. To request tickets
for an administrative slice, users augment their XML slice

sig-rsa-shal-base64: m/POttuTL2NadGyWhKZKdSCOulO1R6
jhZ4J4C7zmlhs+cKdBUnxVHNXOma9RE2xS3L+Ns4nYatungXdih
khwY/Gp4PVKWPsH1xd0y2gugbdC3sTps6v3NDqlaJz1Aoxx6fIK
rEMR6S5SZcY51+30ujnoLqGMTWz6tIc6IXSVRnDpw=

<?xml version="1.0" 7>
<lease>
<principle_shal>
ec6c223a8a2a8belcaf90f8b51e8c121£f805c4a4d
</principle_shal>
<ip>
12.155.161.149
</ip>
<slice>
oceanstore
</slice>
<start_time>
2002-12-07 01:52:26
</start_time>
<end_time>
2003-06-07 01:52:26
</end_time>
</lease>

Figure 2: An example lease.

description to specify a request for an administrative slice
and include a set of Linux capabilities for root within that
slice. Unlike conventional slices, which may be created by
any PlanetLab principle investigator, administrative slices
may only be created by PlanetLab administrators. Restric-
tions on which users may create which types of slices are
enforced by the agent running on www.planet-lab.org by
controlling the issuing of tickets for specific slice types based
on user privileges as stored in a PostgreSQL database.

5. CONCLUDING REMARKS

At the time of this writing, PlanetLab is being used by over
140 researchers around the world, with as many as a dozen
services on the verge of running continuously. We are cur-
rently testing a beta release of the Boot CD, which we expect
to facilitate substantial growth over the next several months.

This paper describes the key elements of Version 1 of the
PlanetLab software, including both support for virtual ma-
chines running on each node, and the global management
facilities needed to keep the software up-to-date and allo-
cate resources to services. By no means, however, do we be-
lieve that Version 1 represents the final system. As outlined
in Section 2, for example, the design space for both virtual
machines and global resource allocation are quite rich, and
we expect both to be a focus of continuing research in the
next few years. In addition, once PlanetLab begins to host
continuously running overlay services, we expect the issue of
service composition to come to the forefront. Recognizing
and codifying the common sub-services is the key to evolving
the next generation Internet.

6. REFERENCES
[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and
R. Morris. Resilient overlay networks. In Proceedings



[2]

[4]

[5]

[7]

of the 18th ACM Symposium on Operating Systems
Principles, October 2001.

D. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Proceedings
of the 18th ACM Symposium on Operating Systems
Principles (SOSP), pages 131-145, Chateau Lake
Louise, Banff, Alberta, Canada, October 2001.

M. Balazinska, H. Balakrishnan, and D. Karger.
INS/Twine: A Scalable Peer-to-Peer Architecture for
Intentional Resource Discovery. In Proceedings of
Pervasive 2002 - International Conference on
Pervasive Computing, Zurich, Switzerland, August
2002.

W. J. Bolosky, S. Corbin, D. Goebel, and J. R.
Douceur. Single instance storage in windows 2000. In
Proceedings of the 4th USENIX Windows Systems
Symposium, August 2000.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), Chateau Lake Louise,
Banff, Alberta, Canada, October 2001.

P. Druschel, M. Castro, A.-M. Kermarrec, and

A. Rowstron. Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications, 20,
2002.

K. Fraser, S. Hand, T. Harris, I. Leslie, and I. Pratt.
The Xenoserver Computing Infrastructure, 2002.

http://www.cl.cam.ac.uk /Research/SRG /netos/xeno/xeno-

general.pdf.
Ganglia. http://ganglia.sourceforge.net.

J. Gelinas. Virtual private servers and security
contexts.
http://www.solucorp.qc.ca/miscprj/s_context.hc.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,

P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-Scale
Persistent Storage. In Proceedings of the Ninth
international Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS 2000), Nov. 2000.

Linux Advanced Routing and Traffic Control.
http://lartc.org.

D. Mosberger and L. L. Peterson. Making paths
explicit in the scout operating system. In USENIX,
editor, 2nd Symposium on Operating Systems Design
and Implementation (OSDI ’96), October 28-31,
1996. Seattle, WA, pages 153-167, Berkeley, CA,
USA, Oct. 1996. USENIX.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into

the Internet. In Proceedings of the 1st ACM Workshop
on Hot Topics in Networks (HotNets-I), October 2002.

[14]

[15]

[16]

[17]

(18]

[19]

20]

(21]

[22]

23]

[24]

[25]

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server
Selection. In Proceedings of the IEEE INFOCOM
Conference, New York, NY, June 2002.

A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001), Heidelberg,
Germany, November 2001.

A. Rowstron and P. Druschel. Storage Management
and Caching in PAST, A Large-Scale Persistent
Peer-to-Peer Storage Utility. In Proceedings of the
18th ACM Symposium on Operating Systems
Principles (SOSP), pages 188-201, Chateau Lake
Louise, Banff, Alberta, Canada, October 2001.

S. Savage, A. Collins, E. Hoffman, J. Snell, and

T. Anderson. The End-to-end Effects of Internet Path
Selection. In Proceedings of the ACM SIGCOMM
Conference, Cambridge, MA, September 1999.

N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP Topologies with Rocketfuel. In Proceedings of the
ACM SIGCOMM Conference, pages 133-146,
Pittsburgh, PA, August 2002.

N. Spring, D. Wetherall, and T. Anderson.
Scriptroute: A facility for distributed internet
measurement. In Proceedings of the 4th USITS
Symposium, Seattle, WA, March 2003.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and

H. Balakrishnan. Chord: A Peer-to-Peer Lookup
Service for Internet Applications. In Proceedings of the
ACM SIGCOMM Conference, San Diego, CA,
September 2001.

L. Wang, V. Pai, and L. Peterson. The Effectiveness of
Request Redirection on CDN Robustness. In
Proceedings of the 5th Symposium on Operating
System Design and Implementatio (OSDI), Boston,
MA, December 2002.

A. Whitaker, M. Shaw, and S. Gribble. Scale and
Performance in the Denali Isolation Kernel. In
Proceedings of the 5th Symposium on Operating
System Design and Implementatio (OSDI), Boston,
MA, December 2002.

B. White, J. Lepreau, L. Stoller, R. Ricci,

S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and

A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. In Proceedings

of the 5th Symposium on Operating System Design and
Implementatio (OSDI), Boston, MA, December 2002.

B. White, J. Lepreau, L. Stoller, R. Ricci,

S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proceedings

of the 5th USENIX Symposium on Operating Systems
Design and Implementation, December 2002.

Xenoboot.

http://www.cl.cam.ac.uk /Research/SRG /netos/xeno/boot/.





