Declarative Networking:
Language, Execution and Optimization

Boon Thau Loo* Tyson Condie* Minos Garofalakist David E. Gay' Joseph M. Hellerstein*

Petros Maniatis® Raghu Ramakrishnan* Timothy Roscoe' lon Stoica*
“UC Berkeley, Intel Research Berkeley aritUniversity of Wisconsin-Madison

ABSTRACT that enables declarative specification and deployment of distributed

The networking and distributed systems communities have recentl&/r()tl(()coIS z?]nd gggozrlllthsr%s V'evd'smb“tﬁd Ejecurs_B/e dquljenes over r|1et-
explored a variety of new network architectures, both for applicationr-n(;rnt(fdra;n ds oEepioye’] tt]{is coemr:?eg?ri]nya Seyss(t:QmeC ﬂg\é\lz;v%glanp e
level overlay networks, and as prototypes for a next-generation In: . X h . vl
ternet archi¥ecture In this con?ext t\/{g have investiggatedara- Our high-level goal is to provide a software environment that can
tive networking the use of a distributed recursive query engine asagtcr]elergte thle. pr%cegs of fSDEC'Iy'ngli |mpkllt.3tm?ntlng, experimenting
a powerful vehicle for accelerating innovation in network archi_tec-wbeggra%\\’/ cé\;:g?wo?i;gnsisorar;fgggrIa?r((:erleef?olrjtntao&revisi the cur-
tures [23, 24, 33]. Declarative networking represents a significant nt Internet Architectur?a wFI)wich is consgigdered by many reseascher
new a ppllcatlk?_n area for dateabdase refsezrch on rle gursg/e query pé(i)nbe fundamentally iII-sdited to handle today’synetwgrk uses and
cessing. In this paper, we address fundamental database issue

this domain. First, we motivate and formally define the -Network%ruze“ilc[elaﬂ.sl\all\{g’l’lederii(gﬁaltﬁee:; g;ghglig[ur:]zsn;rsﬁgretlsn%opé?esgﬁ)e;?
Datalog NDng) language for declarative network spemflcatlons. lication-level “overlay” ’networks on top of the current Internet
Second, we introduce and prove correct relaxed versions of the tr%gprotot oand rol ou¥ I niend serr)vices o voltonar
ditional semi-né&/e query evaluation technique, to overcome fun- P yp y

damental problems of the traditional technique in an asynchronouféIShIOn [26]. Whether one is a proponent of revolution or evolution

distributed setting. Third, we consider the dynamics of network" th.is. Context,.there is agreement that we are enterir]g a period of
state, and formalize the “eventual consistency” of our programs eVeﬂgmﬁcant flux in network services, protocols and architectures.
when bursts of updates can arrive in the midst of query execution. '? sutcl?j at? eth|r.onn:hent,.|nhntovaftt|on ca? ble b‘ittﬁr fgcuged landt.ac-
Fourth, we present a number of query optimization opportunitie®'€"at€d by ﬁvmg e ”% bso waref t(r)]os a X and. Declarative
that arise in the declarative networking context, including applicadU€"y approaches appear to be one of (h€ most promising avenues
tions of traditional techniques as well as new optimizations. Last Of dealing with the complexity of prototyping, deploying and evolv-
we present evaluation results of the above ideas implemented in olff9 NeW network architectures. The forwarding tables in network

P2 declarative networking system, running on 100 machines ové) uting no_des can be regarded as aview over changing gr_our_1d state
the Emulab network testbed network links, nodes, load, operator policies, etc.), and this view is

kept correct by the maintenance of distributed queries over this state.
These queries are necessarily recursive, maintaining facts about ar
1. INTRODUCTION bitrarily long multi-hop paths over a network of single-hop links.

The database literature has a rich tradition of research on recursiveOur initial forays into declarative networking have been promis-
query languages and processing. This work has influenced coning. First, indeclarative routing24], we demonstrated that recur-
mercial database systems to a certain extent. However, recursisive queries can be used to express a variety of well-known wired
is still considered an esoteric feature by most practitioners, and reand wireless routing protocols in a compact and clean fashion, typ-
search in the area has had limited practical impact. Even withincally in a handful of lines of program code. We also showed that
the database research community, there is longstanding controverfye declarative approach can expose fundamental connections: for
over the practical relevance of recursive queries, going backstt leaexample, the query specifications for two well-known protocols —
to the Laguna Beach Report [7], and continuing into relatively re-one for wired networks and one for wireless — differ only in the or-
cent textbooks [35]. der of two predicates in a single rule body. Moreover, higher-level

In more recent work, we have made the case that recursive querputing conceptse(g., QoS constraints) can be achieved via simple
technology has a natural application in the design of Internet infrasmodifications to the queries. Second declarative overlay$23],
tructure. We presented an approach catledlarative networking we extended our framework to support more complex application-
- level overlay networks such as multicast overlays and distributed

UC Berkeley authors funded by NSF grants 0205647, 0209108, and 0225@6@, hash tables (DHTs). We demonstrated a working implementation of
gift from Microsoft. the Chord [34] overlay lookup network specified in 47 Datalog-like
rules, versushousand®f lines of C++ for the original version.

Our declarative approach to networking promises not only flexibil-
ity and compactness of specification, but also the potential to stat-
ically check network protocols for security and correctness proper-

o> A) ; ties [11]. In addition, dynamic runtime checks to test distributed
not made or distributed for profit or commercial advantage aatidbpies : . -
bear this notice and the full citation on the first page. Toyooiherwise, to prOp.ert'es Of.the nEtWQrk can easily be expressed as c.j(.:'\da?rat've
republish, to post on servers or to redistribute to listgunes prior specific ~ dueries, providing a uniform framework for network specification,
permission and/or a fee. monitoring and debugging [33].
SIGMOD 2006 June 27-29, 2006, Chicago, lllinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/000655.00.

Permission to make digital or hard copies of all or part of thakwfor
personal or classroom use is granted without fee providatidbpies are

1.1 The Database Research Agenda conjuncts AND); the order in which predicates appear in a rule body
In our earlier declarative networking proposals, we focused pri2lSo has no semantic significance (though implementations typically
marily on addressing problems in networking and distributed sysemploy a left-to-right execution strategy). The query specifies the
tems. In doing so, we set aside important and challenging questioritput of interest.)
of language semantics, distributed execution strategies, and correct]he predicates in the body and head of Datalog rules are relations,
ness under network dynamics, all of which are essential for the prac@nd we will refer to them interchangeably as predicates, relations,
tical realization of declarative networks. or tables. Each relation haspaimary key which consists of a set
In this paper, we explore several of these research issues from ti§é fields that uniquely identifies each tuple within the relation. We
database perspective. We implemented our ideas in the P2 systepdlow the primary key to be specified for stored (“extensional”) re-
and present evaluations of many of our optimizations in realistidations; in the absence of other information, the primary key is the
large-scale distributed experiments. Specifically, the main contrifull set of attributes in the relation. _
butions of this paper are as follows: The names of predlcates_, funcyon symbols anq constants begin
e We motivate and formally define téDloglanguage for declar- With @ lower-case letter, while variable names begin with an upper-
ative network specificatiorNDlogis a subset of Datalog that CaS€ letter. Most implementations of Datalog enhance it with a lim-
makes explicit the link graph of the network and the partition- t€d Set of function calls (which start witti " in our syntax), in-
ing of data across nodes. As part\iblog, we introduce the cludllng bo_olean predicates, arithmetic computations and simple list
concept ofink-restrictedrules, which guarantees that all rules Manipulation €.g., the f_concatPattunction in our first example).
can be rewritten to be executed locally at individual nodes/A99regate constructs are represented as functions with field vari-
and all communication for each rewritten rule only involves aPIes within angle brackets<(-). For most of our discussion, we
sending messages along links (Section 2). will not consider negated predicates; we will return to the topic of
.) ‘negation as part of our future work (Section 8).
e We introduce and prove correct relaxed versions of the semi- Ag an example, the following program computes the shortest paths
Pavg EXEC.I_UI.I.OI‘] straltegty Ca”_f_tg‘ﬁe"?d ieml-nae andplpe-f _between all pairs of nodes in a graph. The program has four rules
Ined semi-nave evaluation. These techniques overcome un-(yhich for convenience we label R1-R4), and takes as input a stored
damental problems of semi-iva evaluation in an asynchro- (eytensional”) relatioriink(src, dst cost). R1 and R2 are used to
nous distributed setting, and should be of independent intergarive “paths”in the graph, represented as tuples in the derived (“in-
est outside the context of declarative networking: they sigensjonal”) relatiorpath(src, dst, nextHop pathVectar. ..). Thesrc
nificantly increase the flexibility of semi-ha evaluation to anqgdstfieids represent the endpoints of the path; paghVectoris
order the derivation of facts (Section 3). a string encoding the full path. We discussxtHoplater. Given the
¢ In the declarative network setting, transactional isolation ofpath relation, Rule R4 computes the shortest paths as the derived
updates from concurrent queries is not useful; network protorelationshortestPatfsrc, dst, pathVectorcost). R3 derives the re-
cols mustincorporate concurrent updates about the state of tHation spCostsrc, dst, mincos) that computes the minimum cost for
network while they run. We address this by formalizing the each (src,dst) group for all input paths. The r@aery specifies
typical distributed systems notion of “eventual consistency”shortestPath tuples as the result tuples. R2liaear rule, since
in our context of derived data. Using techniques from mate-there is only one recursive literal in the body. Rules with more than
rialized recursive view maintenance, we incorporate updatesne recursive literal in the body anen-linear
to base factsluring query execution, and still ensure well- R1: path(s,D,D,P,C) :- link(S,D,C), P £.concatPatkiink(S,D,C), nil).
defined eventual consistency semantics. This is of indeperr2: path(s,D,z,P,C) :- link(S,Z,0, path(Z,D,2,P»,Cy),
dent interest beyond the network setting when handling up- C =G, +Cy, P =f_concatPatllink(S,Z,Cy),P,).
dates and long-running recursive queries (Section 4). R3: spCost(S,D,mirC>) :- path(S,D,Z,P,C).

e We present a number of query optimization opportunities thaRR4: shortestPath(S,D,P,C) :- spCost(S,D,C), path(S,D,%,P.C
arise in the declarative networking context, including appli- Query: shortestPath(S,D,P,C).
cations of traditional technique®.§., aggregate selections Rule R1 produces one-hop paths from existing link tuples, and
and magic-sets rewriting), as well as new optimizations forRule R2 recursively produces path tuples of increasing cost by match-
work-sharing, caching, and cost-based optimizations based ding the destination fields of existing links to the source fields of
graph statistics. Again, many of these ideas can be appliegreviously computed paths. The matching is expressed using the
outside the context of declarative networking or distributedrepeated “Z” variable inink(S Z,C;) and path(Z,D,Z,P,,C;) of
implementations (Section 5). rule R2. Intuitively, rule R2 says that if there is a link from ndsle

e We present evaluation results from a distributed deployment® nodeZ, and there is a path from nodeto nodeD, then there is
involving 100 machines connected by the Emulab [10] net-2 path from nod&to nodeD via Z. In the presence of path cycles,
work testbed, running prototypes of our optimization tech-the query never terminates, as R1 and R2 will generate paths of ever

niques implemented as modifications to the P2 dedarativéncreasing.Iengths.. However, this can be fixed yvjth a well-known
overlay system (Section 6). query rewrite (Section 5.1.1) when costs are positive.

2. DATA AND QUERY MODEL 2.1 Network Datalog

We first provide a short review of Datalog, following the conven- In this section, we introduce the data and query model that we pro-
tions in Ramakrishnan and Ullman’s survey [28]. A Datalog pro-pose for declarative networking. The language we preseletis
gram consists of a set of declaratindes and a query. A Datalog work Datalog (NDlog), a restricted variant of traditional Datalog
rule has the fornp :- qi,dp, ...,0n., Which can be read informally intended to be computed in distributed fashion on physical network
as ‘gp andgp and... andqy implies p”. pis theheadof the rule, graphs. In describing our model, we use Mi2log query shown in
andqs, O, -..,qn IS a list ofliterals that constitutes thbodyof the Figure 1, which performs distributed computation of shortest paths.
rule. Literals are eithepredicatesapplied tofields (variables and One of the novelties of our setting, from a database perspective,
constants), or function symbols applied to fields. The rules can reis that data is distributed and relations may be partitioned across
fer to each other in a cyclic fashion to express recursion. The ordesites. To ease the generation of efficient query plans in such a sys-
in which the rules are presented in a program is semantically imtem, NDlog gives the query writeexplicit control on data place-
material. The commas separating the predicates in a rule are logicalent and movement. Specificall\Dlog uses a special data type,

SP1: path@S@D,@D,P,C) :#1ink (@S@D,C), syntactic constraint on the rules to ensure that communication takes
P = f_concatPat(link(@S @D, C), nil). place only along the physical links:

SP2: path(@S@Eﬁ(Z@F;% ; gzkéf@ci?cz :C%l +C Definition 5 A link-restrictedrule is either a local rule, or a rule
P = f_concatPatllink(@S @Z,G),P»). with the following properties:

SP3: spCost@S@D,min<C>) - path@S @D, @Z,P.C). e There is exactly one link literal in the body

SP4: shortestPatiS@D,P,C) :- spCos@S@D,C), o All other literals (including the head predicate) have their lo-
path@S@D,@Z,P,C). cation specifier set to either the first (source) or second (des-

Query: shortestPatt@®S@D,P,C). tination) field of the link literal.

This syntactic constraint precisely captures the requirement that
we be able to operate directly on a network whose link connectivity
is not a full mesh. Further, as we demonstrate in Section 3, link-
restriction also guarantees that all programs with only link-restricted
addressto specify a network location. Names of address variablesules can be rewritten into a canonical form where every rule body
and constants are prepended with “@”. More formally, we have thean be evaluated on a single node. In addition, all communication
following definition: for each rewritten rule only involves sending messages along links.

Definition 1 A location specifieis an attribute of type address ina 1€ foIIov.ving.is an example of a link-restricted rule:
predicate that indicates the network storage location of each tuple. P(@D.--.) :-#1ink (@S@D....)a(@S...)R(@S...) ..., R(@S...).

As a matter of notation, we require the location specifier to be the Ihel rule body ?ftthg gxample IS ex?ﬁuted at @S. art1_d the restult_lntg
first field in all predicates, and we highlight itbold for clarity. For p tuples are sent to » Preserving the communication constraints
example, the location specifier bfik(@S @D,C) is@S along links. Note that this example’s body predicates all have the

Another novelty of our setting is that we assume a network grapl?ame 'OCa“OF‘ speC|f_|er_: @s, the source of the link. I_n contrast,
that is not fully connected,e., a node can communicatérectly '1l€ SP2 of Figure 1 is link-restricted but has some relations whose
with only a subset of node’s ir71 the system. This allows us to modelpcatlon specifier is the source, and others whose location specifier is
the physical connectivity of a typical autonomous system in the inthe destination; this needs to be rewritten as described in Section 3.

Given these preliminaries, we are now ready to present our lan-

ternet, where each node is connected to relatively few other nodes. i

In contrast, both traditional parallel query processors and more requagel\lDIog.

cent distributed query engines, such as PIER [17], assume a fullpefinition 6 A Network Datalog NDlog) program is a Datalog pro-
connected network graph, where messages can be sent directly fragram that satisfies the following syntactic constraints:

any node to any other node in the system. Parallel systems achieve 1. Location specificity: Each predicate has a location speci-
this by engineering (and provisioning) the interconnection network, fier as its first attribute

while PIER uses overlay routing to connect any two nodes. 2. Address type safety:A variable that appears once in a rule

To express the constraint that a node can send data only to another ;< 41 address type must not appear elsewhere in the rule as a
node with which itis physically connected, we introduce the concept non-address type.

of link relation, which is defined as follows:
3. Stored link relations: Link relations never appear in the

Definition 2 A link relationis a stored (“extensional”) relation head of a rule with a non-empty bodie, they are stored,
link(@src, @dst,...) representing the connectivity information of not derived).

the network being queried.

Figure 1: Shortest-Path Query ifNDlog .

4. Link-restriction: Any non-local rules in the program are
The first two fields of each link table entry contain the source and link-restricted by some link relation.

destination addresses of a network link respectively, followed by al

arbitrary number of other fields (typically metrics) describing the

link. In this paper, we constrain all links to be bidirectioniag,, if

there is a network edge from a node to its neighbor, the reverse mu

be trué. In all our example queries, we utilize only one link table. 22_ Shortest Path Example .

In practice, there can be multiple such tables used by different rules, 1 illustrateNDlog, we step through an execution of thleortest-
Given that we will be executing queries across network links, it isPathquery above to illustrate derivation and communication of tu-

useful to identify queries that do not require communication: ples as the query is computed. We make use of the example network
in Figure 2. Our discussion is necessarily informal since we have

Definition 3 Local rulesare rules that have the same location spec-not yet presented our distributed implementation strategies; in the
ifier in each predicate, including the head. next section, we show in greater detail the steps required to generate

Local rules can be executed without any distributed logic. Ruledn€ €xecution plan. Here, we focus on a high-level understanding of

SP1, SP3 and SP4 are local. SP2 is a non-local rule sindinthe ~ (N€ data movement in the network during query processing.
andpathbody predicates are stored at different locations. We will describe communication iiterations where at each iter-

In NDlog, the evaluation of a rule must depend only on commu-&tion. éach network node generagethsof increasing hop count,
nication along the physical links. To this end, we introduce the fol-2nd then propagates these paths to neighbor nodes along links. In
lowing: the ' iteration, all nodes initialize their local path tables to 1-hop
. o)))) paths using SP1. In thé"Q iteration, using SP2, each node takes
Definition 4 A link literal is a link relation that appears in the body the input paths generated in the previous iteration, and computes
of a rule prepended with the “#” symbol. 2-hop paths, which are then propagated to its neighbors. For exam-
Given the preceding definitions, we are ready to define a simpl@l€: path(a,d,b, [a,b,d],6) is generated at nodeusingpath(b,d,d,

[b,d],1) from the £ iteration, and propagated to node In addi-
1in practice, some networks may not have symmetric links. OurIlon to storing t.he entlre.patlh vector, eapathtuple also contains
framework can be extended to handle this, but generalizing the dishenextHopattribute, which indicates for each path the next hop to
cussion in that manner complicates our presentation and is out of tHeute the message in the network. In fact, many network protocols
scope of this paper. propagate only theextHopand avoid sending the entire path vector.

réinceNDIog is a subset of Datalog, the semantics of a valdlog
program are exactly those of Datalog.

rule strand Each strand consists of a number of relational operators.
The example strand receives névpattP'? tuples generated in the
previous iteration to generate new pathspath™") which are then
inserted into thepathtable (with duplicate elimination) for further
processing in the next iteration.

In Algorithm 1, we show the pseudocode for a centralized P2 im-
plementation of multiple semi-in&e rule strands where each rule has
the form ApJe¥:- P9, pRld, AP, P 1, P, D1, B, ., 2
p1,---, Pn are recursive predicates abg, ...by, are base predicates.
Apﬁ'd refers topy tuples generated for the first time in the previous

iteration. pd'd refers to allpy tuples generated before the previous
iteration.

p(eb.aleab],6)

pleaaleal.) p(e.c.aleac]2)

p(a,d,b,[a,b,d],6)
p(ab,c,[ac,b],2)

p(a,b,b,[a,b],5)
p(ac.clacll)

1st Iteration 2nd Iteration

Oth Iteration

Algorithm 1 Semi-néve (SN) Evaluation in P2

while 3By.size> 0
VBy whereBy.size> 0, A
execute all rule strands
foreach recursive predicatp

Figure 2: Nodes in the network are running the shortest-path query. We
only show newly derived tuples at each iteration. For simjitjc we show
only the derived paths along the solid lines even though thetwork con-
nectivity is bidirectional (dashed lines).

old

P — Bk.ﬂUSl"()

. . old __ Q|dUA old
As paths are being computed, the shortest paths are also incremen- Pj P] P }
tally computed. For example, nodeomputegath(a, b, b, [a,b], 5) Bj « Ap*—p}
using rule SP1, and then sets its shortest pahttestPatfe, b, pj — p?l UB;
[a,b],5) using rule SP4. In the next iteration, naaleeceivegath(a, b, c, AprjﬁewH 0

[a,¢, b, 2) from nodec which has lower cost compared to the pre-
vious shortest cost of 5, and hence a rshertestPatla, b, [a,b], 2)

replaces the previous value. In the algorithm,B, denotes the buffer fopy tuples generated

: in the previous iterationZpQ9). Initially, pc, pd'd, ApP'd and
2.3 E_xpressweness . Ap¥are empty. As a base case, we execute all the rules to gen-
In previous work [24] we argued that executing a shortest pathyrate the initialpy tuples, which are inserted into the corresponding
distributed Datalog query closely resembles the distributed compus, pyffers. Each subsequent iteration of the while loop consists of

tation of the well-known path vector [25] protocol. In proposals forflushing all existingApﬁ'd tuples fromBy and executing all rule

declarative networks [23, 24], Datalog-like programs were used for : d
a variety of networking tasks, including standard routing protocolsStrands to generatespi? tuples, which are used to updapg,

such agdistance vectof25] anddynamic source routinfR0], and ~ Bj andp;j accordingly. Note that only ney; tuples generated in
more complex networks such as multicast trees and the Chord netp_e current iteration are inserted irBg for use in the next iteration.
work [34]. We note thatNDlog is flexible enough for expressing Fixpointis reached when all buffers are empty.

most of these programs efficiently, and provides the advantages . .

having clear semantics as described above (something that is nat2 Distributed Plan Generation

available in the original language for P2 described in [23]) and a In the distributed implementation of ttshortest-pattguery, non-
clearly defined link-restricted implementation as described below. local rules whose body predicates have different location specifiers
cannot be executed at a single node, since the tuples that must be
joined are situated at different nodes in the networkruke local-

3. EXECUTION PLAN GENERATION JOIN¢ : -
izationrewrite step ensures that all tuples to be joined are at the same

Having |Ilust_rated the mtended_ execution of an example program, -4 This allows a rule body to be locally computable.
we now describe the steps required to automatically generate an ex-
ecution plan from a\Dlog program. We first focus on generating
an execution plan in a centralized implementation, before extending
the technlques to the network scenario. project (#link.@S,path.@Z,path.@D,f_concatPath

(#link(@S,@Z,C), path.P), #link.C+path.C)

as path(@S,@D,@Z,P,C)

3.1 Centralized Plan Generation

In generating the centralized plan, we utilize the well-kn@&mi-
naive fixpoin{3,4] evaluation mechanism that ensures no redundant
evaluations. As a quick review, in semiiaa (SN) evaluation, input
tuples computed in the previous iteration of a recursive rule execu-
tion are used as input in the current iteration to compute new tuples.
Any new tuples that are generated for the first time in the current
iteration are then used as input to the next iteration. This is repeated
until a fixpoint is achievedi(e., no new tuples are produced).

X

#Link.Z=path.Z

#ink(@$S,@2,C)

\J
path(@Z,@D,@Z,,P,C)

The semi-n&ve rewritten rule for rule SP2 is shown below:
SP2-1: Apatf®@S@D,@Z,P,C) :#1link (@S@Z,G),

Apatif'd(@Z,@D,@2%.P2,C,), C=Cy + Cy,
P =f_concatPatlllink(@S @2,G),P).

Figure 3 shows the dataflow realization for rule SP2-1 using the

conventions of P2. We will briefly explain how the semifreaeval-
uation is achieved here. Each semiugarule is implemented as a

Figure 4: Logical Query Plan for rule SP2 from Section 2.

Consider rule SP2 from Section 2 where the link and path pred-
icates have different location specifiers. These two predicates are

2These rules are logically equivalent to rules of the foﬁyp?e‘” -

P1, Pz,---ypk—l,Apﬁ'd,pk+1,---,pn,bl,bz,...,bm, and have the advan-
tage of avoiding redundant inferences within each iteration.

<

link 1=
Input A patye A path™y | spp. — J;' \Output

paths A path®?.Z=link.Z A pathrew paths

Figure 3: Rule strand for rule SP2-1 in P2. Output paths that are genégd from the strand are “wrapped back” as input into the samesstd.

joined by a common “@Z” address field. Figure 4 shows the corfule strands. The extra two strand®PRa@S and SP2b-2@are
responding logical query plan depicting the distributed join. Theused as follows. Rule strar®@P2a@ $ends all existing links to the
clouds represent an “exchange”-like operator [14] that forwards destination address field éigkD tuples. Rule stran&P2b-2@Z
ples from one network node to another; clouds are labeled with theakes the nevinkD tuples it received via the network and performs
link attribute that determines the tuple’s recipient. The first clouda join operation with the locgbathtable to generate new paths.
(#1ink.@Z) sends link tuples to the neighbor nodes indicated by . o .
their destination address fields, to join with matching path tuples3.3 Relaxing Semi-n#&e Evaluation
stored by their source address fields. The second clpath(@9) In our distributed implementation, the execution of rule strands
transmits for further processing new path tuples computed from thean depend on tuples arriving via the network, and can also result
join, setting the recipient according to the source address field. in new tuples being sent over the network. Traditional seriiena
Based on the above distributed join, rule SP2 can be rewritten intayaluation completely evaluates all rules on a given set of facts,
the following two rules. Note that all predicates in the body of SP25 e, completes théteration, before considering any new facts. In

have the same location specifiers; the same is true of SP2b. a distributed execution environment where messages can be delayed
SP2a: linkD(@Z,@S,C) :-#1ink (@S@Z,C). or lost, the completion of an iteration in the traditional sense can
SP2b: path@S@D,@Z,P,C) :#1link (@Z,@S,G),linkD(@Z,@S,G), only be detected by a consensus computation across multiple nodes,
path@zZ,@D,@2%,P,,C,), which is expensive; further, the requirement that many nodes com-
C=C +Cy, plete the iteration together (a “barrier synchronization” in parallel
P = f_concatPatllinkD(@Z,@S,G),P,). computing terminology) limits parallelism significantly by restrict-

The rewrite is achievable because ik and path predicates, —ing the rate of progress to that of the slowest node.

although at different locations, share a common join address field. We address this by making the notion of iteration local to a node.

In Algorithm 2, we summarize the general rewrite technique for arfNew facts might be generated through local rule execution, or might

input set of link-restricted rules R. In the pseudocode, for simplicity,0€ received from another node while a local iteration is in progress.

we assume that the location specifiers of all the body predicates a¥€ Propose and prove correct two variations of senivaeration

sorted (@S followed by @D); this can be done as a preprocessinf§ handle this situationbuffered semi-rize (BSN) andpipelined

step. The algorithm as presented here assumes that all links ap€Mi-naivePSN). Both approaches extend SN to work in an asyn-

bidirectional, and may add#Link (@D,@$) to a rewritten rule to chronogs distributed setting, while generating t_he same results as SN

allow for backward propagation of messages. evaluation. We further prove that these techniques avoid duplicate
inferences, which may result in generating network messages.

Algorithm 2 Rule Localization Rewrite 3.3.1 Buffered Semi-ine
proc RuleLocalizatiorR) Buffered semi-ri@e (BSN) is the standard SN algorithm described
while J rule r € R: h(@L,...) : —#1ink (@S,@D,...), in Figure 1 with the following modifications: A node can start a
p1(@S,..),...)(@S,...), local SN iteration at any time its loc&l buffers are non-empty.
pi 1(@D,...),...p(@D.,..) Tuples arriving over the network while an iteration is in progress are
R.removér) buffered for processing in the next iteration.
Radd(h§@S @D,..): —#link (@S,@D,..),..A@S,..).) By relaxing the need to run an iteration to global completion, BSN
Radd(hD(@D, @S, ..): —h§@S @D, ..).) relaxes SN substantially, by allowing a tuple from a traditional SN
if @L= @D iteration to be buffered arbitrarily, and handled in some future iter-
then Radd(h(@D,..) :- hD(@D,@S,..), ation of our choice. Consequently, BSN may generate fewer tuples
P 1(@D,..),..R(@D,..)) per iteration, but all results will eventually be generated. Since BSN
elseRadd(h(@sS,..) :-+#1ink (@D,@S),hD(@D,@S5..), uses the basic SN algorithm, the proof of correctness is straightfor-
pi 1(@D,..),...(@D,..)) ward and we omit it for brevity.

The flexibility offered by BSN on when to process a tuple could
also be valuable outside the network settiag,, a disk-based hash
join could accumulate certain tuples across iterations, spill them to
disk in value-based partitions, and process them in value batches,
rather than in order of iteration number. Similar arguments for buffer-
ing apply to other query processing tricks: achieving locality in B-
tree lookups, improving run-lengths in tournament sorts, etc.

Claim 1 Every link-restricted\Dlog program, when rewritten us-
ing Algorithm 2, produces an equivalent program where the follow-
ing holds:
1. The body of each rule can be evaluated at a single node.
2. The communication required to evaluate a rule is limited to
sending derived tuples over links from a link relation. 3.3.2 Pipelined Semi-iie

The equivalence statement in the above claim can be easily shownAs an alternative to BSNpipelined semi-rize (PSN) relaxes
by examining the simple factoring of each removed rule into twosemi-nédve evaluation to the extreme of processing each tuple as it
parts. The remainder of the claim can be verified syntactically in thés received. This provides opportunities for additional optimizations
added rules. on a per-tuple basis, at the potential cost of set-oriented local pro-
Returning to our example, after rule localization we perform thecessing. New tuples that are generated from the seiwemales, as
semi-ndve rewrite, and then generate the rule strands shown in Figwell as tuples received from other nodes, are used immediately to
ure 5. Unlike the centralized strand in Figure 3, there are now threeompute new tuples without waiting for the current (local) iteration

@ > Queue | A#link | SP2a@S @ SEND tolinkD.Z >
= Z
[0}
S we, 2
- Apath | SP2b-1@Z Join Project | | SEND topath.S
S m’@ Apath.Z=linkD.Z Apath }‘)
~ pu—— ' ~
=] RECVIinkD o | [inkD ,-A"”kD, SP2b-2@z Join Project __SEND o pathS 3| g
= Queue | AlinkD.Z=path.Z /\path —
Figure 5: Rule strands for the distributed version of SP2 after locadition in P2.
to complete. the current aggregate and each new input tuple. We omit the details
for lack of space.
Algorithm 3 Pipelined Semi-rige (PSN) Evaluation
while 3Qy.size> 0 4. SEMANTICSINADYNAMIC NETWORK
tfld" — Q.dequeueTuple In practice, the state of the network is constantly changing during
foreach rule strand execution query execution. In contrast to transactional databases, changes to
ApIWHL pk—l,tfld", Pi1s-- P, b1, Bo, ... b network state are not isolated from queries while they are running.
foreachtMeWi+1 o A gnewi+1 Instead, as in network protocols, queries are expected to perform
%mwiL 1 € &P dynamic recomputations to reflect the most current state of the net-
Etj A o] work. To better understand the semantics in a dynamic network, we
then p; < p; UtJnewi+1 cons?der the following two degrges of dynamism:
Qj.enqueueTupl(e?eW'“) Continuous Update Model: In this model, we assume that updates

occur very frequently — at a period that is shorter than the expected
time for a typical query to reach a fixpoint. Hence, the query results

Algorithm 3 shows the pseudocode for PSN. Each tuple, denotefever fully reflect the state of the network. o o
t, has a superscripb(d/new; i) wherei is its corresponding itera- Bursty Update Model: In this idealized (but still fairly realistic
tion number in SN evaluation. Each processing step in PSN cormodel), updates are allowed to happen during query processing.
sists of dequeuing a tuptgld,l from Q and then using it as input However, we make the assumption that after a burst of updates,

_) newinl X the network eventually;uiesc_:es(_does not change) for a ti_me I_ong
into all corresponding rule strands. Each resulti tuple is enough to allow all the queries in the system to reach a fixpoint.

pipelined, stored in its respectiyg table (if a copy is not already In our analysis, we focus on the bursty model, since it is amenable
there), and enqueued in@; for further processing. Note that in a to analysis; our results on that model provide some intuition as to
distributed implementatioi; can be a queue on another node, andthe behavior in the continuous update model. Our goal in the bursty
the node that receives the new tuple can immediately process the tmodel is to achieve a variant of the typical distributed systems no-
ple after the enqueue in;. For example, the dataflow in Figure 5 tion of eventual consistengygustomized to the particulars NDlog:

is based on a distributed implementation of PSN, where incomingve wish to ensure that the eventual state of the quiescent system cor-
path andlinkD tuples received via the network are stored locally, responds to what would be achieved by rerunning the queries from
and enqueued for processing in the corresponding rule strands. scratch in that state. We briefly sketch the ideas here, and follow up

To fully pipeline evaluation, we have also removed the distinc-with details in the remainder of the section.
tions betweerp‘]?'d and p; in the rules. Instead, a timestamp (or To ensure well-defined semantics, we use techniques from materi-

monotonically increasing sequence number) is added to each tupfdized view maintenance [15], and consider three types of changes:
at arrival, and the join operator matches each tuple only with tuple$sertion: The insertion of a new tuple at any stage of processing
that have the same or older timestamp. This allows processing @fan be naturally handled by (pipelined) semiivesevaluation.
tuples immediately upon arrival, and is natural for network messag®eletion: The deletion of a base tuple leads to the deletion of any
handling. This represents an alternative “book-keeping” strategy ttuples that were derived from that base tuple. Deletions are car-
the rewriting used in SN to ensure no repeated inferences. Note theed out incrementally via (pipelined) semiima evaluation by in-
the timestamp only needs to be assigned locally, since all the rulexementally deriving all tuples that are to be deleted.
are localized. Update: An update is treated as a deletion followed by an insertion.
While PSN enables fully pipeline evaluation, it is worth noting that An update to a base tuple may itself result in derivation of more
PSN can allow just as much buffering as BSN with the additionalupdates that are propagated via (pipelined) serivienevaluation.
flexibility of full pipelining. The use of pipelined semi-he evaluation in the discussion can
In Appendix A, we prove that PSN generates the same results ase replaced with buffered semi-iva without changing our analysis.
SN, and does not repeat any inferences. EB§(p) andFR>(p) Since some tuples may have multiple derivations, we usedhat
denote the result set fqr for using SN and PSN respectively. We a|gorithm [15] for keeping track of the number of derivations for
show that: each tuple, and only delete a tuple when the count is 0.
Theorem 1: FPg(p) = FPp(p) In dealing with queries with aggregates, we apply techniques for
Theorem 2: There are no repeated inferences in computing@. incremental computation of aggregates [27] in the presence of up-
dates. The arrival of new tuples may invalidate existing aggregates,
In order to compute rules with aggregation (such as SP3), we utiand incremental recomputations are cheaper than computing the en-
lize incremental fixpoint evaluation techniques [27] that are amenabiiee aggregate from scratch. For example, the re-evaluation cost for
to pipelined query processing. These techniques can commrte- min and max aggregates are shown toQiéog n) time andO(n)
tonic aggregatesuch asnin, maxandcountincrementally based on space for the min and max aggregates [27].

4.1 Centralized Semantics

5. QUERY OPTIMIZATIONS

We first provide an intuitive example for the centralized case. Fig- We proceed to discuss a set of query optimization opportunities

ure 6 shows alerivation treefor path(e e a, [e a,b,€],7) based on
the shortest-path query. The leaves in the tree aréirikébase tu-

that arise in the declarative networking context. These include ap-
plications of traditional Datalog optimizations, as well as new tech-

ples. The root and the intermediate nodes are tuples recursively daiques for multi-query optimization, result caching, and cost-based
rived from the children inputs by applying either rules SP1 and SP2optimizations based on graph statistics. Some of these techniques—
When updates occur to the base tuples, changes are propagatedinparticular the use of traditional Datalog optimizations and caching—

the tree to the root. For example, when the costlofiia, b,5) is

updated from 5 to Ipath(a, b, e, [a, b, €], 2) andpath(e, a, [e,a, b, €], 3)

were proposed in our previous work [24]. We present extensions to
our basic techniques, as well as new avenues for optimization.

are re-derived and replace the previous tuples. Similarly, the dele-Compared to the relatively solid foundation of the previous discus-

tion of link(b, e, 1) leads to the deletion gfath(b,e e, [b,€], 1),
path(a,b,e [a,b,€,2), and thempath(e,a,e [e a,b, €], 3).

sion, our approach here is more speculative: we open up a number
of broad issues, and in Section 6 we provide a taste of the potential

Let FPy be the set of tuples derived using PSN under the burstypenefits of most of them via a full-fledged implementation running
model, andFF P, be the set of tuples that would be computed byon a sizable network testbed. However our intention here is not
PSN if starting from the quiesced state. In Appendix B, we proveto “close the book” on any of these issues; much as in traditional

the following theorem:
Theorem 3: FP, = FFPp in a centralized setting.

database query optimization and execution, we expect that our tech-
niques here for declarative networking will lead to significant work

The proof requires that all changes (inserts, deletes, updates) afea series of more focused investigations.

applied in the same order in which they arrive. This is guarantee

by the FIFO queue of PSN and the use of timestamps.

3
p(e,e,a,[e,a,b,e],]f -pleeajesatef3)-

7N /oA
#link(e,a,1) p(a,e,b,[a,b,e],yf #link(e,a,1) -pfae rtainet2)---

1
#link(a,b8) p(b.e.e,[bell)

f !

#link(b,d,1) —#HiRkeBe1)-

Figure 6: Derivation tree for derived path tuple from a to e. The leftadi
gram shows updating the tree due to a change in base tupiek(a,b,5),
and the right diagram shows the deletion #fink(b, e, 1).

4.2 Distributed Semantics

#link(a,b,5) -preeibekiy--

%1 Traditional Datalog Optimizations

We first explore the applicability of three traditional Datalog opti-
mization techniquesaggregate selectionmagic setaindpredicate
reordering

5.1.1 Aggregate Selections

A naive execution of thehortest-patlquery computes all possible
paths, even those paths that do not contribute to the eventual shortest
paths. This inefficiency can be avoided with a query optimization
technique known asggregate selectior{d2, 36].

Aggregate selections are useful when the running state of a mono-
tonic AGG function can be used to prune query evaluation. For ex-
ample, by applying aggregate selections toshertest-pattquery,
each node only needs to propagate the most current shortest paths
for each destination to neighbors. This propagation can be done
whenever a shorter path is derived.

A potential problem with this approach is that the propagation of
new shortest paths may be unnecessarily aggressive, resulting in
wasted communication. As an enhancement, ingégodic ag-
gregate selectionscheme, a node buffers up new paths received
from neighbors, recomputes any new shortest paths incrementally,
and then propagates the new shortest paths periodically. The pe-

In order for incremental evaluation to work in a distributed envi- riodic technique has the potential for reducing network bandwidth
ronment, it is essential that along any link in the network, there isconsumption, at the expense of increasing convergence time. It is

a FIFO ordering of messages. That is, along any link litétanhk

useful for queries whose input tuples tend to arrive over the network

(s,d), facts derived at node s should arrive at node d in the satae or out of order in terms of the monotonic aggregateg-, computing
in which they are derived (and vice versa). This guarantees that upshortest” paths for metrics that are not correlated with the network

dates can be applied in order. Using the same definitidrRgfand

delays that dictate the arrival of the tuples during execution.

FFPy as before, assuming the link FIFO ordering, in Appendix B, In addition, aggregate selections are necessary for the termination

we prove the following theorem:

Theorem 4: FPy = FFP,inadistributed setting with FIFO links.

of some queries, as alluded to previously in Section 2. For example,
with aggregate selections, even if paths with cycles are permitted,

The drawback of enforcing network link FIFO is that it increasesthe shortest-patiguery will terminate, avoiding cyclic paths of in-
the complexity and lowers the performance of the underlying netcreasing lengths.

work. The alternative adopted by network protocols is to maintain
all tuples assoft state In the soft state storage model, all data (base

5.1.2 Magic Sets and Predicate Reordering

and derived tuples) has an explicit “time to live” (TTL), and facts Theshortest-pattguery in our example computedi-pairs short-

(in our case base tuples) must be explicitly reinserted with their latest paths. This leads to unnecessary overhead when only a sub-
est values and a new TTL or they are deleted. Reinsertion of bagit of paths limited by sources and/or destinations is queried. This
tuples leads to recomputation of query results, which in a quiesProblem can be alleviated by applying two optimization techniques:
cent network, leads to eventual consistency through the reinsertioRagic-sets rewritingndpredicate reordering

of the facts from the quiescent state. The drawbacks of soft stafdagic-Sets Rewriting: To limit query computation to the relevant
are well known: recomputation can be expensive, and if done onlportion of the network, we use a query rewrite technique, called
periodically, the time to react to failures is a half-period on averagemagic sets rewritings]. The Magic Sets method is closely related to
However, soft state is often favored in networking implementationgnethods such as Alexander [30] and QSQ [22]. Rather than review
because in a very simple manner it provides eventually correct sé/agic Sets here, we illustrate its use in an example: by modifying
mantics in the face of reordered messages, node disconnection, afiff 1 from the shortest-path query, the following computes only paths

other unpredictable occurrences.

limited to destinations in thmagicDsttable.
#include(SP2,SP3,SP4)

SP1-D: path@S@D,@D,P,C) :magicDst@D),#1ink(@S@D,C) reliability and bandwidth;path tuples being propagated for these

P = f_concatPatlilink(@S @D, C), nil). separate queries may be identical modulo the metric attribute being
Query: shortestPatt®S@D,P,C). optimized.
Rule SP1-D initializes 1-hop paths for destinations whose A strategy that we have implementeddpportunistic message

magicDst@D) is present in thenagicDsttable. This ensures that sharing where multiple outgoing tuples that share common attribute
rule SP2 only propagates paths to selected destinations based on #@dues are essentially joined into one tuple if they are outbound to
magicDsttable. The shortest paths are then computed as beforde same destination and share several common attributes; they can
using rules SP3 and SP4. be re-partitioned at the receiving end. This achieves the effects of
Predicate Reordering: The use of magic sets in the previous query jointly rewriting the queries in a fashion, but on an opportunistic

is not useful for pruning paths from sources. This is because patHasis: derivations are done in this combined fashion only in cases
are derived in &Bottom-Up” (BU) fashion starting from destina- that are spatiotemporally convenient during processing. In order to
tion nodes, where the derived paths are shipped “backwards” alori§Prove the odds of achieving this sharing, outbound tuples may be
neighbor links from destinations to sources. Interestingly, switchbuffered for a time and combined in batch before being sent.

ing the search strategy can be done simplydxyrderingthe path As an alterrjatlve to t_hl_s opportunistic sh_arlng at the ne_twork level,
and #1ink predicates. This has the effect of turning SP2 from a0ne can achieve explicit sharing at a logical lewsl}, using cor-
right-recursiveto a left-recursiverule. Together with the use of related aggregate selections for pruning different paths based on a
magic sets, the followinghagic-shortest-patfuery allows filtering combination of metrics. For example, consider running two queries:

on bothsources andestinations one that computes shortest latency paths, and another that computes
. N . max-bandwidth paths. We can rewrite these as a single query by
SP1-SD: pathDst@D,@S,@D,P,C) : S , #1link D,C), . L
pa SF@: f%on?atPatl(i)inFlp(igg@mD@CS) n”)l_n (@S@Db.) checking two aggregate selectiomg,, only prune paths that sat-
SP2-SD: pathDst@D,@S,@Z.P,C) :pathDst@Z,@S,@Z,P1,C1), isfy bothaggregate selections.

#link (@Z,@D,G), C:=C + Cy,
P = f_concatPatliPy link(@Z,@D,%)).
SP3-SD: spCost@D,@S,min<C>) :- magicDst@D), 5.3 Cost-Based Rewrites

pathDst@D,@S,@Z,P,C).
on- . Currently, queries are executed using a left- (BU) or right-recursive
SP4-SD: shortestPali@D.@S,P.C) :- spCos@D,@S.C). (TD) query expression (Section 5.1.2). Our main goal during query

h pathDSt@Dr’}@S’@Zr;P’C)' ing f . execution imetwork efficiencyi.e., reducing the burden on the un-
The query computes 1-hop paths starting from ea@gicSraus- — yerying network), which, typically, also implies faster query con-

ibngfnl’lle S.Pl'S”D‘ RUAGSPIZ_'SI(D thedn recursi\lgely computes new pathzgence. Itis not difficult to see that neither BU nor TD execution is

d)s/to owing a riac a etll1r\ll S:ta” Storets)ttESI(zgzttIT::?I?fjg(sti universally superior under different network/query settings. Even in
» SIC, previop, pathVector, Cost) " the simple case of a shortest-path discovery qaboytestPath@sS,

nation. Rules SP3-SD and SP4-SD then filter relevant paths baS@D pg) between two givenpnode(g@a @I)D/)q m(i)r{imizing tnc?eé-

on magicDst and compute the shortest paths, which can then biage overhead implies that our query processor should prefet-a stra

propagated along the shortest paths back to the source node. Iy that restricts execution to “sparser” regions of the netwegk

fact, executing the query in thi§op-Down” (TD) fashion resem- yqiny o TD exploration from a sparsely-connected sour&: @

bles a netv(\j/ofrk prgtﬁcol c_allledynaml_c source routlhn{jZO]hthl](.:hh We argue thatost-basedjuery optimization techniques are needed

'Sf pLopose_ c;]r ad-noc \I/(\/Ire iss env;r}onmentz, W ﬁrg_t e high ra, 5 arantee effective query execution plans. While such techniques

oﬂp.ange in the r(ljetwor makes SIIIJC .targ(re]te pat k:scovery MOkGve long been studied in the context of relational database sys-

efficient compared to computing all-pairs shortest paths. tems, optimizing distributed recursive queries for network efficiency

. Lo : raises several novel challenges that we are exploring in our ongoing
5.2 Multi Query Optlmlzatlons work. In the remainder of this section, we briefly discuss some of

In a distributed setting, itis likely that many related queries will be oy preliminary ideas in this area and their ties with work in network
concurrently executed independently by different nodes. A key reprotocols.

quirement for scalability is the ability to share common query com- . . - . -
putations €.g., pairwise shortest paths) among a potentially IargeThﬁm’\ilzee"%g?]orchoos(:_dbggggtt'ggh‘:’itaﬂzgcmﬁ:t";’éﬁh ggcgtlo?:;?;g}/
number of queries. We outline two basic strategies for multi-quer)Pp ’ q y Pp

sharing in this environmenguery-result cachingndopportunistic tics fqr th,e und_erlylng execution environment that can dn_v_e the
message sharing optimizer’s choices. One such key statistic for network efficiency

))) is thelocal neighborhood function y. Formally, N(X,r) is the
Query-Result Caching. Consider themagic-shortest-patiquery nymbper of distinct network nodes withinhops of nodeX. The
where nodercomputeshortestPatte. d, [a, b, d],6) to noded. This pejghborhood function is a natural generalization of the size of the
cached value can be reused by all queries for destindtibat pass transitive closurei(e.,, reachability set) of a node, that can be esti-
througha, e.g., the path frometo d. Currently, our implementation mated locally €.g., through other recursive queries running in the
generates .the cache internally, building a cache of all the query r&5ackground/periodically)N(X,r) can also be efficientlapproxi-

sults (in this casshortestPatttuples) as they are sent back on the matedthrough approximate-counting techniques using small (log-
reverse path to the source node. Since the subpaths of shortest pagl,fk%) messages [31]. To see the relevanc&l@f for our query-

are optimal, these can also be cached as an enhancement. As ongBtimization problem, consider our examplertestPath@s, @d, P,

ing work, we are explo_ring techniques for declaratively specifyingc) query, and letiist(s,d) denote the distance &f d in the net-

the cache, and evaluating caching policies. work. A TD search would explore the network starting from nede
Opportunistic Message Sharing.n the previous example, we con- and (modulo network batching) result in a totalN(fs,dist(s,d))

sider how different nodes (src/dst) can share their work in runningnessages (since it reaches all nodes within a radiusi o€(s, d)

the samequery logic with different constants. Sharing acrd#fs from s). Note that each node only forwards the query message once,
ferentqueries is a more difficult problem, since it is non-trivial to even though it may receive it along multiple paths. Similarly, the
detect query containment in general [9]. However, we observe thatost for a BU query execution N(d,dist(s,d)). However, nei-

in many cases, there can be correlation in the message patterns exbar of these strategies is necessarily optimal in terms of message
for different queries. One example arises when different quegies r cost. The optimal strategy is actuallyhgibrid schemehat “splits”
guest “shortest” paths based on different metrics, such as latencihe search radius distd) betweerns andd to minimize the overall

messages; that is, it first findsandry such that: and opportunistic result caching demonstrate the potential to

(rs,rq) = arg min {N(s,rs)+N(d,rq) }, reduce communication overhead when there are several con-
Ist+ra=dist(sd) current queries.

and then runs concurrent TD and BU searches from nedesld 4. On a network with bursty updates, incremental query evalua-

(with radii rs andrg, respectively). At the end of this process, both tion techniques can recompute paths at a fraction of the cost

the TD and the BU search have intersected in at least one network of recomputing the queries from scratch.
node, which can easily assemble the shortesf) (path. The above
search strategy can be easily implemented as a rewrite using simp@ 1 Setup

NDlogrules. While the above optimization problemiis trivially solv- o experiments are conducted by running our modified P2 on 100
able inO(dist(s,d)) time, generalizing this hybrid-rewrite scheme e on the Emulab [10] testbed. This testbed emulates realistic la-
tp the_ case of multiple sources and destlnapons raises difficult alg%ncy and bandwidth constraints seen on the Internet, yet provides
rithmic challenges. And, of course, adapting such cost-based ORepeatable experiments under a controlled environment. As input to
timization algorithms to work_ in the dlstrlbuted_, dynamic setting the Emulab testbed, we use transit-stub topologies generated using
poses systems challenges. Finally, note that neighborhood-functiq§ .1\ [1], a package that is widely used to model Internet topolo-
information can also provide_a valuable i_ndicator for the ut_ility of gies. Our topology has four transit nodes, eight nodes per stub and
node as a result cache (Section 5.2) during query processing. three stubs per transit node. Latency between transit nodes is 50
Adaptive Network Routing Protocols. While we do not evalu- ms, latency between transit nodes and their stub nodes is 10 ms, and
ate the above concepts in our experiments below, we note that thatency between any two nodes in the same stub is 2 ms. The link
networking literature has considered adaptive routing protocols thatapacity is set to 10 Mbps.

strongly resemble our use of hybrid rewrites; hence, we believe We construct an overlay network over the base GT-ITM topology
this is an important area for future investigation and generalizawhere each node is assigned to one of the stub nodes. Each over-
tion. One interesting example is the classZoine-Routing Proto- lay node runs P2 on one Emulab machine, and picks four randomly
cols(ZRP) [16]. A ZRP algorithm works by each node precomput-selected neighbors. Each node has four link tuples, one for each
ing k-hop-radiusshortest paths to neighboring nodes (in its “zone”) neighbor. Each link tuple has metrics that include latency (based on
using a BU strategy. Then, a shortest-path route from a sourcthe underlying GT-ITM topology), reliability (link loss correlated

to destination is computed in a TD fashion, using essentially thevith latency), and a randomly generated value.
magic-shortest-patlguery described above, utilizing any precom- We base our workload primarily on routing protocols [24], and
puted shortest paths along the way. Each node sets its zone radisbenchmark four variants of the sarskortest-pattguery, differing

k adaptively based on the density and rate of change of links in itin the link metric each seeks to minimize. On all our graphs, we
neighborhood; in fact, recent work [29] on adjusting the zone radiusabel these queries by their link metrietop-Count Latency Reli-

for ZRP-like routing uses exactly the neighborhood-function statis-ability and Random respectively. Note thaRandomserves as our

tic. stress case: we expect it to have the worst performance among all
queries, because aggregate selections are less likely to be effective
6. EXPERIMENTS when the aggregate metric is uncorrelated with the network latency,

) which determines tuple arrival order during query execution.
We have prototyped our language, execution model, and some of

our optimizations as modifications to the P2 system. Our prototyp€.2 Aggregate Selections
takes as inpuiDlog programs, performs rule localization, and gen-
erates a dataflow graph consisting of &@@ments Each element is
a node in the dataflow graph, and performs tasks such as queuing, ,,
network processing and traditional relational operations like joinsg 1t
and aggregations.
The generated execution plan is structurally similar to Figure 5,5 12
where there are rule strands comprising chains of elements. Each
rule strand takes as input a queue, corresponding to new tuples fof
each strand. Our current implementation uses the PSN algorithm a
the tuple granularity. A new tuple is dequeued and processed by the

T T
Hop-Count
Latency -------
Reliability -~
Random

idth (K

% Results
oo
o o

— T T T T T

Hop-Count
Latency
Reliability

) Ranqom

L L
0 1 2 3 4 5 6 0 1 2 3 4 5 6

rule strand to generate new tuples which are then enqueued at the Time (5) Time (s)

same node or sent as a network message for further processing at]

another node. Figure 7: Per-node Bandwidth Figure 8: Query results over
Beyond validating our language and implementation, the main godkBps). time (seconds).

of our evaluation is to verify the effectiveness of several of the pro-
posed optimizations. In evaluating our system, the main metrics thatwe first investigate the effectiveness of aggregate selections for

weuseare.)) different queries. Figure 7 shows the per-node bandwidth usage
Convergence time:The time taken for the query execution to gen- against time for the four queries. Figure 8 shows the percentage
erate all the query results. of eventual best paths completed against time. Our results show that

Communication overhead: The number of bytes transferred for Hop-Countconverges the most quickly in4dseconds, followed by
each query. We consider both aggregate communication overheagtencyandReliability in 4.9 seconds and.8 seconds respectively.
(MB), as well as per-node bandwidth (kBps). Randonhas the worst convergence time o8 5econds.

In summary, we find: During query execution, the communication overhead incurred by

1. The aggregate selections optimization reduces communical four queries shows a similar trend (Figure 7). Initially, the com-
tion overhead. Usingeriodic aggregate selectiomeduces munication overhead increases as more and more paths (of increas-
this overhead further. ing length) are derived. After it peaks at arounkB@sper-node,

2. The use of magic sets and predicate reordering reduces cortike communication overhead decreases, as fewer and fewer optimal
munication overhead when only a limited number of paths areaths are left to be derived. In terms of aggregate communication
queried. overheadRandomincurs the most overhead.{4MB), while Hop-

3. Multi-query sharing techniques such as query result cachin@€ount Latencyand Reliability use 26 MB, 3.1 MB and 32 MB,

respectively. The relatively poor performanceRdndoms due to 30% (MSC-30% and 10% MSC-10%, the communication over-
the lack of correlation between the metric and network latency, leadread levels of at.8 MB, and 1 MB, respectively. The smaller the
ing to a greater tendency for out-of-order arrival of path tuples thatet of requested destinations, the higher the cache hit rate, and the
results in less effective use of aggregate selections. greater the opportunity for sharing across different queries. These
results are consistent with the results obtained by éal. [24] in
a similar experiment, using the PIER [17] simulator.

T T T
Hop-Count
Latency -
Reliability -
Random

6.4 Opportunistic Message Sharing

We study the impact of performing opportunistic message sharing
across concurrent queries that have some correlation in the msssage
being sent. Figure 12 shows per-node bandwidth usage for running
the queries on different metrics concurrently. To facilitate sharing,
iy . o ; we delay each outbound tuple by 300ms in anticipation of possible
o 1 2 T‘mz(s) 4 5 6 o 1 2 nmi@ 4 5 6 sharing opportunities. Theatency Reliability and Randomlines

show the bandwidth usage of each query individually. NbeShare

line shows the total aggregate bandwidth of these three queries with-

out sharing. The&Shareline shows the aggregate bandwidth usage

with sharing. Our results clearly demonstrate the potential effec-
pliveness of message sharing, which reduces the peak of the per-nod
,communication overhead from 27 kBps to 16 kBps, and the total

Hop-Count
Latency -
Reliability -
Random -

% Results
o
@
T T T T T T T

Per-node Bandwidth (KBps)
.
1)

Figure 9: Per-node Bandwidth
(kBps).

Figure 10: Query results over
Time (seconds).

The results in Figures 9 and 10 illustrate the effectiveness of t
periodic aggregate selectiomapproach, as described in Section 5.1. e
In particular, this approach reduces the bandwidth usagdopt ~ communication overhead by 34%.
Count Latency Reliability and Randomby 17%, 12%, 16% and 6.5
29%, respectively.Randomnot only shows the greatest reduction *-
in communication overhead, its convergence time also reduces from
5.8 seconds to 5 seconds.

Incremental Query Evaluation

6.3 Magic Sets and Predicate Reordering

10

20

25

10

20

15

45+ U MS e
5 4

01T T YR

0 50 100 150 200 250 0 50 100 150 200 250
Time (s) Time (s)

Per-node Bandwidth (KBps)
Per-node Bandwidth (KBps)

3.5 MSC-10% ===

Per-node Bandwidth (KBps)

Figure 13: Per-node Bandwidth
(kBps) for periodic link updates
on latency metric (10s update in-
terval).

Figure 14: Per-node Bandwidth
(kBps) for periodic link updates
(interleaving 2s and 8s update in-
terval).

Aggregate Communication (MB)

0 50 100 150 200 250 300
Number of Queries

Time (s)

Figure 11: Aggregate commu-
nication overhead (MB) with and
without magic sets and caching

Figure 12: Per-node Bandwidth
(kBps) for message sharing (300

In our final experiment, we examine the overhead of incrementally
ms delay).

maintaining query results in a dynamic network. We run the queries
over a period of time, and subject the network to burst updates as de-
Next, we study the effectiveness of combining the use of magiscribed in Section 4. Each update burst involves randomly selecting
sets and predicate reordering for lowering communication overheatl0% of all links, and then updating the cost metric by up to 10%. We
when the queries are constrained by randomly chosen sources anse the shortest-path random metric since it is the most demanding
destinations. Our workload consists of queries that request sourcéx terms of bandwidth usage and convergence time.
to-destination paths based on thep-Countmetric. For each query, Figure 13 plots the per-node communication overhead, when ap-
we execute thenagic-shortest-pathuery (Section 5.1.2). plying a batch of updates every 10 seconds. Two points are worth
Figure 11 shows the aggregate communication overhead as tmeting. First, the time it takes the query to converge after a burst
number of queries increases. TRe-MSline represents our base- of updates is well within the 5 second convergence time of running
line, and shows the communication overhead in the absence of rewtitesquery from scratch (Figure 10). This is reflected in the commu-
(this essentially reduces to computing all-pairs least-hop-count). Tha@cation overhead, which increases sharply after a burst of updates
MSline shows the communication overhead when running the opis applied, but then disappears long before the next burst of updates
timized query with no sharing across queries. When there are fe\{Figure 13). Second, each burst peakskd s which is only 32%
queries, the communication overhead\$ is significantly lower of the peak bandwidth and 26% of the aggregate bandwidth of the
than that ofNO-MS As the number of queries increases, the com-original computation. Our results clearly demonstrate the usefulness
munication overhead dflSincreases linearly, exceedihp-MSaf- of performing incremental query evaluation in response to changes
ter 170 queries. in the network, as opposed to recomputing the queries from scratch.
In addition, Figure 11 also illustrates the effectiveness of caching We repeat our experiment on a more demanding update workload
(Section 5.2). TheviSCline shows the aggregate communication (Figure 14), where we interleave update intervals that are 2 seconds
overhead for magic sets with caching. For fewer than 170 queriesnd 8 seconds, the former interval being less than the from-scratch
there is some overhead associated with caching. This is due to falsenvergence time of 5 seconds. We observe that despite the fact that
positive cache hits, where a cache result does not contribute to corbursts are sometimes occurring faster than queries can run, band-
puting shortest paths. However, as the number of queries increasesidth usage is similar to the less demanding update workload. When
the overall cache hit rate improves, resulting in a dramatic reducthe update interval is 2 seconds, we notice periods of sustained band-
tion of bandwidth. When limiting the choice of destination nodes towidth usage, however the peak usage remains at 6 kBps as before.

7. ADDITIONAL RELATED WORK

tocols, and virtual private networks.

We mentioned most of the related work in the context of our dis- We have been pleased in this work to see that the enthusiasm in the
cussion above. Here, we briefly mention some other related effortg)etworking community for declarative languages can provide more

We are not alone in our renewed enthusiasm for applications dihan just a well-motivated application area for recursive queries; it
recursive queries. There are other contemporary examples frogPpears to spark a host of new database research challenges in what
outside the traditional database “market”, including software analwas considered a very mature area. We are optimistic about the
ysis [37], trust management [6] and diagnosis of distributed syspotential for additional significant results in this domain, in terms

tems [2]. Our concept dink-restrictedrules is similar in spirit to
d3log [19], a query language based on Datalog proposed for dy-
namic site discovery along web topologies.

Much research in the parallel execution of recursive queries [8] hag'
focused on high throughput within a cluster. In contrast, our strate-[y
gies and optimizations are geared towards bandwidth efficiency and]
fast convergence in a distributed setting. Instead of hash-based par-
titioning schemes that assume full connectivity among nodes, w
are required to perform query execution only along physical net- 4
work links and deal with network changes during query execution.
There is also previous empirical work on the performance of paral-[5]
lel pipelined execution of recursive queries [32]. Our results extend
that work by providing new, provably correct pipelining variants of (6]
semi-néve evaluation.

In terms of distributed systems, the closest analog is the recent?]
work by Abiteboulet al. [2]. They adapt the QSQ [22] technique
to a distributed domain in order to diagnose distributed systems. An
important limitation of their approach is that they do not consider [g]
partitioning of relations across sites as we do; they assume each
relation is stored in its entirety in one network location. Further, (9]
they assume full connectivity and do not consider updates concur-
rent with query processing. [10]

[11]

[12]

8. CONCLUSION

Our goal in this paper was twofold: to provide a solid databasgis)
foundation for recent developments in declarative networking, and
to open a number of database research directions in the area.
believe that our contributions here are significant on both fronts.

We started with the concept dihk-restricted rules which cap-
ture syntactically ifNDlog the notion that query messages are con-[16]
strained to travel along direct links between nodes in a network. This
in turn led to successive refinements of seniivaavaluation that)
deal efficiently with the asynchrony and delays intrinsic to a wide-
area networking environment. We introduced techniques to incoris]
porate updates immediately during execution, capturing the reactive
nature of typical network protocols while offering meaningful se- ;O]
mantic guarantees. We also discussed a number of query optimizh-
tion techniques, and their applicability to the networking domain.j21]
Finally, we presented evaluation results from a distributed deploy-
ment involving 100 machines on the Emulab [10] network testbed(?2]
running prototypes of our optimization techniques implemented agg)
modifications to the P2 system.

Our ongoing research is proceeding in several directions. First, we
are exploring a complete query optimization architecture, as well24]
as specific techniques beyond those of Section 5: additions to t! 851
cost-based optimizations of Section 5.3 including the possibility o
using random walks driven by statistics on graph expansion; adajz26]
tive query processing techniques to react to network dynamism; and
multi-query optimizations motivated by more complex overlay net-271
works. Second, we plan to incorporate negation into our modepg
and implementation [18], which raises interesting challenges for
pipelining and dynamic data. Third, a key selling point of declara-[29]
tive languages in the networking community is the promise of stati
program checks for desirable network protocol properties; we ar
considering techniques from the Datalog literature in this regard
(eg., [21]) and expect that the particulars of link-restricted rules(31]
can be of use as well. Finally, we intend to aggressively pursue thei&]
ideas in the context of serious networking applicati@ts, overlay
networks like distributed hash tables, application-level multicast pro-

[15]

30]

both of theoretical work and systems challenges.

REFERENCES

GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.
S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of Asyncloxm
Discrete Event Systems - Datalog to the Rescuéd@M PODS 2005.

3] 1. Balbin and K. Ramamohanarao. A Generalization of the Differential Approach

to Recursive Query Evaluatiodournal of Logic Prog, 4(3):259-262987.

F. Bancilhon. Naive Evaluation of Recursively Defined Relatiés. Knowledge
Base Management Systems: Integrating Al and DB Techno|dfi&s.

F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic Sets and Other §ran
Ways to Implement Logic Programs. 8iIGMOD, 1986.

M. Y. Becker and P. Sewell. Cassandra: Distributed Access Control Policiles wi
Tunable Expressiveness. 5th IEEE International Workshop on Policies for
Distributed Systems and NetworR804.

P. A. Bernstein, U. Dayal, D. J. DeWitt, D. Gawlick, J. Gray, M. Jarke, B. G
Lindsay, P. C. Lockemann, D. Maier, E. J. Neuhold, A. Reuter, L. A. Rowel.H
Schek, J. W. Schmidt, M. Schrefl, and M. Stonebraker. Future Directions in
DBMS ResearchSIGMOD Record18(1):17-26, 1989.

F. Cacace, S. Ceri, and M. A. W. Houtsma. A survey of parallel execution
strategies for transitive closure and logic prograBistributed and Parallel
Databases1(4):337-382, 1993.

D. Calvanese, G. D. Giacomo, and M. Y. Vardi. Decidable Containment of
Recursive Queries. IICDT, 2003.

Emulab. http://www.emulab.net.

N. Feamster and H. Balakrishnan. Correctness properties for Internet routing. In
Allerton Conference on Communication, Control, and Computigpt. 2005.

F. Furfaro, S. Greco, S. Ganguly, and C. Zaniolo. Pushing Extrema gag®to
Optimize Logic Queriednf.Sys, 27(5):321-343, 2002.

Overcoming barriers to disruptive innovation in networking. Report 8FN
Workshop, Jan. 2005.

G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing
System. INSIGMOD, 1990.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining Views
Incrementally. INSIGMOD, 1993.

Z.J. Haas. A New Routing Protocol for the Reconfigurable Wireless Network
In IEEE Int. Conf. on Universal Personal Communicatiph897.

R. Huebsch, B. Chun, J. Hellerstein, B. T. Loo, P. Maniatis, T. Resco

S. Shenker, I. Stoica, and A. R. Yumerefendi. The Architecture of PIER: an
Internet-Scale Query Processor GiDR, 2005.

Jeffery Ullman. Assigning an Appropriate Meaning to Database Logic with
Negation.Computers as Our Better Partnersages 216-225, 1994.

] T.Jim and D. Suciu. Dynamically Distributed Query EvaluationP@DS 2001.

D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad Hoc Vessl|
Networks. InMobile Computingvolume 353. 1996.

R. Krishnamurthy, R. Ramakrishnan, and O. Shmueli. A Framework forngesti
Safety and Effective Computability. Comp. Sys. Sci. 52(1):100-12/096.
Laurent Vieille. Recursive Axioms in Deductive Database: The Query-Subquery
Approach. Inlst International Conference on Expert Database Syst&éa&6.

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, andoic8.
Implementing Declarative Overlays. 29th ACM Symposium on Operating
Systems Principles (SOSRPO05.

B. T. Loo, J. M. Hellerstein, |. Stoica, and R. Ramakrishnan. Declarative
Routing: Extensible Routing with Declarative QueriesSIGCOMM 2005.

L. Peterson and B. Davi€omputer Networks: A Systems Appraach
Morgan-KaufMann, 2003.

L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet Impasse
Through Virtualization. IrHotNets-11|, 2004.

R. Ramakrishnan, K. A. Ross, D. Srivastava, and S. Sudarshan. Efficient
Incremental Evaluation of Queries with AggregationSIiGMOD, 1992.

] R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive

Database Systemdournal of Logic Programming23(2):125-149, 1993.

V. Ramasubramanian, Z. J. Haas, and E. G. Sirer. SHARP: A Hybrid Adaptive
Routing Protocol for Mobile Ad Hoc Networks. lWCM MobiHog 2003.

J. Rohmer, R. Lescoeur, and J. M. Kerisit. Alexander Method - A Teclerfiou
the Processing of Recursive Axioms in Deductive Databaéew. Generation
Computing 4:522-5281986.

C. R.Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A Fast and Sedlabl for
Data Mining in Massive Graphs. BWCM SIGKDD pages 102-111, 2002.

J. Shao, D. A. Bell, and M. E. C. Hull. An Experimental Performance Stdidy o
pipelined recursive query processing strategynternational Symposium on
Databases for Parallel and Distributed Systerh890.

[33] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel. Distributed Manig and
Forensics in Overlay Networks. Burosys 2006.

[34] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:

scalable peer-to-peer lookup service for internet applicatiorSIGEOMM

2001.

[35] M. Stonebraker and J. M. Hellerstein, editdReadings in Database Systems,

Third Edition Morgan Kaufmann, San Francisco, 1998.

[36] S. Sudarshan and R. Ramakrishnan. Aggregation and Relevance in Deductive

Databases. INLDB, 1991.
[37] J. Whaley and M. S. Lam. Cloning-Based Context-Sensitive Poirltas A
Analysis Using Binary Decision Diagrams. RLDI, 2004.

APPENDIX
A. PROOFS FOR PIPELINED SEMI-NA IVE
Symbol | Representation
t A tuple generated at any iteration.
t! A tuple generated at tH& iteration.
Pk The table corresponding to th& recursive predi-
cate in the rule body.
by A table for theki base predicate in the rule body.
FPs(p) | Result set foip using SN evaluation.
FP-(p) | Result set foip using PSN evaluation.
FPy(p) | Result setfoip using SN evaluation at th& iter-
ation or less.
FPL(p) | Result set fop using PSN evaluation for af) tu-
ples that are marked with iteration number less.

Table 1: Proof Notation

PSN: if there are two derivatiorts andt! (j > i) for the same tu-

ple, the modified PSN algorithm guarantees thas generated by
enqueuind' even ift! was previously generated. Note that the mod-
ified PSN algorithm leads to repeated inferences, but generates the
same results as PSN.

Theorem 2 There are no repeated inferences in computing .

Proof: For linear rules, the theorem is trivially true since we only
add a new derived tuple into the PSN queue if it does not exist pre-
viously. This guarantees that each invocation of the rule is unique
For non-linear rules, we continue from Theorem 1's proof. Let
ts(t) be the sequence number or timestamp of derived tupf®l-
lowing the proof for Lemma 1, only thié" rule, Wherets(tl'(’l) =
max(ts(t; 1), ts(th 1), ...,ts(th 1)) will be used to generat at the
inductive step, ensuring no repeated inferences. O

B. PROOFS FOR BURSTY UPDATES

LetE be the set of all extensional tuples that appear during the exe-
cution of a program. LeD be the set of all tuples that can be derived
from E (we assum& C D for simplicity). A tuplet € D derived by
the rulet:-t1,to, ...ty has a correspondirtgee fragmentwith parent
t and childrentj. Thederivation treefor D is built by assembling
the tree fragments for all possible derivations of tuple®inWe
distinguish the multiple tree fragments for multiple derivations, of
but to simplify notation, we uskty, ... to name tree nodes. Leaves
of this tree are elements &

A series of insertions and deletions to the extensional relations is
modeled as a sequence of valt@, ..., t(j) for eacht € E, where
1 means present and 0 means absent. Similarly, for all tree nodes
we remember the sequence of values (presence or absencegdssign
tot by the PSN algorithm after each child change. We vifite) to

In our proofs, we use the notation in Table 1. Consider a rule Witr}epresent the value ofonce the network has quiesced.
n recursive predicatgs;, pz,..., pn and m base predicates:

p: 7p17 p25 ey pnablab27 sy bm~

Lett be a tree node whose children &id, ..., th.
Claim 3 Along any tree edget— t, value changes are applied in

For the purposes of the proof of Theorem 1, we assume that theife order in whichi's change. This property is guaranteed by PSN's
is a unique derivation for each tugle

Claim 2 Wt € FPL(p),3tj € FPS Y (pj) s.t. t: —ty,ty, ..., tn, by, by, ..., by LEMMa 3 t(e0) is derived usingit(e), ..., t(c0).
At ¢ FPS(p). Same for FP.

Theorem 1 FPs(p) = FPp(p)

Proof: (By induction). The base casePd(p) = FR3(p) is trivial
since this is the initial set of inpyt tuples. Assume inductively
FPS(p) =FPS 1 (p) is true, we show tha PL(p) = FPb(p) usian

the following two lemmas below.
Lemma 1 FP(p) C FPy(p)

Proof: Consider tuplet’ € FPiS(p) derived using SN evaluation
t: —t1,tp, ..., tn, b1, by,bm. By Claim 2,tj € FPS (pj) At ¢
FP'S‘l(p).' One of the input;'s (t) must be inAp2'din the SN al-
gorithm.t;, * e FPs ™t = ti 1 e FRL 1. By the PSN algorithrrt,ﬁ‘l
must have been enqueued, hence gener8tigpt' € FP‘S.

Lemma 2 FP5(p) C FP(p)

Proof: Consider a tuplé' € FP‘S(p) derived using modified PSN
evaluatiort : —tg,tp,...,th, b1, bo, ..., by. From claim 2y € FP},’l(pk)
At ¢ FR5(p). By the PSN algorithm, one of's (t) is Atd'™ .
This means that * € FPSY(py) = i1 € ApP'® in theit itera-
tion of the SN algorithm. This will result in the rule being used to
generaté in theit" iteration. Hencet' € FPY,

d

O

FIFO queue.

Proof: (By induction)t(0) is computed from the initial values of its
children. Assume inductively thatj — 1) is derived based on the
(j— 1) change in its children. If chiltk changest(j) is rederived,
and based on Claim 3, reflects the latest valug.oHence () is
derived from the last value of all its children. O

Let FP, be the set of tuples derived using PSN under the bursty
model, andFF P, be the set of tuples that would be computed by
PSN if starting from the quiesced state.

Theorem 3 FP, = FFP, in a centralized setting.

Proof: We writet(w) for the values derived by PSN when its start-
ing state ise(e0) for e E. If Vt € D’s derivation treet(w) = t()
then FP, = FFP,. We prove this by induction on the height of
tuples in the derivation tree. We defilg to be all nodes oD’s
derivation tree at height with Do = E.

In the base caséft € Dy, t(c) = t(w) by definition of the base
tuple values. In the inductive step, we assumethat i, vt € Dj,
t(o0) =t(w). Considert € D;. Based on Lemma 3(c) will be
derived from they () values of its children, which by induction are
equal toty(w). Hencet(o) =t(w). O

Claim 4 As long as all network links obey FIFO for transmitted
messages, Claim 3 is true for any children of t that are generated
using link-restricted Datalog rules.

Theorem 4 FP, = FFP, in a distributed setting.

If there are multiple derivations for the same tuple, we can applyProof: With Claim 4, the proof is similar to that of Theorem 3.
the same proof above for Theorem 1 using the following modified O

