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ABSTRACT
In this paper we present PROSE, a system that performs reversible
and systematic changes to running Java applications without
requiring them to be shut down. PROSE is motivated by scenarios
such as hotfixes, online program instrumentation and debugging,
and evolution of critical legacy applications. In PROSE, changes
to running applications are performed by replacing method bodies.
To select which code to replace, PROSE supports matching based
on both type information and regular expressions. New code
can invoke the method it replaces, facilitating code evolution.
Changes are composable, and may be reordered or selectively
withdrawn at any time. Furthermore, the dynamic changes are
expressed as Java classes rather than through an additional pro-
gramming language. We describe the architecture of PROSE, the
challenges of using aggressive inlining to achieve performance,
and use standard benchmarks to demonstrate code performance
comparable with, or better than, compile-time systems from the
Aspect-Oriented Programming community.

Categories and Subject Descriptors: D.2.11 [Software Engineer-
ing]: Software Architectures; D.3.3 [Programming Languages]:
Language Constructs and Features; D.3.4 [Programming Lan-
guages]: Processors—Run-time environments, Compilers; C.2.4
[Distributed Systems]: Distributed applications

General Terms: Design, Languages, Measurement, Performance

Keywords: PROSE, Run-time method code replacement, Dynamic
bytecode instrumentation, Run-time modification, Inlining

1. INTRODUCTION
In this paper we present PROSE, a system which performs efficient,
controlled, and systematic modification of the code of running Java
services, without requiring shutdown of the application.
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By controlled, we mean that modifications can be undone at
run-time as easily as they were applied in the first place, and that
multiple modifications to a running system’s code compose in a
manner that is deterministic, predictable, and can be controlled by
the programmer.

By systematic, we mean that modifications are automatically
applied at multiple points in the code according to criteria
specified by the programmer. We borrow concepts from the
field of Aspect-Oriented Programming (AOP) to allow so-called
“crosscutting concerns” to be addressed, for example to apply a
modification at every occurrence of a service invocation, or to
instrument all changes to the value of a system parameter or field.

By efficient, we mean that widespread crosscutting modifications
to a running program can be performed with negligible interrup-
tion to service (and in any case much less disruption than that
caused by restarting the program), and that the modified system
continues to run with performance comparable to a fully recom-
piled and restarted system – indeed, our benchmarks demonstrate
that PROSE introduces a negligible overhead on the JVM and has
a performance comparable to tools performing code replacement at
compile-time.

PROSE works by atomically replacing collections of methods
in the application with new code. The methods to be replaced
are identified using type signatures and regular expressions. The
code that replaces a given method can also make use of the method
it replaces. Moreover, multiple modifications can be applied and
undone in arbitrary order, permitting orthogonal modifications of
the application to be performed without interference.

Since it works purely by method replacement, PROSE cannot
change Java interfaces, class schemas (the set of fields, methods,
etc. that a class provides), or perform any complex refactoring of
the application. However, the combination of method replacement
with the ability to invoke the original code still allows significant
flexibility in code evolution, replacement of functionality, and ex-
tensions or modifications to application behavior. We present usage
scenarios for PROSE below.

PROSE not only allows such systematic modifications to be
applied to a Java application in controlled manner, but performs
such modifications at run-time. This has considerable advan-
tages as there are many cases where recompiling and restarting
might be undesirable. For instance, mission-critical applications
might not tolerate downtimes of more than a few milliseconds –
the design of Erlang’s code replacement functionality [4] for phone
switch software was motivated by this requirement, for exam-
ple. Alternatively, changes might be required quickly in moments
of crisis, where taking down the system would cause as much
disruption as the problem itself, as might be the case with fixes
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to denial-of-service vulnerabilities or modifications to deal with
unexpected changes in workload characteristics.

1.1 Contributions
This paper makes three principal contributions.

First, we demonstrate that it is feasible to apply systematic
changes to a running Java program, and to do so with negligible
loss in run-time performance via aggressive inlining of existing
method code in the replacement function. We considerably out-
perform other tools that work at load-time and run-time, and our
performance is comparable with several compile-time approaches.

Second, the efficiency we gain allows us to layer code
modifications in such a way that any given change can be applied
or withdrawn independently of the others.

Finally, we show how such modifications can be expressed
as Java classes themselves. This obviates the need for develop-
ers to learn a new and potentially complex language, and allows
PROSE to leverage existing environments such as Eclipse [14] with
minimal programming overhead.

While it has proved straightforward to port PROSE between
Java Virtual Machine implementations, in its current form PROSE
is certainly quite Java-specific. Nevertheless, we feel the ideas here
have value in the context of other language virtual machines, such
as the Microsoft CLR [13].

The rest of this paper is structured as follows. In the next section
we motivate PROSE by discussing various usage scenarios for
the system. Section 3 then describes the facilities we provide for
modification of a running Java application. Section 4 discusses
in detail how PROSE is implemented, in particular the main
challenges in inlining code for performance. In Section 5 we
show performance results for PROSE, and compare it with
compile-time, load-time and run-time approaches in use today.
Section 7 addresses safety concerns with the modifying running
applications, and Section 6 situates PROSE in relation to other
work. We conclude in Section 8.

2. USAGE SCENARIOS
PROSE is motivated by a number of related scenarios in running
online application services, driven by the observation that most
deployed code inside application servers is bespoke, and often
written to short-term deadlines without longer-term evolvability in
mind.

To take a concrete example, we have used PROSE to dynami-
cally add caching to a running multi-tier Java application. PROSE
is used to add new code that implements caching at either the
frontend (web server tier), the application logic tier, or at the
database layer. We then benchmark the different versions of the
system using TPC-W [27]. The results are shown in Figure 1 where
the vertical axis shows the average response time and the horizontal
axis the different queries used in the benchmark. Adding such
caching of intermediate results at different levels of the application
is a simple concept in theory, and can lead to dramatic performance
improvements, but is hard to implement in practice because the ex-
isting system is often not factored with this kind of facility in mind.

A further message of Figure 1 is that the most appropriate
enhancement to the application is highly workload-dependent, and
is hard to predict in advance. Rather than requiring refactoring of
the system, or extensive manual annotation of the code (with the
associated degradation of the system’s structure), PROSE allows us
to make an extension or other modification orthogonally to changes
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Figure 1. Adding dynamic caching strategies to a multi-tier Java application
with PROSE

to the rest of the system, and with almost negligible overhead. The
changes can be tried individually or concurrently, and reversed at
will.

Particular usage scenarios we have in mind include:

Performance instrumentation and profiling. Online services
have complex performance characteristics, and as workloads
change, so different areas of a complex system may become
performance bottlenecks. Identifying such bottlenecks is greatly
facilitated by instrumenting code in ways that are rarely foreseen
when the system was first designed, and share the same challenges
as logging and debugging modifications. PROSE allows developers
to dynamically introduce or remove instrumentation at very precise
points in the code by, e.g., executing certain code before or after the
execution of a given set of methods. It also allows programmers to
test alternative methods for a given task and see which one per-
forms better without having to shutdown and recompile the entire
system for each test.

Online logging and debugging. Identifying such bottlenecks
is greatly facilitated by instrumenting code in ways that are rarely
foreseen when the system was first designed. However, adding such
profiling (for example, tracking changes to a portion of global state)
often requires extensive widespread (though locally small) changes
to code. Performing these changes manually is time-consuming,
and it is hard to ensure complete coverage of all applicable cases.
Even with good version control, it can also be difficult to remove
a coherent collection of such changes at a later date when they are
no longer required, particularly if a set of unrelated modifications
to the code have occurred in the meantime. PROSE provides a
powerful and systematic language for specifying where to perform
changes. It also provides several facilities to express, in a single
piece of code, changes at several functionally different locations of
the original application.

Adding feedback control loops. A recent trend in building
large, online services has been the inclusion of automated
control loops (either with or without an explicit control-theoretic
treatment) to allow components of the service to adapt to changing
external conditions. These conditions might include offered load,
network conditions, network-based attacks, or changes in local
policy. When automated, such control loops are at the heart of
the notion of autonomic computing. Adding the sensing portion
of such control loops can be regarded as a specialized form of
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performance instrumentation, and adding the actuation parts shares
similar crosscutting issues to instrumentation. Perhaps for this
reason, most forms of autonomic computing to date treat programs
as black-boxes, and operating solely on the execution environment
(operating systems, hardware, network QoS, etc.). PROSE is con-
venient for implementing both the sensing and actuator parts of
an autonomic system, even in systems that were not originally
designed with that purpose in mind.

Hotfixes and security patches. Finally, devising fixes for
problems that emerge after the code is operational can be
hard, particularly for security issues which can exhibit the same
crosscutting properties as our other examples above. PROSE can
be used for example to modify the arguments passed to a method to
avoid a known bug for certain value ranges, or substitute a method
for a more secure or better performing version of the code.

3. PROGRAMMING EXTENSIONS
In this section we describe PROSE as seen by a programmer
developing run-time extensions, deferring implementation details
to Section 4. Here we focus on the practical use of PROSE to give
a better idea of its purpose and scope. PROSE’s key functionality
is method code replacement at run-time: replacing the bytecode of
a method on a running application without interrupting it. Changes
are specified as Java objects using normal Java syntax. In what
follows we describe the basic programming elements and proce-
dures, the scope of the changes PROSE facilitates, how changes are
expressed in Java, how to specify what to change, and the interface
to PROSE.

3.1 Terminology and Basic Concepts
Although PROSE is implemented differently and has different
goals, for convenience we borrow terms from the field of compile-
time Aspect-Oriented Programming [19].

We refer to the changes or extensions to an application as
aspects. An aspect consists of one or more crosscuts. A crosscut
contains a piece of advice code and an optional pattern expression
called a pointcut. The advice is the new code to be inserted into
the application. PROSE implements modification by replacing the
original code by the code in the advice. Due to the constraints im-
posed by operating at run-time, this is done only for readily and
efficiently identifiable blocks of code, namely methods. Hence,
upon insertion of an advice, a call to the original method results
in the advice being called instead, with the same parameters as the
original method.

The advice can choose to call the original method using the
proceed statement. We sometimes say that the advice redefines
the original method. If several advices redefine the same method,
each proceed calls the advices in order according to a user-defined
priority. The last advice in the resulting proceed chain will call
the original method by executing proceed. An advice may call
proceed any number of times.

A crosscut allows the same advice pattern to be applied to
multiple methods. Precisely which methods a crosscut applies
to is specified by a combination of the advice and the pointcut:
the advice uses a special signature that defines a list of methods
potentially affected, and the pointcut refines this list by applying a
more powerful regular expression.

Aspects provide an abstraction for bundling a set of crosscuts
into a single, coherent compound modification to the application.
The changes specified by an aspect are inserted or withdrawn from
the program as a unit.

3.2 Scope of Modifications
In PROSE, modifications affect only methods, not method
invocations – what an advice redefines is a method, not the calls to
that method. PROSE can thus implement any change that involves
extending functionality (doing something before or after execut-
ing a method, e.g., to add logging, timers, or retries), replacing
functionality (modifying arguments passed to a method to avoid a
known bug for certain value ranges, substituting a method for a bet-
ter version of the same code), and varied forms of code evolution.
PROSE does not support schema changes such as replacing the
interface of a method, refactoring of an application, or the addition
of new class members (i.e., methods, fields) to a Java class in the
original code. These limitations are largely imposed by PROSE’s
requirement to operate at run-time, after all potential classes are
loaded and linked by the JVM.

In spite of these limitations, PROSE can be used to perform a
wide variety of useful changes on running applications. Using
proceed calls allows advice code to be inserted both before and
after original method invocations, and the ability to call proceed
multiple times (with different arguments, and from multiple places
in the advice) allows, for example, complex early exception han-
dling or retry logic to be added to particular areas of an application
after it has been deployed.
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Figure 2. Control: (a) before weaving, (b) after weaving

To illustrate proceed calls further, Figure 2(a) shows a
Caller class that invokes the targetMethod of a Callee
class. Figure 2(b) shows the result of applying two aspects,
MethodRedefineCut2 and MethodRedefineCut1, in that order.
Inserting the aspects causes targetMethod to be redefined twice.
A call to targetMethod invokes the last inserted advice instead
(step 1). Inside this advice, proceed calls the second advice
(step 2). When this second advice executes proceed, the original
method is called (step 3).

3.3 Programming Extensions in Java
An important and unique feature of PROSE is that changes are
specified entirely in Java. This is fundamentally different to AOP
systems where programmers usually employ a different language
for aspects [6, 10, 15].

An aspect in PROSE is a Java class containing one or more
crosscut objects. Figure 3 shows an example aspect that imple-
ments a cache for expensive computations. The new advice checks
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the cache to see if the result is there. If it is, it returns the result from
the cache, otherwise it calls the original method using proceed.
The aspect, called CachingAspect, contains a single crosscut
and, like all aspects, extends the DefaultAspect base class. The
crosscut checkCache is an instance of MethodRedefineCut, and
contains an advice (lines 8-19) and a pointcut (lines 21-23), both
implemented as methods. The advice is called METHOD_ARGS and
takes a set of arguments which form the signature used to define
potential methods to be replaced. The arguments in the example
(line 8) indicate that the advice will match all methods of all ob-
ject types (ANY target) that have an object as a first parameter
(Object arg1) followed by any number of additional parameters
(REST arg2). This set of methods is further qualified by the
pointcut, which in this case, specifies (line 22) that the advice
applies only to methods called expensiveComputation.

1 public class CachingAspect extends DefaultAspect {
2 public static CachingService service;
3
4 public Crosscut checkCache = new MethodRedefineCut() {
5 public Object proceed (Object arg1, REST arg2) { return null; }
6
7 // advice: match ’*.*(Object,..)’
8 public Object METHOD_ARGS(ANY target, Object arg1, REST arg2) {
9 Object result;
10 if (!service.lookUp(arg1)) {
11 // store the value in the cache when the original method is called
12 result = service.writeInCache(arg1, proceed (arg1, arg2));
13 return result;
14 }
15 else {
16 // return the value from the cache
17 return service.accessCache(arg1);
18 }
19 }
20 // specialization: match ’*.expensiveComputation(..)’
21 protected PointCutter pointCutter() {
22 return (Within.method("expensiveComputation"));
23 }
24 }
25 }

Figure 3. An aspect implementing a cache

3.4 Specifying the Methods to Replace
The methods to be replaced by an advice are specified using both
the advice and the pointcut. In the advice, the expression is
derived from the method signature of the advice itself (the advice
automatically gets passed the parameters of the original method so
it does not really need a signature). The signature of the advice
method (METHOD_ARGS) has a first parameter called target. The
type of target is used to match object types and defines a list of
classes where the advice might potentially apply. With the target
parameter it is possible to use the ANY wildcard: target will then
match all object types. The second and remainder parameters of
the advice have names of the form arg1, arg2, arg3, and so on.
They are used to identify the methods to be replaced by matching
their parameters. For these parameters it is possible to use the REST
wildcard that matches any set of parameters of arbitrary types, and
also the ANY wildcard that matches all object and primitive types.

The signature pattern of the advice is, however, not precise
enough in all cases. This is why a crosscut includes a pointcut to
refine the match. The pointcut can take several qualifiers: within,
this and target. The within qualifier exists in four versions.
The first three are: Within.type(A), Within.subType(A),
Within.superType(A), that match methods that are in a class A,

a subclass of A, or a superclass of A, respectively. The fourth version
is Within.method (pattern), where pattern is a regular
expression that will be matched against method names. The this
qualifier allows matching of methods based on various proper-
ties of the this object: This.type(A), This.subtypeOf(A),
This.supertypeOf(A) matches methods that are of type A,
a subtype of A, or a supertype of A. This.isSameObject(B)
matches methods in the same object as B. The target quali-
fier matches methods based on properties of the target object:
Target.subtypeOf(A) matches methods if the current target is
a subclass of A.

3.5 The proceed Facility
The requirement that PROSE aspects must be well-formed Java
classes requires a special treatment of the proceed statement. The
approach we have followed in PROSE is to implement proceed
statements as a method call, the corresponding method being
defined as part of the crosscut class. An example can be seen in
Figure 3, line 5, which defines the proceed statement used in the
advice (in line 12).

Since proceed stands in for a call to either another advice or
to the original method, there is the question of how to handle the
parameters and the return of the call. For this purpose, PROSE offer
two options: predefined proceed statements and custom proceed
statements.

Predefined proceed statements are a collection of proceed
statements where the return type of the proceed call is fixed.
These statements are defined within the crosscut class and are
thus available to the advice. By default, the predefined proceed
statements automatically include the arguments of the original call.
The main purpose of the predefined proceed statements is to
make things easier for the programmer. They are used for in-
voking advices or original methods without having to declare a
proceed method on the crosscut class. They are also useful for
automatically autoboxing the return value to an appropriate type.
The complete list of predefined proceed statements is shown in
Table 1. Predefined proceed statements are declared to be static
for performance reasons, final to prevent them from being over-
ridden, and protected to prevent them from being called from
outside of the crosscut.

void proceed();
boolean proceedBoolean(); boolean[] proceedBooleanArray();
byte proceedByte(); byte[] proceedByteArray();
char proceedChar(); char[] proceedCharArray();
double proceedDouble(); double[] proceedDoubleArray();
float proceedFloat(); float[] proceedFloatArray();
int proceedInt(); int[] proceedIntArray();
long proceedLong(); long[] proceedLongArray();
Object proceedObject(); Object[] proceedObjectArray();

Table 1. Predefined proceed statements

As an example of how to use predefined proceed, consider a
method that does some calculation returning a Float and keeps
track of how many values have been computed by storing them in
a database. The method turns out to be inaccurate for small values
and slightly off for larger values. To correct the problem, an advice
can be used as follows. The advice checks the value passed to the
method, if the values are small, the advice calls proceed () so that
the original method can keep count but it does the computation
itself. By using the predefined proceed with a void return value,
the return parameter of the original method is ignored. If the
value is large enough, the advice calls proceedDouble() to get
the computation done and recorded by the original method. The
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returned value is cast into a Double and can then be plugged into
an expression that produces the correct value.

Predefined proceed statements work best when it is very clear
what the return value and the parameters involved are. There are
many cases, however, where it is advantageous to write a single
advice to replace a relatively large collection of methods that might
not all have the same signature. In such cases, custom proceed
statements are used. A custom proceed allows the programmer
to generate arbitrarily complex signatures, particularly when com-
bined with signature patterns (e.g., ANY, REST). The only constraint
is that the signature must match (be assignable to) all methods that
will be replaced by the advice. If a proceed without return value is
declared as void, the value returned by the original method is not
accessible in the advice. A custom proceed also has the slight
performance advantage that it avoids the casting of the Object
returned by proceedObject() to the class instance returned by
the advice.

Custom proceed statements are a very powerful construct
that must be used with care. However, when judiciously used,
they significantly increase what can be expressed in PROSE. For
instance, custom proceedmakes it possible to write a single advice
for a collection of related but different methods.

3.6 Working with PROSE
PROSE is installed on a JVM and runs as a service in its own
thread. It can be accessed locally or remotely over a TCP
connection. Remote and local access is supported by an Eclipse
plug-in that greatly facilitates its use, as well as a number of
visual tools to allow insertion and removal of extensions by
drag and drop. Other tools help to visualize the methods to be
replaced, compare the affected methods of different aspects, and
synchronously activating them on multiple remote JVMs. PROSE
supports transactional semantics for insertion and removal so that
it can be safely used in distributed applications.

Inserting an aspect involves instantiating the aspect, setting its
insertion priority, and telling the system to insert it. The following
code fragment shows how local insertion takes place:

1. CachingAspect asp = new CachingAspect();
2. asp.setPriority(10);
3. ProseSystem.getAspectManager().insert(asp);

An instance of the class CachingAspect called asp is created
on line 1, given a priority (line 2) that determines the order in which
it will be applied relative to other aspects, and then inserted in the
aspect manager (line 3). Alternatively, aspect instances may be sent
to PROSE using the remote interface of the aspect manager. In such
cases, the aspect instances are generated and initialized outside the
JVM in which they will be inserted.

4. IMPLEMENTATION
To be practically useful on real systems, applications which have
been modified by PROSE must exhibit minimal performance
degradation after modification. The approach adopted by existing
systems which implement Java method replacement is typically
to interpose a new method invocation (containing the advice),
and implement proceed by performing a method invocation on
the original code. This is accomplished by either adding new
methods to the invoked class, creating a new, anonymous class
as an intermediary, or by wrapping the original method code in

a so-called closure object. However, we show in Section 5 that this
results in a significant run-time performance penalty.

PROSE achieves good performance by creating no new methods,
classes, or closures. Instead, we replace the original method code
entirely, and implement proceed using aggressive inlining of the
original code in the body of the redefined method. This is a delicate
business: there is a tension between the expressivity and generality
of PROSE’s code modification interface, and the complexity of
handling all of Java’s language facilities within the modification.

In the rest of this section we first give an architectural overview
of PROSE, and how it interfaces to two different virtual machine
implementations. We then go on to describe in detail how an
individual method is rewritten to incorporate changes. The prin-
cipal challenges are (1) transforming method bytecode into a code
sequence suitable for inlining into the new advice; (2) avoiding an
explosion in code size when multiple crosscuts and/or proceeds
are applied to the same method; (3) handling the complexity of
Java’s call conventions in the form of exceptions, variable argument
lists, and autoboxing; and (4) composing multiple aspects in a
controlled manner. We proceed by starting with a simplified
description of the process, and progressively filling in the gaps.

4.1 System Overview
The first step of any changes performed with PROSE is to weave an
advice into a running application. Upon insertion, PROSE parses
the aspect and extracts the information necessary to determine
which methods to change (assume for simplicity the aspect has
only one crosscut, otherwise the procedure is repeated for each
one of them). It then generates the bytecode for the advice,
inlining the original method when necessary (see below). The
actual weaving can be implemented in different ways, depend-
ing on the underlying JVM. PROSE has been implemented so
far in two JVMs: Sun’s HotSpot JVM [25] and the IBM Jikes
Research Virtual Machine (RVM) [3]. Most of the code of PROSE
is VM-independent and identical in both systems, what varies is the
technique used for weaving. These weaving techniques are both
well known and orthogonal to PROSE.

The HotSpot backend for PROSE requires no changes to the
underlying virtual machine, and uses the HotSwap mechanism [12]
of the Java Platform Debugger Architecture (JPDA), which allows a
class to be reloaded at run-time, effectively replacing all methods at
the same time. PROSE interfaces to HotSpot as a JVM plugin. For
weaving an aspect, it rewrites the corresponding class with the new
method and reloads the class. This results in the original method
being replaced by the advice. The safety of the update is guaranteed
by HotSwap, which takes care of pausing the JVM at a safe point,
doing the change, and resuming execution.

The Jikes implementation of PROSE uses dynamic weaving
support to change a class at run-time in the RVM [21]. It is based
on making the JIT recompile the original method by changing
the corresponding entry in the method table. PROSE triggers the
recompilation but what is compiled is the advice rather than the
original method. This way, calls to the original method immedi-
ately become calls to the advice. This approach is more general as
it can be used in any JVM with a JIT. It has the drawback, however,
that certain compiler optimizations interfere with the ability of
PROSE to find methods: if the bytecode compiler inlines a method,
PROSE will not be able to find it.

Based on our implementation experience so far, PROSE should
be relatively easy to retarget for other JVMs. There is also nothing
in the techniques used that would not make the general idea also
applicable to other kinds of language virtual machines, such as
Microsoft’s CLR [13].
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4.2 Basic Method Replacement
The simplest non-trivial case for method replacement is a single
instance of a crosscut where the advice (i.e. the replacement code)
has a single, conventional proceed call. This proceed invocation
in the advice code must be replaced with an inlined version of the
original method.

original method code
(transformed)pr

ol
og

pr
oc

ee
d

ep
ilo

g

advice
code

advice 
code

Figure 4. Single proceed inlining

The process is shown in Figure 4. The first challenge arises from
the use of ANY and REST patterns in the signature of the new advice,
which allows the same crosscut to apply to multiple methods, with
potentially different signatures. For each method which will be
replaced by the new advice code, the advice bytecode must be
modified so that its arguments match those of the original method.

The second issue is that both the new advice code and the
original method code use local variables, which the Java compiler
allocates to slots in the current stack frame. The slot numbers
used by local variables in the original method code must therefore
be redefined so that they are allocated after the slots used for the
new advice code. The exception to this is the slot reserved for the
implicit “this” value, i.e. the current object. The bytecode of the
original method is rewritten to relocate these local references, and
the prolog and epilog of the original method are rewritten to obtain
argument values from advice local variables and store return results
back.

Finally, all return instructions in the original method are
replaced with gotos to the instruction following the transformed
code.

4.3 Handling Multiple proceeds
The basic scheme above generates highly efficient code for cases
where a single proceed call exists in the advice clause. However,
it is not uncommon for an advice code to call the original
method from more than one place – in particular, when installing
functionality to retry an unreliable operation some number of times,
perhaps with modified arguments.

Performing direct inlining in the case where proceed functions
are called multiple times from the advice code poses a challenge.
Naive inlining would increase the code size considerably, apart
from being conceptually inelegant. Furthermore, such a code size
explosion would increase the risk of running up against Java’s 64kB
limit on the bytecode size of each method.

An alternative approach would be to call the original method
code as a subroutine by moving it into a separate method (either
a new class method, instance method, or a method of an entirely
new class), and indeed some compile-time systems do just this
(e.g. [6]). However, the most efficient method call in Java (calling a
static method on the same class) is still a surprisingly heavyweight
operation.

Instead, in cases where we would otherwise need to inline the
original method more than once, we adopt the (perhaps surprising)

. . .. . .
prepare
proceed

goto

execution

athrow

. . .
a+0  iconst_1     % proceed called location 
a+1  goto p         % jump to proceed
a+2  athrow        % rethrow exception
. . .

(adapt result)(adapt result)
p+0  istore_1      % begin proceed
. . .                       % adapted proceed code
p+8  iload_1       % normal return code
p+9  tableswitch { // 0 to 1

0: a+3
1: x+3

proceed
code

1: x+3
default: a+3 }

e+0  iload_1 % exception handler code
e+1  tableswitch { // 0 to 1

0: a+2
1: x+2
d f lt 2 }default: a+2 }

exception
handler

for proceed

Figure 5. Multiple proceed inlining

approach of simulating subroutines within the new, replacement
method. The (transformed) original method code is placed at the
end of the code block for the new method, and each time it needs
to be invoked, an integer value is pushed onto the operand stack
indicating where the call is being made from (note that the stack is
not used to pass arguments at this point, since all arguments are by
now local variables). This instruction is then followed by a goto to
the original method code.

The epilog of the original method is followed by code to pop
this integer from the stack, and a Java tableswitch bytecode
instruction implementing a jump table to calculate the correct
address to return to. Figure 5 shows the complete structure of the
resulting code; exceptions are also handled by a similar jump table,
a scheme we describe in more detail in Section 4.7.

As we show in Section 5, the code resulting from this transfor-
mation has remarkably good performance, while keeping the size
under control. Note that PROSE can still run up against Java’s
method size limit, however. In practice we have not found this
to be a problem so far, but were it to become so we would have
to “spill” code to a newly created method or class and accept the
associated performance penalty.

4.4 Method Arguments and Return Values
As explained in Section 4.2, PROSE generates code ahead of an
inlined original method to copy method arguments to the newly
allocated local variable slots.

These arguments are of two kinds. The first kind are explicitly
passed to the proceed call in the advice code written by the user, in
which case the advice bytecode contains instructions to push them
on the operand stack just before the point in the code where the
proceed call instruction occurs (and which will be replaced by the
inlined original method).

The second kind are implicit. For example, the programmer can
simply write proceed () and have all the original arguments passed
from the advice code to the original method. These arguments will
already reside in local variable slots, since they will have been
pulled off the argument stack at the start of the advice code –
indeed, it is acceptable for the advice code to change their values.

238



These implicit arguments must be copied into the original method’s
local variable slots.

Return values from the original method call are handled in a
similar way. Where a plain proceed statement (declared void)
is employed for a method with a return value, the epilog discards
this value from the stack.

The shuffling around of arguments and return values theoreti-
cally results in suboptimal performance; one could imagine adopt-
ing a more sophisticated approach to allocating local variable slots
which borrowed techniques like register-coloring from compilers
to eliminate the redundant memory and stack operations. We do
not currently explore that possibility with PROSE, in part because
the current implementation is easier to check for bugs than one
performing more complex transformations in code, partly because
we do not expect the overhead to be too high, but also because we
feel that a good just-in-time bytecode compiler may well be able
optimize out many of these operations anyway. Our optimism is
borne out by the performance results we report in Section 5.

4.5 Autoboxing
Recent versions of Java (J2SE 5.0 and after) support a feature
known as “autoboxing” – implicit conversions between concrete
types like int and long and their object counterparts like Integer
and Long.

PROSE supports autoboxing of both arguments and results of
proceed calls. Since the types of the actual and real parameters of
the inlined method call are known when the new method is being
generated, PROSE inserts appropriate instructions where necessary
to perform boxing and unboxing of concrete type values (integers
and floats of various sizes, plus characters and booleans).

These instruction sequences themselves can perform implicit
casting so, for example, if the boxed type to be converted to
an integer is not java.lang.Integer but one which is castable
to it, the code will still work. As a (minor) added bonus, our
autoboxing of arguments and results also works on older JVMs
whose compiler does not support general autoboxing. PROSE
performs a typecheck via the Java reflection model before applying
the aspect, and attempts to autobox between incompatible types
will generate an exception when inserting the new aspect, causing
the insertion transaction to fail.

4.6 Varargs
As well as autoboxing, version 5.0 of Java J2SE introduced
variable-length argument lists to functions along the lines of the
C varargs facility. A Java method can be declared with a varargs
parameter as its last argument, denoted by the type for its entries
followed by an ellipsis and the name of the argument, for exam-
ple “proceed(Object... extra_args)”. The Java compiler
converts this into an array which is passed in a single argument to
the callee for each point that the method is called from.

PROSE provides support for varargs arguments in proceed
calls. However, efficiently inlining a varargs call invocation turns
out to be difficult, because of the code generated by Java com-
pilers to implement the calling conventions for varargs functions.
Figure 6 shows the code sequence generated for a proceed call
with variable arguments: first, an array is created on the stack, then
each argument is created on the stack and inserted into the array,
and finally proceed is called with the array argument.

The challenge is to eliminate the performance penalty of the
redundant creation and subsequent deletion of the argument array
when inlining the original method in place of the proceed call.

. . .

iconst <size> % creation of the array
anewarray % pushes the arrayref onto the stack

dup % insertion of the first entry
iconst <0>  % (1) pushes the index onto the stack
. . . % (2) instructions creating the entry
aastore  % (3) stores the entry into the array

. . . % additional array entries

d % i ti f th l t tdup                            % insertion of the last entry
iconst <max index> % (1) pushes the index onto the stack
. . . % (2) instructions creating the entry
aastore % (3) stores the entry into the array

invokevirtual proceed(Object[] obj)  % proceed invocation

Figure 6. Bytecode instructions for a call to a method with variable
arguments

This is difficult since PROSE is working from the bytecode, and
while it is clear where proceed is called from, it is less clear where
the argument marshalling starts. Furthermore, the marshalling code
for each argument contains arbitrary instructions to calculate the
argument value before inserting it in the array.

PROSE works backwards from the proceed call instruction,
and identifies the code blocks for marshalling each argument by
keeping track of how each instruction affects the current stack size
(since every Java bytecode instruction affects the stack size by a
constant amount). The code for each argument is identified by the
presence of an aastore instruction where the stack size is the same
as when proceed is later called. Eventually, the code to create the
argument array itself is identified, and only at this point can the
number of arguments to the call be found.

4.7 Exception Handling
Perhaps the biggest challenge in efficiently inlining method calls
when implementing crosscuts is the handling of exceptions. Both
original methods and advice code can throw and catch arbitrary
exceptions – indeed, a common use case for applying fixes to
software on-the-fly is installing exception handlers to catch errors
at different levels in the system. PROSE needs to preserve the
behavior of exception handlers when inlining original method code
into new advice.

Figure 7 shows the simple case of adding a new exception
handler around an existing method invocation, and where the
existing method is invoked only once inside the advice. In this case,
the inlining is straightforward: the new handler is placed after the
inlined method body, and the exception table for the new method
created accordingly.

The situation is more complex when the new advice code invokes
the original method more than once, via multiple proceed calls.
Recall from Section 4.3 that PROSE uses values pushed on the
stack, gotos, and a jump table at the end of the inlined code to
efficiently invoke the proceed code multiple times. Obviously,
exceptions thrown within this single body of inlined code must
be handled differently depending on where in the new method the
code was invoked from. The situation is further complicated by the
fact that a proceed call might be called from within the exception
handler surrounding a previous proceed, for example to retry a
failed operation.

PROSE handles this by surrounding the inlined original method
with a general exception handler which catches all exceptions. This
handler then uses a second jump table to transfer execution to an
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1. void UnreliableOp() {
2.            throw new OpFailure();
3. }

Original
UnreliableOp
method code

redefinitionmethod

1. void UnreliableOp() {
2.     try {
3.            throw new OpFailure();
4.     } catch (OpFailure e) { Redefined

redefinitionmethod

} ( p ) {
5.            System.out.println (“OpFailure: ignored");
6.     }
7. }

b t d

Redefined
UnreliableOp
method code

Method void UnreliableOp():
0: new #19  <Class OpFailure>
3 d

sequencebytecode

3: dup
4: invokespecial #20  <Method OpFailure."<init>":()V>
7: athrow
8: nop
9: goto 21

proceed
code

12: astore_1
13: getstatic #81  <Field java.io.PrintStream java.lang.System.out>
16: ldc #78  <String “OpFailure: ignored”>
18: invokevirtual #11 <Method void println(java.lang.String)>
21: return

exception
handler

for proceed
21: return

Exception table:
from to target   type

0 9 12 Class OpFailure

exception
table

for proceed

Figure 7. Exception handling for single proceed inlining

appropriate athrow instruction in the advice code. The exception
table for the new method is then constructed so that each of these
athrow instructions causes the correct exception handler (if any)
to be invoked. The resulting code layout is shown in Figure 8.

1. void UnreliableOp() {
2.            throw new OpFailure();
3. }

1. void UnreliableOp() {
2.     try {
3 th O F il ()

Original
UnreliableOp
method code

redefinitionmethod

3.            throw new OpFailure();
4.            System.out.println(“Failed; retrying...”);
5.            throw new OpFailure();
6.     } catch (OpFailure e) {
7.            System.out.println (“Failed 2nd try");
8.     }
9. }

Redefined
UnreliableOp
method code

Method void UnreliableOp():
0: iconst_1

1:  goto 31

4:  athrow

5: getstatic #2 <Field java.io.PrintStream java.lang.System.out>

sequencebytecode

5: getstatic #2  Field java.io.PrintStream java.lang.System.out
8: ldc #88  <String “Failed; retrying…”>

10: invokevirtual #11 <Method void println(java.lang.String)>
13:  iconst_0

14:  goto 31

17:  athrow

18: goto 30

21: astore 1ju
m

p 
to

 p
ro

ce
ed

 c
od

e rethrow
 exception

21: astore_1
22:  getstatic #81  <Field java.io.PrintStream java.lang.System.out>
25: ldc #78  <String “Failed 2nd try”>
27: invokevirtual #11 <Method void println(java.lang.String)>
30:  return

31:  istore_2
32:  new #19  <Class OpFailure>
35: dup
36: invokespecial #20 <Method OpFailure "<init>":()V>

exception
handler

for proceed

j

jum
p t36: invokespecial #20  <Method OpFailure. <init> :()V>

39: athrow
40:  iload_2
41:  tableswitch { // 0 to 1

0: 18;
1: 5;
default: 18 }          

64: iload_2
65: tableswitch { // 0 to 1

proceed
code

exception

to exception handler c65 tab es tc { // 0 to
0: 17;
1: 4;
default: 17 }

Exception table:
from to target   type

0 18 21 Class OpFailure
32     41      64      any

exception
table

for proceed

exception
handler

for proceed

ode

Figure 8. Exception handling for multiple proceed inlining

4.8 Multiple Method Redefinitions
It is highly likely in a real system modified with PROSE that more
than one crosscut will redefine the same method. PROSE handles
the composition of multiple aspects (and crosscuts within a single
aspect) by nesting the method redefinitions according to a simple
ordering specified when the aspects are introduced: each aspect has
an associated “priority”. This provides a deterministic ordering of
redefinitions across multiple insertions and removals.

When inserting and removing method definitions, PROSE
simply generates new code for the method every time, derived from
the original method and the new combination of applicable advice
sections. This is conceptually simpler and less bug-prone than
trying to incrementally unpick an advice section from a method,
and is still computationally relatively cheap. Furthermore, this
recalculation does not affect the time taken to hotswap the method,
since it is effectively done out of band until the point where it is
swapped.

5. EVALUATION
In this section we present performance measurements of PROSE.
Our aim is to determine the overhead of PROSE when installed
in a JVM, the efficiency of the code that PROSE generates when
replacing a method at run-time, and the cost of inserting a new
aspect into a system.

5.1 Experimental Methodology
All experiments were performed on an Intel Pentium M-based
system at 1.73 GHz with 512 MB RAM running Linux 2.6.17.
The Java implementations used are Sun’s Java SDK 1.5.0 JVM and
IBM’s Jikes RVM 2.3.0.1. In the case of Jikes, adaptive inlining is
turned off (see the problem with inlined methods described above).

For our measurements we use three benchmarks:
Java Grande [18], SPECjvm98 [24], and JAC [17]. SPECjvm98
consists of several tests that measure the efficiency of the JVM,
just-in-time (JIT) compiler, and operating system interface. It
includes applications for text compression, MPEG decoding,
compilation speed, graphics, and database processing. The Java
Grande benchmark tests the performance of Java for scientific
computations and covers three areas: low-level benchmarks
that test general language features and operations, scientific
and numerical application kernels, and full-scale science and
engineering applications. We use the scientific and numerical
application kernels, short codes which reflect the type of operations
that might be found in the most computationally intense parts of
numerical application. JAC is a benchmark for Aspect-Oriented
Programming systems, and consists of a set of public methods
with different method signatures and simple method body
implementation. We use JAC to compare PROSE to commonly
used Aspect-Oriented Programming systems.

5.2 PROSE Overhead
Our first set of experiments measure the overhead of having PROSE
reside in the JVM without performing any method replacements.
We run the SPECjvm98 and Java Grande benchmarks on a JVM
with and without PROSE. For Java Grande, we report the average
times for one hundred runs, each run completed in a separate VM.
For SPECjvm98, we report the average execution times of one
hundred runs, all run in a single JVM execution, with an input
size of 100 (large). In addition, for Jikes we show results with
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Execution time (ns)
zero one two three four five

Method type Arguments proceed proceed proceed proceed proceed proceed
avg / std avg / std avg / std avg / std avg / std avg / std

PROSE/ Jikes RVM - Optimizing compiler
invokevirtual () 5.217 5.228 15.746 19.113 24.467 30.233

0.53% 1.44% 1.83% 6.48% 0.9% 0.52%
sync () 64.703 68.260 73.474 76.733 78.422 82.289

invokevirtual 0.68% 0.68% 2.93% 5.73% 2.38% 0.94%
invokestatic () 4.678 5.220 15.766 19.298 25.116 32.630

3.93% 3.57% 1.58% 2.22% 1.22% 0.77%
invokevirtual (Object,Object) 5.963 6.663 16.357 20.34 25.169 31.575

0.61% 3.19% 3.14% 6.74% 1.21% 1.19%
sync (Object,Object) 65.889 67.061 72.671 75.754 78.147 82.329

invokevirtual 0.53% 0.5% 2.97% 5.19% 0.51% 0.44%
invokestatic (Object,Object) 4.684 5.262 17.469 21.963 27.459 34.147

3.81% 4.63% 0.85% 6.16% 1.71% 1.85%
PROSE/ Jikes RVM - Baseline compiler

invokevirtual () 21.807 25.637 85.377 111.713 142.199 168.742
0.78% 0.76% 2.71% 3.55% 0.76% 1.01%

sync () 101.653 109.768 156.456 184.107 214.166 245.679
invokevirtual 0.6% 0.31% 0.53% 2.02% 5.62% 0.43%
invokestatic () 17.741 21.170 67.961 95.828 121.297 146.189

2.7% 1.45% 2.15% 3.94% 2.16% 2.71%
invokevirtual (Object,Object) 24.540 36.048 95.998 132.249 162.311 201.086

0.95% 0.84% 0.35% 2.15% 2.82% 0.42%
sync (Object,Object) 105.735 112.609 166.377 204.118 239.631 273.037

invokevirtual 1.1% 0.34% 2.04% 0.63% 0.47% 0.61%
invokestatic (Object,Object) 22.549 29.184 82.501 117.150 148.693 175.783

1.33% 2.14% 2.29% 4.08% 7.72% 1.2%
PROSE/ Sun JVM - Java Hotspot Client VM

invokevirtual () 26.220 28.435 40.981 43.815 49.934 55.275
1.38% 1.37% 9.86% 5.25% 0.7% 3.9%

sync () 41.105 41.888 49.953 54.282 59.881 66.418
invokevirtual 0.77% 0.59% 2.95% 3.29% 2.17% 0.72%
invokestatic () 26.987 28.713 37.913 43.879 48.674 54.021

1.57% 1.66% 0.7% 1.44% 0.69% 0.98%
invokevirtual (Object,Object) 28.354 32.084 44.963 50.399 56.574 63.976

2.14% 0.94% 2.89% 1.55% 0.98% 0.62%
sync (Object,Object) 42.755 47.006 55.099 60.818 68.177 75.944

invokevirtual 0.49% 0.43% 4.18% 1.22% 1.98% 0.79%
invokestatic (Object,Object) 25.379 27.978 41.642 45.105 52.036 59.225

1.09% 1.1% 8.74% 4.88% 5.04% 0.9%

Table 2. Microbenchmarks for PROSE

and without compiler optimizations enabled, leading to three pairs
of measurements for each constituent benchmark.

The results are shown in Figure 9 and Figure 10. In all cases we
observe that the overhead of PROSE is small – on average 2.09%
for SPECjvm98 and 1.65% for Java Grande – and well below the
standard deviation for these experiments (itself below 7%).

5.3 Performance of Inlined Methods
Next, we measure the overhead of replacing a trivial method (which
assigns a single variable value) with a new one which calls the
original up to 5 times, incrementing a counter before all proceed
calls. We look at three different kinds of methods: public
(i.e. a virtual or instance method), public synchronized, and
static (i.e. a straight function call). We also obtain results
for two different method signatures: one with no arguments,
and one with two arguments of type Object. We perform the
experiment on three different JVM configurations (Jikes with and
without optimization, and Sun HotSpot). We also precede the
measurements with a dummy run to ensure all classes are loaded
and compiled.

Table 2 summarizes the results. Figures are averaged over

20 experimental runs of 100,000 method calls each; standard
deviation for all results is less than 10%.

For the case where only a single proceed call is made, the cost
of execution is around 28ns for Sun HotSpot. For comparison, both
the original function and the advice without any proceed calls
take around 26ns, implying that the overhead of virtual method
invocation is around 24ns. Baseline Jikes gives similar figures,
although slightly better. The message from these measurements is
that inlining a single instance of an original method is dramatically
more efficient than a nested method call would be.

Optimized Jikes shows less dramatic results except for
synchronized calls, where the benefits of fewer mutex operations
are clear. The compiler is clearly generating efficient machine code
to invoke both virtual and static methods.

Table 2 also shows the cost of moving from a single inlined
proceed call to multiple proceeds with simulated subroutines.
Once again, the results are most dramatic with the Sun JVM, where
we pay a penalty of between 8ns and 14ns to go from a single
proceed to the subroutine implementation with two proceeds.
From the rest of the data the cost of further proceed calls is
between 6ns and 8ns.

Interestingly, the penalty of simulating subroutines with
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optimized Jikes is much higher than with the Sun JVM, even
though the code as a whole runs much faster. This suggests that
there may be room for improvement in the Jikes implementation of
jump tables for switch constructs.

5.4 Overhead Comparison with AOP Systems
We now compare PROSE’s performance on microbenchmarks with
prominent Aspect-Oriented Programming systems which operate at
compile-time (AspectJ5 [6], ABC [5]), load-time (AspectJ5 again),
and run-time (Steamloom [10]). The procedure is much as before,
except that we only show results up to 3 proceed statements per
advice clause.

Many AOP systems distinguish between replacing a method
implementation, and replacing all invocations of that method with
inlined code to execute the advice. Which of these two approaches
results in faster modified code is a subtle question, particularly
when the advice code uses proceed calls to invoke the original
method implementation.

Table 3 shows our results for various systems modifying code
at compile-time, load-time, and run-time. For the AOP systems,
“call” modifications replace every invocation of the method with
the advice, and “method” modifications replace only the method’s
implementation. PROSE only performs method implementation
replacement. AspectJ provides two alternate commands for
load-time weaving of aspects; we show results for both (aj and
aj5) here.

Execution time (ns)
When? Modification System / JVM one two three

type proceed proceed proceed

AspectJ5 / Sun 50.349 53.086 56.271
call AspectJ5 / Jikes 318.316 332.895 365.053

ABC / Sun 29.376 31.781 33.432
Compile ABC / Jikes 38.402 51.942 66.214

Time AspectJ5 / Sun 37.054 40.278 42.476
method AspectJ5 / Jikes 64.058 79.283 93.935

ABC / Sun 36.285 38.422 39.402
ABC / Jikes 64.78 76.375 89.843

call AspectJ5 / Sun (aj5) 307.809 379.293 425.375
Load AspectJ5 / Sun (aj) 302.723 349.875 369.687
Time method AspectJ5 / Sun (aj5) 238.633 272.169 333.612

AspectJ5 / Sun (aj) 173.486 218.398 261.83
call Steamloom / Jikes 927.569 3427.003 3879.797

Run Steamloom / Jikes 2798.317 3255.978 3861.674
Time method PROSE/ Sun 28.435 40.981 43.815

PROSE/ Jikes 25.637 85.377 111.713

Table 3. Microbenchmarks for PROSE, AspectJ5, ABC and Steamloom

As expected, compile-time AOP systems (AspectJ and ABC)
produce significantly faster code than load-time ones (AspectJ
aj and aj5). Furthermore, both are significantly faster than
Steamloom’s run-time implementation.

However, PROSE shows performance for run-time modifications
which is comparable with that of AspectJ and ABC at
compile-time, 6 to 10 times faster than both of AspectJ’s load-time
mechanisms, and two orders of magnitude faster than Steamloom
using the Sun JVM1.

1Note: these figures are obtained starting with the baseline Jikes compiler,
rather than the optimizing compiler. Steamloom does not function with
an optimized Jikes compiler and RVM, but AspectJ and ABC will.
Performance for PROSE improves by roughly a factor of 5 when starting
with the optimizing Jikes compiler (the precise figures are 5.228ns,

Steamloom’s overhead is due to the way it deals with proceed.
Steamloom creates a closure object for each method in the
application where the advice is to be applied; proceed is
implemented as calls to that closure object. PROSE’s inlining of
the original method within the advice code reduces the number of
indirect references and is largely responsible for the performance
gain.

It is more surprising that PROSE slightly outperforms even
compile-time approaches such as AspectJ. PROSE’s advantage
here is gained by having its generated code bypass the JVM calling
conventions even for inlined code.

5.5 Comparison using JAC
We also present comparisons using the JAC application benchmark
for AOP systems. The benchmark consists of a set of 8 public
methods with different method signatures and simple method body
implementation. We run 20 experiments of 100,000 iterations
each and average the results. The standard deviation for all these
experiments is less than 10%.

Table 4 shows the results of (a) applying an aspect to all
8 methods in the benchmark, and (b) applying the aspect to only
one2. With some variation, the results are consistent with the
microbenchmarks, and show PROSE has run-time performance
comparable with compile-time AOP approaches.

5.6 Modification Performance
Our final experiment compares the time taken to apply an aspect to
a system at run-time using PROSE with the time taken to apply it at
load-time with AspectJ. The method used is public, takes a single
int argument and returns an int. The advice contains a simple
field operation and calls proceed up to three times.

Figure 11 shows the average times for twenty runs. We only
show figures for the Sun JVM, since AspectJ does not support
load-time modification for Jikes. Standard deviation for these
figures is less than 4%.
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Figure 11. Modification speed of PROSE and AspectJ5

15.746ns, and 19.113ns for 1, 2, and 3 proceeds) and we expect similar
improvements for the other systems, which will not significantly change
our overall conclusions.
2We show incomplete results for Steamloom, since its current
implementation cannot successfully apply aspects to 8 public methods. We
are working with the implementors to resolve this problem.
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(a) Modifying all 8 methods

Execution time (ms)
When? Modification System / JVM one two three

type proceed proceed proceed

AspectJ5 / Sun 7.3 13.95 16.05
AspectJ5 / Jikes 20.2 22.1 25.7

call ABC / Sun 3 3 3
Compile ABC / Jikes 20 21.9 25.55

Time AspectJ5 / Sun 7.25 13.05 15.05
AspectJ5 / Jikes 18.05 18.6 19.05

method ABC / Sun 4 4 4
ABC / Jikes 13.75 14.6 15.65

call AspectJ5 / Sun (aj5) 148 221.85 296.9
Load AspectJ5 / Sun (aj) 152.05 227.3 302.35
Time method AspectJ5 / Sun (aj5) 137.8 207.9 278.3

AspectJ5 / Sun (aj) 141.75 213.45 284.75
call Steamloom / Jikes - - -

Run Steamloom / Jikes - - -
Time method PROSE/ Sun 3 10.35 12.2

PROSE/ Jikes 21.8 24.1 26.15

(b) Redefining a single method

Execution time (ms)
When? Modification System / JVM one two three

type proceed proceed proceed

AspectJ5 / Sun 2.05 3.95 4
AspectJ5 / Jikes 9.9 10.8 10.85

call ABC / Sun 2 2 2
Compile ABC / Jikes 9.15 9.25 9.6

Time AspectJ5 / Sun 2 3.95 4
AspectJ5 / Jikes 9.85 9.9 9.95

method ABC / Sun 2 2 2
ABC / Jikes 8.05 8.15 8.35

call AspectJ5 / Sun (aj5) 15 20.05 25.85
Load AspectJ5 / Sun (aj) 15.3 21 26.05
Time method AspectJ5 / Sun (aj5) 13.95 18.05 23

AspectJ5 / Sun (aj) 14 18.95 23.8
call Steamloom / Jikes 1225.95 2312.35 3394.05

Run Steamloom / Jikes 1226.1 2307.25 3390.95
Time method PROSE/ Sun 2 2 2

PROSE/ Jikes 9.25 10.85 11.95

Table 4. Measurements with PROSE, AspectJ5, ABC and Steamloom

We see that PROSE takes about 31ms to find the method to
be replaced, generate the bytecode including the inlined original
method, and install the new code in the VM, and furthermore incurs
an overhead of about a millisecond for each extra proceed. This is
about 55% slower than AspectJ’s load-time operation, but we feel
that given PROSE’s superior performance and ability to modify the
application at run-time, this penalty is acceptable.

6. RELATED WORK
PROSE borrows its notation from Aspect-Oriented Programming,
but applies the concepts to the problem of modifying running
applications instead of introducing crosscutting changes as part of
the software development process. As such, and unlike current
AOP efforts, PROSE should not be seen as a software development
tool but rather as a run-time tool that can be used for a wide range
of purposes: from instrumentation to providing high availability.

We have already introduced the major AOP systems in Section 5.
The best-known compile-time AOP system is AspectJ [6, 16],
which implements proceed calls in advice using closure objects.
A closure is created for each point where the advice applies, and
proceed calls invoke the closure. AspectJ will inline code in
the absence of proceed calls. Recently AspectJ’s compile-time
system has been merged with the load-time functionality of
AspectWerkz [7].

The AspectBench Compiler (abc) [5, 8] uses a more efficient
approach whereby the proceed code from all modified methods
of a class is moved to a static proceed method in the class. Integer
indices are used at run-time to identify the class from which advice
was called, and to invoke the correct original method.

Steamloom [10, 15] performs run-time code replacement as an
extension to the IBM Jikes RVM. Steamloom uses a sophisticated
closure-passing scheme to provide considerable flexibility on
where an advice can be applied, but has a number of restrictions
on advice implementation: it cannot exploit the optimizing Jikes
compiler, does not at present allow composition of aspects, and
cannot apply aspects to methods that throw exceptions. It also uses
its own programming language to describe aspects.

Run-time replacement of code or application subsystems has
also been explored in a variety of contexts.

The Erlang language [4] was explicitly designed to facilitate
code replacement at run-time. Erlang is a strict functional
language, with all program state consequently passed on the
stack (through tail calls in the case of message-handling loops).
Individual functions can therefore be replaced at the point where
they are next called. The high-level ability to replace functionality
that cuts across an Erlang application is left to the system designer.

An idea similar in spirit to PROSE but with rather different
techniques and context was recently proposed as a way to
dynamically instrument an operating system kernel [22]. The
approach adds instrumentation to code blocks by copying them
to an instruction cache, adding instrumentation on the way, before
executing. Jumps and traps (the standard techniques for inserting
instrumentation) are avoided by having the instrumentation directly
inlined into the original code. Unlike PROSE, this technique can
only add code, not replace the functionality. It is also unclear how
such modifications could, in the more general-purpose case, handle
variable arguments and exceptions.

Another system for dynamic instrumentation is Pin [20]. When
attached to an application, Pin uses a JIT compiler that takes as
input native code and partly recompiles the code plus the added
instrumentation. Pin regains control over the application with every
branch and generates the necessary code from the original code
plus the instrumentation. Compared with PROSE, and like many
similar dynamic instrumentation systems, Pin can only add, not
replace, code. However, it does operate on native code in real time.

Alternative techniques have been proposed to safely
upgrade parts of a distributed application by exploiting the
(hopefully) inherent fault-tolerance of such a system to perform
micro-reboots [11] with new code. We see techniques like these
as largely complementary to our own: we provide a way to apply
changes across the systems as a whole, and can do it without
shutting down an application VM if needed.

Existing research on mobile, pervasive and autonomic
computing has proposed several approaches to the problem
of application recovery in case of system failures caused by
the operating system’s device drivers [26], software failures in
large-scale Internet systems [11], or database connections in
multi-tier applications [9, 23]. Several techniques have been
used (e.g., shadow drivers, micro-rebooting of partial system
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components) to adapt systems and allow applications to continue
executing despite software failures.

Finally, we recognize that in a distributed context, PROSE is
only addressing only part of the wider problem of evolving a
large application. For example, we do not address the long-term
versioning and operations issues addressed in [1, 2].

7. DISCUSSION
Modifying a running application on-the-fly is, of course, a
potentially dangerous operation, and the power of PROSE in
replacing collections of methods at run-time comes with associated
caveats about unrestrained usage. Several concerns about “safety”
(in the broad sense) come to mind; in this section we attempt to
address them in turn.

Firstly, the ability of PROSE to change arbitrary program
functionality via method replacement says nothing about whether
such changes will result in a program that will crash or enter
an inconsistent state. There is a tension between the safety
of such operations and their scope in changing the behavior of
the application, and it is unclear whether an “inherently safe”
mechanism could implement useful changes at all.

Our response to this dilemma is not to limit PROSE’s power,
but instead to provide abstraction mechanisms to make it easier
for program maintainers to do the right thing. In particular, the
ability to express (and perform) crosscutting changes in one go, and
furthermore the bundling of multiple crosscuts into a single unit
(the aspect) to be applied atomically, make it easier to transition
an application from one state to a new one which is hopefully
desirable.

Nevertheless, PROSE can be used in ways that are not as
dramatic as radically changing how an application behaves. For
instance, an advice can be used to test if a modification actually
works. The advice runs both the modification and the original
code through proceed. It then compares the results (which could
also be compared in terms of performance) and keeps a log. The
advice always returns the value provided by the original method.
The application has not changed in principle but developers have
now a useful facility for testing new code on the running system.
It is relatively easy to develop a tool above PROSE that only
permits such testing extensions, and we are interested in further
pursuing the possibilities of building software engineering tools
above PROSE.

A second concern is that of “feature interaction”: the unexpected
results of applying two, individually unproblematic, changes to the
same application. This problem is not unique to aspect-oriented
program modifications, indeed it is well known to anyone who has
engineered a large system over an extended period.

As before, our philosophy is not to attempt to rule out the
problem by limiting the expressivity of PROSE, but instead to
give users better tools to manage the problem themselves. Hence
PROSE provides a mechanism for keeping track of the combined
semantics of multiple aspects by means of the ordering arguments.
Aspects can be reordered and reapplied atomically, should the
need arise, and individual aspects withdrawn from the system at
any time.

A third potential problem with PROSE is source code
divergence: over time, as more and more changes are applied,
the running system diverges from the source code available to the
programmer. This is of course a problem with any patching system,
but whereas patches are typically localized modifications, PROSE
changes affect many areas of an application (and indeed this is

one of their principle advantages). While a programmer would
presumably have at her disposal the complete set of applied aspects
as well as the original source code, this does not necessarily make
the job of understanding the program as a whole any easier.

We see this is a legitimate question of appropriate usage and
methodology. We can view uses of PROSE as falling between
two ideal poles: applying new functionality which is completely
orthogonal to the correctness of the program (such as tracing
information), and changing the behavior of the running system
completely (by replacing whole subsystems). The source code
divergence problem arises most when the application contains
many applied changes which fall somewhere in the middle.

Since PROSE is based on controlled replacement of methods,
one promising methodology for prolonged system evolution is
as follows: firstly, short-term, urgent changes to a system
are implemented as aspects with proceed calls to the original
methods. These prototype aspects can be replaced later with
aspects that contain the entire new logic and consequently have
no need for proceed calls. Such “finished” aspects also enable
synchronization with the source code. Finally, scheduled downtime
or microreboots at safe times can be used to replace the system with
a fresh build from source.

We have liberally borrowed concepts from Aspect-Oriented
Programming, and some of the above criticisms have long been
levelled at AOP in general. Our position is that AOP is not a
panacea, and indeed in adopting our dynamic run-time approach we
are explicitly not advocating AOP as a methodology for designing
and building systems. Instead, we are arguing in this paper that
AOP’s concepts are a useful way to get purchase on the problem of
modifying an existing (and, in our case, running) system.

8. CONCLUSION
PROSE demonstrates the feasibility of systematically modifying a
running Java application without shutting it down, by building a
powerful facility above the existing low-level code hot-swapping
features of Java virtual machines.

Crosscuts allow changes to be applied to areas of program
functionality that are not localized in particular components,
objects, or other program areas. Furthermore, aspects allow
related and interdependent crosscuts to be gathered together and
applied (or withdrawn) as a unit. PROSE also provides controlled
composition of aspects via a well-defined order on modifications.

Finally, PROSE shows how aggressive inlining can be generic
enough to support different designs of Java virtual machine, yet
provide performance at run-time considerably superior to the
existing load-time AOP-based systems, and competitive with the
best compile-time AOP systems.

The source code for PROSE, together with the code for all the
benchmarks in this paper, will be available in due course on the
project web site at http://prose.ethz.ch/.
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