
Customized OS support for data-processing

Jana Giceva, Gerd Zellweger, Gustavo Alonso, Timothy Roscoe
Systems Group, Dept. of Computer Science, ETH Zurich, Switzerland

name.surname@inf.ethz.ch

ABSTRACT
For decades, database engines have found the generic interfaces of-
fered by the operating systems at odds with the need for efficient
utilization of hardware resources. As a result, most engines circum-
vent the OS and manage hardware directly. With the growing com-
plexity and heterogeneity of modern hardware, database engines
are now facing a steep increase in the complexity they must absorb
to achieve good performance. Taking advantage of recent propos-
als in operating system design, such as multi-kernels, in this paper
we explore the development of a light weight OS kernel tailored for
data processing and discuss its benefits for simplifying the design
and improving the performance of data management systems.

1. INTRODUCTION
Database engines running on today’s operating systems suffer from
a number of performance related problems primarily caused by
generic OS policies:

First, when data processing runs concurrently with other applica-
tions on the same machine, the default OS policies for scheduling
and resource allocation often cause performance degradation [10,
24] and inefficiencies in resource utilization [15, 37].

Second, even when running in isolation, databases pay a lot of
attention when managing the resources to avoid the penalties from
default OS policies [27, 29, 42]. Examples include pinning threads
to cores, allocating memory from a particular NUMA node, or pin-
ning pages to avoid swapping, etc. [5, 32, 35, 45]. Many of these
optimizations are tailored to a particular hardware architecture and
are, thus, not easily portable to other platforms [31, 33, 38, 47].

Third, even when the optimizations deliver the desired perfor-
mance and predictability properties, they are often fragile as they
rely on a particular implementation of specific OS kernel mecha-
nisms and policies (e.g., HyPer [39] relies on efficient OS-assisted
snapshotting). As a consequence, any changes to the operating sys-
tem can cause performance penalties.

In this paper, we propose a solution that tailors the OS stack, and
in particular the OS kernel, to the needs of the database system or
its workloads (§ 3). It revisits the decades-old problem of OS sup-
port for databases [18, 49] in the context of modern hardware. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DaMoN ’16 San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 123-4567-24-567/08/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2933349.2933351

solution we advocate relies on recent advancements in operating
systems which enable systems to run a specialized OS kernel on a
subset of the resources of a given machine (§ 2.2). In this way, the
database engine gets considerably more control over the full sys-
tem stack, which can then be tuned to achieve better performance
and provide stronger guarantees.

As example take the default OS policy for scheduling threads
on cores. The OS main principle is multiplexing resources among
all applications currently active in the system. With its limited to
non-existing knowledge of the requirements of the applications, it
migrates, preempts, and interrupts threads on various cores trying
to optimize certain system-wide OS metrics [7]. While existing
libraries allow to override thread migration by pinning threads to
cores, it still does not stop the OS from preempting the thread and
scheduling another activity on the same core. Such disruptions at
inconvenient times can be detrimental to both performance and pre-
dictability for data processing systems [16, 20]. A customized OS
kernel can address this problem by providing support for dedicated
cores, which we discuss in more detail in § 5. Other common prob-
lems and examples are provided in § 4.

1.1 Motivating example
Modern hardware provides many opportunities for resource shar-
ing. Figure 1 illustrates a concrete example using Intel’s Sandy-
Bridge many-core machine.

The effects of resource sharing on the performance of systems
have been extensively studied [16, 31, 59]. This so-called noise as
perceived by the application can be (1) external, e.g., from the OS
or another application or (2) internal, i.e., from within the database
system itself as a result of multi-tenancy or nested-parallelism (e.g.
handling multiple parallel queries concurrently).

When designing suitable core scheduling policies, databases have

L3 cache

N
U

M
A

 n
o

d
e

core
1

core
5

core
9

core
13

core
17

core
21

core
25

core
29

L1 cache

L2 cache

Thr.
13

Thr.
45

Processor layout Multi-threaded core

Q
P

I
P

C
Ie

1 2

3

4

5

Figure 1: An Intel SandyBridge architecture depicting shared re-
sources for programs: (1) the last level cache, (2) local DRAM
bandwidth, (3) interference on the QPI interconnect, (4) sharing of
the private L1 and L2 caches, and (5) sharing a hardware thread.

 0

 1

 2

 3

HJ SMJ AGG SMJ HJ AGG

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

co-located operators on Intel SandyBridge

hardware thread

L1/L2 cache

LLC/NUMA

Figure 2: Slowdown for different operators when sharing a partic-
ular hardware resource with another operator, normalized to exe-
cuting alone on the same resources. HJ: hashjoin1, AGG: aggrega-
tion [55], and SMJ: sort-merge-join2.

to absorb additional complexity and understand (1) the model of the
underlying architecture; (2) the workload characteristics and the
resource requirements of the operations to be scheduled; as well
as (3) the behaviour of the relational operators when executed in
a noisy environment, i.e., their sensitivity when sharing resources
and how that impacts their performance.

In Figure 2, we show the observed slowdown for a relational op-
erator when collocated with another operator such that they share
a particular hardware resource. The numbers are normalized to the
performance of the individual operators when executed in isolation.
The results indicate that the observed slowdown can vary signif-
icantly depending on both (1) the type of resource being shared,
and (2) the noise, i.e., the properties of the partner operator.

However, when the noise is external, neither the sophisticated
machine model nor the workload characterization is of help as the
database system is not aware of the system state and current uti-
lization of the hardware resources. Similarly, if a data processing
system does not absorb the above mentioned complexity and relies
on the standard runtime or operating system, then the impact of the
resource sharing is further aggravated, as we will show in § 5.3.
The challenges of data processing were also explored by Porobic et
al. in the context of OLTP workloads [43].

A customized OS kernel can address such issues and give per-
formance isolation guarantees by providing a parallel task based
execution mechanism. We provide more details in § 4.

2. BACKGROUND

2.1 Challenges for DB on modern hardware
Existing data-processing systems have two alternatives for their im-
plementation: (1) they rely on existing runtime or OS mechanisms
for memory management, synchronization and thread scheduling
(e.g. POSIX, OpenMP and JVM); or (2) implement optimized data
structures and primitives themselves, tuned for a particular task on
a given hardware (e.g., suitable synchronization primitives as re-
quired by the chosen concurrency control mechanism [36]).

The first option is usually chosen by engines that are willing to
trade off performance for easier maintenance and portability across

1http://www.systems.ethz.ch/sites/default/files/
multicore-hashjoins-0_1_tar.gz
2http://www.systems.ethz.ch/sites/default/files/file/
sort-merge-joins-1_4_tar.gz

core core

DRAM GDDRAM

core core

DRAM

NUMA 1 NUMA 2 Accelerator

PCIe QPI

O
S

H
ar

d
w

ar
e

FWK FWK LWK A LWK B

Figure 3: Illustrating a multi-kernel. The operating system sup-
ports multiple different kernels which can run on different subsets
of computational resources (cores or accelerators). FWK – full-
weight kernel; LWK A and B – two specialized light-weight ker-
nels running on an entire NUMA node and an accelerator for par-
allel execution.

different platforms and hardware architectures (e.g., Spark [56],
GraphX [54], GreenMarl [22]). The second option is preferred
by data-processing systems that optimize heavily for performance
(e.g., HyPer [26], MonetDB [6], Shore-MT [23]). However, it is
well understood that these individual optimizations come at a cost
of portability, especially as hardware becomes more diverse [41].
Simply absorbing all the complexity of the underlying hardware is
not a viable solution in the long run. Instead of replicating the over-
head of hardware-tuned implementations in each data-processing
system, a better approach is to extract the most common primitives
and mechanisms and support them as part of the operating system.

2.2 Advances in operating systems
Commodity operating systems like Windows, BSD and Linux aim
to satisfy the requirements of a wide range of applications. There
are, however, several application domains whose requirements can-
not be supported well in general-purpose operating systems: (1)
High performance computing (HPC) systems are very sensitive to
OS noise. Such noise, aggravated by the scale at which these sys-
tems run, results in severe performance problems [21]. Thus, super-
computing systems have started using customized lightweight ker-
nels [13, 25, 46]; (2) Real-time systems controlling or monitoring
physical equipment and infrastructure typically have hard real-time
requirements – hence, the development of real-time OSes.

Databases face similar problems as they only require a subset
of the services, general purpose mechanisms, and primitives that a
general-purpose OS provides. However, most data-processing sys-
tems run on commodity machines or on high-end manycore servers,
and often share the machine with other applications or systems that
may have different requirements. Therefore, even though com-
pelling, such customized lightweight operating systems were not
a viable option in the past because of the already mentioned mono-
lithic architecture of conventional operating systems.

Some new OSes are based on a multikernel design [3] which runs
a separate kernel on every core [50, 52]. It allows for greater flexi-
bility as now even the kernel-space mechanisms and primitives can
be tailored to the application’s needs. In parallel, the HPC com-
munity is already exploring this design by having the light-weight
kernels (LWK) running alongside full-weight kernels (FWK) like
Linux inside the same system [12,48,53]. It is the flexibility that the
multi-kernel provides which would enable optimized lightweight
OS-support for database systems to co-exist in the same system
with other general-purpose kernels. Additionally, it is a good fit
when addressing hardware heterogeneity and customizing the OS
support for different computational resources. We illustrate these
benefits of a multi-kernel in Figure 3.

Customized light-weight kernel

Library OS

Runtime system
(RTS)

Hardware

Optimized OS

1

2

3

Figure 4: Architecture overview of the optimized OS system stack.

3. DESIGN
We base our specialized OS support for data-processing systems on
the following three design principles:

1. Control-/compute-plane framework, which allows the co-
existence of multiple different kernels. Systems which re-
quire more traditional OS support can still be executed on the
full-weight OS (control-plane), and delegate the performance-
critical portions of their functionality (i.e., data processing)
to the customized light-weight OS (compute-plane).

2. Specialization across the whole system stack. We distin-
guish two forms of specialization: (1) customization based
on the application requirements, and (2) hardware tuning in
the system stack for a variety of machine architectures.

3. Leverage novel OS services that allow direct access to hard-
ware from user-space via better hardware abstractions.

3.1 Customized OS stack overview
The architecture of our proposed OS support for database systems
is shown in Figure 4. The OS stack is separated into several compo-
nents, based on whether the selected services can be implemented
in user- or kernel- space, as well as whether they should figure as
part of the general purpose OS library or application-tuned runtime
system (RTS).

The customized lightweight kernel (i) contains mechanisms and
services that can not be otherwise implemented in user-space. In
contrast to Exokernels, we use kernel-level specialization to di-
rectly interact with the global scheduling policy of the operating
system. This functionality is typically not exposed to the applica-
tion as it requires a global view of the system state. We discuss the
scheduling in our system in § 5.2; and (ii) is lightweight which, in
principle, means less overhead (by removing unnecessary jitter and
functionality which is not required by the database), better scalabil-
ity on rack-scale machines, and can result in more predictable per-
formance (no undesired interrupts, handling of expensive system
calls, preemption, etc.). We describe its mechanisms and services
in detail in § 4.1.

The library OS, contains hardware and application-tuned im-
plementation of OS services and mechanisms for data processing.
The goal is to cover the basic features in user-space that would al-
low systems which primarily care for portability still have access
to high performing abstractions tuned for data processing, while
at the same time provide flexibility for the systems optimizing for
performance to override them with a customized implementation.

Finally, the OS runtime system provides additional function-
ality and higher-level interface for highly tuned memory manage-
ment primitives and a task-based scheduling mechanism, leverag-
ing the support provided by the lightweight kernel.

In the rest of the paper, we focus the discussion on the mecha-
nisms we selected to be supported by the lightweight kernel.

4. CUSTOMIZED LWK
We classify the kernel support into several categories depending
on the offered functionality: (1) management of computational re-
sources, (2) memory management, and (3) providing more trans-
parent access and management of various hardware devices.

4.1 Managing CPU resources
Dedicated CPU resources. Thread and data-placement play a great
role in the performance of database systems. Therefore, it has been
common practice not to rely on the operating system to deploy and
manage threads (due to the OS’ thread migration policies). Instead,
systems use libraries like libnuma to pin threads to a particular
core. Moreover, they can also specify the priority level for schedul-
ing a certain group of threads. Unfortunately, none of these pro-
vides guarantees for isolation, i.e., that a given thread will get ded-
icated access to the CPU core without being interrupted or context-
switched. Although there are cases in which such a guarantee is not
essential, there are many others in which the consequences of shar-
ing a core can be detrimental to the performance and predictability
of the application. In COD [16] we have demonstrated the severe
effects that CPU sharing even on one of the cores can have on a
CPU-intensive task, like a heavily optimized scan operator [51],
with performance drops of as much as 77%.

Run-to-completion tasks. Even in cases where preemption and
CPU-sharing is acceptable, or needed for more efficient resource
utilization and consolidation, such an event and interruption must
happen at convenient times. Otherwise, as shown in Callisto [20],
the slowdown can be quite significant ranging between 30-100%
for synchronization-heavy applications. The slowdown is usually
due to preempting or interrupting the thread execution logic at in-
convenient times (e.g., while holding a latch or working on a per-
formance critical section). Therefore, we introduce a kernel ab-
straction for task-based execution, where the OS will not interrupt
and/or preempt the thread and instead run tasks to completion.

Co-scheduling in noisy environment. If the CPU resources within
a hardware-island are scheduled well, the database can leverage the
resource sharing potential – either by collocating communicating
threads, or by using the caches and data-locality for data-intensive
processing. However, if managed poorly in a noisy multiprogram-
ming environment, the performance of the system can be signifi-
cantly impacted.

The results in Figure 2 show that sometimes even sharing the
last-level cache and local DRAM bandwidth can slow down the
execution of an operator by almost 60% (hashjoin). Hence, sim-
ply controlling each core individually is not enough to avoid such
scenarios, and more advanced scheduling mechanisms are needed.

Therefore, the proposed LWK has scheduling support that makes
sure that, when necessary, all cores used by one job, are coordinated
and scheduled as a single unit. They could be assigned as a ded-
icated resource to a particular parallel operation, or co-scheduled
among several such jobs.

Other directions. Recent advances in operating systems also al-
low for fast core booting [57], which can be used for more energy-
efficient resource utilization, or even for handling the upcoming
challenges of dark-silicon [9]. This is an aspect that we will ex-
plore in future work.

4.2 Memory management
The effects of non-uniform memory accesses, bandwidth and their
implication on synchronization and memory movement has been
extensively studied [35, 43, 45]. Similar analysis and optimizations

were done for the role of the TLB and reducing the costly overhead
of virtual memory translation [28, 55]. The virtual memory system
is becoming a bottleneck for main-memory data processing. This
inspired recent proposals such as direct segments [2] which allow
circumventing the physical-to-virtual address translation for large
regions of memory. Furthermore, OS swapping policies do not take
into account application specific knowledge about the content of
pages, something which has been shown to negatively impact per-
formance of database systems [17]. Such effects are likely to be-
come more pronounced with the introduction of NVRAM [29].

Unfortunately, the conventional operating system APIs for ma-
nipulating a process’ address space still try to shield the application
from all this complexity – hence limiting the opportunity for appli-
cations to directly manage memory and their own page-tables or
use self-paging to swap their data out to disk or NVRAM. Recent
proposals in OS memory systems provide greater flexibility to ap-
plications by exposing both physical and virtual memory directly to
application and allowing them to safely construct their own page-
tables [11]. Such systems avoid the potentially sub-optimal global
policies enforced by the OS.

Finally, database systems which would like to support OLAP
workloads by taking snapshots of the OLTP datastore (inspired by
HyPer [26]) have to use heavy and slow system calls like fork if
they want to benefit from the OS and hardware support for copy-
on-write. Newer OS abstractions like SpaceJMP [8] allow for fast
address space switching and can be used in combination with copy-
on-write to provide a more lightweight alternative to forking.

4.3 Access and interfacing with hardware
I/O devices. Most hardware devices available today dealing with
I/O have support for virtualization. This allows virtual machines
to have direct control over the entire device or parts of a device.
Recently, OSes such as iX [4] and Arrakis [40] use the functionality
originally intended for the hypervisor to give applications direct
access the exposed hardware. The performance for a client request
on Arrakis to the Redis persistent NoSQL store showed 2x better
read latency, 5x better write latency, and 9x better write throughput
compared to Linux.

Inter-processor-interrupts (IPIs). One example of particular in-
terest for implementing efficient database synchronization primi-
tives are the inter-processor-interrupts (IPIs). They are issued by
a core-local interrupt controller to send asynchronous notifications
to another core (or a set of cores) in the system, and are typically
not exposed to user-space applications by commodity OSes. If ex-
posed, however, a database could use them to efficiently wake-up
threads on other core(s) that are blocked on a lock, etc.

Performance counters. Finally, for efficient execution, monitor-
ing and tuning of system software and algorithm implementations
it has become common to rely on the information provided by the
hardware performance counters [58, 59]. The existing support pro-
vided by commodity operating systems and their kernels is not suit-
able for complex parallel systems like databases. As a result of the
rigid abstractions, the OS offers an interface to read values from
the registers on a per-resource (e.g. core, cache, DRAM) or per-
process granularity. We argue that a customized OS kernel should
provide better abstractions so that the values can be obtained on a
per-thread or thread-group granularity.

Other directions. In the future, the kernel should also expose more
insightful models of the machine, as well as a better overview of
the current utilization of the shared resources based on the current
system-state.

5. PROTOTYPE
Our current implementation is an extension of the Barrelfish [50]
operating system. We have implemented a light-weight kernel to
provide only the necessary services needed for a database system.
The light-weight kernel can be spawned on either sockets or indi-
vidual cores. It currently offers the following features:

1. Task-based scheduling as opposed to the standard thread ab-
straction provided by a general-purpose kernel. The differ-
ence of how the kernel treats tasks and threads is that the
task-based scheduler will never preempt or interrupt a run-
ning task.

2. Support to form and schedule groups of tasks (called a par-
allel task – ptask) that are strictly executed together on the
same socket.

3. The dedicated CPU mechanism uses the task based abstrac-
tion – hence no interrupts or preemption – but also constrains
the scheduler from allocating any other task on the queue for
that particular CPU.

4. The memory and hardware access services described in the
previous section are inherited from the existing support in
Barrelfish.

5.1 Interface to database systems
The functionality provided by the LWK is exposed to runtimes
through a library OS (see Figure 5) which allows data process-
ing systems to create tasks, compose them to form parallel tasks,
and enqueue parallel tasks in the system to be executed on the cus-
tomized light-weight kernel (compute-plane). This is done by using
a system call interface on the control plane which is still running a
full-weight Barrelfish kernel. The compute plane kernel instances
will then dequeue the ptasks and make sure they are scheduled with
respect to the spatial as well as temporal co-scheduling constraints
discussed in § 4.1. The control plane can wait for the completion
of ptasks or abort their execution after they have been enqueued.

Further, the library OS abstracts the highly optimized message
passing mechanisms integrated in Barrelfish to provide communi-
cation among tasks inside a ptask, but also between the control-
and compute-plane.

5.2 Example use-cases
Next, we provide several concrete use-cases of data processing en-
gines which show how one can leverage the proposed kernel-based
services. We focus on the services for managing CPU resources.

Use of a dedicated CPU. There are many scenarios where a part
of a database system may need to run in isolation due to hard SLA
guarantees. In such scenarios a mechanisms providing a dedicated
CPU resource is of obvious use. Another example are operator-
centric data processing systems, which have attracted attention in
recent years (DataPath [1], QPipe [19], SharedDB [14], stream-
processing, etc.). They are characterized by long-lasting query

struct task { task_fn fun, void* arg, ... }
struct ptask { struct task* tasks, size_t count, ... }
bas_task_create(count)→ struct task*
bas_ptask_create(tasks)→ struct ptask*
bas_ptask_enqueue(ptask, locality, ...)
bas_wait(ptask)
bas_abort(ptask)

Figure 5: The parallel task-based execution API.

plans and hence have long-running operators. Some of the op-
erators in a blocking operator pipeline (or with relatively low re-
source requirements) can easily be consolidated on a smaller set
of cores [15]. There are, however, non-blocking pipelines with
heavy CPU-intensive operators which are continuously active (e.g.,
a Crescando scan [51] in SharedDB, or an optimized filter in a
streaming engine). Their performance can be significantly reduced
when sharing the CPU with another CPU-intensive task, as we have
shown in the evaluation of COD [16]. Due to the nature of pipeline-
based systems, impacting the performance of one such critical op-
erator will negatively affect the performance of the whole system.

OS support for task-based scheduling. Apart from the obvi-
ous benefits for synchronization-heavy workloads and operations
(as discussed in the previous section), the kernel support for task-
based scheduling can be also leveraged by (1) task-based schedul-
ing approaches recently introduced in SAP Hana [44] or HyPer [32]
(i.e., the morsel-driven parallelism), where it is important not to
be context-switched or interrupted while processing a highly op-
timized operation on a morsel of data in order to keep both the
instruction and data cache locality intact; (2) other optimized data-
processing operators that rely on having the hot data fit in the L1/L2
caches, especially if the data is accessed randomly and any extra
trip to DRAM is prohibitively expensive. Li et al. have shown that
the total cost of a context switch can increase by almost three orders
of magnitude for data-sensitive applications [34] .

NUMA-aware scheduling of parallel tasks can be leveraged by
any data-processing system internally using nested parallelism. For
databases, in particular, in the case of bushy- and intra-operator
parallelism, i.e., when executing multiple parallel queries concur-
rently. For instance, the execution engine needs to concurrently
schedule multiple parallel relational operators (e.g. a parallel hash
join or aggregation). The ptask scheduling policy makes sure that
the threads belonging to the same ptask are placed on the same
socket, and can benefit from constructive sharing of the last level
cache. It also removes the danger of destructive resource sharing
as the ones observed in Figure 2.

5.3 Initial evaluation
We evaluated the NUMA-aware scheduling policy adopted by our
parallel task scheduling mechanism using the GreenMarl graph-
processing system implemented on top of OpenMP on an Intel
SandyBridge machine using the GreenMarl [22] algorithms for Page
Rank, Hop Distance and Single Source Shortest Path on the Twit-
ter dataset [30]. The two heat-maps in Figure 6 show the pair-
wise execution for each of the algorithms with different schedul-
ing strategies in a noisy environment (i.e., paired with a second
OpenMP runtime, running another algorithm) on four sockets. In
(a) we use the default Linux and OpenMP scheduling and measure
the runtimes for two algorithms running together on four sockets.
The numbers show the slowdown when compared against running
one of the algorithms alone on just two sockets. In (b) we use a
NUMA-aware scheduling policy by giving each OpenMP runtime
two predetermined sockets, and compare it to the baseline of run-
ning a single OpenMP instance on two sockets inside the system.

For Figure 6a, we observe that for seven out of nine combina-
tions, there is a noticeable slowdown with factors up to 2.5x com-
pared to running the algorithms in isolation. We attribute these
effects to the runtime oblivious assignment of hardware threads by
the OS. The two OpenMP programs executing these algorithms are
now open to memory bandwidth contention, L3 cache interference
(by distributing threads from both programs on all sockets), thread
migrations, the Linux first-touch policy for memory allocation, etc.

PR HD SSSP

PR

HD

SSSP

1.52

2.10

2.50

1.21

1.40

0.71

1.16

0.80

2.00

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

(a) Standard scheduling
PR HD SSSP

PR

HD

SSSP

1.05

1.01

1.01

1.03

0.99

0.99

1.00

0.99

0.99

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

(b) NUMA-aware scheduling

Figure 6: Slowdown in noisy environment compared to run in isola-
tion of PageRank (PR), HopDistance (HD) and SingleSourceShort-
estPath (SSSP): standard vs. NUMA-aware scheduling.

Figure 6b shows the behavior for the same algorithm pairs when
the parallel job scheduling is done with our parallel task schedul-
ing mechanism dedicating an entire socket as the unit of allocation
for each parallel algorithm (i.e., using a NUMA-aware scheduling)
on Linux. We observe that for most pairs, there is no significant
slowdown, at most 1.05x for PR–PR and 1.03 PR–HD. These results
indicate that the parallel job performance is now predictable even
in a noisy system, and transparent to the internal implementation of
such a general data processing application.

6. DISCUSSION AND CONCLUSION
We presented the design of a light-weight kernel tailored to the
needs of data-processing systems, and demonstrated that with its
customized policies and mechanisms it can provide better perfor-
mance in noisy environments. Additionally, the kernel exposes al-
ternative interfaces and optimizations which were previously not
possible with general-purpose operating systems.

In this paper, we primarily focused on the kernel itself. However,
we are also working on the corresponding library OS and runtime
for data-processing systems. We would also like to explore if there
is a need to specialize further, for instance, to provide other LWK
feature-sets for OLAP and OLTP workloads.

Furthermore, the use of lightweight kernels is not just suitable
for traditional multi-core machines but the same concept can be
applied for better integration of heterogeneous systems with asym-
metric performance characteristics, including hardware accelera-
tors (e.g., XeonPhi). In addition, the distributed nature of a multi-
kernel makes it a suitable candidate for rack-scale machines where
scalability on all layers is key to the overall system performance.

7. REFERENCES
[1] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, and L. Perez.

The DataPath system: a data-centric analytic processing engine for
large data warehouses. SIGMOD ’10, pages 519–530.

[2] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift. Efficient
Virtual Memory for Big Memory Servers. ISCA ’13, pages 237–248.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A
New OS Architecture for Scalable Multicore Systems. SOSP ’09,
pages 29–44.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. OSDI’14, pages 49–65.

[5] S. Blanas and J. M. Patel. Memory Footprint Matters: Efficient
Equi-join Algorithms for Main Memory Data Processing. SOCC ’13,
pages 19:1–19:16.

[6] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the Memory
Wall in MonetDB. Commun. ACM, 51(12):77–85.

[7] D. Bovet and M. Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[8] I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Achermann,
P. Faraboschi, W.-m. Hwu, T. Roscoe, and K. Schwan. SpaceJMP:
Programming with Multiple Virtual Address Spaces. ASPLOS’16.

[9] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. ISCA ’11,
pages 365–376, 2011.

[10] A. Fedorova, M. Seltzer, and M. D. Smith. Improving Performance
Isolation on Chip Multiprocessors via an Operating System
Scheduler. PACT ’07, pages 25–38.

[11] S. Gerber, G. Zellweger, R. Achermann, K. Kourtis, T. Roscoe, and
D. Milojicic. Not your parents’ physical address space. In HotOS’15.

[12] B. Gerofi, M. Takagi, Y. Ishikawa, R. Riesen, E. Powers, and R. W.
Wisniewski. Exploring the Design Space of Combining Linux with
Lightweight Kernels for Extreme Scale Computing. ROSS ’15, pages
5:1–5:8.

[13] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski.
Experiences with a Lightweight Supercomputer Kernel: Lessons
Learned from Blue Gene’s CNK. SC ’10, pages 1–10.

[14] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: killing one
thousand queries with one stone. PVLDB, 5(6):526–537, 2012.

[15] J. Giceva, G. Alonso, T. Roscoe, and T. Harris. Deployment of Query
Plans on Multicores. PVLDB, 8(3):233–244, 2014.

[16] J. Giceva, T.-I. Salomie, A. Schüpbach, G. Alonso, and T. Roscoe.
COD: Database/Operating System Co-Design. In CIDR, 2013.

[17] G. Graefe, H. Volos, H. Kimura, H. Kuno, J. Tucek, M. Lillibridge,
and A. Veitch. In-memory Performance for Big Data. PVLDB’14,
pages 37–48.

[18] J. Gray. Notes on Data Base Operating Systems. In R. Bayer, R. M.
Graham, and G. Seegmüller, editors, Operating Systems: An
Advanced Course, pages 393–481. Springer-Verlag, 1977.

[19] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: a
simultaneously pipelined relational query engine. SIGMOD ’05,
pages 383–394.

[20] T. Harris, M. Maas, and V. J. Marathe. Callisto: Co-scheduling
Parallel Runtime Systems. EuroSys ’14, pages 24:1–24:14.

[21] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the
Influence of System Noise on Large-Scale Applications by
Simulation. SC ’10, pages 1–11.

[22] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: A DSL
for Easy and Efficient Graph Analysis. ASPLOS’12, pages 349–362.

[23] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-MT: A Scalable Storage Manager for the Multicore Era.
EDBT ’09, pages 24–35.

[24] S. Kaestle, R. Achermann, T. Roscoe, and T. Harris. Shoal: Smart
Allocation and Replication of Memory for Parallel Programs.
USENIX ATC ’15, pages 263–276.

[25] S. M. Kelly and R. Brightwell. Software architecture of the light
weight kernel, catamount. In Cray User Group’05, pages 16–19.

[26] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In
ICDE, pages 195–206, 2011.

[27] T. Kiefer, B. Schlegel, and W. Lehner. Experimental evaluation of
NUMA effects on database management systems. In BTW’13, pages
185–204.

[28] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey. Sort vs. Hash revisited: fast
join implementation on modern multi-core CPUs. PVLDB,
2(2):1378–1389, 2009.

[29] H. Kimura. FOEDUS: OLTP Engine for a Thousand Cores and
NVRAM. SIGMOD ’15, pages 691–706.

[30] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social
network or a news media? In WWW ’10, pages 591–600.

[31] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang. MCC-DB:
minimizing cache conflicts in multi-core processors for databases.
PVLDB, 2(1):373–384, 2009.

[32] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven
Parallelism: A NUMA-aware Query Evaluation Framework for the
Many-core Age. In SIGMOD’14, pages 743–754, 2014.

[33] V. Leis, A. Kemper, and T. Neumann. Exploiting hardware
transactional memory in main-memory databases. In ICDE’14, pages
580–591.

[34] C. Li, C. Ding, and K. Shen. Quantifying the Cost of Context Switch.
ExpCS ’07.

[35] Y. Li, I. Pandis, R. Müller, V. Raman, and G. M. Lohman.
NUMA-aware algorithms: the case of data shuffling. In CIDR, 2013.

[36] D. B. Lomet, S. Sengupta, and J. J. Levandoski. The Bw-Tree: A
B-tree for New Hardware Platforms. ICDE ’13, pages 302–313.

[37] J. Lozi, B. Lepers, J. R. Funston, F. Gaud, V. Quéma, and
A. Fedorova. The Linux scheduler: a decade of wasted cores. In
EuroSys’16, page 1, 2016.

[38] D. Makreshanski, J. J. Levandoski, and R. Stutsman. To Lock, Swap,
or Elide: On the Interplay of Hardware Transactional Memory and
Lock-Free Indexing. PVLDB, 8(11):1298–1309.

[39] H. Mühe, A. Kemper, and T. Neumann. How to Efficiently Snapshot
Transactional Data: Hardware or Software Controlled? DaMoN ’11,
pages 17–26.

[40] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe. Arrakis: The Operating System is the
Control Plane. OSDI’14, pages 1–16.

[41] S. Phillips. M7: Next Generation SPARC. Presented at Hot Chips
(HC 26): A symposium on High Performance Chips, August, 2014.

[42] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki. ATraPos:
Adaptive transaction processing on hardware Islands. In ICDE, pages
688–699, 2014.

[43] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki. OLTP
on Hardware Islands. PVLDB, 5(11):1447–1458, 2012.

[44] I. Psaroudakis, T. Scheuer, N. May, and A. Ailamaki. Task
Scheduling for Highly Concurrent Analytical and Transactional
Main-Memory Workloads. In ADMS, pages 36–45, 2013.

[45] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and A. Ailamaki.
Scaling Up Concurrent Main-memory Column-store Scans: Towards
Adaptive NUMA-aware Data and Task Placement. PVLDB,
8(12):1442–1453.

[46] R. Riesen, A. B. Maccabe, B. Gerofi, D. N. Lombard, J. J. Lange,
K. Pedretti, K. Ferreira, M. Lang, P. Keppel, R. W. Wisniewski,
R. Brightwell, T. Inglett, Y. Park, and Y. Ishikawa. What is a
Lightweight Kernel? ROSS ’15, pages 9:1–9:8.

[47] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim,
and P. Dubey. Fast sort on CPUs and GPUs: a case for bandwidth
oblivious SIMD sort. In SIGMOD’10, pages 351–362.

[48] T. Shimosawa, B. Gerofi, M. Takagi, G. Nakamura, T. Shirasawa,
Y. Saeki, M. Shimizu, A. Hori, and Y. Ishikawa. Interface for
heterogeneous kernels: A framework to enable hybrid OS designs
targeting high performance computing on manycore architectures. In
HiPC’14, pages 1–10.

[49] M. Stonebraker. Operating System Support for Database
Management. Commun. ACM, pages 412–418, 1981.

[50] The Barrelfish Project. www.barrelfish.org, accessed 2016-03-22.
[51] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and

D. Kossmann. Predictable performance for unpredictable workloads.
PVLDB ’09, pages 706–717.

[52] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the
case for a scalable operating system for multicores. SIGOPS’09,
pages 76–85.

[53] R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen.
mOS: An Architecture for Extreme-scale Operating Systems. ROSS
’14, pages 2:1–2:8.

[54] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. GraphX: A
Resilient Distributed Graph System on Spark. GRADES ’13, pages
2:1–2:6.

[55] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation on
multicore processors. In DaMoN’11, pages 1–9.

[56] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster Computing with Working Sets. HotCloud’10.

[57] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe. Decoupling
Cores, Kernels, and Operating Systems. In OSDI’14, pages 17–31.

[58] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes. CPI2: CPU Performance Isolation for Shared Compute
Clusters. EuroSys ’13.

[59] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing Shared
Resource Contention in Multicore Processors via Scheduling.
ASPLOS XV, pages 129–142, 2010.

