
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

How to diagnose nanosecond network latencies
in rich end-host stacks

Roni Haecki, ETH Zurich; Radhika Niranjan Mysore, Lalith Suresh,
Gerd Zellweger, Bo Gan, Timothy Merrifield, and Sujata Banerjee, VMware;

Timothy Roscoe, ETH Zurich
https://www.usenix.org/conference/nsdi22/presentation/haecki

How to diagnose nanosecond network latencies in rich end-host stacks

Roni Haecki1, Radhika Niranjan Mysore2, Lalith Suresh2, Gerd Zellweger2,
Bo Gan2, Timothy Merrifield2, Sujata Banerjee2, Timothy Roscoe1

1ETH Zurich, 2VMware

Abstract

Low-latency network stacks have brought down network
latencies within end-hosts to the microsecond-regime. How-
ever, end-host profilers have such high overheads that they are
useful only to confirm a hypothesis, not to diagnose a prob-
lem in the first place. Indeed, every one of twenty low-latency
network projects we surveyed rolled their own analysis tools
instead of using an existing profiler.

This paper shows how to build a latency diagnosis tool with
full-stack coverage and low overhead that can identify, not just
confirm, sources of latency in end hosts. The unique measure-
ment methodology reconstructs network-message lifetimes
within end hosts with nanosecond precision, by reconciling
CPU and NIC hardware profiling traces across multiple time
domains (network and CPU). It uncovers unexpected latency
sources in both kernel and user-space stacks.

We demonstrate these capabilities by using our implemen-
tation, NSight, to systematically identify and remove perfor-
mance overheads in memcached, reducing 99.9th percentile
latency by a factor of 40 from 2.2 ms to 41 µs.

1 Introduction

Operating systems and network stacks are routinely blamed
for increasing network latencies. Clearly, we need diagnos-
tic tools to identify sources of latency in end-host stacks.
Thankfully, there is no paucity of end-host profilers [1, 3, 4, 6,
13, 16, 22, 25, 29, 31, 37, 38, 49–51, 73, 77]. We examined 21
networking projects whose goal was to achieve low latency
[2,5,8,11,20,23,26,27,33–36,41,46,48,55,57,58,60,65,69].
Surprisingly, not one of these projects have used these profil-
ers! Instead, all of them design their own handcrafted latency
measurement system. This indicates that in spite of the excel-
lent and vast body of prior work, there is no diagnostic tool
for network latencies introduced at the end host, especially in
the microsecond regime. In this paper we present NSight to
address this important gap.

Our investigations identify three reasons that existing end-
host profilers fail at network latency diagnosis. First, existing
profilers fail to capture latency deviations added by the NIC,
from the point when messages enter (or exit) the NIC to the
point that they are received by (or exit) the driver. Many sys-
tem designs identify these latency deviations to be important
[8, 24, 26, 34, 35, 48, 55, 58, 60, 62].

Figure 1: CDF of memcached request receive-latencies with
and without profiling. eBPF-1 stands for eBPF probing a
single function; Ftrace, Intel-PT and NSight, profile all sys-
tem functions in the end-host stack. eBPF-1 and Ftrace add
variable latencies to functions being profiled that are hard to
differentiate from true latency deviations.

Second, their high overheads severely disturb the latency
distribution, overwhelming the root causes being pursued.
Figure 1 shows how two widely-used profilers, eBPF and
Ftrace, add to memcached request-receive latencies, measured
from the point requests are received at the NIC to the point
they are received by memcached (socket recv). eBPF adds
18-40% overhead while measuring the latency of a single
function, while Ftrace adds 298-841% profiling all functions
of the end-host software stack. Also shown is the minimal
impact of NSight and in the same range as Intel-PT, which is
an example of a hardware CPU profiler that NSight builds on.

Third, existing profilers are too heavyweight to apply to
the entire stack. A developer diagnosing network latencies
must already have a guess of where to look before such a
profiler is useful. Blogs [15, 28, 32, 43, 45] tell exactly this
story: Users determine the parts of the stack that might add
latency deviations and then use profiling tools to measure
latencies in these parts. The unfortunate result is that the
latency sources from unexamined parts of the stack are not
caught. In addition, important interactions between different
parts of the stack go unnoticed [46,68]. For example, profiling
the NIC separately from the network software stack hides the
impact of NIC deviations on scheduling decisions. When
there are large latency deviations at the NIC, a CPU waiting
for network messages can idle and go into a lower power state.
This increases scheduling latency, and in turn, overall network
latency (§7.4 has an example).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 861

Our contribution. We correct these shortcomings by
demonstrating the feasibility of a low-overhead, holistic tool
called NSight for diagnosing network latency deviations in-
troduced at end hosts. The guiding principle is that entire

lifetimes of network messages within end hosts must be ex-
amined to determine the precise causes of latency deviations.
These lifetimes are defined by all system activity, not limited
to network processing, that impacts messages from the time
they enter end hosts to when they exit it. To be useful in the
microsecond regime, NSight must reconstruct these lifetimes
with nanosecond precision. NSight does so by reconciling
timelines of two fine-grained data sources, CPU hardware
profiling and NIC hardware timestamps.

This reconstruction is challenging for two reasons. First, the
two data sources record time using different hardware clocks.
Hardware CPU profiling uses a monotonically increasing
clock for capturing precise intra-end-host latencies, while
NIC and software CPU clocks are often synchronized using
PTP [61] to aid inter-end-host latency measurements. To align
the timestamps in these sources correctly, NSight tracks the
conversion between the two time domains during profiling.

Second, CPU hardware profiling does not track the passage
of network messages in multi-core systems across kernel
cores (which process the message) and application cores. To
track this path, NSight captures timestamps and core numbers
at the boundary where kernel hands off the message to the
application. This boundary is also the point where message
processing can move across cores.

Once the lifetimes of messages are constructed, they can be
compared to identify anomalous processing that led to their
latency deviations. Unfortunately, due to the deep nesting
of end-host call stacks, latency deviations in functions intro-
duce deviations in their parent functions making them look
anomalous too! To reduce ambiguity in attributing root causes
to anomalies, NSight traverses the call stacks until it finds
functions with latency deviations that cannot be attributed to
nested calls.

NSight demonstrates that these techniques are sufficient to
overcome the listed challenges, while incurring overheads
comparable to hardware profiling (see Figure 1). Due to
its low overhead, NSight can be used to diagnose even sub-
microsecond increases in network latency at the end host. We
describe our use of NSight to profile both the Linux kernel and
Mellanox’s VMA [48], a user-space network stack. On these
stacks we describe how we profile unmodified applications
memcached and redis. We dive deeply into a detailed case
study of memcached, the application of choice in several low-
latency end-host stack papers [11,35,36,39,55,58,60,70,71],
to prove the diagnosis capability of NSight. In the case study
NSight systematically narrows down the bottlenecks of the
Linux stack, as we mitigate 99.9th percentile memcached tail
latency by over 40x - from 2.2 ms to 51 µs. When one of the
mitigations increases latencies below the median by as much
as 11 µs, NSight helps identify the reasons for this increase.

2 Background and related work

The vast body of profiling and diagnostic tools fall broadly
into two groups: fault diagnosis tools ([10,64,74]) and perfor-
mance diagnosis tools ([21,75,76]). Some diagnose problems
within end-hosts ([1,3,4]). Others help in distributed settings
([19,21,68]). NSight is a performance diagnosis tool for end-
hosts. Its focus is on latency diagnosis. We focus on software-
and hardware- based tools built for latency diagnosis below.
Software-based end-host tools. Software-based diagnostic
tools are built on top of profiling data sources such as probes
(Uprobes [17], Kprobes [30]), kernel tracepoints, performance
counters, and software tracing. The data source determines
the overheads and insights that can be drawn from the tool.

Tools that depend on probes (LTTng [13], eBPF [1]) and
kernel tracepoints (dtrace [51]) allow users to instrument
functions of interest. Users of these tools must already know
where to look, making them less suited for latency diagnosis
than tools that depend on software tracing (Ftrace [3]). Tools
based on performance counters (perf stat [4]) do not cap-
ture outlier latency events (due to aggregation) making them
unsuited for tail latency diagnosis in particular.

Unlike NSight, all of these tools miss NIC delays altogether
and have much higher overheads than hardware profilers.
Hardware-based end-host tools. CPU profilers ([12,40,53])
record software function call and return times, their core
number and process names at processor speeds. The times-
tamps help measure software latencies with nanosecond pre-
cision and low overhead. NSight, like perf and VTune [25],
uses CPU profilers to track software function latencies.

Most NICs support hardware timestamping [14] for net-
work packets. The timestamps can be retrieved per-message
using standard Linux socket calls, to determine network laten-
cies across and within end-hosts. NSight uses NIC timestamps
to track entry and exit of network messages during profiling.

Unlike NSight, these tools cannot identify the sources of
network latencies in end-hosts by themselves or when com-
bined with one another. Instead they require the user to make
a conjecture that the tools can help confirm (See §2.1 and §4).
Distributed tools. Even though NSight is designed for net-
work latency diagnosis within end-hosts rather than in dis-
tributed settings, some similarities and differences are worth
noting. Like NSight, many diagnostic tools for distributed
systems [7,9,18,19,44,54,68,72] reconstruct the path of mes-
sages but in distributed settings. They do not capture network
latency sources at end-hosts but capture other latency sources
like packet drops, routing issues and workload spikes.

Inband network telemetry (INT) [56] is a mechanism to
probe specific points in network dataplanes. In software, these
probes are expensive [67] and do not cover many points in
end-host stacks, like the OS stack, that we do with NSight.
Therefore they can only confirm causes of latency, not identify
them. On the other hand, INT works with all programmable
network hardware while NSight is relevant only for end-hosts.

862 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: A flame graph is not very useful for diagnosing
latency problems because it only highlights common events
in system activity. It leaves the identification of events that
are deviations from the norm to the user.

2.1 Diagnosing network delays at end-hosts

We now describe common network latency debugging prac-
tices at end-hosts using existing tools (blogs [15, 28, 32, 43,
45]). The process usually begins with tools that summarize
system activity, like perf [4], SystemTap [59], unless de-
velopers already have deep knowledge of the application of
interest [32]. These tools help identify the parts of the stack
that are most active and might impact network latency.

For example, we can generate flame graphs like Fig-
ure 2 with perf. The flame graph shows two applications,
memcached and NGINX both running on the same machine. It
is natural to ask whether they interfere to cause network de-
lays [20,27,55]. To verify, developers can isolate applications,
or turn on software tracing, like Ftrace, and visualize net-
work send/receive paths using tools like KernelShark [66].

Figure 2 also shows memcached LRU cache maintenance
and paging activity to be high. Even though unrelated, these
can delay network activity if scheduled during network pro-
cessing. To verify, developers can use tools like eBPF or
Ftrace to track periods of such activity and correlate them
with periods of high network latencies. To verify delays on

network processing paths, these tools can generate latency
distribution graphs for the functions of interest [45].

These steps alone might be insufficient [15]. System ac-
tivity summaries like Figure 2 do not show problems like
NIC delays, scheduling bottlenecks, or head-of-line block-
ing that can slow down network processing. Finding these
problems requires tracking specific system/NIC performance
counters [4, 52] or handcrafted measurements [35, 39].

3 Using NSight for diagnosis

We now describe a typical debugging experience with NSight.
Let us suppose users are running memcached on Linux and
see large tail latencies despite light query loads. To use NSight
to quickly diagnose the cause of poor performance, the user
first turns on NSight profiling for a second. Once NSight
analyzes the profiling data, the user inspects the initial re-
sult, Figure 3. This balloon plot shows the latencies of all
memcached requests profiled and the top causes of the slow-

Figure 3: Balloon plots summarize message latencies(Y-axis)
with the top causes for latency deviations (legend) mapped to
corresponding messages using similar balloons.The balloons
are in Message ID order (X-axis) to identify bunching together
of balloons that indicates a single underlying cause. If they
are spaced apart, there are likely multiple independent reasons
that need to be addressed separately.

sum=

0.3

sum=

0.6

sum=

1
sum=

0.6

sum=

1
sum=

0.6

sum=

180.5

sum=

1.9
sum=

0.3

sum=

0.6

sum=

1

0.1

1.0

10.0

100.0

C
o
n
te

xt
 S

w
itc

h
 I
d
le

 (
A

)

C
o
n
te

xt
 S

w
itc

h
 I
d
le

 (
R

)
C

P
U

 I
d
le

 (
A

)

F
ile

 I
d
le

 (
A

)
H

O
L
 b

lo
ck

in
g
 (
A

)
In

te
rr

u
p
t
Id

le
 (
R

)
N

IC
 D

e
la

y
(R

)

O
th

e
r

P
e
rf
 I
d
le

 (
A

)
R

e
ce

iv
e
 P

a
th

 I
d
le

 (
R

)
T
C

P
 P

ro
to

co
l I

d
le

 (
R

)

Source of Idle Deviation [(A) = App Core, (R) = Recv Core]

D
e
v
ia

ti
o

n
 [

u
s
]

Figure 4: A zoomed-in box plot of causes for CPU idling that
impacted the slowest message. This presentation is valuable
for identifying why the cores were idling (X-axis), and the
latency deviation due to those causes (Y-axis). Both the ap-
plication (A) and receive cores (R) idle, for reasons ranging
from waiting during a context switch or file access, with NIC
interrupt coalescing, NIC delay (R), causing the largest wait.

est (tail) requests. The user notices that the tail requests are
largely slowed down by idling CPU cores, CPU Idle (A),
where A stands for application-core on which memcached

runs. The slowest request is also slowed down by core idling
due to NIC interrupt coalescing delay, NIC Delay (R), where
R stands for the core on which the kernel receives the request.

From this result, the user can drill down into the presented
causes for tail latencies. For instance, the user cross-checks
why the cores were idling when processing the slowest re-
quest. Figure 4 shows that, among various causes, the largest
latency deviation was due to NIC interrupt coalescing.

The user could also manually verify this diagnosis using
Figure 5, a detailed timeline of all system-activity that im-
pacted the slowest message. Eyeballing the presentation, the
user confirms that there is a gap in system activity before the
message is processed but long after the message is received
at the NIC, showing that interrupt coalescing delays slowed
down the tail request by as much as 180 µs.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 863

Figure 5: NSight’s presentation of processing timeline of the
slowest message. The presentation tracks system activity from
the time the message was received at the NIC (leftmost dashed
vertical line) to the time it was received at the application
(rightmost dashed vertical line). The reader can ignore the Y-
axis for now; a full explanation of this presentation is available
in Figure 8. Gaps in system activity indicate CPU idling.

4 Challenges and key ideas

Why is latency diagnosis hard? To derive the precise causes
of message slowdowns within end-hosts, we must profile
network-message lifetimes, like Figure 5. These lifetimes cap-
ture all system activity (G1) that slowdown message process-
ing, whether it is network stack activity or something unre-
lated, from the point a network message enters (or exits) the
end-host to the point it is received (or sent) by the application.
To work with low-latency stacks, we must capture these life-
times automatically (G2), with nanosecond-precision (G3)

and low overhead (G4). We must then analyze these message
lifetimes to identify system activity that slows messages down
and their precise impact, as shown in Figure 3.

4.1 Profiling network-message lifetimes

Unfortunately, the task of capturing network-message life-
times is difficult, because there is not one system component
that processes network messages. Rather, in most modern
OSes [42, 47, 55], network messages are processed across the
NIC and one or multiple CPU cores. Capturing message life-
times that span these devices is challenging for two reasons.

Challenge 1 (C1): NIC, CPU profiling, and software

timestamps come from independently changing clocks.

Figure 6 illustrates this problem. To construct message life-
times NIC, CPU profiling, and software clocks must align
at all times, but they do not. NIC and CPU profiling clocks
drift independently of each other. This is not a problem for
CPU profiling, because it uses the hardware clock to report
nanosecond-granularity function latencies within an end-host.

NIC timestamps are used to measure both inter-host and
intra-host message latencies. To aid latency measurement
across multiple time-domains, socket libraries convert NIC
timestamps to software timestamps during profiling, with
the help of conversion parameters calculated by software
synchronization mechanisms like phc2sys on Linux.

Figure 6: Constructing message lifetimes from timestamps
taken on NIC and CPU, whose clocks are independent, is hard
because the timestamps do not line up into a single timeline.
We overcome this challenge by monitoring the relationship be-
tween CPU profiling clock and NIC/Software clocks (shown
in red arrows) during profiling with low latency-overhead.

Software clocks across end-hosts are usually synchronized
using protocols like ptp. These synchronization mechanisms
constantly readjust software clocks and change their relation-
ship with the CPU profiling clock, under the hood. These
changes pose a problem for constructing message lifetimes.
Key idea 1, Time reconciliation: The ideal solution to this
problem would be to modify time synchronization protocols
to expose clock changes to profilers like perf. Profilers could
then present all measurements based on the software clock to
simplify system-wide latency measurements.

We do not want to refactor the entire software stack, so we
use a simpler but more expensive workaround. After time syn-
chronization protocols change the software clock, the kernel
recalculates the conversion between CPU profiling clock and
software clock. By exposing these conversion parameters to
user-space using virtual dynamic shared object (vDSO) mech-
anisms, we can poll them from a user-thread for the duration
of profiling. The goal is to capture every change to the soft-
ware clock to have the most accurate mapping between the
clocks at all points in time. A log of the conversion parameters
helps reconcile CPU profile timestamps to software-clock do-
main post profiling. This method burns an entire core for the
user-thread, but it adds no latency overhead during profiling
because the user thread is isolated from the rest of the system.
Challenge 2 (C2): There is no support to track network-

message lifetimes within host software stacks. Software
profiling tools can only track network messages within the
network stack, missing other system activity that slows down
message processing. This is because CPU architecture and
operating systems treat network messages like regular data
structures, as objects in memory. Consequently, network mes-
sages have no relevance outside of network stack functions.

On the other hand, CPU profiling tracks all system activ-
ity but not the message lifetimes within which such system
activity occurs. Figure 7 illustrates this problem. The two
rectangular boxes labeled Core X and Core Y show the time-
line of system activity captured by CPU profiling at these two

864 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: We cannot reconstruct message lifetimes using CPU
profiling and NIC timestamps alone. Instead, we place CPU-
profile timelines in the context of each message by collect-
ing per-message NIC timestamps (M1(n), M2(n)), Software
timestamps at application (M1(a), M2(a)), and cross-core
hand-off timestamps along with the core information (M1(h)
Core Y→Y, M2(h) Core X→Y). The superscript of each
timestamp corresponds to the message ID assigned by NSight.
With this context, we see that M1 is received at NIC at M1(n)
and processed on core Y through M1(h), till it is received by
App at M1(a). M2 is processed on core X and then handed-off
to the App on core Y at M2(h). At Core Y, M2 waits for M1

to be processed before it is received by the App at M2(a).

cores. We only see the process contexts (kernel, application)
and individual functions (not shown), but not messages.

Key idea 2, Message profiling: To construct message life-
times, we augment CPU profiling with per-message times-
tamps and core numbers. Figure 7 shows the information
collected by NSight profiling to construct two message life-
times, M1 and M2. For each message (for example, M2), we
seek to get three timestamps: a NIC timestamp (M2(n)), a
core hand-off timestamp (M2(h)), and an application times-
tamp (M2(a)). The NIC and application timestamps allow
us to capture the start and end of a message’s lifetime on
the end-host; for instance, M2’s lifetime is from M2(n) to
M2(a). The core hand-off timestamp (M2(h)) along with core
information (Core X→Y), helps identify the per-core system
activity that a message encounters in its lifetime; for example,
M2 is processed on Core X between M2(n) to M2(h), and
then on Core Y between M2(h) to M2(a). Crucially, these
timestamps are sufficient to produce a single timeline of all
system activity related to the processing of a message.

We now explain how these timestamps can be obtained
and how they suffice to reconstruct detailed message life-
times. The per-message NIC hardware-timestamps and appli-

Figure 8: NSight presentation of message lifetime of M2.
The X-axis shows time in nanoseconds and captures message
processing latency from M2(n) to M2(a). System activity is
captured as nested ‘boxes’ on the timeline. Each box repre-
sents a function traced by CPU profiling. The left and right
vertical boundaries of each box corresponds to the function
call and return timestamps. The Y-axis shows individual
function latencies in nanoseconds. The horizontal black lines
and annotations (e.g., App Recv) are added for clarity.

cation software-timestamps can be taken at the application
send/receive operations. They help order messages, so we
can assign message IDs, M1 and M2. Messages sent from
end-hosts are ordered by their application timestamps. Mes-
sages received at end-hosts, like M1 and M2, are ordered
by NIC timestamps, M1(n) and M2(n). The per-message
hand-off timestamps and core information can be collected
at points where messages cross software-processing and core
boundaries. In kernel network stacks, there is one boundary
where messages are handed-off between kernel and applica-
tion, like sock_def_readable in Linux. User-space network
stacks can have similar boundaries [47, 55] while others do
not [26, 48, 58].

In our example in Figure 7, there is an overlap between
lifetimes of M1 and M2 on core Y from M2(h) to M1(a). M2

has to wait for the application on core Y to complete pro-
cessing M1 before it can be processed. This overlap shows
inter-message interference or head-of-line blocking. We can
similarly detect unrelated system activity or application inter-
ference that appear in message lifetimes.

Figure 8 describes NSight’s presentation of M2. Between
timestamps M2(n) and M2(h), M2 is processed by core X

(Receive core). After M2(h), M2 is processed by core Y

(App core) where M2 waits for the application, memcached,
to process M1 (App Recv 1 to App Send), after which M2 is
received (App Recv 2).

4.2 Diagnosing high message latencies

Profiling even for brief periods of time, will leave us with
hundreds of thousands of message lifetimes. To diagnose why
some message lifetimes are longer, like we did in Figure 3, we
must identify anomalous system activity that slow down those

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 865

Figure 9: M2-message-lifetime shown in greater detail by
zooming into part of the call stack. When functions within M2

are compared to those in M1, many functions shown in red
appear anomalous. For instance, call_function_single_
interrupt and its nested functions appear to take longer or
occur more frequently. The cause for these deviations is that
ip_rcv has been called twice, once for receiving M1 and a
second time for receiving M2 due to head-of-line blocking.

messages relative to others, by comparing their lifetimes. Two
typical types of anomalies in message lifetimes are functions
that take longer and functions that occur more frequently in
some lifetimes compared to others; for example, App Recv
occurs twice in M2 in Figure 8. Deeply nested end-host stacks
can result in nesting of anomalies of different types, leading
to a third challenge.

Challenge 3 (C3): Due to nesting, the same latency de-

viation can be explained by multiple anomalies. Figure 9
explains this problem. When compared to M1, most functions
in M2 appear anomalous! Some take longer, like the first in-
vocation of event_handler; others appear more often, like
__libc_recvmsg; and the rest are unexpected, like __libc_
send, a send in the middle of receiving M2.
Key idea 3, Anomaly disambiguation: To reduce ambigui-
ties from nesting, we only report anomalous functions that
cannot already be explained by their nested functions. To
determine whether an anomalous function is explained by
nested anomalies, we use a heuristic. If the nested anomalies
together account for more than 80% of the latency deviation
of the parent function (see §5.2 for why), we conclude that
the nested anomalies explain the parent anomaly and omit the
parent anomaly as a reason for deviation.

Figure 9 describes how the latency deviation in call_

function_single_interrupt is accounted for by a nested
anomalous ip_rcv call. Therefore, ip_rcv is listed as a root
cause but not call_function_single_interrupt.

5 Design and implementation

In this section, we describe how the three key ideas from §4
realize the goal of network latency diagnosis in microsecond-
regimes. NSight is composed of two subsystems. The first
is a profiling subsystem, that tracks broad CPU activity and

Figure 10: NSight profiling in Linux. The unshaded parts of
this figure are the scope of activity that we want to profile
and automatically diagnose over. We run CPU profiling on all
cores to collect system activity (G1) and identify anomalies.
To establish causality linking observations from the CPU pro-
filer to messages, we collect timestamps and core information
for each message on their way in and out of the system and
across cores with the shim layer.

passage of messages through end-host stack (§4.1, Message

profiling). It also tracks the relationship between NIC, CPU
profiling and software time-domains so that the observations
from different devices can be aligned into a single timeline
(§4.1, Time reconciliation). Put together, it is responsible
for capturing all system activity (G1) during the profiling
period with nanosecond-precision (G3) and low-overhead

(G4). The second is an analysis subsystem that reconstructs
network-message lifetimes and diagnoses network latency de-
viations within them. To do so, it analyses anomalous system
activity in network-message lifetimes, identifies root causes,
and attributes precise deviations to these root causes (§4.2,
Anomaly disambiguation). The profiling and analysis sub-
systems together automate (G2) network latency diagnosis.

5.1 NSight profiler

Figure 10 explains how we get broad information from CPU
hardware profiling (G1) and combine it with per-message pro-
filing information from a shim layer to establish a causal link
between system behavior and message lifetimes (§4.1, Mes-

sage profiling). Typical CPU profiles collect system activity
at function granularity and list all function call and return
times, their execution context and core numbers with nanosec-
ond granularity (G3). Independent of the CPU profiler, the
shim layer intercepts messages, irrespective of the applica-
tion, to collect timestamps at three points in the stack, shown

866 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in Figure 10, as metadata for each message. Core numbers
are collected at the kernel–userspace boundary. For socket-
based stacks, the shim layer also collects socket file descriptor
numbers to detect head-of-line blocking that arises when ap-
plication threads are multiplexed across multiple sockets. We
quantify overheads from profiling in Section 6 (G4).

To reconcile independent observations from the CPU pro-
filer and the shim layer into a single timeline, §4.1, Time rec-

onciliation polls the conversion between the clocks for the
duration of profiling from a user-thread.To construct message
lifetimes accurately, the user-thread must detect all conver-

sion changes and align the observations at all points in time.
We quantify the accuracy of this scheme in §6 (G3).

Profiler implementation and deployment. The shim
layer is implemented using standard Linux and socket APIs,
with 1055 lines of C code. It can be dynamically linked by
unmodified applications using LD_PRELOAD; statically linked
applications might need to be modified, however.

We extend the Linux NIC timestamp framework to obtain
timestamps at the kernel–userspace message hand-off bound-
ary by patching 40 lines of the 5.4 Linux kernel (§4.1, C2).
VMA stack has no such boundary and needs no modification.

NSight is built on top of the Intel-PT CPU profiler, whose
traces are available through perf. perf exports Intel-PT
timestamps from TSC to sched_clock timedomain. We mod-
ify 443 lines in perf to use the time reconciliation parameters
and export CPU profiler timestamps directly in software time
domain (CLOCK_REALTIME). The thread that polls these pa-
rameters is implemented in 363 lines of C code (§4.1, C1).

§7 shows how NSight is effective even when users turn it
on for only a few seconds at a time. To capture random events
across time, users must turn on NSight repeatedly. We have
ambitions of using NSight for continuous profiling, but the
current buffering implementation in Intel-PT limits such use.

5.2 NSight analysis

The analysis subsystem consists of three parts. The first part
reconstructs message lifetimes from profiling data (§4.1, Mes-

sage profiling). The second part detects anomalous system
activity during these lifetimes. The third part sifts through the
anomalies to identify root causes for latency deviations within
message lifetimes (§4.2, Anomaly disambiguation, G2).

Identifying anomalous system activity. In §4.2 we men-
tioned three types of anomalous system activity that contribute
to latency deviations: functions that take longer, functions
that are called more frequently, and unexpected functions that
show up in some message lifetimes compared to others.

There are three other classes of anomalies that slow down
message lifetimes. The first class consists of entire program

contexts that are unexpected but show up in message lifetimes
as a result of scheduling decisions or interrupts. The second
class is defined by the absence of system activity that is seen
when the CPU is idling. This anomaly occurs when the CPU

Figure 11: Message lifetime with a richer set of nested anoma-
lies. {mlx5e_poll_rx_cq, ip_recv, Idle, ksoftirqd} are
sufficient to explain the causes of latency deviations seen in
this nested stack (§4.2, Anomaly disambiguation).

waits for an event, like a memory read due to a cache miss,
and is often indicative of resource bottlenecks. The third class
is cross-message interference in the network stack.

The algorithm that classifies system activity within mes-
sage lifetimes as anomalous or normal runs in four phases.
The first phase compares message lifetimes belonging to the
same application and identifies unexpected program contexts

that occur in a minority of message lifetimes. OS and applica-
tion interference is usually identified in this phase.
The second phase identifies gaps in system activity that are
not associated with any function or program context, like
Figure 5. It also identifies the cause for each gap from the last
function call preceding the gap. Figure 4 is an example result.
The third phase compares message lifetimes belonging to
the same application and identifies individual functions that
are slower, more frequently called, or unexpected. Figure 8
presented several anomalous functions identified in M2 life-
time. Error handling code paths, like TCP retransmission, and
application bottlenecks are usually identified in this phase.
The final phase identifies overlaps between messages, similar
to how we detect overlap between M1 and M2 in §4.1, Mes-

sage profiling. This phase detects cross-application network
interference when the overlap is between messages belonging
to different applications, and head-of-line blocking when the
overlap is between messages of the same application.

Attributing root causes to anomalies. §4.2, C3 discussed
how nesting ambiguates latency-deviation attribution. Often,
only one of the anomalies in a deeply nested stack is sufficient
to explain the latency deviation due to the stack and identify

corrective action. In such cases, listing the nested anomalies
as root causes only ambiguates diagnosis.

We now revisit this challenge in the context of an exam-
ple in Figure 11 that has an anomalous program context
(ksoftirqd) and cross-application message interference (ip_
rcv). It is unnecessary to flag nested anomalies within anoma-
lous program contexts or cross-application message inter-
ference because the corrective action to address the devia-
tion is clear: the scheduling policy must be revisited to avoid
these anomalies. Therefore, the algorithm will not flag queue_
work_on or tcp_v4_rcv even if they are anomalous.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 867

§4.2, Anomaly disambiguation described how we do not
report anomalous parent functions if 80% percent of their
latency deviation is already explained by the nested anoma-
lies. When we report nested anomalies instead of their parent
anomaly, we will not be able to explain some portion of the
latency deviation. This is due to the fact that nested func-
tion latencies seldom make up 100% of the parent function
latencies. We define the fraction of the latency deviation ex-
plained by NSight diagnosis as its coverage. For example, if a
parent function takes 1000 ns longer than normal, and nested
function takes 900 ns longer than normal, reporting only the
nested function as root cause will result in 90% coverage. We
evaluate NSight’s coverage in §6.

Analysis implementation. The algorithms in the analysis
subsystem are implemented with 2189 lines of R code. The
visualisations comprise 1768 lines of R.

The precision of Intel-PT is limited because it profiles in
batches, a few CPU cycles at a time. Latencies of functions
whose call and return times are within the same batch can
be under-reported to take no time at all! On the other hand,
small latencies, corresponding to the batch granularity, can
be added between batches, giving the appearance of an idling
CPU. Such under-reporting and bogus gaps in system activity
obfuscates anomaly detection. NSight analysis algorithms
therefore ignore differences in latency smaller than the batch
granularity (up to 322 ns in our system).

Instead of directly reporting anomalous functions such
as ksoftirqd or ip_recv that are hard to interpret as root
causes, we categorize them by functionality and report a sin-
gle root cause, like OS threads or Receive processing.
Each category is suggestive of a class of corrective actions
that apply to all functions in that category. Table 1 shows 4
examples of categories used in this paper.

The process of categorization is partly automated. For ex-
ample, process contexts are automatically derived from perf.
We categorize 1350 functions in Linux by hand, using the con-
textual information from their names in a user configurable
CSV file. We also introduce head-of-line blocking as a cate-
gory. To do so, we automate summarization of all functions
that are executed when processing messages with minimum

latency. When these functions occur more frequently or their
latencies deviate (for example, NIC interrupt processing takes
longer) in message lifetimes of the same application, NSight
shows head-of-line blocking as one of the root causes. We ver-
ify the latency deviations attributed to head-of-line blocking
by cross-referencing message lifetimes to identify overlaps.

6 Evaluation

Our work on NSight is motivated by the paucity of full-stack,
lightweight and high-fidelity network latency diagnosis tools
that can be used to diagnose latencies in the microsecond
regime. In this section, we examine to what extent the ideas
in this paper address this gap.

Category Anomalies

NGINX NGINX process context
head-of-line blocking Functions that were involved in processing

the fastest network messages.
OS Threads ksoftirqd, kthreadd, kworker, swapper
Receive Processing Kernel/Driver packet processing (e.g. ip_

rcv, net_rx_action, mlx5e_poll_rx_cq)

Table 1: Category examples and corresponding anomalies

To provide full-stack visibility, §4.1, Time reconciliation

aligns observations from the CPU profiler and shim layer
that use independent clocks. §6.1 examines the accuracy of
time reconciliation which is crucial for tracking causality.
To be lightweight, §4.1, Message profiling relies on hard-
ware profiling while introducing software profiling latency-

overheads at a few points in the end-host stack. §6.2 examines
the overheads of this profiling scheme for two reasons; first,
to determine if it can produce reliable diagnosis despite the
overheads and second, if NSight can be used in production.
Finally to be high-fidelity yet unambiguous, §4.2, Anomaly

disambiguation only reports a subset of anomalies that can
explain a majority of latency deviations in messages as root
causes. §6.3 examines the extent to which this technique is
successful especially in the microsecond regime.

6.1 Time reconciliation correctness

Software clock changes make reconciling system activity,
captured by CPU profilers, and message lifetimes, captured
by shim layer, hard. To align system activity and message
lifetimes correctly, §4.1, Time reconciliation must capture all

software-clock change events and use the correct conversion
between CPU profiling and software clocks at all points in
time. If old or incorrect conversion is used, the system activity
and message lifetimes will be incorrectly lined up, introducing
spurious or missing system events in message lifetimes.

To test the accuracy of §4.1, Time reconciliation , we de-
sign a benchmark that continuously captures CPU profiling
(TSC) and software timestamps(CLOCK_REALTIME) one after
the other. When we use the conversion parameters captured
by NSight’s user-space thread to convert all the CPU profiling
timestamps to software timestamps, we expect to construct a
linear timeline from the interspersed converted and measured
software timestamps; that is, consecutive timestamps must
always advance in time. If the old or incorrect conversion pa-
rameters are used in any time window, we detect a deviation
from the linear timeline, showing that events observed across
CPU profiling and the shim layer will be reordered.

Across multiple runs on different machines, over
10,000,000 conversions for each run, the consecutive con-
verted and measured software timestamps always advance
in time, never deviating. In each run, we observe that the
software clock changes 4000+ times. This shows that the pro-
posed time reconciliation maintains the ordering of events in
message lifetimes even with software clock changes. We note

868 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

All numbers in µs. h = high load, l = low load

Tool median (h) 99.9th (h) median (l) 99.9th (l)

Baseline 30.3 112.6 10 14.4
Intel-PT 30.8 (2%) 120.4 (7%) 10.6 (5%) 15.3 (6%)
NSight 31.1 (3%) 132.8 (18%) 11 (10%) 16.2 (12%)
eBPF-1 38.6 (27%) 157.6 (40%) 11.8 (18%) 17.3 (20%)
eBPF-2 41.8 (38%) 165 (46%) 13.2 (31%) 18.6 (29%)
eBPF-4 51.9 (71%) 556 (393%) 14.1 (41%) 19.4 (35%)
eBPF-8 59.1 (95%) 565 (402%) 15.5 (54%) 21 (45%)
Ftrace 201.8 (565%) 1060 (841%) 40.1 (298%) 66.4 (359%)

Table 2: Overhead of profiling tools on median and tail mea-
surements. eBPF-n is eBPF used to profile n functions.

that a stronger test for time reconciliation, in which we take
two timestamps at the same time and test their equivalence
is impossible. Capturing timestamps takes time, and is the
reason for a majority of NSight’s profiling overheads.

6.2 Message profiling overheads

Latency overheads of profiling tools can perturb message
lifetimes and obfuscate latency diagnosis. This is why these
tools are only used for confirming hypotheses rather than
diagnosis [15, 28, 32, 43, 45]. Even though NSight perturbs
message lifetimes, it does not share this challenge because
NSight is built on top of CPU profiling which profiles NSight

itself ! When NSight profiling slows down message lifetimes,
it will show up in system activity captured by §4.1, Message

profiling and §4.2, Anomaly disambiguation will detect it as
the root cause. Perf Idle (A) in Figure 4 is an example where
the CPU idles during NSight profiling introducing latencies.

Latency overheads of profiling tools also inhibit their use
for latency measurement in production environments. To be
useful in the microsecond-regime, we expect that this over-
head should not be beyond a few microseconds.

To evaluate the latency overhead of NSight, we run a bench-
mark using memcached and record the receive latency of re-
quests, measured from the time they arrive at the NIC to when
they are received by memcached; this is the baseline measure-
ment. A peak 4 core load on our system is 500k requests
per second (rps); for this experiment we measured overheads
across two loads on 4 cores, a low load (40k rps, 8% of peak),
and a high load (300k rps, 60% of peak).

Table 2 shows the result of the experiment. Intel PT adds
2-7% over all measurements; Gathering software timestamps
and core information with NSight adds another 1-11% totaling
3-18% overhead. This shows that NSight can be turned on
in production for brief periods of time without perturbing
median latencies by more than a few microseconds.

In contrast, as Figure 1 showed, profiling even a single func-

tion call, like __sys_recvmsg, using eBPF (eBPF-1) adds
more overhead than NSight. As we increase the number of
functions calls profiled with eBPF, its overhead increases (See
eBPF-2, eBPF-4 and eBPF-8). Over all experiments, eBPF-1
adds 18-40% latency overhead. Ftrace, that profiles the full

stack like NSight, has the largest impact on performance (up
to 841% overhead). The high latency overheads of these tools
make them impractical for use in production environments.

The current design for §4.1, Time reconciliation burns an
entire core for the user-thread. This overhead can be pro-
hibitive in production environments. Thankfully, the overhead
is avoidable because software clocks change relatively slowly,
once every 4 ms in Linux. If the software clock changes are
tracked directly from the time synchronization protocol, there
is no need for an extra core during profiling.

6.3 Coverage after anomaly disambiguation

For high-fidelity, latency diagnosis must be able to report
root causes for all latency deviations seen in message life-
times, even if the deviations are in the order of microseconds.
We measure fidelity in terms of coverage, defined as the la-
tency deviation explained by diagnosis as a fraction of overall
latency deviation. However, §4.2, Anomaly disambiguation

leads to less than 100% coverage. Trading off some coverage
for getting rid of false negatives is still reasonable because
NSight can be used iteratively to improve coverage; in each
iteration the most conspicuous root causes remaining can be
discovered with NSight and corrected for (See next section).

By not reporting parent anomalies, when 80% or more of
their deviation is explained by their nested anomalies, we get
a minimum coverage of 69% and a median coverage of 96%
across all experiments and all observed message-latencies.
Only 10 messages across our experiments have a coverage
less than 87%. This shows that highlighting only anomalies
that explain 80% or more of their parent’s latency deviation
as root causes reduces false negatives and yet allows for a
majority of root causes to be discovered in the first iteration.

7 Latency diagnosis with NSight

We now describe the iterative process by which NSight can
quickly diagnose the causes of poor performance. Let us
start with an initial system configuration that runs memcached
in which large memcached tails are observed. Profiling the
system with NSight identifies the prominent causes of tails.
Users can mitigate or eliminate the causes found and profile
the reconfigured system with NSight to identify the remaining
causes of tails. Three such iterations help reduce memcached
99.9999th percentile latency from 15.3 ms to 182 µs in our
setup. Unfortunately, some of the mitigations we use increase
median latencies by a few microseconds. NSight helps iden-
tify which mitigations cause this increase by comparing pro-
filing data collected across iterations.

We now describe these iterations with NSight and the no-
table causes of network latency in our system. We present
diagnosis results only for memcached server receive latencies
because the majority of end-host delays are known to show
up on the receive path [35, 39, 78]).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 869

Figure 12: Balloon plot showing the top causes of tail latency
with the initial configuration. The tallest balloons are blue
squares, identified as NGINX (A) in the legend; this means
NGINX interferes with memcached on the application core (A).
The balloons are spaced apart, indicating that their causes are
independent and can be addressed separately.

7.1 First iteration

Initial configuration. Our setup consists of two Linux ma-
chines (2x14 Intel Xeon Gold 5120, 192 GB RAM), running
kernel version 4.18 (Ubuntu 18.04) connected by 100Gbps
interfaces to a 3.2Tbps Ethernet switch. memcached, a latency
sensitive workload (similar to [20, 33, 55]) runs alongside
NGINX, the interfering workload. Both applications use the
default configuration and share 4 cores. The workload con-
sists of memcached requests arriving at 160-190k requests per
second (60-80% of expected memcached throughput across 2
cores in our system), and NGINX requests arriving at 50-60k
requests per second (60-80% of expected NGINX throughput
on a single core). ntp and ptp were disabled in our setup
when we collected the experimental results in this section.

Initial diagnosis. To use NSight, users can collect a profil-
ing sample of a few seconds and look at the initial result. In
our setup, this allows us to profile 100k memcached request-
responses. The initial result, Figure 12, a balloon plot similar
to Figure 3, shows the distribution of tail messages and their
causes. The largest tails are caused by NGINX interference on
the application core, NGINX (A). The remaining tails are due
to three causes, mainly head-of-line blocking of application
threads, HOL blocking (A), in combination with interference
due to OS threads (A) and Receive processing (A) at the ap-
plication core. These causes are defined in Table 1.

A second presentation, the box plot in Figure 13, summa-
rizes the causes (X-axis) sorted by the median total deviation
added to each tail message. The number of messages im-
pacted by each cause, shown on the boxes, represents how
pervasive the cause is. We notice that the most conspicuous
causes impacting the most messages are to the right of Re-

ceive processing (R), starting with NGINX receive (A) that
impacts 596 tail messages. Going after these can increase the
latency reduction achieved with this iteration.

Of the causes in Figure 13, we find that HOL blocking (A)

impacts the most tail messages (950), indicating that there

1 1

1 1 3 596 99
55

144 80
950

65

10

100

1000

10000

C
o
n
te

xt
 S

w
itc

h
 I
d
le

 (
A

)
C

o
n
te

xt
 s

w
itc

h
 (
A

)

L
o
ck

in
g
 (
A

)
R

e
ce

iv
e
 P

a
th

 I
d
le

 (
R

)
R

e
ce

iv
e
 p

ro
ce

ss
in

g
 (
R

)
N

G
IN

X
 r
e
ce

iv
e
 (
A

)
R

e
ce

iv
e
 P

a
th

 I
d
le

 (
A

)

N
G

IN
X

 (
R

)
R

e
ce

iv
e
 p

ro
ce

ss
in

g
 (
A

)
O

S
 t
h
re

a
d
s

(A
)

H
O

L
 b

lo
ck

in
g
 (
A

)

N
G

IN
X

 (
A

)

Source of Deviation [(A) = App Core, (R) = Recv Core]

T
o
ta

l
D

e
v
ia

ti
o
n
 [
u
s
]

Figure 13: Global box plot showing the causes of tail latencies
with the initial configuration. The number of tail messages
impacted by each cause is shown on top of the boxes. This pre-
sentation helps identify the most important causes to pursue
after one iteration of NSight profiling; pursuing both, causes
that result in the largest deviations and causes that impact the
most tails, can lead to the biggest latency reductions.

is a lack of I/O parallelism in memcached. When we exam-
ine the tail message lifetimes slowed down by HOL block-

ing (A) (the top outliers in the box plot), we see memcached
sends delaying memcached request-receives by as much as
1 ms. To understand why, we look at memcached code and
find that memcached threads process up to 20 requests per
socket, sending responses for each, before processing the
next request. This is interesting because papers [20, 55] have
conjectured that it is sufficient to use microsecond granular-
ity core-scheduling to improve memcached latencies, but in
fact memcached itself foils that plan. The way to improve
memcached latencies is to first modify memcached to intro-
duce additional I/O parallelism as NSight identifies here.

7.2 Second Iteration

Second configuration. The next step is to mitigate or elim-
inate the causes identified in the previous diagnostic step.
To eliminate NGINX (A) interference, we pin memcached to
two cores and NGINX to a third core; similarly, to eliminate
interference due to Receive processing (A) and NGINX re-

ceive (A), we pin kernel receive activity to a fourth core and
configure RSS to send all receive traffic to that core (Similar
to IOKernel [55]). To mitigate HOL blocking (A), we limit
memcached-requests per socket to 2 (down from 20) and limit
memcached server threads to one per core.

Second diagnosis. Having applied the second configura-
tion we rerun NSight. Figure 14 and Figure 15 are the anal-
ogous presentations to Figure 12 and Figure 13. The largest
latency deviations in Figure 15 come from Paging/Paging

Idle (A). The message lifetimes impacted by these causes
show repeated calls to change_protection and change_

prot_numa each taking up to 400 µs. The documentation for
change_prot_numa() says that this code is a mechanism to
identify beneficial page migrations; interestingly, it creates

870 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 14: Balloon plot with the second configuration. Bunch-
ing of balloons shows system effects that impact message-
bursts. Paging causes the largest tails. CPU idle activity and
head-of-line blocking assail the initial few messages.

1
1 1

43
55

12

5
3 879

971

3

8

1

10

100

1000

N
G

IN
X

 r
e
ce

iv
e
 (
R

)
S

ch
e
d
u
lin

g
 (
R

)
M

e
m

o
ry

 I
d
le

 (
R

)

C
P

U
 I
d
le

 (
A

)
R

e
ce

iv
e
 P

a
th

 I
d
le

 (
R

)
C

o
n
te

xt
 S

w
itc

h
 I
d
le

 (
R

)
T
C

P
 P

ro
to

co
l I

d
le

 (
R

)
M

e
m

ca
ch

e
d
 I
d
le

 (
A

)
H

O
L
 b

lo
ck

in
g
 (
A

)
N

IC
 D

e
la

y
(R

)

P
a
g
in

g
 (
A

)
P
a
g
in

g
 I
d
le

 (
A

)

Source of Deviation [(A) = App Core, (R) = Recv Core]

T
o
ta

l
D

e
v
ia

ti
o
n
 [
u
s
]

Figure 15: Global box plot with the second configuration.
Alongside Paging and CPU idling that cause a few tails, this
graph shows that interrupt coalescing (NIC delay (R)) and
head-of-line blocking are most pervasive and worth pursuing.

deviant latencies. This suggests that architectural changes
are needed to identify page migrations without causing tails.
NSight can play a role by making it easy to confirm that the
new architecture does not introduce latency deviations.

We also find that a few CPU idle (A) outliers in Figure 15
add up to 0.6 ms to tail messages; these correspond to the
initial balloons in Figure 14. The lifetimes of these mes-
sages show large gaps in system activity between connection
set up functions, dispatch_conn_new() called on the re-

ceive core to which we pinned the kernel receive activity, and
conn_new() called on the memcached core. When we look at
this code, we find that memcached registers an event handler
for connection setup using libevent. When a new connection
message is received (on the receive core in our setup) an event
is dispatched to the handler on another thread that must be
scheduled on the application core. The delay in scheduling

the connection handler causes tail latencies during startup.

7.3 Third iteration

Third configuration. We now mitigate the causes found in
Figure 15. We disable autonuma feature to confirm the Pag-

ing/Paging Idle (A) deviations, and adaptive interrupt coalesc-

Figure 16: Balloon plot with the third configuration. A few
balloons still appear, but their absolute latency (350 µs) is tiny
compared to tails seen with the initial configuration (16 ms),
and no balloons occur once the system is warmed up.

ing to confirm NIC Delay (R) deviations, even though doing
so might lead to worse performance. To speed up connec-
tion setup, we increase priority of new connection events by
changing one line in memcached. Another cause we identified
after the second iteration but before the third, was removed
by disabling the LRU replacement feature; for compactness,
we condense this additional iteration into the third iteration.

Third diagnosis. Having applied the third configuration we
rerun NSight. The balloon plot Figure 16 shows that all the
significant outliers are in the start up phase. The tail latencies
of the initial messages are much lower than those seen with the
second configuration in Figure 14 (350 µs vs. 1.4 ms). They
are not caused by CPU Idle (A), as they were with the second
configuration, but by HOL blocking (A). Overall, the tails are
an order of magnitude smaller compared to the 1.1 ms-16 ms
tails originally seen with the initial configuration in Figure 12.

7.4 Analysis of diagnosis and configurations

We now confirm tail latency improvements due to the diag-
nosis by running experiments with all three configurations,
initial §7.1, second §7.2, and third configuration §7.3, for a
longer duration without NSight profiling. We measure the
latency of 10 million requests, using each configuration 10
times. Figure 17 shows the CDF of the receive latencies with
these configurations; the left graph shows all the latencies
and the right shows the tail latencies. With the third config-
uration, we see 99.9th percentile latency improve by 43×
(2.2 ms to 51 µs). The 99.999th percentile latency is 67 µs and
99.9999th percentile latency is 182 µs (down from 15.3 ms).
Both, the second and third configurations improve the tail
latencies compared to the initial configuration but at the cost
of increasing latencies in the first 60% of messages.

Diagnosing latency increases in lower percentiles.

NSight analyses latency anywhere on a latency curve, not
just the tail. Since the deviations in Figure 17 are worst
around the 25th percentile C© (13.3 µs with initial but 24.7 µs
with the third configuration), users can configure NSight to
focus on the 25th percentile. NSight will analyse a slice of

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 871

●

●●

●

● ●

●

● ●

0.00

0.25

0.50

0.75

1.00

10 10
0

10
00

10
00

0

F
ra

c
ti
o

n

●
●
●

Initial Configuration
Second Configuration
Third Configuration

●●● ●● ●

0.9900

0.9925

0.9950

0.9975

1.0000

10 10
0

10
00

10
00

0

Receive Latency [us]

Figure 17: Full CDF (left) and p99-100 (right) of memcached
receive latencies in longer runs (10 million requests, 10 rep-
etitions) for all 3 configurations. The third configuration im-
proves tail latencies beyond the 60th percentile A© but adds

small latencies to messages between the 10th and 60th per-
centiles B©, with the maximum latencies being added around

the 25th percentile C©; a proper solution instead of our ex-
peditious mitigations could get the benefit of tail reduction
without penalizing the common case.

2

2

3

5

14

19

35

74

239
608

999

1

3

10

C
o
n
te

xt
 S

w
itc

h
 I
d
le

 (
R

)
L
o
ck

in
g
 I
d
le

 (
R

)
T
im

e
r
h
a
n
d
lin

g
 (
A

)
In

te
rr

u
p
t
Id

le
 (
R

)
S

e
n
d
 p

ro
ce

ss
in

g
 (
A

)

D
ri
ve

r
(A

)
M

e
m

ca
ch

e
d
 (
A

)
R

e
ce

iv
e
 p

ro
ce

ss
in

g
 (
A

)
R

e
ce

iv
e
 p

ro
ce

ss
in

g
 (
R

)

N
IC

 D
e
la

y
(R

)
H

O
L
 b

lo
ck

in
g
 (
A

)

Source of Deviation [(A) = App Core, (R) = Recv Core]

T
o
ta

l
D

e
v
ia

ti
o
n
 [
u
s
]

Figure 18: Global box plot comparing 25th percentile mes-
sages in the third iteration with those in the first iteration.
To focus on causes that impact the span of messages around
25th percentile C© in Figure 16, the boxes are sorted by num-

ber of messages impacted. Head-of-line blocking is the most
pervasive cause of the latency increase.

messages between the 20th and 30th percentiles. Since the
latency increases occur across iterations, users can compare
message lifetimes across iterations with NSight to identify the
causes. We configure NSight to compare the 25th percentile
messages in the third §7.3 and first iterations §7.1 to diagnose
latency increases; the results in the rest of the section use this
configuration. In this setting, latency deviation is defined
as latencies that get worse around the 25th percentile in the
third iteration compared to those in the first iteration.

Since all the messages around the 25th percentile are simi-
larly impacted, we look for the most pervasive causes. There-
fore, we turn to a global box plot that presents the causes
sorted by the number of messages impacted, Figure 18. The
most pervasive cause of latency, impacting all but one of the
thousand messages around the 25th percentile in the third it-

285

1000

997 996 999

285
1000997

996

999

1000

D
e
v
ia

ti
n

g
 #

 q
u

e
u

e
d

 m

e
s
s
a

g
e

s
L

a
te

n
c
y
 d

e
v
ia

to
n

 i
n

 u
s

App Recv
 (A)

App Request
 (A)

App Send
 (A)

Kernel (A) Kernel (R) Total
 Delay

1

2

3

4

0.0

2.5

5.0

7.5

10.0

12.5

Processing Location [(A) = App Core, (R) = Recv Core]

Figure 19: Queuing breakdown showing relative queuing
ahead of 25th percentile messages in the third versus the
first iteration. Deviations are shown for select functions (X-
axis) for which we can measure the queue depth ahead of
each message, by counting function occurrences in message
lifetimes. The top half shows deviations in queue depth; a dot
or line at 4 means that there are 4 more messages ahead of

the deviant message relative to the reference. The bottom half
is a box plot for resulting latency deviations. The functions
are categorized into application vs. kernel, send vs. receive vs.
request processing. The count of messages impacted is shown
on top of each plot. This graph shows that the 25th percentile
messages experience more queuing in the third iteration.

eration relative to the first iteration, is HOL blocking (A). The
messages also experience NIC delay (R) relative to messages
in the first iteration. This is surprising because we disabled
adaptive interrupt coalescing in the third iteration §7.3.

To identify why the 25th percentile messages of the third
iteration experience head-of-line blocking relative to the first
iteration, we consult NSight’s queuing breakdown described
in Figure 19. It shows that a majority of the 25th percentile
messages have at least one more message ahead of them in
the third iteration relative to the first iteration (top half) and
this introduces latency deviations (bottom half). App Send (A)

shows more latency deviation than other categories. Kernel

(A) and Kernel (R) measure send/receive queuing in the ker-
nel. Because the second configuration (§7.2) isolated kernel
receive activity from the application core, Kernel (A) shows
latency deviations only due to sending responses. Receive
queuing shown in Kernel (R) impacts fewer messages.

Together, deviations in App Send (A) and Kernel (A) show
that sending responses takes longer in the third iteration even
though fewer responses (reduced to 2 per socket in §7.2) are
sent back per socket relative to the first iteration. This shows
that the application core cannot keep up in the third iteration.

To find why, we consult NSight’s core context summaries
for the iterations, shown in Figure 20. It shows the percentage
of time the message lifetimes spend in each processing context.
We see that memcached uses three cores to process the 25th
percentile messages in the first iteration, Figure 20a, compared
to two in third iteration, Figure 20b. This confirms that the

872 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

25

50

75

100

Core 10 Core 12 Core 14 Core 16

P
e
rc

e
n
ta

g
e

memcached

swapper

nginx

kthreadd

ksoftirqd

(a) First iteration

0

25

50

75

100

Core 10 Core 12 Core 14

P
e
rc

e
n
ta

g
e

memcached

swapper

(b) Third iteration

Figure 20: NSight core-context summary showing the process
contexts (legend) active in the 25th percentile memcached
message lifetimes on each core (X-axis), and the percentage of
time they are active (Y-axis). memcached has three cores avail-
able in the first iteration vs. two cores in the third iteration,
exacerbating head-of-line blocking in the third iteration.

threads are backlogged in the third iteration because of the
lack of available CPU; the mitigation of pinning memcached

threads to cores (§7.1) increased head-of-line blocking for the
25th percentile messages in the third iteration.

Figure 20b also shows that in the third iteration, the
core used for kernel receive activity is mostly idle/sleeping
(swapper is the default idle task) waiting for a NIC interrupt,
whereas in the first iteration the cores are always running,
processing memcached requests or receiving messages in the
kernel. This explains why we see deviations due to NIC Delay

(R) in Figure 18 despite disabling adaptive interrupt coalesc-
ing; waking the core takes time and delays the NIC interrupt.
This is an example of complex NIC–CPU scheduling interac-
tions that NSight captures (§1). Waiting for the NIC interrupt
at low loads puts the receive core to sleep since it has nothing

else to do, and waking it up delays the NIC interrupt! Thus,
the mitigation of pinning the kernel receive activity to a core
in §7.2 adds latencies at lower loads to the common case.

8 Diagnosing VMA network stack

NSight can diagnose problems in different applications such
as redis and different network stacks such as VMA network
stack. We now describe the key causes of network tail laten-
cies we found with unmodified memcached and redis on top
of the VMA user-space network stack.

System configuration. For experiments with memcached,
we pin memcached servers to 4 cores and increase the load
(400k request/s on 4 cores). For experiments with redis, a
single-threaded server, we profile a single core redis instance
using the standard redis-benchmark (110k request/s on 1
core). Since these applications are already pinned to cores,
studying application interference with NGINX is irrelevant and
we do not include it in contrast to the Linux study.

Diagnosis. We now describe the key sources of network
latency in VMA found using the same diagnostic strategy

we used in the Linux study, guided by NSight’s graphs.
As expected, the overall tail latency distribution improves
with VMA in comparison to Linux. But surprisingly, the
outliers for memcached are more severe. While the median
memcached server request receive latency is 8.38 µs and the
99.9th percentile latency is 45.3 µs, the worst message latency
is 34.5 ms! The median, 99.9th and worst redis request re-
ceive latencies are 1.63 µs. 145.1 µs, and 1.2 ms. Following
are the most prominent causes of tails in VMA.
VMA epoll mechanism. NSight diagnostic graphs show that
some memcached messages are delayed for up to 25 ms in the

NIC! In this case, even though the message is received by the
NIC, the epoll implementation of VMA does not pick it up.
The exact reason for this behavior is unclear, but we posit that
either the NIC hardware delays reporting the arrival or the
stack waits for a message for a specific socket.
OS interference. We find that the default Linux scheduling
policies frequently puts polling based stacks to sleep for short
amounts of time (4 µs). In the case of some memcached mes-
sages that are severely delayed, we detect a kernel stack over-
flow, that puts all but one of the application threads to sleep
for up to 12 ms with the lone thread handling the panic. This
is unexpected behavior that seems to suggest a bug.
Buffer management. VMA ring buffer management causes
frequent shorter latency deviations. It fills up the RX buffer
queue with unused buffers and removes used send-buffers
from the TX queue in bursts, adding deviations of up to 2.8 ms
(though more frequently in the range of 60-150 µs).

9 Limitations and future work

We have already noted three limitations of NSight. First,
NSight cannot be used for continuous profiling due to Intel-
PT buffering implementation (§5.1). Second, CPU profilers
capture system activity in batches of CPU cycles; NSight
cannot capture latency deviations smaller than a batch (§5.2).
Finally, consuming a core for §4.1, Time reconciliation is
unnecessary if software clock changes are tracked by ptp.
Another limitation of NSight is that it produces 600MB-1GB
of compressed raw profiling data per second. Decompressing
the profiling data to a usable format increases the size by
10-20x. Reducing the amount of data produced and speeding
up analysis will reduce the time between NSight iterations.

We are expanding NSight’s scope to RDMA-based stacks,
and more general purpose performance diagnosis to analyze
Linux’s core operations [63]. We are also using NSight to
characterize the design space for low-latency network stacks.
We plan to make the tool available as open source.

Acknowledgements

We thank our shepherd, Robert Ricci, anonymous reviewers,
Jon Howell, Amin Vahdat, Vyas Sekar, Marcos Aguilera, Ben
Pfaff, Ming Liu, Adriana Szekeres, Naama Ben David, Nadav
Amit, Amy Tai, Irina Calciu, Jayneel Gandhi, Ana Klimovic,
Lukas Humbel and Michael Wei for their insightful feedback.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 873

References

[1] ebpf. Onlin., https://ebpf.io/.

[2] F-stack: High performance network framework based
on dpdk. http://f-stack.org/.

[3] Ftrace. Onlin., https://www.kernel.org/doc/Doc
umentation/trace/ftrace.txt.

[4] Perf: Performance analysis tools for linux. Onlin., http:
//man7.org/linux/man-pages/man1/perf.1.htm

l.

[5] Seastar: High-performance server-side application
framework. http://seastar.io/.

[6] Mohammad Mejbah ul Alam, Tongping Liu, Guang-
ming Zeng, and Abdullah Muzahid. Syncperf: Catego-
rizing, detecting, and diagnosing synchronization per-
formance bugs. In Proceedings of the Twelfth European

Conference on Computer Systems, EuroSys ’17, page
298–313, New York, NY, USA, 2017. Association for
Computing Machinery.

[7] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using magpie for request extraction
and workload modelling. In Proceedings of the 6th

Conference on Symposium on Operating Systems De-

sign and Implementation - Volume 6, OSDI’04, page 18,
USA, 2004. USENIX Association.

[8] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI 14), pages 49–65, Broomfield, CO, October 2014.
USENIX Association.

[9] Zachary Benavides, Keval Vora, and Rajiv Gupta. Dprof:
Distributed profiler with strong guarantees. Proc. ACM

Program. Lang., 3(OOPSLA), October 2019.

[10] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: problem determination in large,
dynamic internet services. In Proceedings Interna-

tional Conference on Dependable Systems and Net-

works, pages 595–604, 2002.

[11] Shuang Chen, Christina Delimitrou, and José F.
Martínez. Parties: Qos-aware resource partitioning for
multiple interactive services. In Proceedings of the

Twenty-Fourth International Conference on Architec-

tural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’19, page 107–120, New York,
NY, USA, 2019. Association for Computing Machinery.

[12] Intel Cooperation. Intel 64 and IA-32 Architectures

Software Developer’s Manual - Volume 3B. Intel Corpo-
ration, August 2007.

[13] Mathieu Desnoyers and Michel Dagenais. The lttng
tracer: A low impact performance and behavior monitor
for gnu/linux. OLS (Ottawa Linux Symposium), 01 2006.

[14] The Kernel development community. Timestamping.
Onlin., https://www.kernel.org/doc/html/late
st/networking/timestamping.html.

[15] Jaana Dogan. Want to debug latency? https://raky

ll.medium.com/want-to-debug-latency-7aa48e

cbe8f7.

[16] Benjamin Donie. iostat. Onlin., http://man7.org/l
inux/man-pages/man1/iostat.1.html.

[17] Srikar Dronamraju. Uprobe-tracer: Uprobe-based event
tracing. Onlin., https://www.kernel.org/doc/Doc
umentation/trace/uprobetracer.txt.

[18] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai
Budiu, and Gloria Mainar-Ruiz. Fay: Extensible dis-
tributed tracing from kernels to clusters. ACM Trans.

Comput. Syst., 30(4), November 2012.

[19] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica. X-trace: A pervasive network
tracing framework. In Proceedings of the 4th USENIX

Conference on Networked Systems Design and Imple-

mentation, NSDI’07, page 20, USA, 2007. USENIX
Association.

[20] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating interference at mi-
crosecond timescales. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

20), pages 281–297. USENIX Association, November
2020.

[21] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,
and Minlan Yu. Microscope: Queue-based performance
diagnosis for network functions. In Proceedings of the

Annual Conference of the ACM Special Interest Group

on Data Communication on the Applications, Technolo-

gies, Architectures, and Protocols for Computer Com-

munication, SIGCOMM ’20, page 390–403, New York,
NY, USA, 2020. Association for Computing Machinery.

[22] Susan L. Graham, Peter B. Kessler, and Marshall K.
Mckusick. Gprof: A call graph execution profiler. SIG-

PLAN Not., 17(6):120–126, June 1982.

[23] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. Megapipe: A new programming
interface for scalable network i/o. In Proceedings of

874 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://man7.org/linux/man-pages/man1/perf.1.html
http://man7.org/linux/man-pages/man1/perf.1.html
http://man7.org/linux/man-pages/man1/perf.1.html
https://www.kernel.org/doc/html/latest/networking/timestamping.html
https://www.kernel.org/doc/html/latest/networking/timestamping.html
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
http://man7.org/linux/man-pages/man1/iostat.1.html
http://man7.org/linux/man-pages/man1/iostat.1.html
https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt
https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt

the 10th USENIX Conference on Operating Systems

Design and Implementation, OSDI’12, page 135–148,
USA, 2012. USENIX Association.

[24] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Nick McKeown, and
Changhoon Kim. The nanopu: Redesigning the cpu-
network interface to minimize rpc tail latency, 2020.

[25] Intel. Intel vtune profilder. Onlin., https://software
.intel.com/en-us/vtune.

[26] Intel Corporation. Data plane development kit. https:
//www.dpdk.org/. April 2021.

[27] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh
Elnikety, Manoj Syamala, Vivek Narasayya, Herodotos
Herodotou, Paulo Tomita, Alex Chen, Jack Zhang, and
Junhua Wang. Perfiso: Performance isolation for com-
mercial latency-sensitive services. In 2018 USENIX

Annual Technical Conference (USENIX ATC 18), pages
519–532, Boston, MA, July 2018. USENIX Association.

[28] Alexey Ivanov. Optimizing web servers for high
throughput and low latency. https://dropbox.te

ch/infrastructure/optimizing-web-servers-f

or-high-throughput-and-low-latency.

[29] Alan D. Brunelle Jens Axboe and Nathan Scott.
blktrace. Onlin., http://man7.org/linux/man-
pages/man8/blktrace.8.html.

[30] Masami Hiramatsu Jim Keniston, Prasanna S Pan-
chamukhi. Kernel probes. Onlin., https://www.kern
el.org/doc/Documentation/kprobes.txt.

[31] Nikolai Joukov, Avishay Traeger, Rakesh Iyer, Charles P.
Wright, and Erez Zadok. Operating system profiling
via latency analysis. In Proceedings of the 7th Sympo-

sium on Operating Systems Design and Implementation,
OSDI ’06, page 89–102, USA, 2006. USENIX Associa-
tion.

[32] Theo Julienne. Debugging network stalls on kubernetes.
https://github.blog/2019-11-21-debugging-n

etwork-stalls-on-kubernetes/.

[33] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for microsecond-scale
tail latency. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages
345–360, Boston, MA, February 2019. USENIX Asso-
ciation.

[34] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In 16th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI 19), pages 1–16, Boston, MA, Febru-
ary 2019. USENIX Association.

[35] Rishi Kapoor, George Porter, Malveeka Tewari, Geof-
frey M. Voelker, and Amin Vahdat. Chronos: Predictable
low latency for data center applications. In Proceedings

of the Third ACM Symposium on Cloud Computing,
SoCC ’12, New York, NY, USA, 2012. Association for
Computing Machinery.

[36] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. Tas: Tcp acceleration as an os
service. In Proceedings of the Fourteenth EuroSys

Conference 2019, EuroSys ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[37] Chung Hwan Kim, Junghwan Rhee, Hui Zhang, Nipun
Arora, Guofei Jiang, Xiangyu Zhang, and Dongyan Xu.
Introperf: Transparent context-sensitive multi-layer per-
formance inference using system stack traces. SIGMET-

RICS Perform. Eval. Rev., 42(1):235–247, June 2014.

[38] John Levon. Oprofile. Onlin., https://oprofile.s
ourceforge.io/news/.

[39] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and
Steven D. Gribble. Tales of the tail: Hardware, os, and
application-level sources of tail latency. In Proceedings

of the ACM Symposium on Cloud Computing, SOCC
’14, page 1–14, New York, NY, USA, 2014. Association
for Computing Machinery.

[40] ARM Limited. ARM CoreSight Architecture Specifica-

tion v3.0. Intel Corporation, August 2017.

[41] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Ji-
aquan He, Wei Xu, and Yuanchun Shi. Scalable kernel
tcp design and implementation for short-lived connec-
tions. In Proceedings of the Twenty-First International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’16, page
339–352, New York, NY, USA, 2016. Association for
Computing Machinery.

[42] Inc. Linux Kernel Organization. Linux. https://www.
kernel.org/.

[43] Dan Luu. Sampling v. tracing. https://danluu.com
/perf-tracing/.

[44] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. In 2016 USENIX Annual Technical Conference

(USENIX ATC 16), Denver, CO, June 2016. USENIX
Association.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 875

https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune
https://www.dpdk.org/
https://www.dpdk.org/
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://oprofile.sourceforge.io/news/
https://oprofile.sourceforge.io/news/
https://www.kernel.org/
https://www.kernel.org/
https://danluu.com/perf-tracing/
https://danluu.com/perf-tracing/

[45] Marek Majkowski. The story of one latency spike. ht
tps://blog.cloudflare.com/the-story-of-one

-latency-spike/.

[46] Ilias Marinos, Robert N.M. Watson, and Mark Hand-
ley. Network stack specialization for performance. SIG-

COMM Comput. Commun. Rev., 44(4):175–186, August
2014.

[47] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A micro-
kernel approach to host networking. SOSP ’19, page
399–413, New York, NY, USA, 2019. Association for
Computing Machinery.

[48] Mellanox. Messaging accelerator (vma). Onlin., https:
//docs.mellanox.com/display/VMAv902.

[49] Microsoft. Event tracing for windows. Onlin., https:
//docs.microsoft.com/de-de/windows/win32/e

tw/about-event-tracing.

[50] Microsoft. Perfmon: Performance monitor on windows.
Onlin., https://docs.microsoft.com/en-us/win
dows-server/administration/windows-command

s/perfmon.

[51] Sun Microsystems. Dtrace. Onlin., http://dtrace.org.

[52] David Miller. ethtool. On-
lin., https://man7.org/linux/man-
pages/man8/ethtool.8.html.

[53] MIPS. Pdtrace. Onlin., https://www.mips.com/dev
elop/tools/navigator-probes/, August 2021.

[54] OpenZipkin. Zipkin: A distributed tracing system. On-
lin., https://zipkin.io/.

[55] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages
361–378, Boston, MA, February 2019. USENIX Asso-
ciation.

[56] P4. In-band network telemetry. Onlin., https://p4.o
rg/p4-spec/docs/INT_v2_1.pdf.

[57] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich,
and Robert T. Morris. Improving network connection
locality on multicore systems. In Proceedings of the

7th ACM European Conference on Computer Systems,
EuroSys ’12, page 337–350, New York, NY, USA, 2012.
Association for Computing Machinery.

[58] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In 11th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI 14),
pages 1–16, Broomfield, CO, October 2014. USENIX
Association.

[59] V. Prasad, William Cohen, F. Eigler, M. Hunt, J. Kenis-
ton, and B. Chen. Locating system problems using
dynamic instrumentation. 01 2005.

[60] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles, SOSP ’17, page
325–341, New York, NY, USA, 2017. Association for
Computing Machinery.

[61] Linux PTP. The linux ptp project. Onlin., http://li
nuxptp.sourceforge.net/.

[62] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and
John Ousterhout. Arachne: Core-aware thread man-
agement. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages
145–160, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

[63] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen,
Camilo Vega, Michael Stumm, and Ding Yuan. An
analysis of performance evolution of linux’s core opera-
tions. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles, SOSP ’19, page 554–569,
New York, NY, USA, 2019. Association for Computing
Machinery.

[64] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jef-
frey C. Mogul, Mehul A. Shah, and Amin Vahdat. Pip:
Detecting the unexpected in distributed systems. In Pro-

ceedings of the 3rd Conference on Networked Systems

Design & Implementation - Volume 3, NSDI’06, page 9,
USA, 2006. USENIX Association.

[65] Luigi Rizzo. netmap: A novel framework for fast packet
i/o. In 2012 USENIX Annual Technical Conference

(USENIX ATC 12), pages 101–112, Boston, MA, June
2012. USENIX Association.

[66] Steven Rostedt. Kernelshark. Onlin., https://kernel
shark.org/.

876 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://docs.mellanox.com/display/VMAv902
https://docs.mellanox.com/display/VMAv902
https://docs.microsoft.com/de-de/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/de-de/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/de-de/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/perfmon
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/perfmon
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/perfmon
https://www.mips.com/develop/tools/navigator-probes/
https://www.mips.com/develop/tools/navigator-probes/
https://zipkin.io/
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
http://linuxptp.sourceforge.net/
http://linuxptp.sourceforge.net/
https://kernelshark.org/
https://kernelshark.org/

[67] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon
Kim, Nick Feamster, Nick McKeown, and Jennifer Rex-
ford. Pisces: A programmable, protocol-independent
software switch. In Proceedings of the 2016 ACM SIG-

COMM Conference, SIGCOMM ’16, page 525–538,
New York, NY, USA, 2016. Association for Computing
Machinery.

[68] Benjamin H. Sigelman, Luiz André Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. Techni-
cal report, Google, Inc., 2010.

[69] Livio Soares and Michael Stumm. Flexsc: Flexible sys-
tem call scheduling with exception-less system calls. In
9th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 10), Vancouver, BC, October
2010. USENIX Association.

[70] Brent Stephens, Aditya Akella, and Michael Swift.
Loom: Flexible and efficient NIC packet scheduling. In
16th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 19), pages 33–46, Boston,
MA, February 2019. USENIX Association.

[71] Brent Stephens, Arjun Singhvi, Aditya Akella, and
Michael Swift. Titan: Fair packet scheduling for com-
modity multiqueue NICs. In 2017 USENIX Annual

Technical Conference (USENIX ATC 17), pages 431–
444, Santa Clara, CA, July 2017. USENIX Association.

[72] Uber Technologies. Jaeger: open source, end-to-end
distributed tracing. Onlin., https://www.jaegertrac
ing.io/.

[73] VMware. Vprobes. Onlin., https://www.vmware.c
om/products/beta/ws/vprobes_reference.pdf.

[74] Kit Po Wong, Chi Ping Tsang, and Wan Yee Chan. Sher-
lock—a system for diagnosing power distribution ring
network faults. In Proceedings of the 1st International

Conference on Industrial and Engineering Applications

of Artificial Intelligence and Expert Systems - Volume

1, IEA/AIE ’88, page 109–115, New York, NY, USA,
1988. Association for Computing Machinery.

[75] Wenfei Wu, Keqiang He, and Aditya Akella. Perfsight:
Performance diagnosis for software dataplanes. In Pro-

ceedings of the 2015 Internet Measurement Conference,
IMC ’15, page 409–421, New York, NY, USA, 2015.
Association for Computing Machinery.

[76] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rex-
ford, Lihua Yuan, Srikanth Kandula, and Changhoon
Kim. Profiling network performance for multi-tier data
center applications. In Proceedings of the 8th USENIX

Conference on Networked Systems Design and Imple-

mentation, NSDI’11, page 57–70, USA, 2011. USENIX
Association.

[77] Fang Zhou, Yifan Gan, Sixiang Ma, and Yang Wang.
wperf: Generic off-cpu analysis to identify bottleneck
waiting events. In 13th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI 18),
pages 527–543, Carlsbad, CA, October 2018. USENIX
Association.

[78] Noa Zilberman, Matthew Grosvenor, Diana Andreea
Popescu, Neelakandan Manihatty-Bojan, Gianni An-
tichi, Marcin Wójcik, and Andrew W. Moore. Where
has my time gone? In Passive and Active Measurement,
pages 201–214, Cham, 2017. Springer International Pub-
lishing.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 877

https://www. jaegertracing.io/
https://www. jaegertracing.io/
https://www.vmware.com/products/beta/ws/vprobes_reference.pdf
https://www.vmware.com/products/beta/ws/vprobes_reference.pdf

	Introduction
	Background and related work
	Diagnosing network delays at end-hosts

	Using NSight for diagnosis
	Challenges and key ideas
	Profiling network-message lifetimes
	Diagnosing high message latencies

	Design and implementation
	NSight profiler
	NSight analysis

	Evaluation
	Time reconciliation correctness
	Message profiling overheads
	Coverage after anomaly disambiguation

	Latency diagnosis with NSight
	First iteration
	Second Iteration
	Third iteration
	Analysis of diagnosis and configurations

	Diagnosing VMA network stack
	Limitations and future work

