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Abstract
Memory-centric computing demands careful organization of
the virtual address space, but traditional methods for doing so
are inflexible and inefficient. If an application wishes to ad-
dress larger physical memory than virtual address bits allow,
if it wishes to maintain pointer-based data structures beyond
process lifetimes, or if it wishes to share large amounts of
memory across simultaneously executing processes, legacy
interfaces for managing the address space are cumbersome
and often incur excessive overheads.

We propose a new operating system design that promotes
virtual address spaces to first-class citizens, enabling process
threads to attach to, detach from, and switch between multiple
virtual address spaces. Our work enables data-centric appli-
cations to utilize vast physical memory beyond the virtual
range, represent persistent pointer-rich data structures with-
out special pointer representations, and share large amounts
of memory between processes efficiently.

We describe our prototype implementations in the Dragon-
Fly BSD and Barrelfish operating systems. We also present
programming semantics and a compiler transformation to
detect unsafe pointer usage. We demonstrate the benefits of
our work on data-intensive applications such as the GUPS
benchmark, the SAMTools genomics workflow, and the Redis
key-value store.

1. Introduction
The volume of data processed by applications is increasing
dramatically, and the amount of physical memory in machines
is growing to meet this demand. However, effectively using
this memory poses challenges for programmers. The main
challenges tackled in this paper are addressing more physical
memory than the size of a virtual space, maintaining pointer-
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based data structures across process lifetimes, and sharing
very large memory objects between processes.

We expect that main memory capacity will soon exceed
the virtual address space size supported by CPUs today
(typically 256 TiB with 48 virtual address bits). This is
made particularly likely with non-volatile memory (NVM)
devices – having larger capacity than DRAM – expected to
appear in memory systems by 2020. While some vendors
have already increased the number of virtual address (VA)
bits in their processors, adding VA bits has implications on
performance, power, production, and estate cost that make it
undesirable for low-end and low-power processors. Adding
VA bits also implies longer TLB miss latency, which is
already a bottleneck in current systems (up to 50% overhead
in scientific apps [55]). Processors supporting virtual address
spaces smaller than available physical memory require large
data structures to be partitioned across multiple processes or
these structures to be mapped in and out of virtual memory.

Representing pointer-based data structures beyond pro-
cess lifetimes requires data serialization, which incurs a large
performance overhead, or the use of special pointer represen-
tations, which results in awkward programming techniques.
Sharing and storing pointers in their original form across
process lifetimes requires guaranteed acquisition of specific
VA locations. Providing this guarantee is not always feasible,
and when feasible, may necessitate mapping datasets residing
at conflicting VA locations in and out of the virtual space.

Sharing data across simultaneously executing processes
requires special communication with data-serving processes
(e.g., using sockets), impacting programmability and incur-
ring communication channel overheads. Sharing data via
traditional shared memory requires tedious communication
and synchronization between all client processes for growing
the shared region or guaranteeing consistency on writes.

To address all these challenges, we present SpaceJMP, a
set of APIs, OS mechanisms, and compiler techniques that
constitute a new way to manage memory. SpaceJMP appli-
cations create and manage Virtual Address Spaces (VASes)
as first-class objects, independent of processes. Decoupling
VASes from processes enables a single process to activate
multiple VASes, such that threads of that process can switch
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between these VASes in a lightweight manner. It also enables
a single VAS to be activated by multiple processes or to exist
in the system alone in a self-contained manner.

SpaceJMP solves the problem of insufficient VA bits by
allowing a process to place data in multiple address spaces.
If a process runs out of virtual memory, it does not need to
modify data mappings or create new processes. It simply
creates more address spaces and switches between them.
SpaceJMP solves the problem of managing pointer-based
data structures because SpaceJMP processes can always
guarantee the availability of a VA location by creating a new
address space. SpaceJMP solves the problem of data sharing
by allowing processes to switch into a shared address space.
Clients thus need not communicate with a server process or
synchronize with each other on shared region management,
and synchronization on writes can be lightweight.

SpaceJMP builds on a wealth of historical techniques in
memory management and virtualization but occupies a novel
“sweet spot” for modern data-centric applications: it maps
well to existing hardware while delivering more flexibility
and performance for large data-centric applications compared
with current OS facilities.

We make the following contributions:

1. We present SpaceJMP (Section 3): the OS facilities pro-
vided for processes to each create, structure, compose, and
access multiple virtual address spaces, together with the
compiler support for detecting unsafe program behavior.

2. We describe and compare (Section 4) implementations of
SpaceJMP for the 64-bit x86 architecture in two different
OSes: DragonFly BSD and Barrelfish.

3. We empirically show (Section 5) how SpaceJMP improves
performance with microbenchmarks and three data-centric
applications: the GUPS benchmark, the SAMTools ge-
nomics workflow, and the Redis key-value store.

2. Motivation
Our primary motivations are the challenges we have already
mentioned: insufficient VA bits, managing pointer-based data
structures, and sharing large amounts of memory – discussed
in Sections 2.1, 2.2, and 2.3 respectively.

2.1 Insufficient Virtual Address Bits
Non-Volatile Memory (NVM) technologies, besides persis-
tence, promise better scaling and lower power than DRAM,
which will enable large-scale, densely packed memory sys-
tems with much larger capacity than today’s DRAM-based
computers. Combined with high-radix optical switches [76],
these future memory systems will appear to the processing
elements as single, petabyte-scale “load-store domains” [33].

One implication of this trend is that the physical memory
accessible from a CPU will exceed the size that VA bits can
address. While almost all modern processor architectures
support 64-bit addressing, CPU implementations pass fewer
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Figure 1: Page table construction (mmap) and removal
(munmap) costs in Linux, using 4KiB pages. Does not include
page zeroing costs.

bits to the virtual memory translation unit because of power
and performance implications. Most CPUs today are limited
to 48 virtual address bits (i.e., 256 TiB) and 44-46 physical
address bits (16-64 TiB), and we expect a slow growth in
these numbers.

The challenge presented is how to support applications
that want to address large physical memories without paying
the cost of increasing processor address bits across the board.
One solution is partitioning physical memory across multiple
OS processes which would incur unnecessary inter-process
communication overhead and is tedious to program. Another
solution is mapping memory partitions in and out of the VAS,
which has overheads discussed in Section 2.4.

2.2 Maintaining Pointer-based Data Structures
Maintaining pointer-based data structures beyond process
lifetimes without serialization overhead has motivated emerg-
ing persistent memory programming models to adopt region-
based programming paradigms [15, 21, 78]. While these ap-
proaches provide a more natural means for applications to
interact with data, they present the challenge of how to repre-
sent pointers meaningfully across processes.

One solution is the use of special pointers, but this hin-
ders programmability. Another solution is requiring memory
regions to be mapped to fixed virtual addresses by all users.
This solution creates degenerate scenarios where memory
is mapped in and out when memory regions overlap, the
drawbacks of which are discussed in Section 2.4.

2.3 Sharing Large Memory
Collaborative environments where multiple processes share
large amounts of data require clean mechanisms for processes
to access and manage shared data efficiently and safely.
One approach uses a client-server model whereby client
processes communicate with key-value stores [24, 63, 67]
that manage and serve the data. This approach requires
code to be rewritten to use specific interfaces and incurs
communication overhead. Another approach is using shared
memory regions, but current OS mechanisms for doing so
have many limitations discussed in Section 2.4.
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2.4 Problems with Legacy Methods
Legacy methods for interacting with memory are based on
interfaces exposed over a file abstraction. As systems become
increasingly memory centric, these interfaces introduce per-
formance bottlenecks that limit scalability [35], and their
complexity and usability create challenges for programmers.

Changing memory maps in the critical path of an applica-
tion has significant performance implications, and scaling to
large memories further exacerbates the problem. Using file-
based methods such as mmap is slow and not scalable [20].
Figure 1 shows that constructing page tables for a 1 GiB re-
gion using 4 KiB page takes about 5 ms; for 64 GiB the cost
is about 2 seconds. Frequent use of such interfaces quickly be-
comes an expensive operation, especially when applications
must access all pages within a region.

In addition to performance implications, the flexibility of
legacy interfaces is also a major concern. Memory-centric
computing demands careful organization of the virtual ad-
dress space, but interfaces such as mmap only give limited
control. Some systems do not support creation of address re-
gions at specific offsets. In Linux, for example, mmap does not
safely abort if a request is made to open a region of memory
over an existing region; it simply writes over it. Moreover,
in current systems, memory sharing is tied to coarse-grained
protection bits configured on the backing file, such as user-
group, or access control lists (ACL). This requires a transla-
tion between different security models which may want to
operate at different granularities. That along with linkers that
dynamically relocate libraries or OSes that randomize the
stack allocation prevents applications from sharing memory
effectively.

3. Design
We now describe the design of SpaceJMP and define the
terminology used in this paper. SpaceJMP provides two key
abstractions: lockable segments encapsulate sharing of in-
memory data, and virtual address spaces represent sets of
non-overlapping segments. We also describe semantics for
safe programming of segments and address spaces.

3.1 Lockable Segments
In SpaceJMP, all data and code used by the system exist
within segments. The term has been used to refer to many
different concepts over the years; in SpaceJMP, a segment
should be thought of as an extension of the model used in
Unix to hold code, data, stack, etc.: a segment is a single,
contiguous area of virtual memory containing code and data,
with a fixed virtual start address and size, together with meta-
data to describe how to access the content in memory. With
every segment we store the backing physical frames, the
mapping from its virtual addresses to physical frames and the
associated access rights.

For safe access to regions of memory, all SpaceJMP
segments can be lockable. In order to switch into an address
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Figure 2: Contrasting SpaceJMP and Unix.

VAS API – for applications. vas_clone(vid)→ vid
vas_find(name)→ vid vas_attach(vid)→ vh
vas_detach(vh) vas_switch(vh)
vas_create(name,perms)→ vid vas_ctl(cmd,vid[,arg])

Segment API – for library developers. seg_ctl(sid,cmd[,arg])
seg_find(name)→ sid seg_attach(vid,sid)
seg_attach(vh,sid) seg_detach(vid,sid)
seg_detach(vh,sid) seg_clone(sid) → sid

seg_alloc(name,base,size,perms)→ sid

Figure 3: SpaceJMP interface.

space, the OS must acquire a reader/writer lock on each
lockable segment in that address space.

Each lock acquisition is tied to the access permissions for
its corresponding segment: if the segment is mapped read-
only, the lock will be acquired in a shared mode, supporting
multiple readers (i.e., multiple reading address spaces) and
no writers. Conversely, if the segment is mapped writable,
the lock is acquired exclusively, ensuring that only one client
at a time is allowed in an address space with that segment
mapped.

Lockable segments are the unit of data sharing and pro-
tection provided in SpaceJMP. Together with address space
switching, they provide a fast and secure way to guarantee
safe and concurrent access to memory regions to many inde-
pendent clients.

3.2 Multiple Virtual Address Spaces
In most contemporary OSes, a process or kernel thread is
associated with a single virtual address space (VAS), assigned
when the execution context is created. In contrast, SpaceJMP
virtual address spaces are first-class OS objects, created
and manipulated independently of threads or processes. The
contrast between SpaceJMP and traditional Unix-like (or
other) OSes is shown in Figure 2. SpaceJMP can emulate
regular Unix processes (and does, as we discuss in the next
section), but provides a way to rapidly switch sections of
mappings to make different sets of segments accessible.

The SpaceJMP API is shown in Figure 3. A process
in SpaceJMP can create, delete, and enumerate VASes. A
VAS can then be attached by one or more processes (via
vas_attach), and a process can switch its context between
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type *t; vasid_t vid; vhandle_t vh; segid_t sid;

// Example use of segment API. // Example use of VAS API.
va=0xC0DE; sz=(1UL«35); vid=vas_find("v0");
vid=vas_create("v0",660); vh=vas_attach(vid);
sid=seg_alloc("s0",va,sz,660); vas_switch(vh);
seg_attach(vid, sid); t=malloc(...); *t = 42;

Figure 4: Example SpaceJMP usage.

different VASes to which it is attached at any point during
its execution. A VAS can also continue to exist beyond the
lifetime of its creating process (e.g., it may be attached to
other processes).

The average user only needs to worry about manipulating
VASes. Advanced users and library developers may directly
manipulate segments within the VAS. Heap allocators, for
instance, must manage the segments that service the allo-
cations (see Section 4). Segments can be attached to, or
detached from a VAS. In practice, some segments (such as
global OS mappings, code segments, and thread stacks) are
widely shared between VASes attached to the same process.
seg_attach and seg_detach allow installing segments that
are process-specific by using the vid handle (vh) or globally
for all processes attached to a VAS using the vid.

Rather than reinventing the wheel, our permission model
for segments and address spaces use existing security models
available in the OS. For example, in DragonFly BSD, we rely
on ACLs to restrict access to segments and address spaces
for processes or process groups. In Barrelfish, we use the
capability system provided by the OS (Section 4.2) to control
access. To modify permissions, the user can clone a segment
or VAS and use the seg_ctl, or vas_ctl, to change the
meta-data of the new object (e.g., permissions) accordingly.

A spawned process will still receive its initial VAS by the
OS. The exposed functionality to the user process, however,
allows it to construct and use additional VASes. A typical call
sequence to create a new VAS is shown in Figure 4.

3.3 Programming Semantics for Safe Execution
Multiple VASes per process is a powerful feature for writing
applications in a data-driven world. However, this feature
introduces new kinds of unsafe memory access behavior that
programmers must carefully avoid. We provide the user with
a compiler tool to detect such unsafe behavior.

This section defines semantics for programming with
SpaceJMP safely. The common region refers to the memory
segments that a process maps to all VASes such as the stack,
code, and globals. A VAS should not store a pointer that
points to another VAS, except in the common region, which
is shared by all VASes. Therefore any pointer not in the
common region of a VAS is valid only when that VAS is
active. Moreover, pointers to the common region should
only be stored in the common region because they are not
meaningful to other processes that may attach a VAS. This
ensures that a VAS remains independent from any process.

The following rules define safe and unsafe behavior:

• If a pointer p is obtained when a VAS v is active via
allocation in or loading from the non-common region:

Dereferencing p is safe in v and unsafe otherwise

Storing to p a pointer q is safe if q points to the non-
common region of v and unsafe otherwise

• If a pointer p is obtained via allocation on the stack or is
a global or function pointer:

Dereferencing and storing to p is always safe
• If a pointer p is loaded from the common region:

The safety properties of p must be the same as that of
the originally stored pointer

Compiler support for detecting violations of these rules is
discussed in Section 4.3.

4. Implementation
We built 64-bit x86 implementations of SpaceJMP for the
DragonFly BSD and Barrelfish operating systems, which
occupy very different points in the design space for mem-
ory management and provide a broad perspective on the im-
plementation trade-offs for SpaceJMP. We first discuss the
DragonFly BSD implementation, since it is the most mature
and the platform for the majority of results in Section 5.

4.1 DragonFly BSD
DragonFly BSD [27] is a scalable, minimalistic kernel orig-
inally derived from FreeBSD4, supporting only the x86-64
architecture. Our SpaceJMP implementation includes modifi-
cations to the BSD memory subsystem and an address-space-
aware implementation of the user space malloc interfaces.

Memory subsystem: DragonFly BSD has a nearly identical
memory system to FreeBSD, both of which derive from
the memory system in the Mach kernel [65]. The following
descriptions therefore also apply to similar systems.

The BSD memory subsystem is based on the concept of
VM objects [65] which abstract storage (files, swap, raw mem-
ory, etc.). Each object contains a set of physical pages that
hold the associated content. A SpaceJMP segment is a wrap-
per around such an object, backed only by physical memory,
additionally containing global identifiers (e.g., a name), and
protection state. Physical pages are reserved at the time a
segment is created, and are not swappable. Furthermore, a
segment may contain a set of cached translations to acceler-
ate attachment to an address space. The translations may be
globally cached in the kernel if the segment is shared with
other processes.

Address spaces in BSD, as in Linux, are represented by
two layers: a high-level set of region descriptors (virtual
offset, length, permissions), and a single instance of the
architecture-specific translation structures used by the CPU.
Each region descriptor references a single VM object, to
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inform the page fault handler where to ask for physical pages.
A SpaceJMP segment can therefore be created as a VM
object and added directly to an address space, with minimal
modifications made to the core OS kernel implementation.

Sharing segments with other processes is straightforward
to implement as they can always be attached to an existing
address space, provided it does not overlap a previously
mapped region. Sharing an address space is slightly more
complicated: as mentioned in Section 3, we only share
segments that are also visible to other processes. Doing so
allows applications to attach their own private segments (such
as their code or their stack) into an address space, before
they can switch into it. Those segments would typically
heavily conflict as every process tends to have a stack and
program code at roughly the same location. The underlying
address space representation that BSD uses (the vmspace
object) always represents a particular instance of an address
space with concrete segments mapped. Therefore, sharing
a vmspace instance directly with other processes will not
work. Instead, when sharing an address space, the OS shares
just the set of memory segments that comprise the VAS. A
process then attaches to the VAS, creating a vmspace, which
it then can switch into.

A slight modification of the process context structure was
necessary to hold references to more than one vmspace ob-
ject, along with a pointer to the current address space. Know-
ing the active address space is required for correct operation
of the page fault handler and system calls which modify the
address space, such as the segment attach operation.

Inadvertent address collisions may arise between seg-
ments, such as those for stack, heap, and code. For example,
attaching to a VAS may fail if a (global) segment within it con-
flicts with the attaching process’ (private, fixed-address) code
segments. Our current implementation in DragonFly BSD
avoids this by ensuring both globally visible and process-
private segments are created in disjoint address ranges.

Runtime library: We developed a library to facilitate ap-
plication development using the SpaceJMP kernel interface,
avoiding complexities such as locating boundaries of pro-
cess code, globals, and stack for use within an address space
across switches. The library performs much of the bookkeep-
ing work involved in attaching an address space to a process:
private segments holding the process’ program text, globals,
and thread-specific stacks are attached to the process-local
vmspace object by using the VAS handle.

Furthermore, the library provides allocation of heap space
(malloc) within a specific segment while inside an address
space. SpaceJMP complicates heap management since pro-
grams need to allocate memory from different segments de-
pending on their needs. These segments may not be attached
to every address space of the process, and moreover a call
to free up memory can only be executed by a process if it is
currently in an address space which has the corresponding
segment attached.

To manage this complexity, the SpaceJMP allocator is
built over Doug Lea’s dlmalloc [48], providing the notion
of a memory space (mspace). An mspace is an allocator’s
internal state and may be placed at arbitrary locations. Our
library supports distinct mspaces for individual segments,
and provides wrapper functions for malloc and free which
supply the correct mspace instance to dlmalloc, depending
on the currently active address space and segment.

VAS switching: Attaching to a global VAS creates a new
process-private instance of a vmspace object, where the
process code, stack, global regions are mapped in. A program
or runtime initiates a switch via a system call; the kernel
identifies the vmspace object specified by the call, then
simply overwrites CR31 with the physical address of the
page table of the new VAS. Other registers, such as the stack
pointer, are not modified. A kernel may also transparently
initiate a switch, e.g., after a page fault, or triggered via any
other event.

4.2 Barrelfish
Barrelfish [7] is a research operating system structured as a
“multikernel”, a distributed system of cores communicating
solely via asynchronous messages.

In contrast to BSD, Barrelfish prohibits dynamic memory
allocation in the kernel. Instead, Barrelfish has user-space
memory servers which allocate physical memory to applica-
tions. Each memory region is typed using a capability system
inspired by seL4 [31]. Retyping of memory is checked by the
kernel and performed by system calls. The security model
guarantees that a user-space process can allocate memory
for its own page tables (and other kernel-level objects) and
frames for mapping memory into the virtual address spaces.

The capability system provides fine-grained access con-
trol to resources, allowing processes great flexibility in im-
plementing policies, and safely performs security-relevant
actions via explicit capability invocations. Therefore, Space-
JMP is implemented almost entirely in user space with no
additional logic added to the kernel: all VAS management
operation translate into explicit capability invocations.

We use this functionality to explicitly share and modify
page tables without kernel participation. In particular, we
implemented a SpaceJMP-service to track created VASes in
the system, together with attached segments and attaching
processes, similar to the kernel extensions employed in BSD.
Processes interact with the user-level service via RPCs.

Upon attaching to a VAS, a process obtains a new ca-
pability to a root page table to be filled in with mapping
information. Switching to the VAS is a capability invocation
to replace the thread’s root page table with the one of the VAS.
This is guaranteed to be a safe operation as the capability sys-
tem enforces only valid mappings. Initially, all page tables
other than the root of a VAS are shared among the attached
processes, allowing easy propagation of updated mappings.

1 Control register—indicates currently active page table on an x86 CPU core.
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The Barrelfish kernel is therefore unaware of SpaceJMP
objects. To enforce their proper reclamation we can rely on
the capability revocation mechanism: revoking the process’
root page table prohibits the process from switching into
the VAS. The result is a pure user space implementation of
SpaceJMP, enabling us to enforce custom policies, such as
alignment constraints or selecting alternative page sizes.

4.3 Compiler Support
This section describes the implementation of a compiler tool
for detecting unsafe behavior according to the semantics
presented in Section 3.3. A trivial solution would be to tag
all pointers with the ID of the address space they belong to,
and insert checks on the tags before any pointer dereference.
However, because checking every pointer dereference is too
conservative, we present a compiler analysis to prove when
dereferences are safe, and a transformation that only inserts
checks where safety cannot be proven statically. These are
briefly described in this section while detailed algorithms,
optimizations, and evaluation are left for future work.

The analysis begins by finding the potentially active
VASes at each program point and the VASes each pointer
may be valid in. It produces the following sets of information:

• VAS valid(p): For each pointer p, the set of IDs for VASes
that p may be valid in. VAS valid(p) may also contain two
special values:

vcommon: p may point to the common region

vunkown: the ID of the VAS p may point to is unkown
statically

• VAS in(i) and VAS out(i): For each relevant program in-
struction i, the set of IDs for VASes which may be current
before and after i executes.

The instructions relevant to the analysis are shown in
Figure 5 along with how they impact the analysis information.
We provide an additional instruction vcast that enables users
to cast pointers across VASes to override the safety rules.

After obtaining these two sets of information, the analysis
uses them to identify all load or store instruction that may
dereference a pointer in the wrong address space. These
include any load or store instruction i that dereferences
a pointer p such that at least one of the following three
conditions hold:

1. (|VAS valid(p)| > 1) ∨ (VAS valid(p) 3 vunkown) (The VAS
that p points to is ambiguous)

2. |VAS in(i)| > 1 (The current VAS when i is executed is
ambiguous)

3. VAS valid(p) , VAS in(i) (The VAS that p points to may
not be the same as the current VAS)

For these instructions, the transformation inserts a check
before i that checks if the VAS which p points to matches the
currently active VAS.

Instruction Description Impact on Analysis
switch v Switch to VAS v VAS out(i) = {v}
x = vcast y v Cast y to VAS v VAS valid(x) = {v}
x = alloca Stack allocation VAS valid(x) = vcommon

x = global Global variable VAS valid(x) = vcommon

x = malloc Heap allocation VAS valid(x) = VAS in(i)
x = y Copy (arith., casts) VAS valid(x) = VAS valid(y)
x = phi y z ... Phi instructions VAS valid(x) = VAS valid(y) ∪

VAS valid(z) ∪ ...
x = *y Loads VAS valid(x) = VAS in(i) or

vunkown if stack dereference
*x = y Stores No impact
x = foo(y, ...) Function calls Update VAS valid of parameters

and VAS in at function entry
ret x Returns Update VAS valid and VAS out at

callsites

Figure 5: SSA Instructions Relevant to Analysis

The analysis information is also used to identify stores
that may store pointers to illegal locations. These include any
store instruction i of a pointer v to a pointer p such that i does
not meet any of the following conditions:

1. VAS valid(p) = {vcommon} (The store is to the common
region)

2. (|VAS valid(p)| = 1) ∧ (VAS valid(p) = VAS valid(v)) (The
stored pointer points within the region it is stored to)

For these instruction, the transformation inserts checks that
ensure that either p points to the common region or that p
and v both point to the current VAS.

The VASes of pointers used in checking code is obtained
by inserting appropriate tracking code where those pointers
are defined. VASes of pointers across function boundaries are
tracked via a global array. VASes of pointers that escape to
the common region are tracked via tagged pointers (using the
unused bits of the pointer), though shadow memory may also
be used for this purpose.

4.4 Discussion
Current implementations of SpaceJMP are relatively unopti-
mized, and there are several directions for improvement.

On the compiler analysis side, there are situations where
our conservative algorithm will insert unnecessary safety
checks which a more involved analysis would elide.

More effective caching of page table structures would be
beneficial for performance, but imposes additional constraints
on the virtual addresses to be efficient. For example, mapping
an 8 KiB segment on the boundaries of a PML4 slot requires 7
page tables2. By restricting the virtual addresses of segments,
to avoid crossing such high-level page table boundaries, page
table structures can be cached more efficiently.

The hardware side is also an interesting source of future
work. Modern x86-64 CPUs support tagging of TLB entries

2 One PML4 table, two tables each of PDPT, PDT, PT.
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Name Memory Processors Freq.
M1 92 GiB 2x12c Xeon X5650 2.66 GHz
M2 256 GiB 2x10c Xeon E5-2670v2 2.50 GHz
M3 512 GiB 2x18c Xeon E5-2699v3 2.30 GHz

Table 1: Large-memory platforms used in our study.

with a compact (e.g., 12-bit) address space identifier to
reduce overheads incurred by a full TLB flush on every
address space switch. Our current implementations reserve
the tag value zero to always trigger a TLB flush on a context
switch. By default, all address spaces use tag value zero. The
user has the ability to pass hints to the kernel (vas_ctl) to
request a tag be assigned to an address space.

The trade-off can be complex: use of many tags can de-
crease overall TLB coverage (particularly since in SpaceJMP
many address spaces share the same translations) and result
in lower performance instead of faster context switch time.

Furthermore, this trade-off is hardware-specific. Only a
single TLB tag can be current in an x86 MMU, whereas
other hardware architectures (such as the “domain bits” in
the ARMv7-A architecture [3] or the protection attributes in
PA-RISC [81]) offer more flexible specification of transla-
tions, which would allow TLB entries to be shared across
VAS boundaries. In any case, efficient dynamic use of TLB
identifiers is a topic for future work.

5. Evaluation
In this section, we evaluate potential benefits afforded
through SpaceJMP using three applications across domains:
(i) a single-threaded benchmark derived from the HPCC
GUPS [64] code to demonstrate the advantages of fast
switching and scalable access to many address spaces;
(ii) RedisJMP, an enhanced implementation of the data-center
object-caching middleware Redis, designed to leverage the
multi-address-space programming model and lockable seg-
ments to ensure consistency among clients; and (iii) a ge-
nomics tool to demonstrate ease of switching with complex,
pointer-rich data structures. The applications have not been
instrumented with the safety checks described in Section 4.3.

Three hardware platforms support our measurements,
code-named M1, M2, and M3, as shown in Table 1. All
are dual-socket server systems, varying in total memory
capacity, core count, and CPU micro-architecture; symmetric
multi-threading and dynamic frequency scaling are disabled.
Unless otherwise mentioned, the DragonFly BSD SpaceJMP
implementation is used.

5.1 Microbenchmarks
This section explores trade-offs available with our solution
for address space manipulation, and further evaluates its per-
formance characteristics as an RPC mechanism (Figure 7).
We begin first with an evaluation of VAS modification over-

Operation DragonFly BSD Barrelfish
CR3 load 130 224 130 224
system call 357 – 130 –
vas_switch 1127 807 664 462

Table 2: Breakdown of context switching. Measurements on
M2 in cycles. Numbers in bold are with tags enabled.
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Figure 7: Comparison of URPC and SpaceJMP on Barrelfish
(M2) as an alternative solution for fast local RPC communi-
cation.

heads, followed by a breakdown of context switching costs
with and without TLB tagging optimizations.

Recall from Figure 1 that page table modification does
not scale, even in optimized, mature OS implementations.
The reason is because entire page table subtrees must be
created – costs which are directly proportional to the region
size and inversely proportional to page size. When restricted
to a single per-process address space, changing translations
for a range of virtual addresses using mmap and munmap incurs
these costs. Copy-on-write optimizations can ultimately only
reduce these costs for large, sparsely-accessed regions, and
random-access workloads that stress large areas incur higher
page-fault overheads using this technique. With SpaceJMP,
these costs are removed from the critical path by switching
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translations instead of modifying them. We demonstrate this
performance impact on the GUPS workload in Section 5.2.

Given the ability to switch into other address spaces
at arbitrary instances, a process in SpaceJMP will cause
context switching to occur at more frequent intervals than is
typical, e.g., due to task rescheduling, potentially thousands
of times per second. Table 2 breaks down the immediate costs
imposed due to an address space switch in our DragonFly
BSD implementation; a system call imposes the largest cost.
Subsequent costs are incurred as TLB misses trigger the page-
walking hardware to fetch new translations.

While immediate costs may only be improved within the
micro-architecture, subsequent costs can be improved with
TLB tagging.

Notice in Table 2 that changing CR3 register becomes
more expensive with tagging enabled, as it invokes additional
hardware circuitry that must consider extra TLB-resident
state upon a write. Naturally, these are hardware-dependent
costs. However, the overall performance of switching is
improved, due to reduced TLB misses from shared OS entries.

We directly measured the impact of tagging in the TLB
using a random page-walking benchmark we wrote. For a
given set of pages, it will load one cache line from a randomly
chosen page. A write to CR3 is then introduced between each
iteration, and the cost in cycles to access the cache line are
measured. Lastly, we enable tags, shown in Figure 6. The
benefits, however, tail off: with tags, the cost of accessing
a cache line reduces to the cost incurred without writes to
CR3 as the working set grows. As expected, benefits gained
using tags are limited by a combination of TLB capacity (for
a given page size), and sophistication of TLB prefetchers.
In our experiment, access latencies with larger working sets
match that of latencies where the TLB is flushed.

Finally, we compare the latency of switching address
spaces in SpaceJMP, with issuing a remote procedure call
to another core. In this benchmark, an RPC client issues a
request to a server process on a different core and waits
for the acknowledgment. The exchange consists of two
messages, each containing either a 64-bit key or a variable-
sized payload. We compare with the same semantics in
SpaceJMP by switching into the server’s VAS and accessing
the data directly by copying it into the process-local address
space. Figure 7 shows the comparison between SpaceJMP
and different RPC backends.

Our point of comparison is the (highly optimized) Bar-
relfish low latency RPC, stripped of stub code to expose only
the raw low-level mechanism. In the low-latency case, both
client and server busy-wait polling different circular buffers
of cache-line-sized messages in a manner similar to FastFor-
ward [36]. This is the best-case scenario for Barrelfish RPCs –
a real-world case would add overhead for marshalling, polling
multiple channels, etc. We see a slight difference between
intra (URPC L) and inter-socket (URPC X) performance.
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Figure 8: Comparison of three designs to program large
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In all cases, the latency grows once the payload exceeds
the buffer size. SpaceJMP is only out-performed by intra-
socket URPC for small messages (due to system call and
context switch overheads). Between sockets, the interconnect
overhead for RPC dominates the cost of switching the VAS.
In this case, using TLB tags further reduced latency.

5.2 GUPS: Addressing Large Memory
To deal with the limits of addressability for virtual mem-
ory, applications adopt various solutions for accessing larger
physical memories. In this section, we use the GUPS bench-
mark [64] to compare two approaches in use today with a
design using SpaceJMP. We ask two key questions: (i) how
can applications address large physical memory regions, and
(ii) what are the limitations of these approaches?

GUPS is appropriate for this: it measures the ability of a
system to scale when applying random updates to a large in-
memory array. This array is one large logical table of integers,
partitioned into some number of windows. GUPS executes
a tight loop that, for some number of updates per iteration,
computes a random index within a given window for each
update and then mutates the value at that index. After each
set of updates is applied, a new window is randomly chosen.
Figure 8 illustrates the performance comparison between
three different approaches, where performance is reported as
the rate of million updates applied per second.
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Figure 10: Performance comparison of Redis vs. a version of Redis using SpaceJMP

The first approach (MAP) leverages address space
remapping: a traditional process may logically extend the
reachability of its VAS by dynamically remapping portions
of it to different regions of physical memory. Our implemen-
tation of this design uses the BSD mmap and munmap system
calls (configured to attach to existing pages in the kernel’s
page cache) opening new windows for writing.

The second traditional approach (MP) uses multiple pro-
cesses: each process is assigned a distinct portion of the phys-
ical memory (a window). In our experiment, one process acts
as master and the rest as slaves, whereby the master process
sends RPC messages using OpenMPI to the slave process
holding the appropriate portion of physical memory. It then
blocks, waiting for the slave to apply the batch of updates be-
fore continuing, simulating a single thread applying updates
to a large global table. Each process is pinned to a core.

We compare these techniques with VAS switching, modi-
fying GUPS to take advantage of SpaceJMP. Unlike the first
technique, we do not modify mappings when changing win-
dows, but instead represent a window as a segment in its
own VAS. Pending updates are maintained in a shared heap
segment mapped into all attached address spaces. Figure 9
illustrates the rate of VAS switching and TLB misses.

Discussion. For a single window – no remapping, RPC,
or switching – all design configurations perform equally
well. Changing windows immediately becomes prohibitively
expensive for the MAP design, as it requires modification
of the address space on the critical path. For the MP and
SpaceJMP designs, the amount of CPU cache used grows
with each added window, due to cache line fills from updates,
as well as the growth in required page translation structures
pulled in by the page-walker. The SpaceJMP implementation
performs at least as well as the multi-process implementation,
despite frequent context switches, with all data and multiple
translation tables competing for the same set of CPU caches
(for MP, only one translation table resides on each core).
At greater than 36 cores on M3, the performance of MP
drops, due to the busy-wait characteristics the OpenMPI
implementation. The same trends are visible across a range
of update set sizes (16 and 64 in the figure). Finally, a design

leveraging SpaceJMP is more flexible, as a single process
can independently address multiple address spaces without
message passing.

This experiment shows that SpaceJMP occupies a useful
point in the design space between multiple-process and
page-remapping techniques – there is tangible benefit from
switching between multiple address spaces rapidly on a single
thread.

5.3 Redis with Multiple Address Spaces
In this section, we investigate the trade-off in adapting an ex-
isting application to use SpaceJMP and the potential benefits
over traditional programming models.

We use Redis (v3.0.2) [67], a popular in-memory key-
value store. Clients interact with Redis using UNIX domain
or TCP/IP sockets by sending commands, such as SET and
GET, to store and retrieve data. Our experiments use local
clients and UNIX domain sockets for performance.

We compare a basic single-threaded Redis instance with
RedisJMP, which exploits SpaceJMP by eliding the use of
socket-based communications. RedisJMP avoids a server
process entirely, retaining only the server data, and clients
access the server data by switching into its address space.
RedisJMP is therefore implemented as a client-side library,
and the server data is initialized lazily by its first client.

This client creates a new lockable segment for the state,
maps it into a newly created address space, switches into this
address space, and runs the initialization code to set-up Redis
data-structures. We replaced the Redis memory allocator with
one based on SpaceJMP, and moved all Redis global variables
to a statically-allocated region inside the lockable segment.

Each client creates either one or two address spaces with
the lockable segment mapped read-only or read-write, and
invokes commands by switching into the newly created
address space, executing server code directly. Our RedisJMP

implementation currently supports only basic operations for
simple data-types. Some Redis features such as publish–
subscribe would be more challenging to support, but could
be implemented in a dedicated notification service.
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RedisJMP uses locked segments to provide parallel read
access to Redis state, but two further modifications were
needed to the Redis code. First, Redis creates heap objects
even on GET (read-only) requests for parsing commands,
which would require read-write access to the lockable seg-
ment for all commands. We therefore attached a small, per-
client scratch heap to each client’s server address space. Sec-
ond, Redis dynamically grows and shrinks its hash-tables
asynchronously with respect to queries; we modified it to
resize and rehash entries only when a client has an exclusive
lock on the address space.

We used the redis-benchmark from the Redis distribution
to compose the throughput of RedisJMP with the original on
a single machine (M1). The benchmark simulates multiple
clients by opening multiple file descriptors and sending
commands while asynchronously polling and waiting for
a response before sending the next command. For SpaceJMP
we modified redis-benchmark to use our API and individual
processes as clients that all attach the same server segment.

Fig. 10a and Fig. 10b show the performance of the GET
and SET commands (4-byte payload) for a regular Redis
server and RedisJMP. In case of a single client (one thread),
SpaceJMP outperforms a single server instance of Redis
by a factor of 4x for GET and SET requests, by reducing
communication overhead.

The maximum read throughput of a single-threaded Re-
dis server is naturally limited by the clock-speed of a single
core, whereas RedisJMP allows multiple readers to access
the address space concurrently. Therefore, we also compare
throughput of a single RedisJMP instance with six indepen-
dent Redis instances (Redis 6x) paired with six instances of
redis-benchmark running on the twelve core machine.

Even in this case, at full utilization RedisJMP is still able
to serve 36% more requests than 6 regular Redis instances.
We also compare SpaceJMP with and without TLB tagging
enabled and notice a slight performance improvement using
tags until the synchronization overhead limits scalability. For
TLB misses, we measured a rate of 8.9M misses per second
with a single client and 3.6M per core per second at full
utilization (using 12 clients). With TLB tagging, the miss rate
was lower, 2.8M misses per second for a single client and
0.9M per core per second (using 12 clients). The total number
of address space switches per second is equals to two times
the request rate for any number of clients.

For SET requests we sustain a high request rate until
too many clients contend on the segment lock. This is a
fundamental SpaceJMP limit, but we anticipate that a more
scalable lock design than our current implementation would
yield further improvements. Fig. 10c shows maximum system
throughput while increasing the percentage of SET requests.
The write lock has a large impact on throughput even when
10% of the requests are SETs, but RedisJMP still outperforms
traditional file-based communication.
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Figure 11: SAMTools vs. an implementation with Space-
JMP. BAM and SAM are alternative in-memory serialization
methods; SpaceJMP has no serialization.

Flagstat Qname Sort Coordinate Sort Index
0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(n

or
m

al
iz

ed
)

1.00 108.4 5.48 14.77

0.67

106.4
5.03

14.88

MMAP
SpaceJMP

Figure 12: Use of mmap vs. SpaceJMP in SAMTools. Abso-
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In summary, small changes are needed to modify an
existing application to use SpaceJMP, but can make a single-
threaded implementation both scale better and sustain higher
single-thread performance by reducing IPC overhead.

5.4 SAMTools: In-Memory Data Structures
Finally, we show the benefit of using SpaceJMP as a mecha-
nism to keep data structures in memory, avoiding both regular
file I/O and memory-mapped files.

SAMTools [50] is a toolset for processing DNA sequence
alignment information. It operates on multiple file formats
that encode aligned sequences and performs various opera-
tions such as sorting, indexing, filtering, and collecting statics
and pileup data. Each of these parses file data, performs a
computation, and may write output to another file. Much of
the CPU time in these operations is spent converting between
serialized and in-memory representations of data.

We implement a version of SAMTools that uses Space-
JMP to keep data in its in-memory representation, avoiding
frequent data conversions such as serialization of large data
structures; such procedures comprise the majority of its ex-
ecution time. Instead of storing the alignment information
in a file according to a schema, we retain the data in a vir-
tual address space and persist it between process executions.
Each process operating on the data switches into the address
space, performs its operation on the data structure, and keep
its results in the address space for the next process to use.

Figure 11 compares the performance of using SpaceJMP
to the original SAMTools operations on Sequence Alignmen-
t/Map (SAM) and BGZF compressed (BAM) files of sizes
3.1 GiB and 0.9 GiB respectively. It is evident from the graph
that keeping data in memory with SpaceJMP results in sig-
nificant speedup. The SAM and BAM files are stored using
an in-memory file-system so the impact of disk access in the

362



original tool is completely factored out. The performance
improvement comes mainly from avoiding data conversion
between pointer-rich and serialized formats.

We also implement a version of SAMTools that uses
memory-mapped files to keep data structures in memory.
Processes access data by calling mmap on a file. Region-based
programming is used to build the data structures within the
file. To maximize fairness, we make mmap as lightweight as
possible by using an in-memory file system for the files, and
pass flags to mmap to exclude regions from the core file and
inform the pager to not gratuitously sync dirty pages back to
disk. Moreover, we stop timers before process exit to exclude
the implicit cost of unmapping data.

Figure 12 compares the performance of SpaceJMP to its
counter-part using memory-mapped files. It is evident that
the SpaceJMP has comparable performance. Therefore, the
flexibility provided by SpaceJMP over memory-mapped files
(i.e., not using special pointers or managing address conflicts)
comes at a free cost. Moreover, with caching of translations
enabled, it is expected that SpaceJMP’s performance will
improve further.

It is noteworthy that flagstat shows more significant im-
provement from SpaceJMP than the other operations in Fig-
ure 12. That is because flagstat runs much quicker than the
others so the time spent performing a VAS switch or mmap
takes up a larger fraction of the total time.

6. Related work
SpaceJMP is related to a wide range of work both in OS
design and hardware support for memory management.

System software Memory management is one of the oldest
areas of computer systems with many different design con-
siderations that have been proposed so far. The most familiar
OSes support address spaces for protection and isolation.

Strong isolation limits flexibility to share complex, pointer
rich data structures and shared memory objects duplicate
page table structures per process. OpenVMS [61] shares page
tables for the subtree of a global section. Munroe patented
sharing data among multiple virtual address spaces [59].

Threads of a process usually share a single virtual address
space. The OS uses locks to ensure thread safety which leads
to contention forcing memory management intensive pro-
grams to be split up into multiple processes to avoid lock
contention [79]. RadixVM [20] maintains a radix tree from
virtual addresses to meta data and allows concurrent opera-
tions on non-overlapping memory regions. VAS abstractions
as first-class citizens provides a more natural expression of
sharing and isolation semantics, while extending the use of
scalable virtual memory optimizations.

Cyclone [37] has memory regions with varying life times
and checks the validity of pointers in the scopes where
they are dereferenced. Systems like QuickStore [80] provide
shared-memory implementations of object stores, leveraging
the virtual memory system to make objects available via their

virtual addresses. Quickstore, however, incurs the cost of in-
place pointer swizzling for objects whose virtual address
ranges overlap, and the cost itself of mapping memory.
SpaceJMP elides swizzling by reattaching alternate VASes,
and combines VAS-aware pointer tracking for safe execution.

BSD operating system kernels are designed around the
concept of virtual memory objects, enabling more efficient
memory mappings, similar to UVM [23].

Prior 32-bit editions of Windows had only 2 GiB of virtual
address space available for applications but allowed changing
this limit to 3 GiB for memory intensive applications [56].
Furthermore, Address Windowing Extensions [57] gave ap-
plications means to allocate physical memory above 4 GiB
and quickly place it inside reserved windows in the 32-bit
address space, allowing applications to continue using regular
32-bit pointers.

Some single-address-space operating systems (SASOSes)
(e.g., Opal [17, 18] and IVY [51]) eliminated duplicate page
tables. Nevertheless, protection domains need to be enforced
by additional hardware (protection lookaside buffers) or page
groups [47]. Systems like Mondrix [83] employ isolation
by enforcing protection on fixed entry and exit points of
cross-domain calls, much like traditional “call gates” or the
CAP computers’ “enter capabilities” [82]. Such mechanisms
complement SpaceJMP by providing protection capabilities
at granularities other than a page within a VAS itself.

Also, SASOSes assume large virtual address spaces, but
we predict a limit on virtual address bits in the future. More
recent work such as SMARTMAP [12] evaluates data-sharing
on high-performance machines. Distributed shared memory
systems in the past [46] gained little adoption, but have
recently acquired renewed interest [60].

Our work is influenced by the design of Mach [65],
particularly the concept of a memory object mappable by
various processes. Such techniques were adopted in the
Opal [17] and Nemesis [38] SASOSes to describe memory
segments characterized by fixed virtual offsets.

Lindstrom [52] expands these notions to shareable con-
tainers that contain code segments and private memory, lever-
aging a capability model to enforce protection. Application
threads called loci enter containers to execute and manipulate
data. loci motivated our approach to the client–server model.

In the 90s, research focused on exporting functionality
to user space, reducing OS complexity, and enabling appli-
cations to set memory management policies [32, 38, 66].
Our work is supported by such ideas, as applications are
exposed to an interface to compose virtual address spaces,
with protection enforced by the OS, as with seL4 [31] and
Barrelfish [7].

The idea of multiple address spaces has mainly been
applied to achieve protection in a shared environment [17, 73],
and to address the mismatch of abstractions provided by the
OS interfaces [2, 66]. Some operating systems also provide
similar APIs in order to simplify kernel development by

363



executing the kernel directly in user-space [26, 30]. Dune [8]
uses virtualization hardware to sandbox threads of a process
in their own VAS. Further work has used them to transparently
manage costs in NUMA systems [11, 25, 43, 54, 62, 68, 77,
85] or HPC applications [13]. SpaceJMP goes further by
promoting a virtual address space to a first-class citizen in
the OS, allowing applications to compose logically related
memory regions for more efficient sharing.

Anderson et al. [1] recognized that increased use of RPC-
based communication requires both sender and receiver to
be scheduled to transfer data involving a context switch
and kernel support (LRPC [9]) or shared memory between
cores (URPC [10]). In both cases, data marshalling, cache
misses, and buffering lead to overhead [16, 45, 75]. Compared
to existing IPC mechanisms like Mach Local RPC [28] or
overlays [49] SpaceJMP distinguishes itself by crossing VAS
boundaries rather than task or process boundaries.

Ideally, bulk-data transfer between processes avoids
copies [19, 41, 70, 72], although there are cases where secu-
rity precludes this [29, 41].

Collaborative data processing with multiple processes
often requires pointer-rich data structures to be serialized into
a self-contained format and sent to other processes which
induces an overhead in web services but also in single multi-
core machines [14, 39, 42, 71].

Hardware support Multiple address spaces are also sup-
ported by hardware. We have already discussed the trade-offs
involved in tagged TLBs, and observed that SpaceJMP would
benefit from a more advanced tagging architecture than that
found in x86 processors. The HP PA-RISC [53] and Intel
Itanium [40, 84] architectures both divide the virtual address
space as windows into distinct address regions. The mapping
is controlled by region registers holding the VAS identifier.

Our research is further complemented by Direct Seg-
ments [6]. SpaceJMP segments are currently backed by the
underlying page table structure, but integrating our segments
API with Direct Segments would yield further benefits. Al-
ternatively, RMM [44] proposes hardware support that adds
a redundant mapping for large ranges of contiguous pages.
RMM seems like a good match for SpaceJMP segments,
requiring fewer TLB entries than a traditional page-based sys-
tem. SpaceJMP could be extended straightforwardly to imple-
ment RMM’s eager allocation strategy. Other work proposes
hardware-level optimizations that enable finer granularities
than a page [44, 69].

Large pages have been touted as a way to mitigate TLB
flushing cost, but such changes require substantial kernel mod-
ifications [74] and provide uncertain benefit to large-memory
analytics workloads [6], as superpage TLBs can be small.
Superpages on NUMA systems may be unfavorable [34].

Bailey et al. [5] argue the availability of huge and fast non-
volatile, byte addressable memory (NVM) will fundamentally
influence OS structure. Persistent storage will be managed by
existing virtual memory mechanisms [22, 58] and accessed

directly by the CPU. Atlas [15] examines durability when
accessing persistent storage by using locks and explicit
publishing to persistent memory. The approach in this paper
provides a foundation for designing more memory centric
operating system architectures.

Compiler-based program analysis for pointer safety in-
troduces runtime checks with associated overhead. These
could be made more efficient by labeling pointers with ad-
dress space information. Some architectures such as ARM’s
aarch64 [4] support the notion of “tagged pointers” where
some bits (8, in aarch64) in every pointer can be made avail-
able to software and not passed to the MMU.

Lockable segments may benefit from hardware transac-
tional memory (HTM) support: encapsulating the address
space switch in an HTM-supported transactions can avoid
the need of locking (or other synchronization) and improve
performance of shared regions.

7. Conclusion
SpaceJMP extends OS memory management with lockable
segments and multiple address spaces per process as a way to
more efficiently execute data-centric applications which use
massive memory and/or pointer-rich data structures.

However, we also claim that SpaceJMP has broader appli-
cability. For example, SpaceJMP can also help in handling the
growing complexity of memory. We expect future memory
systems will include a combination of several heterogeneous
hardware modules with quite different characteristics: a co-
packaged volatile performance tier, a persistent capacity tier,
different levels of memory-side caching, private memory (for
example, only accessible by accelerators), and so on. Appli-
cations today use cumbersome techniques such as explicit
copying and DMA to operate in these environments. Space-
JMP can be the basis for tying together a complex heteroge-
neous memory system and provide the application support
for efficient programming. Another potential application is
sandboxing, using different address spaces to limit access
only to trusted code.

Our ongoing work is exploring these possibilities, but we
also plan to address other issues such as the persistency of
multiple virtual address spaces (for example, across reboots),
and apply optimizations on address space creation, such as
copy-on-write, snapshotting, and versioning.

So far, our experience has been encouraging, and we hope
that SpaceJMP becomes a solid foundation for using memory
in next-generation hardware platforms with high demands for
data and with very large memories.
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drix: Memory Isolation for Linux Using Mondriaan Memory
Protection. In Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, SOSP ’05, pages 31–44,
Brighton, United Kingdom, 2005.

[84] Rumi Zahir, Jonathan Ross, Dale Morris, and Drew Hess. OS
and Compiler Considerations in the Design of the IA-64 Archi-
tecture. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS IX, pages 212–221, Cambridge,
Massachusetts, USA, 2000.

[85] Jin Zhou and Brian Demsky. Memory Management for
Many-core Processors with Software Configurable Locality
Policies. In Proceedings of the 2012 International Symposium
on Memory Management, ISMM ’12, pages 3–14, Beijing,
China, 2012.

368




