
Distributing the Data Plane for Remote Storage Access

Torsten Hoefler
ETH Zurich

Robert B. Ross
Argonne National Laboratory

Timothy Roscoe
ETH Zurich

Abstract
Sub-microsecond network and memory latencies require
fast user-level access to local and remote storage. While
user-level access to local storage has been demonstrated
recently, it does currently not extend to serverless par-
allel systems in datacenter environments. We propose
direct user-level access to remote storage in a distributed
setting, unifying fast data access and high-performance
remote memory access programming. We discuss a min-
imal hardware extension of the IOMMU to enable di-
rect remote storage access. In order to maintain optimal
performance in the system, we use epoch-based accesses
to allow fine-tuning of atomicity, consistency, isolation,
and durability semantics. We also address the problem of
user-managed coherent caching. Finally, we briefly dis-
cuss the design of DiDAFS, a Distributed Direct Access
File System that enables efficient data analytics use-cases
such as buffered producer-consumer synchronization and
key-value stores as well as deeper integration of storage
into high performance computing applications.

1 Introduction
While both datacenter networks and storage devices in
the form of both solid-state disks and persistent main
memory are increasing in performance, single-core com-
puting speed has essentially stalled. This means that soft-
ware is increasingly the bottleneck for many I/O-bound
tasks. In response to these hardware trends, recent pro-
posals have revived the idea of separating the data and
control planes and allowing applications to directly ac-
cess hardware for network and storage I/O [3, 13, 38].
Such software-defined I/O (SDIO) designs promise supe-
rior local I/O performance, scalability, and consistency
management by removing OS mediation from the data
path, which can also benefit storage devices such as solid
state drives (SSD) [1] or high-capacity shingled write
disks [4] by reducing CPU overheads.

In this paper, we propose extending SDIO to dis-
tributed memory systems from rack-scale up to complete

datacenters. The key challenge here is distributed access
to storage: while Arrakis [38], for example, provides safe
user-space access to local storage devices, it is less clear
how to build the kind of distributed storage system com-
mon in datacenters without compromising this principle.

Our high-level goal is to build a high-performance
scalable distributed file system that can integrate multi-
ple storage technologies under one umbrella and derive
the full benefits of control/dataplane separation.

We make two contributions in this paper. At the
data access level, we envision extending the facilities of
RDMA to block devices (e.g., SSDs). This in practice
requires changes to disk controllers so they can respond
directly to network requests (and verify appropriate au-
thorization credentials in doing so), and we outline a po-
tential minimal hardware facility to do this. A more tra-
ditional, if slower, data-path can be implemented using
main memory as a cache and invoking the local operat-
ing system for misses. We will discuss both options.

Above this, a caching layer is required that can main-
tain consistency without incurring undue software over-
heads when data chunks are read and written, and we
present a preliminary design inspired by processor cache
coherence and classical distributed system protocols. A
related challenge is to manage appropriate metadata for a
distributed parallel storage system without this aspect of
the system becoming the bottleneck. An open question is
whether the solutions adopted in current distributed file
systems suffice for a fully dataplane-based approach, or
whether a different scheme is required.

2 Challenges and Opportunities
In the rest of this paper, we discuss the challenges of ex-
ploiting direct hardware access and SDIO in a distributed
file system, and our early work designing such a system.

Our focus is on parallel or distributed jobs that con-
sist of multiple processes cooperating to solve a task; we
show a simplified usage scenario in Figure 1. Here, three
jobs (A−C) execute, with A and C using two nodes in

1



AB2

A2AB1

A1

B2

AB4

C4A3

A5

AC1

C3

A4

AB3

A6

BC1

B1
C1 C2

BA C

Figure 1: System overview with three jobs (A-C) on
five machines and various shared (e.g., AB3) and private
(e.g., A1) allocations in volatile and persistent storage.

the compute system and job B just one. Jobs consist of
one or more processes, each with a local virtual address
space containing a set of threads.

These types of jobs exhibit complex data sharing
patterns that create a challenging environment for dis-
tributed storage systems generally, but their properties
also create opportunities that are not well exploited by
existing distributed storage solutions. We target a num-
ber of storage models and applications; we give two ex-
amples here.

Firstly, in advanced parallel programming schemes,
remote memory is often exposed for direct access [18,26]
by creating a partitioned global address space across
multiple processes. New high-performance languages [8,
20] allow programmers to develop application-specific
memory management schemes to allow algorithms to ex-
ploit locality in these cases. These advanced parallel pro-
gramming models already explicitly manage data regions
and exploit remote memory access mechanisms, creating
an opportunity to extend these models to further exploit
SDIO-based distributed storage.

Secondly, distributed data-analytics processing
pipelines need to share data efficiently between pro-
grams, regardless of the technology on which the
data is stored. For example DataPath [6], Naiad [35],
Spark [51], and MillWheel [2] all establish fast data
pipelines with buffered producer/consumer access. An
SDIO-based distributed storage system has the potential
to bring the performance of RDMA to these applications.

In both these use-cases, explicit data placement and
cache management provides the control needed to co-
locate computation and data where possible [20].

Accordingly, inspired by Exokernels [22], we argue
that using a client-side library to manage metadata oper-
ations and distributed coordination without kernel me-
diation has the additional advantage of allowing such
policies to be implemented in the application. However,
managing caching and consistency in an SDIO-based
distributed system, at large scale, is a complex problem
which, to date, is not well-understood.

For that reason, we must look for opportunities to sim-
plify the problem. One opportunity lies in recognizing
that not all processes need to coordinate.

We note that many independent, distributed applica-
tions will run concurrently in the datacenter as a whole.
These applications have no requirement to share data
among them, and it is therefore desirable to scope mech-
anisms for cache coherence or other synchronization to a
single application rather than system-wide. At the same
time, there will be cases where data may also need to be
shared across jobs, serially (only one job at a time ac-
cesses a file) or concurrently (multiple jobs access a file
at the same time). Any scoping mechanism, as well as
access control system, must thus support its consistency
model across jobs.

We also observe that our distributed applications
are coordinating already, either via their programming
model (in the case of parallel programs) or via coordi-
nation between tasks in workflows. This coordination
provides natural points for managing consistency, and at
a low level in the storage stack, this motivates a choice of
explicit consistency operations and consistency scoping.

Many of the challenges we face are not radically new,
but take on new characteristics when coupled with SDIO
and RDMA. User-level file systems have existed since
the Network-Attached Secure Disks (NASD) [25] and
SHRIMP [10] projects, and have recently been revived in
Aerie [44]. The Aerie architecture allows user-level file
system development by exposing a mechanism for pro-
cesses to directly access and share storage class memory
(SCM) resources on a single node via mapping SCM al-
locations into processes’ address spaces. In this work we
build on these to design a user-level distributed file sys-
tem. In addition to providing low-level remote SDIO, a
challenge we address in the next section, the use of such
direct hardware access has design implications for other
essential components of a distributed file system and has
caused us to rethink several traditional functions. For ex-
ample, we need to be able to synchronize data and meta-
data operations in an environment where locks might be
prohibitively expensive. This is closely related to the
problem of caching, inherent in any distributed storage
system, and we address these issues in Section 4.

We note also that individual processes, or entire jobs,
may fail at any time. A storage system should provide
durability of data (under the control of the user), and
therefore be recoverable to a consistent state.

3 Remote direct storage access
We now discuss the basic low-level facilities needed to
extend user storage device access to the distributed case.

While direct network access has a nearly 30-year
history [5, 11, 41, 45], direct storage access has re-
ceived less attention, in part due to the storage itself
being slow. This has all changed with the advent of
SSDs, and direct access will become a necessity for
fast byte-addressable persistent storage class memories

2



(SCM) [21] such as phase-change memories [49], spin-
transfer torque RAM [14], or flash-backed DRAM.

Bailey et al. [7] discuss the general influence of these
storage technologies on operating systems. In particu-
lar, a traditional OS-based file system quickly becomes
a bottleneck [12, 13], and direct access to both the data
as well as the metadata is required. Our aim is to pro-
vide a high-performance object store [36,48], integrating
storage in memory and on persistent devices across a fast
network, over which a variety of storage applications can
be efficiently implemented.

Allocations: When discussing our design, we use the
term allocation to refer to an area in main memory or
on a storage device which can be used to store data,
and which is accessed by jobs as an object with a con-
tiguous address space. Block translations and free-space
management on each device are either implemented by
the operating system using standard techniques such as
buddy allocation, or by the hardware offering a virtual-
ized interface [15, 29, 30].

Allocation operations such as open or create can
be either performed by a centralized control plane or in
a distributed manner using capabilities and delegation.
Once an allocation is created, it can be linked to an ob-
ject in a global name space (e.g., a kernel-level parallel
file system [31, 39, 40]) for sharing and access control.

Basic read and write access: Allocations in node-local
main memory can be accessed using MMU mappings,
while allocations on local storage devices can use exist-
ing SDIO features through the MMU as in Aerie [44].

Remote access to allocations poses more of a chal-
lenge, and distinguishes our work from prior systems.
Allocations in remote SCM or main memory can use
existing RDMA features. Since RDMA allows access
to remote user virtual memory, and the RDMA NIC’s
IOMMU operates on physical memory, we require the
IOMMU and destination address space to synchronize
mappings for each allocation. For example, the OS can
manage an RDMA endpoint per allocation.

Today, RDMA NICs such as InfiniBand use static
translation tables (STL) that are initialized by the operat-
ing system, and accesses causing translation misses are
discarded. Both STLs and IOMMU page tables are set
up by the OS (acting as a control plane). At the node
hosting the in-memory allocation, this scheme can also
support lazy setup of the tables if misses can be handled
dynamically by the OS [47].

Remote allocations on disks or SSDs cannot be di-
rectly accessed through RDMA to main memory, and so
a clean dataplane requires either an extension to current
hardware or a software solution.

One option is to extend the IOMMU to log accesses,
perform direct device I/O using DMA, and cache blocks

in main memory for remote access (cf. [9]). IOMMUs
today already maintain an event log of failed accesses
in main memory [28, §7.3] so such an extension seems
plausible. If the log overflows, the IOMMU could drop
the request and propagate an exception to the sender via
the NIC’s RDMA protocol. It could also exert back-
pressure through the network (with associated head-of-
line blocking) for reliable transports.

In a software solution, the OS would monitor the failed
access log of the IOMMU and fetch and map the pages
that were not resident when accessed remotely. The
source of the access could either retry the operation upon
failure or use a “ready-for-access” notification protocol.
We discuss in Section 4 weakly consistent access seman-
tics that facilitate such implementations.

Both these mechanisms imply using main memory on
the storage device’s node as a cache, but still remove soft-
ware involvement on the fast path when accessing remote
storage. As it happens, this integrates well with a more
general caching model we discuss in Section 4. How-
ever, a significant drawback of the software approach is
that workloads with no locality will still involve the OS
on every data access, whereas the hardware-based pro-
posal does not.

This approach to direct remote access contrasts with
the Direct Access File System (DAFS [16]), which ex-
tends the Network File System Version 4 protocol to al-
low direct RDMA access. DAFS enables a user-level file
system client typically running as a library above the op-
erating system. However, RDMA operations are gener-
ally initiated at the server-side and metadata operations
are handled through standard RPC mechanisms. Thus,
the expected speedup for frequent small-file accesses is
limited [34]. The optimistic direct access file system pro-
poses direct user-level access to a DAFS server [33]. We
want to support high-speed user-level metadata access as
well as scalable concurrent access. Trivedi et al. [43]
propose using high-performance networking abstractions
for storage access but do not consider caching, persis-
tence, file systems, or shared access consistency.

Since remote storage transfers go through main mem-
ory on the server, the MMU and IOMMU on this node
can provide a basic protection mechanism. The con-
trol plane (OS) at the device-owning node configures the
mappings and protection bits to expose the allocation to
both the NIC and local applications, and can implement
inside it similarly to how Aerie manages control plane
operations via the OS.

Usage: By way of summary, we will now briefly explain
how a process could create an allocation, a file in it, write
data into the file, and share it with another process.

Assume a process in job A (Figure 1) wants to create
allocation AB1 (1 MiB) in its local DRAM. For this, it
could request an allocation of size 1 MiB from its local

3



control plane (OS). The OS would identify free pages
and install a mapping into the address space of all pro-
cesses local to the allocating process. It would expose
this allocation to processes of job A (and other jobs)
on remote nodes by opening an RDMA communication
endpoint (e.g., a queue pair) for direct access and in-
stalling translation tables on the NIC and the IOMMU.
The RDMA connection information could be commu-
nicated through capabilities, or it can be stored in the
global namespace. Allocations on remote devices can be
performed similarly through RPCs to the remote OS.

Remote nodes connect and access the allocation di-
rectly via RDMA, for example, through a file system that
manages file metadata in the allocation. File system op-
erations are now performed through user-level file sys-
tem calls operating directly on the remote memory.

Overall, the scheme we have outlined provides a foun-
dation of read/write functionality on which to build a
complete distributed storage system. We now go on to
describe how allocations can be chained to provide the
important function of caching.

4 Caching and Consistency
Having established the basic mechanisms for distribut-
ing dataplane storage, we now turn our attention to how
flexible caching, consistency, and metadata management
can be efficiently performed above this layer.

Some form of caching is intrinsic in any distributed
storage system. Retrieving data from a remote node in-
herently caches it locally, and in the previous section we
combine caching with RDMA to enable direct remote ac-
cess to disks and SSDs.

However, given the importance of performance under
a variety of different workloads, and the use of library
implementations of storage functionality implied by the
dataplane approach rather than OS services, we argue for
maximal policy freedom in caching decisions.

We are exploring the idea of closely coupling caching
with the concept of allocations: a user can allocate space
on a device and link the resulting allocation as a (user-
managed) cache for another allocation. A caching allo-
cation typically resides in a faster (e.g., local) device than
the origin and may be smaller.

Software caching can be offered by the user file sys-
tem library, similar to explicit local memory caching in
RMA programming [52], and prefetching and replace-
ment policies can be specialized for a specific applica-
tion while avoiding the problems of double caching [42]
(i.e., when both the OS and a user-level service cache the
same data).

Hardware caching could be performed by an ex-
tended IOMMU using user-specified cache allocations
and generic replacement strategies such as LRU.

Consistency and coherence: Any distributed caching
strategy raises the question of maintaining some form
of consistency and coherence. Parallel caching strate-
gies are discussed in the context of Panache, a clus-
tered file system cache [19]. In our case, the design
space of consistency mechanisms is constrained by the
need to support direct access to remote storage, bypass-
ing system (and user) software on the storage node itself:
RDMA makes it difficult to implement strongly consis-
tent atomic accesses and still achieve high performance.

Instead, we propose a weak consistency model known
from multiprocessor systems [17, 24] and remote mem-
ory access programming languages [18, 26], extended
with light-weight transactions implemented in user
caches, similar to transactional memory [27]. The ideal
memory model for RMA caching is not yet clear, but we
hope to gain insight into this question in the course of
our implementation.

Our main concepts are epochs that are separated by
explicit synchronization fence operations. We distin-
guish different epoch types: shared, exclusive, persis-
tent, and optimistic. The different types provide different
guarantees of the state of the storage after the epoch is
ended, and correspond with the concept of isolation lev-
els in transaction processing systems. Modified data is
generally not valid during an epoch.

Shared epochs provide only consistency across epoch
boundaries. Exclusive epochs guarantee consistency as
well as atomicity. The atomicity is guaranteed by the sys-
tem, which can use either buffering or locking to provide
this guarantee. Persistent epochs provide durability, i.e.
data is both consistent for all potential readers and also
committed to persistent storage (in case the accessed al-
location is cached in non-persistent storage). Optimistic
epochs provide isolation, similar to transactional mem-
ory, and can thus fail to commit if conflicts occurred.

Epoch types can be freely combined, for example, ex-
clusive persistent epochs. These combinations cover the
whole spectrum from unprotected Rio Vista-style trans-
actions [32] to fully isolated ACID (Atomicity, Consis-
tency, Isolation, Durability) transactions, in a similar way
to the Salt system for databases [50].

We expect an allocation to be opened multiple times
with different epoch styles. Metadata can also be stored
in the allocation, and its consistency is managed sim-
ilarly – indeed, different epoch modes support the re-
quired stronger consistency semantics for metadata.

Implementing epochs: We propose implementing ac-
cess management in the user file system library, using
RDMA-based distributed algorithms [23]1 to coordinate
all processes that have an allocation open. The MPI

1RMA algorithms for distributed memory are conceptually similar
to shared memory but support the weaker RMA consistency models.

4



CPUOS

MMU IOMMU

load/store DMA

DRAMSCM

BC1B1 B2 AB4

NIC

M

A

P

M

A

P

M

A

P

M

A

P

virtual
memory

APP

Net

Figure 2: DiDAFS overview of a process in job B with
allocations B1, BC1, B2, AB4.

remote memory access model [26], which employs an
epoch mechanism for managing consistency and coher-
ence of remotely accessed memory regions in parallel
programs, provides a basis for the approach.

Ensuring consistency, isolation, and durability is ide-
ally a data plane operation and directly supported by the
storage device (e.g., RDMA remote completion opera-
tions or x86 mfence). However, not all devices support
all synchronizations in hardware. For example, ending
a persistent epoch with an allocation on an SSD or hard
drive requires OS involvement to access the block device.
If OS assistance is necessary, the file system library can
contact the target OS using RPC after all accesses are
committed to the volatile RDMA-accessible cache.

Crash recovery and integrity: As applications can exit
in any state, metadata operations need to be managed
carefully. One option is to only use transactional (op-
timistic, exclusive, and persistent) epochs for metadata
updates. Another is to use journaling in user-space, but
overheads must be kept in check at large scale [37].

A user-level file system must ensure that exclusive
epochs that use locking cannot cause deadlocks if pro-
cesses disappear. This can be done using generational
locks (requiring additional coordination by the OS dur-
ing allocation open) or lock timeouts. The impact of mis-
behaving clients (e.g., memory corruptions due to a bug)
can be limited using memory protection mechanisms but
cannot be avoided in general.

5 Current work
We are using ideas in the previous sections to design and
build DiDAFS, a Distributed Direct Access File System.
DiDAFS performs remote control plane operations such
as open or close of allocations using light-weight RPC
mechanisms, but also offers collective interfaces for allo-
cation operations to scale jobs to thousands of processes
by reducing offset translation storage [23].

Figure 2 shows an overview of a process in job B in
DiDAFS. Solid lines illustrate data plane accesses, and
dashed lines illustrate the control plane. The shaded area
visualizes the process’ address space that can be accessed

by the local or remote processes through NIC/IOMMU.
Allocations in DiDAFS can contain user-level file sys-

tems that are accessed through a library offering a file
system interface. Once an allocation is opened, a user-
level file system implemented purely through data-plane
calls (RDMA) can be used.

For example, an application can use a set of POSIX-
compatible access and metadata functions (e.g., read or
stat). A POSIX-like file system would use exclusive
persistent epochs for each function.

However, the real power of the approach is realized
with application-specific naming schemes. For example,
an eventually consistent key/value store can be imple-
mented on top of DiDAFS without additional overheads
and further optimized by using shared epochs for read
accesses and buffering writes for separate exclusive or
optimistic epochs (depending on the expected conflicts).

Sharing can efficiently be implemented at the alloca-
tion level. For example, shared buffers can be imple-
mented in fast memory and exposed for direct access.
Epoch semantics can then be tuned to the application (for
example, persistent epochs can be used to aid recovery
from crash faults).

Since naming and placement is determined by the ap-
plication, a user library can choose the best location for
each data item. This allows full freedom for local, re-
mote, and job-collective data management. It is thus pos-
sible to implement advanced high-performance parallel
data access functions such as MPI-IO [26] with DiDAFS.

6 Conclusion
DiDAFS’ direct local and remote storage access allows
a unified view of high-performance remote memory and
high-performance parallel storage, simplifying and ac-
celerating many data-analytics and high performance
computing applications. Implementing DiDAFS poses
a series of interesting challenges and opportunities for
further research, which we can only touch on here:

1. Application-specific cache size, replacement, and
prefetch policies. How can the application provide
hints to the file system library? How efficient would
caching of metadata (not in the block cache) be?

2. Could static analysis be used to derive good
prefetch or replacement policies from source codes?
Could the file system library be inlined by the com-
piler and optimized for direct accesses?

3. How can deduplication and copy on write semantics
as implemented in Parallax [46] be added in user-
space in distributed settings? How would one pro-
vide distributed file version histories in DiDAFS?

Nevertheless, we feel that DiDAFS is a useful step in
extending the separation of control and data planes to a
high-performance distributed system.

We thank Marc Snir and Pete Beckman from ANL for inspiring
discussions about the problem definition related to the Argo OS.

5



References
[1] Agrawal, N., Prabhakaran, V., Wobber, T., Davis,

J. D., Manasse, M., and Panigrahy, R. Design
Tradeoffs for SSD Performance. In USENIX 2008
Annual Technical Conference on Annual Technical
Conference (Berkeley, CA, USA, 2008), ATC’08,
USENIX Association, pp. 57–70.

[2] Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak,
S., Haberman, J., Lax, R., McVeety, S., Mills, D.,
Nordstrom, P., andWhittle, S. MillWheel: Fault-
tolerant Stream Processing at Internet Scale. Proc.
VLDB Endow. 6, 11 (Aug. 2013), 1033–1044.

[3] Alex, L., Todor, E., and Swanson, M. S. Quill:
Exploiting Fast Non-Volatile Memory by Transpar-
ently Bypassing the File System. Technical report,
University of California San Diego (UCDS), 2013.

[4] Amer, A., Long, D., Miller, E., Paris, J.-F., and
Schwarz, S. Design issues for a shingled write disk
system. In Mass Storage Systems and Technolo-
gies (MSST), 2010 IEEE 26th Symposium on (May
2010), pp. 1–12.

[5] Anderson, D. C., Chase, J. S., Gadde, S., Gal-
latin, A. J., Yocum, K. G., and Feeley, M. J.
Cheating the I/O Bottleneck: Network Storage with
Trapeze/Myrinet. In Proceedings of the Annual
Conference on USENIX Annual Technical Con-
ference (Berkeley, CA, USA, 1998), ATEC ’98,
USENIX Association, pp. 12–12.

[6] Arumugam, S., Dobra, A., Jermaine, C. M.,
Pansare, N., and Perez, L. The DataPath Sys-
tem: A Data-centric Analytic Processing Engine
for Large Data Warehouses. In Proceedings of the
2010 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2010),
SIGMOD ’10, ACM, pp. 519–530.

[7] Bailey, K., Ceze, L., Gribble, S. D., and Levy,
H. M. Operating System Implications of Fast,
Cheap, Non-volatile Memory. In Proceedings of
the 13th USENIX Conference on Hot Topics in Op-
erating Systems (Berkeley, CA, USA, 2011), Ho-
tOS’13, USENIX Association, pp. 2–2.

[8] Bauer, M., Treichler, S., Slaughter, E., and
Aiken, A. Legion: Expressing Locality and Inde-
pendence with Logical Regions. In Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis (Los
Alamitos, CA, USA, 2012), SC ’12, IEEE Com-
puter Society Press, pp. 66:1–66:11.

[9] Besta, M., and Hoefler, T. Active Access:
A Mechanism for High-Performance Distributed
Data-Centric Computations. In Proceedings of the
2015 ACM International Conference on Supercom-
puting (ICS’15) (Jun. 2015), ACM.

[10] Blumrich, M. A., Li, K., Alpert, R., Dubnicki, C.,
Felten, E. W., and Sandberg, J. Virtual Memory
Mapped Network Interface for the SHRIMP Mul-
ticomputer. In Proceedings of the 21st Annual In-
ternational Symposium on Computer Architecture
(Los Alamitos, CA, USA, 1994), ISCA ’94, IEEE
Computer Society Press, pp. 142–153.

[11] Buzzard, G., Jacobson, D., Mackey, M., Marovich,
S., and Wilkes, J. An Implementation of the
Hamlyn Sender-managed Interface Architecture.
SIGOPS Oper. Syst. Rev. 30, SI (Oct. 1996), 245–
259.

[12] Caulfield, A. M., Coburn, J., Mollov, T., De,
A., Akel, A., He, J., Jagatheesan, A., Gupta,
R. K., Snavely, A., and Swanson, S. Understand-
ing the Impact of Emerging Non-Volatile Memo-
ries on High-Performance, IO-Intensive Comput-
ing. In Proceedings of the 2010 ACM/IEEE Inter-
national Conference for High Performance Com-
puting, Networking, Storage and Analysis (Wash-
ington, DC, USA, 2010), SC ’10, IEEE Computer
Society, pp. 1–11.

[13] Caulfield, A. M., Mollov, T. I., Eisner, L. A.,
De, A., Coburn, J., and Swanson, S. Providing
Safe, User Space Access to Fast, Solid State Disks.
SIGARCH Comput. Archit. News 40, 1 (Mar. 2012),
387–400.

[14] Chen, E., Apalkov, D., Diao, Z., Driskill-Smith,
A., Druist, D., Lottis, D., Nikitin, V., Tang, X.,
Watts, S., Wang, S., Wolf, S., Ghosh, A., Lu, J.,
Poon, S., Stan, M., Butler, W., Gupta, S., Mewes,
C., Mewes, T., and Visscher, P. Advances and
Future Prospects of Spin-Transfer Torque Random
Access Memory. IEEE Transactions on Magnetics
46, 6 (June 2010), 1873–1878.

[15] Cully, B., Wires, J., Meyer, D., Jamieson, K.,
Fraser, K., Deegan, T., Stodden, D., Lefeb-
vre, G., Ferstay, D., and Warfield, A. Strata:
Scalable High-performance Storage on Virtualized
Non-volatile Memory. In Proceedings of the 12th
USENIX Conference on File and Storage Tech-
nologies (Berkeley, CA, USA, 2014), FAST’14,
USENIX Association, pp. 17–31.

[16] DeBergalis, M., Corbett, P., Kleiman, S., Lent,
A., Noveck, D., Talpey, T., and Wittle, M. The

6



Direct Access File System. In Proceedings of the
2Nd USENIX Conference on File and Storage Tech-
nologies (Berkeley, CA, USA, 2003), FAST’03,
USENIX Association, pp. 13–13.

[17] Dubois, M., Scheurich, C., and Briggs, F. Memory
Access Buffering in Multiprocessors. In 25 Years
of the International Symposia on Computer Archi-
tecture (Selected Papers) (New York, NY, USA,
1998), ISCA ’98, ACM, pp. 320–328.

[18] El-Ghazawi, T., Carlson, W., Sterling, T., and
Yelick, K. UPC: Distributed Shared-Memory Pro-
gramming. Wiley-Interscience, 2003.

[19] Eshel, M., Haskin, R., Hildebrand, D., Naik, M.,
Schmuck, F., and Tewari, R. Panache: A Parallel
File System Cache for Global File Access. In Pro-
ceedings of the 8th USENIX Conference on File and
Storage Technologies (Berkeley, CA, USA, 2010),
FAST’10, USENIX Association, pp. 12–12.

[20] Fatahalian, K., Horn, D. R., Knight, T. J., Leem,
L., Houston, M., Park, J. Y., Erez, M., Ren, M.,
Aiken, A., Dally, W. J., and Hanrahan, P. Sequoia:
Programming the Memory Hierarchy. In Proceed-
ings of the 2006 ACM/IEEE Conference on Super-
computing (New York, NY, USA, 2006), SC ’06,
ACM.

[21] Freitas, R. F., and Wilcke, W. W. Storage-class
Memory: The Next Storage System Technology.
IBM J. Res. Dev. 52, 4 (July 2008), 439–447.

[22] Ganger, G. R., Engler, D. R., Kaashoek, M. F.,
Briceño, H. M., Hunt, R., and Pinckney, T. Fast
and Flexible Application-level Networking on Ex-
okernel Systems. ACM Trans. Comput. Syst. 20, 1
(Feb. 2002), 49–83.

[23] Gerstenberger, R., Besta, M., and Hoefler, T.
Enabling Highly-scalable Remote Memory Access
Programming with MPI-3 One Sided. In Pro-
ceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis (New York, NY, USA, 2013), SC ’13,
ACM, pp. 53:1–53:12.

[24] Gharachorloo, K., Lenoski, D., Laudon, J., Gib-
bons, P., Gupta, A., and Hennessy, J. Memory Con-
sistency and Event Ordering in Scalable Shared-
memory Multiprocessors. SIGARCH Comput. Ar-
chit. News 18, 2SI (May 1990), 15–26.

[25] Gibson, G. A., Nagle, D. F., Amiri, K., Butler, J.,
Chang, F. W., Gobioff, H., Hardin, C., Riedel, E.,
Rochberg, D., and Zelenka, J. A Cost-effective,

High-bandwidth Storage Architecture. SIGPLAN
Not. 33, 11 (Oct. 1998), 92–103.

[26] Gropp, W., Hoefler, T., Thakur, R., and Lusk,
E. Using Advanced MPI: Modern Features of the
Message-Passing Interface. MIT Press, Nov. 2014.

[27] Herlihy, M., and Moss, J. E. B. Transactional
Memory: Architectural Support for Lock-free Data
Structures. SIGARCH Comput. Archit. News 21, 2
(May 1993), 289–300.

[28] Intel. Intel Virtualization Technology for Directed
I/O (VT-d) Architecture Specification, September
2013.

[29] Josephson, W. K., Bongo, L. A., Li, K., and Flynn,
D. DFS: A File System for Virtualized Flash Stor-
age. Trans. Storage 6, 3 (Sept. 2010), 14:1–14:25.

[30] Lee, E. K., and Thekkath, C. A. Petal: Distributed
Virtual Disks. SIGOPS Oper. Syst. Rev. 30, 5 (Sept.
1996), 84–92.

[31] Ligon, W. B., . I., and Ross, R. B. Implementation
and Performance of a Parallel File System for High
Performance Distributed Applications. In Proceed-
ings of the 5th IEEE International Symposium on
High Performance Distributed Computing (Wash-
ington, DC, USA, 1996), HPDC ’96, IEEE Com-
puter Society.

[32] Lowell, D. E., and Chen, P. M. Free Transactions
with Rio Vista. In Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles
(New York, NY, USA, 1997), SOSP ’97, ACM,
pp. 92–101.

[33] Magoutis, K. The optimistic direct access file
system: Design and network interface support.
In Proceedings of the 8th International Sympo-
sium on High-Performance Computer Architecture
(HPCA’02) (2002).

[34] Magoutis, K., Addetia, S., Fedorova, A., Seltzer,
M. I., Chase, J. S., Gallatin, A. J., Kisley, R.,
Wickremesinghe, R., and Gabber, E. Structure
and Performance of the Direct Access File Sys-
tem. In Proceedings of the General Track of the
Annual Conference on USENIX Annual Technical
Conference (Berkeley, CA, USA, 2002), ATEC ’02,
USENIX Association, pp. 1–14.

[35] Murray, D. G., McSherry, F., Isaacs, R., Isard,
M., Barham, P., and Abadi, M. Naiad: A Timely
Dataflow System. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2013), SOSP ’13,
ACM, pp. 439–455.

7



[36] Nightingale, E. B., Elson, J., Fan, J., Hofmann, O.,
Howell, J., and Suzue, Y. Flat Datacenter Stor-
age. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 1–15.

[37] Oral, S., Wang, F., Dillow, D., Shipman, G.,
Miller, R., and Drokin, O. Efficient Object Stor-
age Journaling in a Distributed Parallel File Sys-
tem. In Proceedings of the 8th USENIX Confer-
ence on File and Storage Technologies (Berkeley,
CA, USA, 2010), FAST’10, USENIX Association,
pp. 11–11.

[38] Peter, S., Li, J., Zhang, I., Ports, D. R. K., Woos,
D., Krishnamurthy, A., Anderson, T., and Roscoe,
T. Arrakis: The Operating System is the Con-
trol Plane. In 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI
14) (Broomfield, CO, Oct. 2014), USENIX Asso-
ciation, pp. 1–16.

[39] Schmuck, F., and Haskin, R. GPFS: A Shared-Disk
File System for Large Computing Clusters. In Pro-
ceedings of the 1st USENIX Conference on File and
Storage Technologies (Berkeley, CA, USA, 2002),
FAST ’02, USENIX Association.

[40] Shepler, S., Callaghan, B., Robinson, D., Thur-
low, R., Beame, C., Eisler, M., and Noveck, D.
NFS Version 4 Protocol, 2000.

[41] Spector, A. Z. Performing Remote Operations Ef-
ficiently on a Local Computer Network. Commun.
ACM 25, 4 (Apr. 1982), 246–260.

[42] Stonebraker, M. Operating system support for
database management. Communications of the
ACM 24, 7 (1981), 412–418.

[43] Trivedi, A., Stuedi, P., Metzler, B., Pletka, R.,
Fitch, B. G., and Gross, T. R. Unified High-
performance I/O: One Stack to Rule Them All.
In Proceedings of the 14th USENIX Conference
on Hot Topics in Operating Systems (Berkeley,
CA, USA, 2013), HotOS’13, USENIX Associa-
tion, pp. 4–4.

[44] Volos, H., Nalli, S., Panneerselvam, S., Varadara-
jan, V., Saxena, P., and Swift, M. M. Aerie: Flex-
ible File-system Interfaces to Storage-class Mem-
ory. In Proceedings of the Ninth European Confer-
ence on Computer Systems (New York, NY, USA,
2014), EuroSys ’14, ACM, pp. 14:1–14:14.

[45] von Eicken, T., Basu, A., Buch, V., and Vogels, W.
U-Net: A User-level Network Interface for Parallel
and Distributed Computing. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 1995), SOSP ’95,
ACM, pp. 40–53.

[46] Warfield, A., Ross, R., Fraser, K., Limpach, C.,
and Hand, S. Parallax: Managing Storage for a
Million Machines. In Proceedings of the 10th Con-
ference on Hot Topics in Operating Systems - Vol-
ume 10 (Berkeley, CA, USA, 2005), HOTOS’05,
USENIX Association, pp. 4–4.

[47] Welsh, M., Basu, A., and von Eicken, T. Incorpo-
rating Memory Management into User-Level Net-
work Interfaces. Tech. rep., Cornell University,
Ithaca, NY, USA, 1997.

[48] White, S. J., andDeWitt, D. J. QuickStore: A High
Performance Mapped Object Store. The VLDB
Journal 4, 4 (Oct. 1995), 629–673.

[49] Wong, H.-S., Raoux, S., Kim, S., Liang, J., Reifen-
berg, J. P., Rajendran, B., Asheghi, M., and Good-
son, K. E. Phase Change Memory. Proceedings of
the IEEE 98, 12 (Dec 2010), 2201–2227.

[50] Xie, C., Su, C., Kapritsos, M., Wang, Y., Yagh-
mazadeh, N., Alvisi, L., and Mahajan, P. Salt:
Combining ACID and BASE in a Distributed
Database. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2014), OSDI’14,
USENIX Association, pp. 495–509.

[51] Zaharia, M., Chowdhury, M., Franklin, M. J.,
Shenker, S., and Stoica, I. Spark: Cluster Comput-
ing with Working Sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Com-
puting (Berkeley, CA, USA, 2010), HotCloud’10,
USENIX Association, pp. 10–10.

[52] Zhang, J., Behzad, B., and Snir, M. Optimizing
the Barnes-Hut Algorithm in UPC. In Proceedings
of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Anal-
ysis (New York, NY, USA, 2011), SC ’11, ACM,
pp. 75:1–75:11.

8


