
A model-checked I2C specification

Lukas Humbel, Daniel Schwyn, Nora Hossle, Roni Haecki, Melissa Liccardello, Jan
Schaer, David Cock, Michael Giardino, and Timothy Roscoe

ETH Zurich
firstname.lastname@inf.ethz.ch

Abstract. I2C is a pervasive bus protocol used for querying sensors and actu-
ators, but it is plagued with incompatible devices, violating the specification at
various levels.
Interacting with partially compliant devices poses several challenges. Compat-
ibility of the controller interface, as well as the driver code, must be checked
manually and potentially changed. This is a difficult process, as interactions with
other bus devices must also be considered. We propose a model checking ap-
proach to quickly write high-assurance drivers and layers of the I2C stack. We do
not propose a single, true formalization of I2C, but a framework that allows rapid
modelling of non-compliant devices and verify the correct interaction with a host
driver process.
Our contribution is twofold: First, we develop a framework that allows the spec-
ification of device and driver behavior together, and verification of their correct
interaction. Second, we provide already verified, fine-grained building blocks,
representing layers of the I2C stack that can be reused to interact with partially-
compliant devices, as well as reducing model checking complexity.
Our specifications are stated in a machine-readable, executable, and layered DSL.
From the DSL, we generate both Promela and C code. The Promela is used to
apply model checking to ensure the layer implementations follow the abstract
specifications. The C code is used to build and verify an EEPROM model and
driver running on a Raspberry Pi.

Keywords: model checking, serial protocol, I2C, DSL, layering

1 Introduction

We present a layered framework1 for verifying implementations of the ubiquitous I2C
protocol and provide initial layers of the I2C stack. Each layer has an executable imple-
mentation, formal specification, and the adherence of the implementation to the speci-
fication is model checked.

I2C is a low-speed bus that is a fundamental building block of almost all mod-
ern computer systems. It is used to network most integrated circuits and other devices
in platforms ranging from mobile phone Systems-on-a-chip (SoCs) to server moth-
erboards. It is also used as a sideband protocol in HDMI connections and memory

1 Source code available http://github.com/lluki/filz

http://github.com/lluki/filz

2 Humbel et al.

DIMMs. While typically invisible to a machine’s system software, I2C is used by em-
bedded Baseboard Management Controllers (BMCs) to control power and clock distri-
bution to the rest of the computer system.

For this reason, I2C is a critical (if often overlooked [1]) component. Incorrect pro-
gramming of the I2C network (e.g. misconfiguring a voltage regulator) can cause ir-
revocable hardware damage. Moreover, I2C controllers (devices like the BMC, which
initiate transactions on the network) have almost unrestricted visibility and authority
over the hardware. To build a secure machine, board firmware (such as on the BMC)
must be trusted. For systems as complex as modern computing platforms, real trust re-
quires formal verification of the software stack. That, in turn, must be carried out in
relation to a faithful model of the underlying hardware.

Unfortunately, I2C is described in an ambiguous informal English-language docu-
ment [13]. While almost all significant hardware components in a modern system talk
I2C, many interpret this standard differently, or only partially implement it.

Our I2C specification is a first step in addressing this problem. Each logical layer
in the I2C protocol has a corresponding layer in the specification. At each layer, an
abstract specification given as a single Promela process captures the correct behavior
of the complete network (senders and receivers) at that layer. The lowest layer models
electrical states on the bus and relies only on minimal timing assumptions.

In addition, deterministic, executable implementation specifications at each layer,
written in a Domain Specific Language (DSL), describe end-point state machines,
which are compiled into Promela. SPIN [9] is then used to verify that the abstract
specification at each layer is correctly implemented by the composition of the
implementations at all underlying layers. We generate C code from the executable
specification which implements a complete, real-world I2C stack. In Section 5.6 we
show how to use this code to build a driver for an I2C EEPROM.

Our specification can therefore serve as the basis for several applications and direc-
tions. Hardware designers can employ it as a rigorous, machine-checkable description
of how compliant I2C devices must behave, and generate high-coverage test suites for
their designs. Firmware engineers can use it to generate functional, performant C code
for parts of their stack, and build robust I2C software implementations which can han-
dle non-compliant devices in a robust and well-defined manner. Finally, for proof en-
gineers seeking to do full-stack software verification of computer systems, we provide
an abstract hardware model that captures the complexity of I2C hardware on which to
(partially) base refinement proofs of system software.

2 Background

I2C is a de-facto standard [13] low-speed control bus used for connecting integrated
circuits on a PCB and macrocells on an SoC. Board designers appreciate its efficiency
since it uses only two shared wires, and allows much of the control sequencing of a
computer system to be implemented in software by a BMC. In addition, the same bus
can be used to both query sensors and control actuators, allowing for complex controller
to be implemented efficiently. In this section, we describe the basic I2C protocol stack
and its implementation subtleties, which have motivated our specification.

A model-checked I2C specification 3

An I2C bus has two wires, clock (SCL) and data (SDA), which are pulled up to the
supply voltage. ICs may only drive the lines low, not high. I2C devices are either con-
trollers or responders2, and a bus can have multiple controllers and responders. Other
devices (e.g. multiplexers), can connect different bus segments. Each responder has a
bus-wide unique seven-bit address; some addresses are special and reserved. Commu-
nication is always initiated by a controller using the target responder’s address.

SCL
SDA

START STOP bit 0 bit 1

Fig. 1: The four I2C bus symbols

The lowest level of the protocol uses the SCL and SDA wires to encode bits (0 or
1) and the start and end of a bus transaction as shown in Figure 1. Outside of an I2C
transaction, SCL is always high.

START/STOP conditions and the clock signal are generated by a controller. Re-
sponders signal a 0 bit by driving SDA low, a 1 bit by doing nothing. When a responder
cannot provide the required data in a timely manner, it can perform clock stretching by
driving SCL low during the clock low period, blocking the bus.

SCL

SDA

SDA:C

SDA:R
START Address: 10..... Wr ACK Byte ACK START Addr Rd ACK Byte ACK Byte NACK STOP

Write message Read message

Transaction

Fig. 2: Example I2C transaction with two messages: write one byte, then read two bytes.
SDA:C and SDA:R are SDA signals asserted by controller and responder respectively.
The address and byte transfers have been abbreviated.

Above the bit layer, I2C deals in transactions containing one or more messages,
as shown in Figure 2. Each message begins with a START condition, and the transac-
tion ends with a STOP condition. After each START, the controller transmits the 7-bit
responder address and a bit indicating READ or WRITE. If a responder with that ad-
dress is present it acknowledges with a 0 bit (ACK), otherwise the controller sees a 1

2 In this paper, we will use the current, more precise terms ‘controller’ for ‘master’ and ‘respon-
der’ for ‘slave’

4 Humbel et al.

bit (NACK). A message will not continue after a NACK. After an ACK, the message
payload follows.

If the controller sends a READ, the responder will respond to the controller with a
sequence of bytes. Each byte is ACKed by the controller, otherwise the responder stops
sending. Likewise, when the controller sends a WRITE, it is followed by zero or more
bytes, each of which is ACKed by the responder.

The bus is only idle when both SDA and SCL are high. Collisions (two controllers
starting to use the bus at the same time) are detected by a device seeing a 0 bit on the bus
when it intended to transmit a 1 bit. In this case, the controllers stop transmitting and
may retry the transaction later. An undefined condition [13, p. 12] occurs when START
and STOP, START and a bit, or STOP and a bit are generated by different controllers
simultaneously.

This is the complete, basic I2C protocol, and appears fairly straightforward. How-
ever, many devices deviate from this standard, making it hard to capture their behav-
ior formally. For example, the hardware I2C controller in the BCM2835 SoC (used in
the Raspberry Pi 1) ignores clock stretching from responder devices [1], and cannot
interoperate with devices that do so. The workaround is to ignore the hardware and im-
plement the controller directly in software (known as “bit-banging”), a CPU-intensive
technique. The AS5011 Hall Sensor [3] and the CAT5259 Digital Potentiometer [14]
both ignore the READ/WRITE bit of a message and require every transaction to be a
WRITE, while the KS0127 video decoder [2] ignores the STOP condition unless the
controller can include it in a nonstandard position, and continues writing data on the
bus. These examples are all violations of the informal protocol specification, but they
occur at different layers (the bit, byte, and transaction layers).

An advantage of structuring a formal specification in layers is that conformance can
be expressed up to a given layer, and then modified to accommodate the non-compliant
device as a special-case above this layer.

3 Related Work

I2C has served as a case study for many verification techniques, for example in applying
the Analytical Software Design methodology [11]. Using a model of an existing con-
troller device, the authors verify correct interaction between a driver and this model.
Similar, Bošnački et al. [6] study the concurrent interactions of a Linux I2C bus driver
with hardware and syscalls. While our work overlaps in basic I2C properties, like adher-
ence to the addressing mode, we specify and construct the controller itself. Finkbeiner
et al. [7] study the information flow in an existing unverified I2C controller using Hy-
perLTL, a logic that can reason about and quantify over the set of traces, and thus can
correlate inputs and outputs. It is complementary to our work, since our specification
could be verified against their information flow properties. In a simulation assisted ver-
ification approach [8] I2C is considered. The assumptions in this work differ from ours:
The system under verification is treated as a black-box and simulation is used to reduce
the state-space while our goal is to replace a black box with a specified, clear system.
Bos et al. [5] proposes to express the I2C controller and devices in discrete time pro-
cess algebra. Their work neither automatically verifies nor generates code. While they

A model-checked I2C specification 5

mention the ability to analyze deadlocks, they do not provide any conditions a higher-
layer device must fulfill in order to guarantee deadlock freedom. In contrast our work’s
main focus is stating sufficient correctness properties for higher abstraction levels. AC-
CESS.bus is a standard that builds hotplug on top of I2C. Its handshake protocol has
been model checked [4]. The I2C abstraction used is on a higher level (messages) than
our model (down to level changes on the bus). Our work is complementary and could be
used verify their assumptions. Other bus protocols that have been studied using model
checking include the CAN bus [15] and the AMBA on chip bus [16]. These bus specifica-
tion ensure more guarantees than I2C such as fault confinement, liveness, priority-based
fairness.

4 Approach and Tools

We will illustrate our approach with an example with three layers: electrical, bus, and
nibble layer. The BusController receives a 4-bit nibble from the NibbleController and
writes it bitwise on the electrical layer. The BusResponder receives these bits from the
electrical layer and returns the nibble to the NibbleResponder. The responder either
ACKs or NACKs the message.

An example exchange is given below, between bus and nibble layers. We denote x
receiving value y on the lower layer with x↑y, while x↓y is x sending value y on the
lower layer. c is the NibbleController and r is the NibbleResponder.

. . . , c↑ACK, c↓3, r↑3, r↓NACK, c↑NACK, . . .

We see c receiving an ACK (presumably from the address phase), sending a payload
nibble 3, which is received and NACKed by r, ending with the NACK arriving at c. The
correctness statement for this layer is that any datum written by NibbleController will
be received by NibbleResponder. We do so by ensuring that the message sequence
produced by the implementation and an abstract process are equal.

We implement BusController (Listing 1.1) and BusResponder (Listing 1.2) in our
DSL, whose semantics are based on coroutines. Coroutines can call other coroutines,
and the callee executes until yielding to the caller. The coroutine resumes at the last
yield when called, with the local state preserved.

We implement the bus logic in process El. This calls BusController and BusRe-
sponder to get their current outputs, then combines these to compute the bus state (i.e.
wired-AND — the bus is 0 if any agent drives it low).

We verify the correctness of BusController and BusResponder (see Listing 1.3)
against BusSpec, a nondeterministic process capturing permissible bus behavior, and
NibbleValid, which captures allowable event sequences from the next-highest level
(i.e. what the bus layer may assume). Figure 3 depicts this.

BusSpec prescribes how actions from the nibble layer translate into events to the
nibble layer e.g. the number 3 in the above example. NibbleValid includes all possible
actions at the Nibble layer. It non-deterministically transmits a 4-bit nibble, which is
either ACKed or NACKed (again non-deterministically). Correct delivery is guaranteed
by BusSpec.

6 Humbel et al.

1 proc (int) BusController(int res) {
2 int data; int data_pos; int nibble_res;
3 nibble_res = RES_ACK;
4 start:
5 data = NibbleController(nibble_res);
6 data_pos = 0;
7 while(data_pos < 4){
8 yield ((data >> (3-data_pos)) & 1); //MSB first
9 data_pos = data_pos + 1; }

10 yield (1); // this reads back the ACK bit
11 if(res == 0) {
12 nibble_res = RES_ACK; goto start;
13 } else {
14 nibble_res = RES_NACK; goto start; }
15 }

Listing 1.1: Bus Controller

1 proc (int) BusResponder(int res) {
2 int buf; int read; int ack;
3 start:
4 buf = 0; read = 0;
5 while(read < 4){
6 yield (1);
7 assert(res == 0 or res == 1);
8 buf = (buf << 1) | res;
9 read = read + 1; }

10 (ack) = NibbleResponder(buf);
11 yield (ack); goto start;
12 }

Listing 1.2: Bus Responder

The verifier is an additional process that polls the message channels and forwards
messages to both BusSpec and BusImpl. If both produce the same result, execution
continues, otherwise the verifier stalls (no transition/deadlock). Implementation correct-
ness is then checked by using SPIN to verify the absence of deadlock in the combined
process.

4.1 Programming model, DSL, and backends

As discussed, our DSL is based on coroutines. The language is (semantically) an exe-
cutable subset of Promela with messages restricted to the call and yield primitives, and
an acyclic call graph. These restrictions also allow for the generation of compact C code.
Unlike existing C-to-Promela converters [10], we describe stateful processes (corou-
tines). Implicit state makes it convenient to express stateful protocols such as I2C. Pro-

A model-checked I2C specification 7

El

BusSpecBusController

NibbleValid

Verifier

BusResponder

Fig. 3: Verification processes for verifying the Bus level. Gray processes are generated
from the DSL; blue ones are expressed in Promela

1 proctype NibbleValid(chan ci, co, ri, ro) {
2 int c_res = RES_ACK; int dat;
3 start:
4 select(dat : 0..15);
5 ci?_; co!dat;
6 ri?_;
7 if
8 :: ro!ACT_ACK; c_res = RES_ACK; goto start;
9 :: ro!ACT_NACK; c_res = RES_NACK; goto start;

10 fi }
11

12 proctype BusControllerSpec(chan ci, co, ri, ro){
13 int dat; int res = RES_ACK;
14 start:
15 co!res; ci?dat;
16 ro!dat;
17 if
18 :: ri?ACT_ACK; res = RES_ACK; goto start;
19 :: ri?ACT_NACK; res = RES_NACK; goto start;
20 fi }

Listing 1.3: Bus example verification

cesses have state variables of type int or intarr (fixed-size array). No global vari-
ables are allowed. The size of intarr is implementation-defined, but guarded against
overflow. The DSL supports while, if and goto as control flow.

The C backend translates a DSL process to a function and a process call into a
function call. The backend assembles all state in a large static struct, kept intact
between calls. To yield, a process is implemented as a large switch statement, with
execution resuming at the most recent label.

From the language subset, Promela generation is straightforward. Each process has
two channels: input and output. Call, sends arguments to the callee’s input and blocks
on the callee’s output. Processes block on input until arguments arrive. Yield sends the
result on the output channel.

Verification properties are specified directly in Promela, exploiting nondeterminism.
The complete syntax of our DSL is expressed in Listing 1.4.

8 Humbel et al.

Executable Specification (DSL)

DSL Compiler

Boilerplate (C)

State Machines (C)State Machines (Promela)

SPIN C Compiler

Verification (Promela)

Fig. 4: Workflow of the user provided files (white), intermediary files (yellow), and tools
(gray)

4.2 Calculus

We verify our layered system with the following calculus: Each layer has an implemen-
tation LayerImpl i, a valid behavior LayerValid i, and a specified behavior LayerSpeci.

LayerSpeci is a state machine expressed as a function over its past result/action
trace returning the next result symbol. LayerSpeci specifies the correct behavior at
layer i.

LayerValid i is a predicate over the result/action trace that is true if the sequence is
permissible at this layer and ends with an action symbol.

LayerImpl i has the same type as LayerSpeci, except that it must be bound to a
state machine of layer i − 1, which it can query to determine its next step. We denote
the binding of this lower level state machine with ◦. LayerImpl0 is the exception, which
does not need to be bound.

As explained before, isolated specification is not possible, hence they operate on
traces that include actions and results for both controller and responder.

In this calculus, our system is verified if it fulfills

∀i.∀ωi.LayerValid i+1ωi ⇒
LayerSpeciωi = (LayerImpl i ◦ LayerImpl i−1 ◦ . . . ◦ LayerImpl0)ωi

This verification procedure is depicted in Figure 5 as an infinite sequence of di-
rected messages ω = e1, e2, We denote the sequence of all messages as ω, and the
sequence of messages exchanged between layer i and layer i + 1 as ωi. Examples of
messages are the action to send an acknowledgement (represented by a down arrow ↓)
or the receipt of an acknowledgment message (depicted as an up arrow ↑). Even though
abstractly we deal simply with a trace of events, it is useful to denote if the message is
destined for the controller or responder. We denote this with c↑x for a result with value
x destined for the controller, and with r↑x a result x destined for the responder.

A LayerImpl i can not only be bound to other implementations, but also to a
LayerSpeci. We evaluate the verification time improvements of this in section 6.

We verify this property by encoding it into Promela processes, such that a verifier
process can not make progress when a violation has been found. Adherence to the
protocol is shown by verifier always able to make progress. LayerValid i becomes a
non-deterministic process, producing all valid actions. This action is sent to verifier
which duplicates the action and sends it to both the LayerSpec and the LayerImpl . If

A model-checked I2C specification 9

〈file〉 ::= (〈proc〉 | 〈procCopy〉)* ‘EOF’
〈procCopy〉 ::= ‘proccopy’ 〈id〉 ‘of’ 〈id〉 (‘where’ (〈rename〉 (‘,’ 〈rename〉)*)?)? ‘;’
〈proc〉 ::= ‘proc’ ‘(’ (〈type〉 (‘,’ 〈type〉)*)? ‘)’ 〈id〉 ‘(’ (〈varDecl〉 (‘,’ 〈varDecl〉)*

)? ‘)’ ‘{’ (〈varDecl〉 ‘;’)* 〈instr〉* ‘}’
〈rename〉 ::= 〈id〉 ‘=’ 〈id〉
〈block〉 ::= ‘{’ 〈instr〉* ‘}’
〈instr〉 ::= ‘yield’ (〈aEx〉 | ‘(’ 〈aEx〉 (‘,’ 〈aEx〉)+ ‘)’) ‘;’

| 〈varRef 〉 ‘=’ 〈aEx〉 ‘;’
| 〈id〉 ‘:’
| ‘while’ ‘(’ 〈bEx〉 ‘)’ 〈block〉
| ‘if’ ‘(’ 〈bEx〉 ‘)’ 〈block〉 (‘else’ 〈block〉)?
| ‘goto’ 〈id〉 ‘;’
| ‘assert’ ‘(’ 〈bEx〉 ‘)’ ‘;’
| (〈id〉 | (‘(’ 〈id〉 (‘,’ 〈id〉)+ ‘)’)) ‘=’ 〈id〉 ‘(’ (〈aEx〉 (‘,’ 〈aEx〉)*)? ‘)’;

〈varDecl〉 ::= 〈type〉 〈id〉
〈type〉 ::= ‘intarr’ | ‘int’
〈cEx〉 ::= 〈aEx〉 (‘>=’ | ‘>’ | ‘<=’ | ‘<’ | ‘==’ | ‘!=’) 〈aEx〉
〈bEx〉 ::= ‘true’ | ‘false’ | ‘(’ 〈bEx〉 ‘)’

| 〈bEx〉 (‘and’ | ‘or’) 〈bEx〉 | 〈cEx〉
〈aEx〉 ::= ‘(’ 〈aEx〉 ‘)’ | 〈varRef 〉 | (‘-’?[‘0’-‘9’]+) | 〈uOp〉 〈aEx〉 | 〈aEx〉 〈bOp〉 〈aEx〉
〈bOp〉 ::= ‘&’ | ‘|’ | ‘*’ | ‘/’ | ‘+’ | ‘-’ | ‘<<’ | ‘>>’
〈uOp〉 ::= ‘-’ | ‘+’
〈varRef 〉 ::= 〈id〉(‘[’ 〈aEx〉 ‘]’)?
〈id〉 ::= 〈char〉 (〈char〉 | [‘0’-‘9’] | ‘_’)*
〈char〉 ::= [‘a’-‘z’] | [‘A’-‘Z’]

Listing 1.4: Complete DSL syntax

the LayerSpec produces a result, the verifier ensures that the LayerImpl produce the
same result. If it differs, the verifier will not make progress. We also use this message
dispatch to show liveness of the system, by marking it with a SPIN progress label and
verifying the liveness check.

We currently do not verify that the layer implementation LayerImpl i adheres to
LayerValid i. Since we verify the full stack of implementations, we still do get the
correctness guarantees, but it is possible, that in the middle of the implementation stack,
the implementations rely on unspecified behavior.

5 The I2C model

5.1 Layering of I2C

We divide our I2C stack into the layers shown in Figure 6, and we apply the verification
principle from section 4 at every layer.

10 Humbel et al.

Fig. 5: Verification illustration, the system is verified if ωi = ω′i

L0: El ResponderController

L1: Sym ResponderController

L2: Byte ResponderController

L3: Transaction ResponderController

L4: Driver ResponderController

L5: World ResponderController

Actions

Results

Fig. 6: Layering of the I2C model.

The stack presented here includes two device-specific layers: World and Driver
layer. We envision this process of device modelling and verification to be done for
each device that is connected to the bus. This also gives a high level of assurance for
the device driver represented by Driver. But it is also feasible to directly interact in a
system with, for example, the transaction layer and skip the verification of the higher
layers.

5.2 Layer 0: Electrical Layer

The lowest layer, the electrical layer 0, is trusted. Hence it consists of only an imple-
mentation. It describes how two devices sending bus signals (a SCL/SDA pair, each 0
or 1) are combined into the next bus state, which is sent back to the devices. It does so
by using the I2C mandated AND combination of signals for each wire, which is a result
of the active drive low logic.

We assume a reliable delivery of bits. Like prior work [5], we observe that I2C bus
events can be discretized. We assume sampling of the bus at the Nyquist frequency of
the clock, such that two samples occur during a clock high period. This allows us to
distinguish START and STOP conditions from BIT0 and BIT1.

5.3 Layer 1: Symbol Layer

Layer interface The symbol layer connects the electrical with the byte layer. It parses a
sequence of bits into a symbol and vice-versa, turns a symbol into a bit sequence. The
results and actions are depicted in Figure 7. In addition to the I2C symbols we define
IDLE and STRETCH, which delay the next symbol.

A model-checked I2C specification 11

L1: Sym ResponderController

IDLE, START, STOP,
BIT0, BIT1, STRETCH

(SCL,SDA) ∈ {0, 1}2

Fig. 7: Interface of the symbol layer. The label describes the datatype of all the channels
in this layer.

The implementation differs for controller and responder, but they share a large part
of the code (expressed as two sub-processes SymbolReader and SdaDriver) The con-
troller is actively driving the clock (using a sub-process SclDriver). The responder is
driving the clock only in one specfic case: When it is processing a STRETCH action, it
will delay the clock rise by exactly one cycle. Both controller and responder are clock
agnostic. For example the SdaDriver will wait until the clock rises and falls again, thus
it is invariant against clock stretching. Both byte controller and byte responder are in-
voked in the same clock cycle. The exception again is during a STRETCH, which will
produce an extra invocation in the next clock cycle.

The specification defines how two symbol actions are combined into a new one. In
the initial, out-of-transaction state, two IDLE commands are combined into an IDLE
result (i.e. c↓IDLE, . . . , r↓IDLE will be followed by c↑IDLE, . . . , r↑IDLE) as well as
a START and a IDLE are combined into START (i.e. c↓IDLE, . . . , r↓START will be
followed by c↑START, . . . , r↑START).

If a START result has been sent, the specification enters the in-transaction state. In
this state, the following action combinations are valid. Note they are symmetrical, thus
we skip the sender identifier as well as symmetrical cases.

– ↓BIT1, ↓BIT1 produces two ↑BIT1,
– ↓BIT0, ↓BIT1 produces two ↑BIT0,
– ↓BIT1, ↓START produces two ↑START,
– ↓BIT1, ↓STOP produces two ↑STOP, and enter out-of-transaction state.
– r↓STRETCH is immediately followed by r↑STRETCH, until r produces a non

stretch action.

The valid actions of the next higher layer follow the same in- and out-transaction
states as the specification. Outside a transaction, ByteValid either generates an IDLE
pair to remain outside a transaction or initiates a transaction by allowing the controller
to generate a START. In-transaction it generates a zero or more sequence of STRETCH,
followed by all the valid symbol combinations.

5.4 L2: Byte Layer

Layer Interface I2C is a byte-oriented protocol, where each byte is acknowledged. This
layer reads and writes symbols, turning them into bytes. START and STOP conditions

12 Humbel et al.

L2: Byte ResponderController

Results:
IDLE, START, STOP, FAIL
ACK,NACK, RES READ,x

Actions:
IDLE, START, STOP,
WRITE,x, READ, ACK, NACK

Fig. 8: Interface of the Byte layer. Both controller and responder have the same signature
for actions and results.

are passed through: The higher layer must send START and STOP explicitly. The inter-
face is depicted in Figure 8.

The implementation does not distinguish between controller and responder. START
and STOP actions are passed to the symbol layer directly, WRITE,x and READ operate
bitwise (MSB first transmitted). If a written bit is not correctly transmitted, the layer
will report FAIL and remain silent for the rest of the byte.

The specification describes how actions are combined into results. Controller and
responder are not equal anymore; the controller must initiate the transaction. As in the
symbol layer specification, an IDLE pair remains outside transaction and a START/I-
DLE is used to enter the in-transaction state. Within a transaction the following combi-
nations hold

– c↓ACT WRITE, x and r↓ACT READ is followed by r↑RES READ, x,
r↓ACT (N)ACK and c↑RES (N)ACK. Note that the variable x is bound, the
written value must be the same as the read value.

– The symmetrical case of the above item where the controller reads and the respon-
der writes.

– ACT READ can also be combined with ACT START and ACT STOP. This is
important for the responder, who can not predict the action of the controller, then
ACT READ is a safe choice.

The valid actions follow directly from the specification. All specified combinations
are verified, with the caveat that the value of the written byte is constrained to a pre-
defined set of 10 choices. In section 6 we show the trade-offs to verify all values (0 to
255).

5.5 L3: Transaction Layer

I2C defines the transaction format, such that a START condition must be followed by
a 7-bit address and a direction bit. Then, depending on the direction bit, the controller
reads or writes a sequence of bytes. This introduces an asymmetry: It is the controller
that initiates a transaction, and the responder acts accordingly. Figure 9 shows all the ac-
tions and events processed at this layer. Starting from this layer, controller and respon-
der have not only distinct specifications as before, but also distinct implementations.
The responder also decodes a (currently fixed) I2C address and ignores via NACKs all
other addresses.

A model-checked I2C specification 13

Responder Results:
IDLE,START,STOP,ACK,
NACK,READ, WRITE,xs

Responder Actions:
IDLE, ACK, NACK, WRITE,x

L3: Transaction ResponderController

Controller Results:
OK,xs, FAIL
NACK

Controller Actions:
IDLE,STOP
WRITE,addr,xs, READ,addr,len

Fig. 9: Interface of the Transaction layer.

The implementation of the controller is fairly straightforward: Each higher level
action is turned into a sequence of START and address byte with correct direction bit.
If a write is requested, it continues to write the data. If a read is requested, it reads the
desired number of bytes, sending an ACK for all except the last byte (per I2C standard)
which is answered with NACK that tells the responder to stop sending. If the responder
receives a NACK, it is forwarded to the next higher layer.

The responder waits for a START, which is propagated to the driver. We propagate
STARTs to the next higher layer to distinguish between two consecutive writes and a
write – restart – write sequence. After a START, the responder reads the address byte,
checks that the addresses match, and depending on the direction bit propagates either a
RES READ or a RES WRITE. Since the responder cannot know how many bytes are
read, we propagate each byte read request individually to the next level. Writes on the
other hand can be buffered, until the controller is done. Then the whole array of written
data is passed on.

The specification describes the interaction of driver layer actions. The sequence is
determined solely by the controller: If it requests a WRITE of x bytes, we expect a
RES START from the responder, followed by x times a RES READ. The responder
either ACKs x − 1 times and then the controller will receive a RES ACK, or if the
responder decides to NACK before, the controller will receive a NACK.

The valid action sequences become conceptually simple but increasingly challeng-
ing to verify. The controller produces after a sequence of ACT IDLE any combination
of ACT READ and ACT WRITE until finally an ACT STOP brings it back to the
initial, out-of-transaction state. However the data that is either read or written is poten-
tially infinite in length. Since we focused on the correct delivery of data at the lower
layer, the verification cases for this layer focus on increasing the length of the transac-
tion. Hence we show that for sequentially increasing payload of any length between 1
and 4 bytes our implementation conforms to the specification.

Conversely, the responder is completely driven by the result it receives. After a
RES START only ACT IDLE is valid. After receiving START but before a STOP,
the following combinations are valid: RES READ followed by ACT WRITE,x,

14 Humbel et al.

RES WRITE followed by ACT ACK or ACT NACK, RES STOP, and
RES START must be followed by ACT IDLE.

5.6 L4: Driver

Layer interface At this layer we start implementing the protocol that is specific to our
model EEPROM, a Microchip 24XX16 [12]. The controller contains what typically is
implemented in the device driver. From the world layer, the controller receives requests
for reading or writing from the EEPROM. The responder, on the other hand, encodes the
EEPROM-specific features, for example the logic for the address buffer. The responder
forwards requests to an EEPROM implementation. The interface is shown in Figure 10.

Responder Results:
START,WRITE,off,xs,
READ,off,len

Responder Actions:
OK,xs

L4: Driver ResponderController

Controller Results:
IDLE, OK,xs, FAIL

Controller Actions:
WRITE EEPROM,off,xs,
READ EEPROM,off,len
IDLE

Fig. 10: Interface of the Driver layer.

The implementation of the controller turns an ACT WRITE EEPROM,
parametrized by an offset and a data array, into a long write transaction. The first two
bytes determine the EEPROM write offset followed by the data to be written. The data
length is not communicated explicitly; if the data is written, the controller sends a
STOP condition, signaling to the responder that the transaction is over. Reading works
similarly: The controller issues two-byte write transaction followed by a len-long read
transaction.

The responder behaves similarly. It waits for a START, then expects a write of at
least two bytes. If more bytes follow, they are interpreted as a write transaction. It
assembles the written data into a buffer and once the STOP condition arrives, passes it
on (as RES WRITE,xs) to the world layer. Read is more difficult, because by the time
the first read byte must be supplied, the read length is unknown. Hence we assume there
is a maximum read length, which we query from World (by issuing a RES READ) then
sending from this buffer.

The specification becomes fairly simple at this point. A controller
ACT WRITE,off,xs is turned into a responder RES WRITE,off,xs. A controller
ACT READ,off,len becomes a RES READ,off,maxlen, followed by a responder
ACT OK,xs, and a controller RES OK,xs’, where xs’ is a prefix of xs with length len.

A model-checked I2C specification 15

The valid action sequence is unconstrained at this point. The controller can choose
between ACT WRITE and ACT WRITE, while the responder must subsequently re-
ceive RES READ and RES WRITE and reply with ACT OK. However, we severely
restrict the payload that is transmitted at this level by choosing one of 4 predefined
datasets, to keep the full implementation verification time manageable.

5.7 L5: World

Since this is the highest layer, we can not verify the behavior given a higher layer
behavior. We still provide a dummy implementation that performs a defined sequence
of actions which is what we evaluate on our hardware platform.

6 Evaluation

6.1 Verification runtime

The verification runtimes are evaluated on an AMD Ryzen 9 3900X with 32 GB of
RAM running Ubuntu 20.04 with SPIN version 6.4.9.

Verification of the Symbol layer performs a complete state space search and finishes
in 0.4 seconds. As mentioned in subsection 5.4, the byte layer is verified only on a
small set of payload values, hence we would like to speed up the verification time.
We can do so by replacing lower LayerImpl with LayerSpec (e.g. LayerSpecbyte =
LayerImplbyte ◦ LayerSpecsym instead of LayerSpecbyte = LayerImplbyte ◦ . . . ◦
LayerImpl0).

Table 1 shows the verification times using this method. The speedup factor depends
on the layer complexity. Replacing the rather complex Symbol with SymbolSpec leads
to a speedup of 10×, replacing Byte with ByteSpec leads to 5× speedup.

Table 1: Verification time in seconds using different layers of abstraction.

Full Implementation SymbolSpec ByteSpec TransactionSpec

Symbol 0.1
Byte 9.0 0.7
Transaction 69.4 8.7 1.8
Hl 62.9 6.7 1.0 0.3

Instead of decreasing verification time, this technique can be used to increase the
search space size. For example the Byte layer can be completely verified (i.e. checking
all 256 values for a byte write as well as for a byte read) using SymbolSpec in about 70
seconds.

16 Humbel et al.

6.2 Execution on a Raspberry Pi

Our DSL can generate C code for the deterministic state machines. Conceptually, the
C code can interact with any layer directly. For example, it could get output from the
transaction layer and translate it into Linux I2C API calls. However to profit most from
the verification, the whole stack (excluding the electrical layer) can be executed. This
leads to an interface that only writes and reads SDA/SCL as high/low states from the
bus. We demonstrate this using the Linux GPIO interface connected to an I2C EEP-
ROM. The boilerplate code runs in an infinite loop: reading the bus state, forwarding
it to the controller state machine, reading back the command, and outputting it on the
GPIOs. In conformance with the I2C specification we actively drive the data and clock
line low on zero. If a one is to be written, we set the pin to a high impedance state. The
process repeats after an appropriate delay accounting for the required setup and hold
time.

We currently hardcode the testcase in the World implementation. To expose an in-
terface, we would also replace the highest layer with boilerplate C code that would e.g.
do non-blocking reads from a UNIX pipe do receive the commands to be sent.

The total required boilerplate code consists of 128 lines of code; most of it imple-
ments interfacing with Linux’s file-based sysfs GPIO interface. The generated I2C
state machine code consists of 2678 lines and compiles to a binary of 32 KB.

7 Conclusion and Future work

We have successfully demonstrated that our approach of creating and verifying layered
specifications for I2C is feasible, and that it can be used to express bus interactions on a
high level, to specify the expected behavior, and to verify that the specification fulfills
this property. Furthermore, the executable specification can be used to generate code,
which interacts with real physical devices.

While this work has already proven to verify desirable properties in a specific sce-
nario, we cannot yet claim full generalization. We have empirically considered partially-
conforming devices, but we did not formally model them at this stage. We expect the
specification to be extended, but no change in the methodology nor the lower layers
should be necessary. I2C features we do not yet handle include broadcast, variable
length read transactions and multi controller.

So far, we generate C code. In future work, we plan to generate synthesizable hard-
ware descriptions, producing verified FPGA or even ASIC implementations. While we
do not expect any problems with the state machine generation itself, we will also need
to generate and verify the corresponding hardware-software interface.

From a theoretical perspective, we so far assumed that our layer calculus itself is
correct, i.e. we assumed that a layer that follows the specification can be combined with
any (lower and higher) layer that also fulfills the layer contract. Given the higher order
nature of this, we think that either an embedding in an existing process calculus or a
from-scratch formalization in an interactive theorem prover would be interesting. The
second option would also open the possibility to reason about the system not only in
a model checker, but in a theorem prover. This could lift the restriction that we verify
only on a small set of payloads, at the cost of some manual proof engineering.

A model-checked I2C specification 17

References

1. Raspberry pi i2c clock-stretching bug. https://www.advamation.com/knowhow/
raspberrypi/rpi-i2c-bug.html. Accessed: 2021-04-01.

2. Video capture driver (video for linux 1/2). https://git.kernel.org/pub/
scm/linux/kernel/git/stable/linux.git/tree/drivers/media/i2c/
ks0127.c?h=v5.8.3. Accessed: 2021-04-01. Unfortunately the datasheet is not public.

3. ams AG. AS5011 Low power Integrated Hall IC for human interface applications, 2009.
Rev. 3.6.

4. Bernard Boigelot and Patrice Godefroid. Model checking in practice: An analysis of the
access.bus™ protocol using spin. In Marie-Claude Gaudel and James Woodcock, editors,
FME’96: Industrial Benefit and Advances in Formal Methods, pages 465–478, Berlin, Hei-
delberg, 1996. Springer Berlin Heidelberg.

5. S.H.J. Bos and M.A. Reniers. The I2C-bus in discrete-time process algebra. Science of
Computer Programming, 29(1-2):235–258, July 1997.

6. Dragan Bošnački, Aad Mathijssen, and Yaroslav S Usenko. Behavioural analysis of an i2c
linux driver. In International Workshop on Formal Methods for Industrial Critical Systems,
pages 205–206. Springer, 2009.

7. Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking
hyperltl and hyperctl*. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer
Aided Verification, pages 30–48, Cham, 2015. Springer International Publishing.

8. Saurav Gorai, Saptarshi Biswas, Lovleen Bhatia, Praveen Tiwari, and Raj S. Mitra. Directed-
simulation assisted formal verification of serial protocol and bridge. In Proceedings of the
43rd Annual Design Automation Conference, DAC ’06, page 731–736, New York, NY, USA,
2006. Association for Computing Machinery.

9. Gerard J Holzmann and William Slattery Lieberman. Design and validation of computer
protocols, volume 512. Prentice hall Englewood Cliffs, 1991.

10. Ke Jiang and Bengt Jonsson. Using spin to model check concurrent algorithms, using a
translation from c to promela. In MCC 2009, pages 67–69. Department of Information
Technology, Uppsala University, 2009.

11. Arjen Klomp, Herman W Roebbers, Ruud Derwig, and Leon Bouwmeester. Designing a
Mathematically Verified I2C Device Driver Using ASD. In CPA, pages 105–116, 2009.

12. Microchip. 24XX16: 16K I2C Serial EEPROM, 2019.
13. NXP Semiconductors. I2C-bus specification and user manual, 4 2014. Rev. 6.
14. ON Semiconductor. CAT5259 Quad DigitalPotentiometer (POT) with 256 Tapsand I2C

Interface, 2013. Rev. 11.
15. Can Pan, Jian Guo, Longfei Zhu, Jianqi Shi, Huibiao Zhu, and Xinyun Zhou. Modeling

and Verification of CAN Bus with Application Layer using UPPAAL. Electronic Notes in
Theoretical Computer Science, 309:31–49, December 2014.

16. A. Roychoudhury, T. Mitra, and S. R. Karri. Using formal techniques to debug the amba
system-on-chip bus protocol. In 2003 Design, Automation and Test in Europe Conference
and Exhibition, pages 828–833, 2003.

https://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
https://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/media/i2c/ks0127.c?h=v5.8.3
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/media/i2c/ks0127.c?h=v5.8.3
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/media/i2c/ks0127.c?h=v5.8.3

	A model-checked I2C specification

